
Reverse Engineering BLE Devices
Documentation

Sergio Alberti

Jan 25, 2019

Contents

1 Notes (GSoC 2018) 3

2 Contents 5
2.1 Introduction . 5
2.2 Application Protocol Reverse Engineering . 10
2.3 Protocol Description . 40
2.4 Script Creation . 54
2.5 Contributions . 75

i

ii

Reverse Engineering BLE Devices Documentation

The following documentation is intended as a guide to reverse engineering of BLE (Bluetooth Low
Energy) devices. The idea is to provide information about BLE, how to identify the protocol used
by the devices and how to create shell scripts to communicate with them.

To do this, the guide is based on examples applied to devices currently on the market. As explained
in the Contributions section, this document would like to be an evolving project, in which to gather
information on reverse engineering techniques and to make available works already done in this
area.

Contents 1

Reverse Engineering BLE Devices Documentation

2 Contents

CHAPTER 1

Notes (GSoC 2018)

This guide comes from a project of GSoC 2018 and takes as a starting point a work done on
radiator valves. These systems have become increasingly important in recent years, especially
in some countries where they have been made mandatory by law. This led to the production of
various models programmable using a smartphone application coupled with the BLE protocol. At
the moment all the products on the market use proprietary communication protocols to exchange
essential data with the application, making it difficult to integrate this devices into external open-
source projects. For this reason the University of Milan has successfully reverse-engineered a
protocol and released the necessary code to use it with a GPL license. An English translation of
the code can be found here.

The project aims to use what has already been produced to:

• write a reverse-engineering guide for BLE devices as general as possible

• design a mechanical device to test the valves without a radiator

• port the library to a more modern language in an attempt to integrate it into projects such as
openhab or home-assistant and create a Debian package

Here is available a detailed description of the deliverables and the time schedule and here is a
brief weekly report.

3

https://wiki.debian.org/SummerOfCode2018/Projects/RadiatorThermovalveReverseEngineering
http://sl-lab.it/dokuwiki/doku.php/tesi:reveng-termovalvole
https://gitlab.com/sergioalberti/gsoc-blereverse/tree/master/eq3_eqiva_reveng/reference_implementation
http://www.openhab.org/
https://www.home-assistant.io/

Reverse Engineering BLE Devices Documentation

4 Chapter 1. Notes (GSoC 2018)

CHAPTER 2

Contents

2.1 Introduction

For some years now the world of IoT (Internet of Things) has experienced a strong increase in
the production of BLE (Bluetooth Low Energy) devices. This type of “smart devices” changes the
way we interact with the world, but is often controlled through smartphone apps or software whose
application protocol is not disclosed.

This guide deals with the activity related to the reverse-engineering of the protocol used in the
communication with a BLE device.

It tries to be as general as possible, however it takes as a test/reference device the Eqiva radiator
valves produced by the EQ3 company and the related Android application CalorBT . Between
2015 and 2016, Dr. Andrea Trentini contacted the company more than once in order to obtain
documentation related to the protocol, but the company did not want to provide details. EQ3 also
specified that there is no GNU/Linux software to interact with the valves.

The objectives are:

• to reverse engineer the protocol used to communicate with the BLE device

• to show how to communicate with the device using the BlueZ stack

The result translates into the possibility to integrate these devices into free home automation sys-
tems or other external projects. In the specific case of the radiator valves, this guide has led to the
creation of a series of shell script functions to manage every “device controlling” aspect.

5

http://www.eq-3.com/products/eqiva.html
https://play.google.com/store/apps/details?id=de.eq3.ble.android
http://atrent.it/doku.php

Reverse Engineering BLE Devices Documentation

Fig. 1: EQ3 Eqiva valve on a radiator

2.1.1 What Radiator Valves Are

Radiator valves are thermoregulation devices composed of two parts: a valve and a bulb in contact
with the surrounding environment. The bulb contains a fluid with a high expansion coefficient.
The set of these two components allows to create a system that, according to a range of values
placed on the valve, expands or contracts the fluid. This causes the activation or the interruption of
the flow to be managed. It is therefore clear that the application area is that of heating and cooling
systems. The use of thermostatic valves on domestic heaters has become fundamental because it
allows the reduction of consumption and emissions.

Fig. 2: Operating scheme of a classic valve1

Electronic versions of these valves have been available for some years now. They are battery pow-

1 Demshop - Caleffi 200

6 Chapter 2. Contents

https://www.demshop.it/TESTA-TERMOSTATICA-CALEFFI-200

Reverse Engineering BLE Devices Documentation

ered and equipped with an integrated thermostat replacing the classic fluid. Theese valves can
be programmed for the whole week and allow a more accurate selection of the desired tempera-
ture. For ease of use, the interaction with these valves usually takes place through a proprietary
smartphone application that uses a Bluetooth or Wi-Fi connection for data exchange.

Fig. 3: Electronic BLE valve

2.1.2 Setup Without A Radiator

Once mounted on the radiator, the valves must perform an adaptive run phase before they can be
used. During this phase the valve lengthens the external pin until it detects the radiator’s pin and
calibrates itself (on the strength of the valve pin). While this activity takes place, the AdA message
is shown on the display and no further operations can be performed.

Note: According to the manual2, if during the setup phase the valve shows the error messages F2
or F3 the reasons are respectively:

• the valve pin extended to the maximum length without meeting the radiator pin

• the valve pin was blocked before reaching the minimum required distance

While the error is shown, the motor returns to its starting position (indicated by Ins on the dis-
play). To restart the calibration, press the button in the middle of the valve and wait again for the
necessary time.

However, it may happen that there isn’t a radiator suitable for initialization or an immediate way to
perform this phase. Several times we have done the calibration by inserting a marker in the valve

2 Eq3 Eqiva User Manual

2.1. Introduction 7

https://www.eq-3.com/Downloads/eq3/downloads_produktkatalog/eqiva/bda/CC-RT-BLE-EQ_UM_GE_eQ-3_160428.pdf

Reverse Engineering BLE Devices Documentation

and locking it against a wall to exert the necessary force. It is easy to understand that this is not a
very convenient method and often requires more attempts.

Since the valve must recognize that it is in contact with something very constantly resistant, al-
ternative methods can be found. The least expensive solution involves using the adapter supplied
with the valves. It is designed to make them usable on various types of radiators and is equipped
with a screw to tighten and loosen the grip (see Adapter Details).

Fig. 4: Adapter Details

The second piece we need is a large screw (or a sort of cylinder) of the size needed to fill the
adapter. (see the next image as a reference). It is important that when the adapter is tightened the
screw makes a lot of grip because the valve’s pin pushes very hard.

The bolt can be found in many hardware stores at low cost (less than 1C), while the adapter will
cost you more (between 5C and 10C). However it is usually included in the valve package.

Now it is enough to:

1. insert the screw in the adapter so that it sticks out a lot towards the valve

2. tighten the small screw around the adapter

3. attach the adapter to the valve (see Test device setup example)

4. start the setup phase by pressing the big button on the valve

If during the calibration phase we meet one of the errors mentioned in the previous note, then it’s
sufficient to adjust the screw accordingly.

8 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

Fig. 5: From left to right: the valve, the screw and the adapter

Fig. 6: Test device setup example

2.1. Introduction 9

Reverse Engineering BLE Devices Documentation

2.2 Application Protocol Reverse Engineering

Bluetooth Low Energy (BLE or Bluetooth Smart) technology was born as a personal project of the
Finnish company Nokia and only in 2010 was introduced in the Bluetooth 4.0 specification.

BLE has gained importance in the Internet Of Things (IoT) because it wants to ensure low energy
consumption while maintaining a good range of communication. This is the reason why the main
producers of mobile and desktop OSes provide complete support, allowing to design devices able
to communicate with all the most modern platforms.

The reverse engineering work is carried out through two parallel actions:

• Logging and inspection of Bluetooth packages exchanged between the smartphone and the
BLE device

• Decompilation of the Android application

This allows to understand the protocol used and exploit the application code to verify its correct-
ness, also to ensure greater consistency with respect to the original specifications.

Note: This guide requires that you have an Android device available. However, there are ad-
vantages in using an emulator. If you are interested in this, take a look at the Logging With An
Emulator section.

2.2.1 BLE: Operating Principles

The connection and transmission of data between two devices requires multiple steps and involves
multiple elements1. The most important high-level components are listed and discussed below.

GAP (Generic Access Profile)

In order to notify the presence of a BLE device to the outside world, a process called advertising
is necessary. It basically consists of constantly sending informative packets to devices enabled to
use Bluetooth within a certain distance.

What manages the aspects related to the connection, to the advertising and finally determines
whether two devices can interact with each other is the GAP, acronym of Generic Access Profile
(2 and3).

The division into roles is fundamental. We will distinguish:

• Peripheral devices (or just peripheral), with few resources and extremely variable nature

1 Bluetooth Core Specification 5.0, Volume 1, Part A, Section 1.2
2 Bluetooth Core Specification 5.0, Volume 1, Part A, Section 6.2
3 Bluetooth Core Specification 5.0, Volume 3, Part C, Page 1966

10 Chapter 2. Contents

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

Reverse Engineering BLE Devices Documentation

• Central devices, such as smartphones, tablets and computers with a lot of computing power
and memory

Fig. 7: Topology5

Peripheral devices cannot be connected to one another, they only communicate with central device
one at a time (see Topology 5). Therefore, when a connection is established, they will block the
advertising process until the connection is terminated.

In contrast, central devices can simultaneously manage data exchange with multiple devices. Con-
sequently, the communication between two peripheral devices requires the creation of a special
system that exploits this possibility.

Usually, the classic BLE devices in IoT (valves, lamps, scales and so on) fall into the type of
peripheral devices while the application that manages them is installed on a central device. This
is also what respectively happen with the radiator valves and the CalorBT application that we are
considering.

GATT (Generic Attribute Profile)

When the connection is established, the bidirectional transmission takes place through the ATT
protocol (Attribute Protocol) and uses the concepts of GATT profile, service and characteristic4,
which will be discussed soon.

5 Kevin Townsend. Introduction to bluetooth low energy. A basic overview of key concepts for BLE.
4 Bluetooth Specifications - GATT Overview

2.2. Application Protocol Reverse Engineering 11

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

Reverse Engineering BLE Devices Documentation

A significant aspect is given by the relationship that is created between the peripheral device and
the central device. The former is referred to as GATT Server (or Slave) as it provides services and
characteristics, while the latter is called GATT Client (or Master).

All transactions start from the Master and receive a response from the Slave which, at the time of
the first connection, suggests a connection interval. At the end of each interval the Master recon-
nects to check the availability of new data. This is only a suggestion provided by the peripheral,
which however does not place time constraints on the central device.

As already mentioned, GATT transactions are based on hierarchical high-level objects: profiles,
services and characteristics (see Hierarchy of profiles, services and characteristics 5).

Fig. 8: Hierarchy of profiles, services and characteristics5

Profiles

Profiles define possible applications of the device, describing its functionality and use cases. The
BLE specification provides a wide range of standard profiles that are used in various fields, but
also allows manufacturers to create new profiles using GATT. This facilitates the development of
innovative applications that still maintain interoperability with other Bluetooth devices.

For example, the “Blood Pressure Profile” and the “Proximity Profile” are predefined profiles. They
are designed to be implemented by a blood pressure meter and to monitor the distance between
two devices.

Services

Services allow to perform a first and not very detailed logical division of the data. They are
composed of one ore more characteristics and are identified through a UUID consisting of:

12 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

• 16 bit for the predefined services

• 128 bit for those created specifically by peripheral devices manufacturers

For example, the aforementioned “Blood Pressure Profile” provides the services “Blood Pressure
Service” and “Device Information Service”, necessary for the transmission of data about blood
pressure and device status.

Characteristics

Characteristics are the main interaction point with the BLE peripheral and represent the most gran-
ular layer in the logical data division. Each characteristic handles information related to a single
aspect, dealing with the transmission in one or both directions. For this reason they will be given
properties such as Read or Write. Like the services, they are also identified through 16 or 128 bit
UUIDs.

For example, the “Blood Pressure Measurement” characteristic provided by the “Blood Pressure
Service” can be used to read the values measured by the blood pressure meter.

Notifications

As already mentioned, it is usually the GATT Client (the Central device) that initiates a transaction.
However, even if they are not represented in the hierarchy, the BLE provides Notifications and
Indications so that the GATT Server (the Peripheral device) can request for data or simply send
information to the counterpart with or without an explicit signal from the latter.

In general, notifications are used to inform the client about the value assumed by a characteristic.
For this reason, they are one of the possible values that can be assigned to the properties of a
characteristic, together with the already mentioned Read and Write.

In order for the mechanism to work, an explicit request to receive notifications from the client is
required.

To better clarify these concepts, consider that one of the characteristics defined by the manufactur-
ers of the radiator valves EQ3 Eqiva has the following specifications:

• UUID: d0e8434d-cd29-0996-af41-6c90f4e0eb2a

• Property: read/write/notify

The 128-bit UUID allows us to understand that the characteristic has been defined by the producers
and its properties tell us what operations we can perform on it.

2.2.2 BT/BLE: Main Differences

This section is not essential to understand the rest of this guide, but it is still useful to better figure
out what is detected through the logging activity.

The next paragraphs explain the main differences between the classic Bluetooth implementation
(Bluetooth BR/EDR) and the Bluetooth Low Energy. The goal is to deepen some details related to

2.2. Application Protocol Reverse Engineering 13

https://learn.sparkfun.com/tutorials/bluetooth-basics/common-versions

Reverse Engineering BLE Devices Documentation

aspects of connection and consumption. Receiving and transmitting data requires a lot of energy
and consequently interesting solutions have been studied to optimize these activities for some use
cases.

Important aspects of Bluetooth BR/EDR15:

• transmits all types of data (including audio/video streams), ensuring high throughput

• requires pairing

• allows the use of different topologies (Piconet and Scatternet)

Important aspects of Bluetooth Low Energy15:

• asynchronous data exchanges, with low throughput (no streams)

• optional pairing

• basically uses Piconet topology

• low consumption: allows to power devices with coin cell batteries and still last over time

Just above the physical layer, which we will not cover, there are two very different Data Link
layers. Both define a series of states in which a single device can be. The next image immediately
highlights how Bluetooth BR/EDR devices are more complex.

Fig. 9: BR/EDR States12 (left) // BLE States13 (right)

Observing the Connection states in the two state machines, we can see the connection oriented
nature of the Bluetooth BR/EDR. Once the connection is established, the slave device can reduce
its consumption by exploiting some substates (Sniff or Hold mode) or by entering in Park mode
(see BR/EDR Connected Slave Substates). These alternatives keep the connection to the master
device active, although Park Mode hides the device from the network.

In the case of BLE, the only way to save energy is to enter the Standby state. This however
leads the device to lose the connection and restart the Advertising or Initiating phases
(respectively for Master and Slave), creating a continuous sequence of standby-search-connection

15 Ten Important Differences Between Bluetooth BREDR And Bluetooth Smart
12 Confronto Tra Bluetooth Basic Rate e Bluetooth Low Energy
13 How BLE works

14 Chapter 2. Contents

https://en.wikipedia.org/wiki/Piconet
https://en.wikipedia.org/wiki/Scatternet
http://blog.bluetooth.com/ten-important-differences-between-bluetooth-bredr-and-bluetooth-smart
http://tesi.cab.unipd.it/44150/1/tesi_tibertoa.pdf
https://zpcat.blogspot.com/2013/10/how-bluetooth-le-works-link-layer.html

Reverse Engineering BLE Devices Documentation

Fig. 10: Bluetooth BR/EDR Connected Slave Substates12

phases. The reason why repeating this “steps” allows you to consume few energy and maintain
low response times lies in various factors.

First of all, BLE technology uses only 3 physical search channels (BR/EDR uses 32 channels).
Given the time required for packet transfer, this phase requires between 0.6ms and 1.2ms (while
22.5ms in BR/EDR). This leads to a power saving of 10-20 times compared to the classic Blue-
tooth14 .

Note: Given these different “architectures”:

• using Bluetooth BR/EDR a master can connect with up to 7 slaves in active mode and 255
in park mode

• using BLE there are no theoretical limitations on the number of slaves to which a master
can be connected

Still within the Data Link level, substantial differences are present in the transmission of packets:

• In Bluetooth BR/EDR each communication channel is divided into slots of 625us used al-
ternately by the master and the slave. They can transmit a packet per slot. However, sending
a package can take up to 5 slots.

• In BLE the time units are Events. They vary in length depending on the decisions of the
master (for connection events) and the advertiser (for advertising events).

While the Bluetooth BR/EDR uses a very strict transmission method, the one used by BLE is more
flexible and can be optimized according to various parameters.

As an example, for Connections Events, the BLE specification provides a connInterval16

value which indicates the minimum time that must elapse between two consecutive events of this
type (between 7.5ms and 4s). Another parameter, connSlaveLatency16, defines the number
of Connection Events in which the slave is not forced to listen to the master and can stay in
standby. This parameters are responsible for consumption and latency times and exist also for
the Advertising Events.

14 One Small Step For Bluetooth Low Energy Technology
16 Bluetooth Core Specification 5.0, Volume 6, Part B, Page 2638

2.2. Application Protocol Reverse Engineering 15

https://www.wirelessdesignmag.com/article/2010/08/one-small-step-bluetooth-low-energy-technology
https://www.bluetooth.com/specifications/bluetooth-core-specification

Reverse Engineering BLE Devices Documentation

By increasing connSlaveLatency and keeping connInterval low, you can guarantee ex-
cellent consumption without lengthening latency times too much.

As already mentioned, the BR/EDR standard is designed to transmit any type of information,
while the BLE prefers a few data at a time. The result is that in the first case several types of
logical transport are defined: SCO and eSCO for synchronous communication, ACL for the
asynchronous one and two types of Broadcast. The BLE alternative instead implements only
asynchronous ACL communication.

This leads to a big difference in package format. As the next image shows, BLE packages are
shorter (max 376 bit vs 2871 bit) and therefore require less transmission time. This was achieved
by removing redundant information and limiting the payload size.

Fig. 11: Bluetooth BR and BLE packet format

By taking advantage of all these design choices, BLE can complete a connection (scan for devices,
link, send data, authenticate, and go back to a standby state) in just 3ms. The same activity with
Bluetooth BR/EDR takes hundreds of milliseconds14.

Reduced times lead to lower energy consumption and lower latency.

2.2.3 Logging Via Android

Logging is the activity of recording data and information related to certain operations as they are
carried out. In this specific case it is a matter of tracing all the Bluetooth packages exchanged dur-
ing the communication between a BLE device and a smartphone in order to inspect their contents.

From version 4.4 “KitKat”, Android introduces the possibility to perform the logging of the pack-
ets sent and received via Bluetooth through the function “Enable HCI Bluetooth snoop log” in
the “Developer Options” section.

Note: If there is no “Developer Options” entry in the settings (see Android settings), you can
activate it by entering the “About Phone” section and clicking repeatedly (at least 8 times) on

16 Chapter 2. Contents

https://en.wikipedia.org/wiki/List_of_Bluetooth_protocols#Synchronous_connection-oriented_(SCO)_link
https://en.wikipedia.org/wiki/List_of_Bluetooth_protocols#Asynchronous_Connection-Less_{[}logical_transport{]}_(ACL)

Reverse Engineering BLE Devices Documentation

Build Number or Version Number (depending on the version of Android) up to the appearance of
a notification.

Fig. 12: Android settings

Once activated, the system starts to populate a file called bootsnoop_hci.log, which is usally placed
inside the root directory of the smartphone (something like /sdcard/). The format is compatible
with many protocol-analysis software.

Note: Unexpectedly, the acquisition of Bluetooth packages via Android does not require the
smartphone to be rooted. Despite this, some manufacturers (e.g. Huawei) by default save the
bootsnoop_hci.log file in a non-accessible directory or disable its generation. If you cannot
find the log file, you’re probably in one of this cases. It’s therefore necessary to root the smart-
phone. Once that is done, within the Android system folders you can find a bt_stack.conf
file (in my case in /system/vendor/etc/bluetooth/). Inside this file you can activate
the generation of the log file and choose where to save it by appropriately modifying the following
lines:

BtSnoopLogOutput=true
BtSnoopFileName=/data/log/bt/btsnoop_hci.log

The inspection software chosen is Wireshark, a free and opensource network protocol analyzer.
However, the analysis is not immediate because by default all the packages involved in the com-
munication are displayed. These include each level of the Bluetooth specification.

As previously seen, the management of services and characteristics is one of the tasks of the
Generic Attribute Profile, which exploits the ATT protocol. Wireshark identifies it through the
CID 0x0004. Therefore, it is possible to remove unwanted packages from the list and keep only
the important ones by inserting the expression btl2cap.cid == 0x0004 into the filter bar
(the bar below the buttons on top of the window).

Once this is done, it becomes immediate to observe what are the characteristics on which a writing
operation has been carried out, the written values and the content of the notifications received.

Let’s take the previous image as a reference (see Wireshark log example). It shows an example of
logging file generated by Android. The upper half of the image shows a list of all the exchanged
packages (already filtered by ATT protocol) in time order. Each entry reveals the source, the
destination and a brief description of the packet’s content.

2.2. Application Protocol Reverse Engineering 17

https://www.wireshark.org/

Reverse Engineering BLE Devices Documentation

Fig. 13: Wireshark log example

By selecting a package and expanding the Bluetooth Attribute Protocol section (as in the lower
half of the image), all the details appear:

• the type of operation performed (read/write/notify)

• the characteristic on which it was carried out (identified by a 16-bit Handle)

• the transmitted data

The reason why the characteristic is identified by a Handle instead of the aforementioned UUID is
that the ATT protocol considers characteristics, services and profiles as attributes. Each attribute
is recognized through a handle.

Starting from the concepts described so far, the work of reverse engineering becomes applicable
using various methodologies and considerations. In addition to identifying the written and read
characteristics, the goal is to decipher the meaning of the transmitted data, which represent the
proprietary communication protocol designed by the manufacturer. It is important to note that,
depending on which is the target BLE device, there are operations that require data entry by the
user to be performed (e.g. “set temperature to XX degrees”) and others that do not require external
data (e.g. “turn off the valve “).

Operations requiring external data

These are operations for which the user must specify some details (i.e. parameters) so that they
can be performed. In the programming world, this coincides with the invocation of a function that
requires parameters: the function name remains the same, while the parameter(s) varies depending

18 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

on the user’s choice.

The value sent to the BLE device can therefore be divided into two sections:

• a common pattern, representing the operative code of the instruction

• a variable part based on the information supplied by the user

NOTE: It is quite common that the variable part is somehow coded according to the choices of the
producer instead of keeping “raw” values

The idea is to group in a single log file the execution/invocation of several operations that have
the same operative code and for each of them to change the parameter. This technique makes it
possible to identify the common pattern and, in the simplest cases, allows to understand the method
used to calculate the variable part. In cases where it is not trivial to understand how the variable
part has been encoded, the decompilation of the Android application becomes essential. This will
be discussed later.

Example

This example refers to the radiator valves discussed in the Introduction and assumes to have already
connected the BLE device to the central device and activated the packet sniffing.

Fig. 14: Commands to set 18, 20 and 21.5 degrees

Following the idea described in the previous paragraph, we set the temperature consecutively at
18°C, 20°C and 21.5°C. By analyzing the log file via Wireshark (see previous image) is now possi-
ble to observe that the values were written on the handle 0x0411 and their values was respectively
0x4124, 0x4128 and 0x412B.

It is easy to notice that byte 0x41 appears in all three cases. It is therefore reasonable to suppose
that it identifies the type of operation to be performed (i.e. it’s the operative code). Consequently,
the remaining byte will represent and encoding of the temperature we selected each time.

By converting the hexadecimal bytes 0x24, 0x28 e 0x2B to base 10, we obtain 36, 40 and 43.
These correspond to twice the initial values (which were 18, 20, 21.5). It is therefore clear that the
coding used consists in multiplying the desired temperature by two.

By using this information we deduced that:

• to send the “change temperature” command we have to write on the handle 0x0411

• the value to be written is composed of 0x41 concatenated to twice the temperature we want
to set

2.2. Application Protocol Reverse Engineering 19

Reverse Engineering BLE Devices Documentation

Operations not requiring external data

These are operations whose execution requires no external data. It’s therefore reasonable to expect
that the value sent to the valve to cause its activation consists only of an invariant operating code.

In these cases, the goal is to create log files that represent the execution of a single instruction, in
order to identify immediately what has been transmitted to the BLE peripheral. It is important,
however, to perform the same operation starting from different conditions in order to verify the
effective invariability of the operating code in all the “states” in which the device can be. For this
purpose, the decompilation of the Android application can provide support.

Example

This example refers to the radiator valves discussed in the Introduction and assumes to have already
connected the BLE device to the central device.

Before starting the packet sniffing, we put the valve in automatic mode. Then we activate the
packet sniffing and through the application we set the “boost mode”. By analyzing the log file
via Wireshark is now possible to observe that, once again, the command was sent to the handle
0x0411 and the written value is 0x4501.

We repeat the same procedure twice more. The first time with the valve in “manual mode” and
the second time in “holiday mode”. By looking at the log files, we note that the values sent and
the handle remain the same. This allows to conclude that the two bytes 0x4501 are the invariant
operating code of the “start boost mode” instruction taken into account, regardless of the starting
state in which the radiator valve can be (automatic, manual or holiday mode).

Notifications

Notifications are sent from the BLE device to the central device following the execution of each
command. It is not necessary to apply a specific method to detect them because they are already
present in the log files created previously. Wireshark reports the presence of notifications through
the description “Rcvd Handle Value Notification, Handle: 0xYYYY” in the “Info” column (see
Wireshark log example).

The structure (the carried value) of the notifications can be very variable and unpredictable, also
because they could be sent to the central device at any time. They could contain a lot of information
or indicate only a confirmation of correct execution. In general, as with operations with parameters
, notifications are often composed of:

• common patterns which allow splitting notifications into groups/types

• variable values that provide detailed information coded according to criteria chosen by the
manufacturer

Example

This example refers to the radiator valves discussed in the Introduction.

20 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

Fig. 15: Notif. after a “Daily Profile Request”

Fig. 16: Notif. after “Manual Mode” command

We perform different types of operations and then look at the log files with Wireshark. By inspect-
ing the package list, it is easy to see that the radiator valve always sends at least one notification
at the end of each operation. Notifications are identified by packages called “Rcvd Handle Value
Notification, Handle: 0x0421” (see Notif. after a “Daily Profile Request” and Notif. after “Man-
ual Mode” command). The values contained will often be very different, both in terms of content
and length (number of byte sent).

The process followed to understand the meaning of the received values is equivalent to that re-
ported in the section Operations requiring external data. It is therefore necessary to group the
notifications received as a result of the same command in the same log file and observe the differ-
ences.

The result of this activity highlights a large subdivision carried out by the most significant bytes:
0x0202[..] and 0x21[..] indicate notifications relating to the writing and the request of
a daily profile, while 0x0201[..] identifies those resulting from the execution of any other
operation. Even in this case the decompilation of the Android application becomes useful to better
understand the syntax. This will be discussed in the next section.

NOTE: the value of the handle is always the same and identifies the characteristic on which notifi-
cations are sent.

2.2. Application Protocol Reverse Engineering 21

Reverse Engineering BLE Devices Documentation

Data Sent Through Advertising Packets

As already mentioned in section BT/BLE: Main Differences, the Bluetooth Low Energy standard
allows an exchange of data to be performed without a pairing procedure. Basically, in these cases,
the BLE device sends data in broadcast to central devices without using notifications. This is done
by taking advantage of the Advertising packages.

The structure of this type of package is described in the Bluetooth specifications17. Being an-
other protocol, it is different (and more complex) from the structure of the ATT packages seen
previously: the OpCode, Handle and Value fields are no longer present.

Note: We have previously shown how to filter in Wireshark only the packets related to the ATT
protocol. However, the Advertising packages are related to the HCI protocol. You can therefore
keep only these packages by writing bthci_evt into the filter bar (the bar below the buttons on
top of the window).

We do not need to know the structure of the advertising packages in detail, but it is important to
know that:

• a Address field contains the address of the device that is doing advertising

• a Data field contains the data we are interested in, formatted as:

– length: number of bytes of AD type + AD data

– AD type: Identifies the type of data present in AD Data. The possible data
types and their related meanings are defined in the “Bluetooth Core Specification
Supplement”18

– AD data: Payload. Its length depends on the AD Type field

Wireshark identifies advertising packages through the description “Rcvd LE Meta (LE Advertising
Report)” in the “Info” column. The previous image shows the presence of all the described fields,
albeit with slightly different names.

The Address field is called BD_ADDR, while the Data field we are interested in is the one shown
under the Advertising Data > Manufacturer Specific section. According to the
specifications18, “Manufacturer Specific” is an AD type represented by the code 0xFF and must
be at least 2 Bytes long.

17 Bluetooth Core Specification 5.0, Volume 2, Part E, Page 1193
18 Bluetooth Core Specification Supplement, Part A

22 Chapter 2. Contents

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

Reverse Engineering BLE Devices Documentation

Fig. 17: Wireshark log of Advertisement packets

As for notifications, the contents (the carried value) of advertising packets can be very variable.
Also in this case, the Data field will probably be composed of a common pattern and a variable
part. The latter contains the information we are looking for, coded according to some criteria
chosen by the manufacturer.

The idea is always the same: to generate more log files and, for each one, to provide different
input to the advertising device. For example, if the device is a BLE scale, use objects/people with
different weights. Then look at the changes in the Data field. These changes are related to the
inputs I have provided to the device and therefore are useful to understand their meaning.

Example

This example refers to the BLE scale discussed in the Laica PS7200L Protocol section.

Activate Bluetooth and packet sniffing on your Android device. Weigh a person using the applica-
tion supplied with the scale. Once the log file is obtained, repeat the same procedure with another
person or an object of different weight.

Fig. 18: Log with two different weights (76kg left, 77.6kg right)

We look at the values contained in the Advertising Data > Manufacturer Specific
> Data field in the Advertising packages (see image above). We compare them:

09 ff 02 f8 02 47 86 ff ff 21 93 aa
09 ff 03 08 02 81 86 ff ff 21 de aa

A good part of the data transmitted remains constant and only a few bytes change (the second, the
third and the second to last). We have thus understood where to look for the data that interests us
(in the variable part).

2.2. Application Protocol Reverse Engineering 23

Reverse Engineering BLE Devices Documentation

For instance, in this case it is rather easy to notice that the first two bytes (of the variable part)
concatenated return the weight of the person multiplied by 10, as:

• 02 F8 in decimal base corresponds to 760 (76.0 if divided by 10)

• 03 08 in decimal base corresponds to 776 (77.6 if divided by 10)

In conclusion, applying what has just been described to all the functionalities of a BLE device
allows to identify a good part of the communication protocol. Probably some details related to the
variable data within the various commands remain hidden. The next section discusses how to fill
these gaps and confirm what has been deduced through the analysis of the application code.

2.2.4 Android Application Analysis

This section wants to give a guideline and provide some reference examples about: * which ser-
vices to use to decompile an Android application * how to analyze the aspects of communication
and data transmission via Bluetooth

The fact that there is no common standard to follow in the creation of Android applications makes
it difficult to generalize the code and the analysis.

In general, to get the source code you need the APK package of the application, which is basically
an archive that contains all the data that Android needs to manage the installation of the app. Once
in possession of the APK file, there are decompilers (typically for Java code, on which Android is
based) that in a short time generate an archive containing the original code. The product code is
automatically identified as “Android project” by Android Studio, which is the official open source
IDE for the development of Android applications. This ensures ease of reading and analysis, taking
advantage of the advanced development features provided by the software.

Get The APK Package

Option 1: through a web service

A fairly simple way to perform this step is to rely on a web service to extract from the Google Play
Store the APK package of the application used by the BLE device. The APKPure site is the only
one on which we have found our reference application, but there are also other sites that provide
the same service, such as App Apk and APKSFree.

If none of these sites leads to a result, it is often possible to obtain the APK package through the
procedures described in the next section.

Option 2: through a File Manager app

Also the File Manager applications often allow to extract the APK packages from the applications
on the device. We mention this option as “second possibility” because in the medium case these

24 Chapter 2. Contents

https://developer.android.com/studio/
https://sites.google.com/a/android.com/tools/build
https://apkpure.com/
https://www.appsapk.com
https://www.androidapksfree.com

Reverse Engineering BLE Devices Documentation

applications require a lot of permissions to operate (e.g. read storage, read phone status). We report
the procedure to be performed with two different applications:

ES File Manager (release 4.1.8.1)

1. from the application’s main page (called “Home”), select “APP”

2. identify the application for which you want to get the apk

3. press and hold the icon, then click on “backup”

4. the app tells you where the apk file is saved (in our case /sdcard/backups/apps)

Astro File Manager (release 6.4.0)

1. from the application’s main page (called “File Manager”), select “Go To App Manager”

2. identify your application, hold the icon and select “backup” from the drop-down menu

3. an apk file is created and it can be accessed from the file manager itself (it does not say where
it is saved; in our case in /sdcard/backups/apps)

As you can see, the procedures are very similar and also on other applications will not be very
different. Note that probably the well-known Titanium Backup allows you to do this. We did not
consider it for simplicity, as it requires the device to be rooted.

Option 3: through ADB (manual method)

Assuming you have the application installed on your smartphone, you can get the APK package
through adb (Android Debug Bridge), which is a command-line tool that allows you to control an
Android smartphone via USB. The adb tool can be installed through the android-adb-tools
package, available in the Debian repositories.

Note: adb requires USB debugging to be enabled. This function can be found in the “Developer
Options” section. (refer to this note if there is no “Developer Options” entry in the settings of your
smartphone)

Once installed adb and connected the device via USB, use the following commands:

$ adb shell pm list packages #find the package name of the app
$ adb shell pm path package-name #find the address of the app
$ adb pull app-address #copy the apk

Depending on the Android version used, the following error may be returned:

remote object "app-address" does not exists

In this case, you need to move the apk file to an accessible folder before downloading it. Use the
following commands:

2.2. Application Protocol Reverse Engineering 25

https://play.google.com/store/apps/details?id=com.estrongs.android.pop
https://play.google.com/store/apps/details?id=com.metago.astro
https://play.google.com/store/apps/details?id=com.keramidas.TitaniumBackup

Reverse Engineering BLE Devices Documentation

$ adb shell cp app-address /storage/emulated/0/Download
$ adb pull /storage/emulated/0/Download/base.apk

The apk file base.apk should now be in your home and contains the necessary to get the Java
code.

Obtain the source code

Using the APK file we now want to extract the Java code that makes up the application. Before
proceeding it is good to know that there are cases in which the code will be obfuscated. Code
obfuscation is a practice that consists in making the code more complicated without changing
its functionality in order to make it more difficult to understand. This is done to avoid reverse
engineering practices.

There are some open source Java de-obfuscators, such as Java Deobfuscator (and his GUI) or
Enigma. They require a Jar file as an input, which can be obtained from the APK by following the
first two points of this section. However, their use will not be covered in this guide. Option 1:
through a web service

As before, we can delegate the work to web services and more than one site can be useful.

Among the sites tested, Java Decompilers is the one that provided the clearest code: probably
the most similar to the real one (variable names are reasonable and there are no GOTO statements).
ApkDecompilers produces the same result, but puts all the files in a single directory. Since Android
applications include a lot of files, it is less comfortable.

Option 2: through dex2jar and JD-GUI (manual method)

Dex2jar and JD-GUI are two programs that respectively allow to transform the apk file into a Jar
(Java Archive) and decompile it by following these steps:

1. Download the latest release of dex2jar from this page

The file to be downloaded is called dex-tools-X.X.zip, where X.X indicates the ver-
sion number (2.0, at the time of writing)

2. Execute these commands in a terminal:

$ unzip dex-tools-X.X.zip
$ cd dex2jar-X.X
$ chmod u+x *.sh
$./d2j-dex2jar.sh /path/to/application.apk #the application
→˓APK

This produces a jar file in the dex-tools-X.X directory.

3. Download and install JD-GUI (released under the GPLv3 license)

26 Chapter 2. Contents

https://javadeobfuscator.com/
https://github.com/java-deobfuscator/deobfuscator-gui
http://www.cuchazinteractive.com/enigma/
http://www.javadecompilers.com/apk/
https://www.apkdecompilers.com/
https://github.com/pxb1988/dex2jar/releases
http://jd.benow.ca/

Reverse Engineering BLE Devices Documentation

4. Open JD-GUI and select File > Open File in order to open the jar archive produced
with dex2jar.

5. Select File > Save All Sources. This produces a zip archive containing all the Java
files.

JD-GUI has the advantage of clearly showing the Java packages that make up the project. However,
individual files are less clear than those produced with the service discussed in the Option 1.

Other decompilers can be used instead of JD-GUI. One of this is CFR, which is not open source
but it also decompiles modern Java 9 features. Other good solutions are Fernflower and the one
included in the Procyon suite.

Import In Android Studio

Regardless of the method chosen, the files obtained can be imported into Android Studio to be
analyzed. Both Option 1 and Option 2 produce a zip file.

Note: Obviously, you can use any text editor to analyze the produced files. This guide focuses on
Android Studio as it’s an open source tool and now a standard in creating Android applications.
Whatever the choice, we strongly suggest the use of an IDE that integrates well with Java. (e.g
Eclipse, NetBeans).

Fig. 19: Android Studio - Import Project

Once extracted the zip file, open Android Studio and follow these steps:

1. File > New > Import Project

2. Select the directory in which the archive was extracted (the one in which the XML Manifest
file is present) and click Next (see Android Studio - Import Project).

2.2. Application Protocol Reverse Engineering 27

http://www.benf.org/other/cfr/
https://github.com/fesh0r/fernflower
https://bitbucket.org/mstrobel/procyon/
https://www.eclipse.org/ide/
https://netbeans.org/

Reverse Engineering BLE Devices Documentation

3. Create project from existing sources > Next

4. Choose a name for the project and the directory in which to save it (personal choices). Then
click Next.

5. All the default settings should be fine, so keep clicking Next.

After that, a panel on the left allows you to navigate between packages and files, while the right
side shows an editor enabled for grammatical (and syntactic) correction.

What to look for in the code

In general, a good way to avoid having to consult all the files in the project is to proceed by
keywords and use a search tool. In android studio this tool is provided in the Edit > Find >
Find In Path menu. For example, the next image shows all the files containing the search
keyword OnLeScan.

Fig. 20: Android Studio “Find in path” window

Within the reverse engineering activity there is little interest in understanding how the connection
to the target BLE device works. We can therefore ignore the details of the bluetooth connection to
focus on two things:

1. identify the files that create the strings that will be sent to the peripheral (made of hex-
adecimal values), to see how they are composed

2. identify the files that manage received notifications to understand how they are interpreted

If you want to find Java classes that deals with the act of Bluetooth connection, you can iden-
tify useful keywords (such as BluetoothAdapter, startLeScan, LeScanCallback,
BluetoothGatt) by referring to the Android BLE API page.

Commands

Finding the classes and methods that deal with composing commands (i.e. strings of values) is not
straightforward. This is because every manufacturer can act without constraints when he imple-
ments his own proprietary coding. It is not even necessary for these classes to contain keywords
related to Bluetooth, as they could be treated separately.

28 Chapter 2. Contents

https://developer.android.com/guide/topics/connectivity/bluetooth-le

Reverse Engineering BLE Devices Documentation

In the best case, the application will contain Java packages with names like command, sendCom-
mand, or something similar and this facilitates the search. Otherwise, the criterion to be used,
consists of:

• to use as search keywords the name of the methods that Android uses to write BLE charac-
teristcs

• starting from the results found, go back to the classes used for the generation of commands

Specifically, Android within the BluetoothGatt class provides the writeCharacteristic
method. Note that the values we are interested in are those that must be written on the char-
acteristics. To set a value before writing it, the BluetoothGattCharacteristic class provides the
setValue method.

As a result, command, writeCharacteristic and BluetoothGattCharacteristic
are examples of good search keys.

Notifications

Notification management can also be done in various ways depending on the choices of the pro-
ducers. However, as for commands, at some point the application must definitely use the default
methods provided by Android to manage the reception.

Hypothetically, once received and extracted the content of the notification, this is sent to a sort of
parser that interprets it and then performs other tasks depending on its meaning. This parser is
what we are interested in.

To easily identify files that contain useful code, it is important to know that:

• the receipt of notifications by a feature must be explicitly enabled, using the
setCharacteristicNotification method of the BluetoothGatt class

• the callback function called when a notification is received is
onCharacteristicChanged, provided by the BluetoothGattCallback class

This callback function will be the starting point to go back to the pieces of code that actually
interpret the content of the notifications.

In conclusion, good search keys are: setCharacteristicNotification,
onCharacteristicChanged and BluetoothGattCallback.

Create A Class Diagram

It is often useful to have a Class Diagram6 available for the whole project or just for small parts.
This allows you to schematically represent the application and highlight the dependencies be-
tween the classes that compose it.

6 Wikipedia - Class Diagram

2.2. Application Protocol Reverse Engineering 29

https://developer.android.com/reference/android/bluetooth/BluetoothGatt
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic
https://developer.android.com/reference/android/bluetooth/BluetoothGatt
https://developer.android.com/reference/android/bluetooth/BluetoothGattCallback
https://en.wikipedia.org/wiki/Class_diagram

Reverse Engineering BLE Devices Documentation

Manually creating a Class Diagram for an Android application can result in a lot of work, so some
automated tools will help us. There are several Class Diagram generators for Java/Android code,
but we will explain how to install and use Code Iris because:

• integrates easily into Android Studio

• allows to filter and highlight classes and packages (useful for big projects)

• it is quite frequently updated

• allows to export data in Json format

Note: Code Iris is not open source. However, after trying different free alternatives, our opinion
is that it is the easiest and most complete solution. If you want to stick with free software, skip to
this paragraph.

A few steps are required to install Code Iris:

1. open Android Studio and select File > Settings > Plugins

2. click on Browse Repositories on the bottom of the window

3. search for code iris and click on the green “”Install”” button

4. restart Android Studio

Fig. 21: Code Iris First Start

30 Chapter 2. Contents

https://plugins.jetbrains.com/plugin/7324-code-iris

Reverse Engineering BLE Devices Documentation

Once you restart Android Studio and open a project, you can start Code Iris through the corre-
sponding tab at the top right of the window. The first time you need to create the Class Diagram
via the “Create/Update Diagram” button (see Code Iris First Start).

The operation takes a few moments, but produces a Class Diagram related to the whole project.
The result can be inspected via three different “views”:

• Module View: the most abstract view, generally not very useful for our purpose

• Package View: maintains the subdivision into packages and also shows the classes they
contain

• Class View: shows all classes without the subdivision into packages

The Package View and the Class View are both useful, depending on personal needs. The large size
of Android projects, however, requires the ability to “cut” parts of the Class Diagram, so that it
becomes easy to read.

Code Iris provides filtering tools according to class name and/or package name. This allows us
to identify useful parts of the Class Diagram. Once this is done, moving the cursor on the names
of the individual classes highlights all their dependencies (see Class View with Filtering Enabled).

Fig. 22: Class View with Filtering Enabled

NOTE: the version of Code Iris in the Android Studio repositories is from 2014. More recent
versions (updated to 2018) can be easily installed by downloading the package from the JetBrains
site and through the “Install Plugin From Disk” option in File > Settings > Plugins
(inside Android Studio).

A free and open source alternative

2.2. Application Protocol Reverse Engineering 31

https://plugins.jetbrains.com/plugin/7324-code-iris

Reverse Engineering BLE Devices Documentation

Among the open source alternatives there are many software that can generate class diagrams891011.
However, they often present problems such as:

• Request to manually add each class to the diagram. It does not make much sense because we
don’t know how the application is composed. It’s more important to be able to add individual
packages.

• Request to manually select each Java source directory. Not ideal, given the size of Android
projects.

• Very confusing graphic interface.

An acceptable solution involves the use of NetBeans IDE, which is a Java IDE7 , and the EasyUML
plugin. Since NetBeans is already present in the Debian repositories, you can install it with apt:

$ sudo apt install netbeans

EasyUML requires you to download the correct package, which depends on the NetBeans ver-
sion, from this page. To install it you need to extract the files from the downloaded zip archive,
open NetBeans, select Tools > Plugins > Downloaded > Add Plugins and choose
all the .nbm files from the extracted folder.

Once the software is working, both a Java project and a UML project must be created in order to
obtain a Class Diagram. The following is a step by step guide:

1. Create a Java project from existing sources:

• New > Project > Java > Java project with existing
sources > Next

• set the name of the project and when asked for “Source Package Folders” select
the directory in which the APK’ source code have been extracted

• if the message “The specified package folder contains compiled class files” ap-
pears, click on Ignore

2. Create an UML project:

• New > Project > UML > UML Diagrams Project > Next

3. Now the left panel shows the Java packages. Right click on the package you want to create
the Class Diagram. and choose “easyUML Create Class Diagram”.

4. Choose the easyUML project created before and click on “Create Class Diagram”

The generated Class Diagram contains by default more information (methods and members) than
the one shown in the previous section. This makes it more detailed, but messy and often unclear.

8 ArgoUml
9 Umbrello UML Modeller

10 BOUML
11 Modelio
7 Wikipedia - Integrated Development Environment

32 Chapter 2. Contents

https://netbeans.org/
http://plugins.netbeans.org/plugin/55435/easyuml
http://plugins.netbeans.org/plugin/55435/easyuml
http://argouml.tigris.org/
https://umbrello.kde.org/
https://www.bouml.fr/
https://www.modelio.org/
https://en.wikipedia.org/wiki/Integrated_development_environment

Reverse Engineering BLE Devices Documentation

To keep only the names of the classes (and their relationships) make a right click on the diagram
and remove the check from “Show Members” under “Visual Options”. The following image shows
the obtained diagram. For comparison purposes, the code part shown in the diagram is equivalent
to the one shown in figure Class View with Filtering Enabled.

Fig. 23: Netbeans And EasyUML - Class Diagram

Example Application Analysis

The examples shown will temporarily refer to the CalorBT application, supplied with the radiator
valves discussed in the introduction. They will be subsequently extended to other devices as soon
as they are tested.

The CalorBT application, developed by eQ-3, is available for Android 4.4+ and iOS 8.3+ plat-
forms. The analyzed version is the 1.1.7 updated to the month of January 2016 (currently the last
available), for which the source code was obtained using the APKPure and JavaDecompilers web
services, as described in the previous sections (see Get The APK Package and Obtain the source
code).

The application is quite simple and the initialization phase only requires to pair the central device
with the desired radiator valves through a simple pairing procedure. It is interesting to note that
it’s allowed to communicate with only one device at a time. Once the connection is made, you
are sent to a temperature management activity (see Main Activity), from which you can access all
the other features.

Once the project has been imported into Android Studio, it’s immediately obvious that the source

2.2. Application Protocol Reverse Engineering 33

Reverse Engineering BLE Devices Documentation

Fig. 24: Main Activity (left) and Weekly Schedule (right)

code is free of obfuscation. The files are completely readable and mutually consistent. Further-
more, the decompiler maintained the package subdivision of the entire application.

This is good news, it suggests that the manufacturer has not tried to prevent reverse engineering
works. Nevertheless, the analysis is not immediate: excluding external libraries (such as But-
terKnife and FasterXML) the application consists of 1398 files including 144 classes and 16 Java
interfaces. Given such a large number of files, it will be necessary to use the search methods
discussed in the previous sections.

Commands

Proceeding as described in the previous section, a short search with the keyword command shows
the existence of a series of Java classes that form the code needed to compose the commands (see
Search results). They are contained in the de.eq3.ble.android.api.command package
(a Java class for each command).

This type of organization is particularly helpful as it allows to know all the instructions that the
application can send to the radiator valve and for each one provides detailed information. Each
class has been designed according to the same principle:

• the constructor deals with composing and storing the value corresponding to the instruction
in an array

• external activities can request this value through the public method getCommandData,

34 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

Fig. 25: Search results

which is certainly present as required by the IThermostatCommand interface imple-
mented by each class.

The example seen in the “Operations requiring external data” section refers to the
SetTemperatureCommand class shown below.

1 public class SetTemperatureCommand implements IThermostatCommand {
2

3 private final byte[] commandData;
4

5 public SetTemperatureCommand(Number setPointTemperature) {
6 this.commandData = new byte[2];
7 this.commandData[0] = (byte) 65;
8 this.commandData[1] = (byte) ((int)
9 (setPointTemperature.doubleValue() * 2.0d));

10 }
11

12 public byte[] getCommandData() {
13 return this.commandData;
14 }
15 }

In summary, the logging activity had identified:

• the byte 0x41 as a common pattern to all instructions of this type

• a second byte as a variable part, equivalent to the chosen temperature doubled

Line 6 of the above code shows that the command will consist of 2 bytes, the content of which is

2.2. Application Protocol Reverse Engineering 35

Reverse Engineering BLE Devices Documentation

shown in lines 7 and 8. The first always contains the value 65, whose conversion in hexadecimal
corresponds precisely to 0x41. The second one, on the other hand, is variable. It’s based on the
setPointTemperature parameter supplied to the class constructor and reveals the tempera-
ture coding already mentioned.

It is interesting to note that line 8 not only provides information on the meaning of the second byte,
but also indicates how to calculate it. This is particularly helpful in creating the instructions within
the management software discussed later, so that they can be consistent with what is required by
the valve.

Notifications

Referring to what was said in the previous section, we look for the function
onCharacteristicChanged. This is located in the file BLEGattCallback.
java. Looking at the code, we see that the content of the notification is interpreted by the
updateDeviceState function, whose prototype is:

public void updateDeviceState(String deviceId, byte[] value)

The function is located in the file BluetoothAPI.java and, as for commands, the data are
stored in a byte array (represented by the second argument value).

updateDeviceState recognizes the type of notification by reading the value contained in
the first and, in cases of ambiguity, in the second byte. Based on this, it delegates the correct
operations to other methods. This creates a first subdivision, corresponding to the one mentioned
in the logging section. More detailed information is then obtained by analyzing function calls.

The method adopted is therefore very simple. Assuming, for example, to send a request to read a
daily profile to the radiator valve, the result will consist of a notification whose first byte will cor-
respond to the value 0x21 (i.e. 33, in the decimal system). Within the updateDeviceState
function, which will not be reported entirely for space reasons, this is the part of code involved:

1 int frameType = value[0] & 255; //extract the first byte
2 ..
3 if (frameType == 33) {
4

5 dayOfWeek = ModelUtil.getDayOfWeek(value[1]);
6 byte[] profileData = new byte[(value.length - 2)];
7

8 for (int i = 0; i < profileData.length; i++){
9 profileData[i] = value[i + 2];

10 }
11

12 this.profileListener.profileDataReceived(dayOfWeek, profileData);
13 }
14 ..

As shown in line 12, the management of received data is delegated to the
profileDataReceived function. It uses two parameters:

36 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

• the day of the week, coded according to the static method getDayOfTheWeek (line 5)

• the profileData array, which essentially corresponds to the received notification value,
excluding the two most significant bytes (that have already been used)

Basically, it is a matter of analyzing the two functions mentioned above, which allow to examine
in depth the aspects related to the semantics of each byte. The first one, allows us to understand
how the days of the week are coded within the application: 0 means Saturday, 1 means Sunday
and so on.

public static DayOfWeek getDayOfWeek(byte b) {
switch (b) {

case (byte) 0:
return DayOfWeek.SATURDAY;

case (byte) 1:
return DayOfWeek.SUNDAY;

case (byte) 2:
return DayOfWeek.MONDAY;

case (byte) 3:
return DayOfWeek.TUESDAY;

case (byte) 4:
return DayOfWeek.WEDNESDAY;

case (byte) 5:
return DayOfWeek.THURSDAY;

default:
return DayOfWeek.FRIDAY;

}
}

The second one shows how to interpret all the remaining bytes. Here is the original code extracted
from the application. We report the main points to understand how it works.

public void profileDataReceived(DayOfWeek dayOfWeek, byte[]
→˓profileData) {

//creates a list of pairs (temperature, time)
List<ProfileDataPair> dataPairs = new ArrayList();

for (i = 0; i < profileData.length; i += 2) {
//reads two byte at a time and creates (temperature, time)

→˓pairs
int time = (profileData[i + 1] & 255) * 10;
dataPairs.add(new ProfileDataPair(((double) profileData[i]) /

→˓2.0d, time));
if (time == 1440) break;

}

(continues on next page)

2.2. Application Protocol Reverse Engineering 37

Reverse Engineering BLE Devices Documentation

(continued from previous page)

//find the base temperature to keep outside the programmed ranges
double baseTemperature = getBaseTemperature(dataPairs);
...

//create a list of Period.
//each Period contains the data of a range programmed by the user
List<Period> periods = new ArrayList();

for (i = 0; i < dataPairs.size(); i++) {

ProfileDataPair pair = (ProfileDataPair) dataPairs.get(i); //
→˓get a Pair

//if the temperature of the pair is different from the base
→˓temperature

//then the user has entered a schedule for a certain period
if (pair.temperature != baseTemperature) {

Period currentPeriod = new Period(); //create a Period

if(i>0){
//the start time of the Period is the end of the

→˓previous pair
currentPeriod.

→˓setStarttimeAsMinutesOfDay(((ProfileDataPair) dataPairs.get(i - 1)).
→˓time);

}
...

//no more than 3 periods can be set
if (periods.size() < 3)

periods.add(currentPeriod);
}

}

...
//show the interpreted data in the application

}

We can therefore deduce that:

• The bytes of the received notification must be interpreted as consecutive pairs
(temperature, time). Each pair indicates the temperature to be kept until a certain
time.

• In each pair the time is multiplied by 10, while the temperature is divided by 2

38 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

• It is possible to identify the base temperature with the algorithm described by the function
getBaseTemperature

• The ranges programmed by the user are those that don’t use the base temperature and are at
most three.

This allows us to understand the meaning of the entire notification. An example of the possible
values received is shown in the Notifications section dedicated to the valve protocol.

Finally, it is interesting to note how the code inside the package de.eq3.ble.android.api.
command and the content of the files concerning the management of notifications do not involve
parameters related to the mode in which the radiator valve is.

2.2.5 Other Useful Guides

Logging With An Emulator

As already mentioned and depending on your needs, there are various advantages in using an
emulator. Among these:

• do not need a physical device to do the job

• possibility to easily have a specific OS or other features (e.g. root)

• do not put your privacy at risk by installing applications from untrusted sources

• sandboxing (for example through the use of Firejail)

The only “obstacle” that arises in the use of an emulator is due to the Bluetooth communication.
However, it should be possible to perform logging and run the application through a virtual ma-
chine (like Virtualbox) and a BLE usb dongle.

This post can be a good point of reference. At the moment we have not been able to test this
solution because the dongle we have available is not recognized by the virtual machine.

Similar Projects

Below we present some references concerning the reverse engineering of BLE devices. They are
more focused on the network traffic than on the Android application, but they can still be useful
because they deal with specific devices.

• Syska Smartlight Rainbow LED bulb

• MiPow Playbulb Candle

• Smart Bulb Colorific! light bulb

• NO 1 F4 Smart Band

2.2. Application Protocol Reverse Engineering 39

https://firejail.wordpress.com/
https://www.virtualbox.org/
https://chrislarson.me/blog/emulate-android-and-bluetooth-le-hardware/
http://www.instructables.com/id/Reverse-Engineering-Smart-Bluetooth-Low-Energy-Dev/
http://nilhcem.com/iot/reverse-engineering-simple-bluetooth-devices
https://learn.adafruit.com/reverse-engineering-a-bluetooth-low-energy-light-bulb
https://medium.com/@arunmag/my-journey-towards-reverse-engineering-a-smart-band-bluetooth-le-re-d1dea00e4de2

Reverse Engineering BLE Devices Documentation

• Fitbit BLE protocol

• Mikroelektronika Hexiwear

2.3 Protocol Description

2.3.1 Eq3 Eqiva Protocol

This section tries to describe in its entirety the application protocol used by the Eq3 Eqiva radiator
valves discussed in the Introduction. It provides information on the BLE characteristics used, on
the composition of commands and notifications, and shows the Extended BNF.

The protocol exploits two methods of communication:

1. sending commands to the valve and receiving the respective notification within a short time
frame

2. receiving asynchronous notifications

All values exchanged contain the information necessary for their interpretation, therefore it can be
considered a stateless protocol.

A detailed description will be provided below.

BLE Service And Characteristics

The protocol is based on two characteristics, one for the commands and one for
the notifications. Both are part of the same service, identified by the UUID
3e135142-654f-9090-134a-a6ff5bb77046.

“Send command” characteristic

• Property: read/write

• UUID: 3fa4585a-ce4a-3bad-db4b-b8df8179ea09

• Handle: 0x0411

“Notification” characteristic

• Property: read/write/notify

• UUID: d0e8434d-cd29-0996-af41-6c90f4e0eb2a

40 Chapter 2. Contents

https://pewpewthespells.com/blog/fitbit_re.html
https://dzone.com/articles/tutorial-hexiwear-bluetooth-low-energy-packet-snif

Reverse Engineering BLE Devices Documentation

• Handle: 0x0421

Client Characteristic Configuration Descriptor (CCID)

In general, the CCID, is an optional characteristic descriptor that defines how the characteristic
may be configured by a specific client (recall: the client is the central device). Each client has its
own instantiation of the Client Characteristic Configuration . Reads of the Client Characteristic
Configuration only shows the configuration for that client and writes only affect the configuration
of that client. The characteristic descriptor value is a bit field. When a bit is set, that action shall
be enabled, otherwise it will not be used.1

In our case, the descriptor exists and has UUID 00002902-0000-1000-8000-00805f9b34fb.
Even if it’s not used in this work, its role is fundamental in other contexts, including the devel-
opment of applications for mobile devices. It allows to activate the reception of notifications by
setting a bit value to 1 through a write operation.

Note: All the identification codes are made up of 128 bit. This shows that these are services and
characteristics not provided by the Bluetooth LE specification but made by the manufacturer.

Extended Backus-Naur Form

The Backus-Naur Form is a formalism frequently used in the description of the syntax and gram-
mar of protocols and languages. The “Extended”2 version will be used below. It is designed for a
clearer and more compact representation and is now universally recognized.

Remember that:

• the symbol | indicates possible alternatives

• the symbol * indicates the number of repetitions

• [] identify optional symbols

Protocol Description

protocol = command | notification;

Command Description

command =
set-date-time | set-temp | set-comfort | set-reduced | modify-comf-

→˓reduced
| boost | auto | manual | holiday | lock | create-profile | read-

→˓profile
(continues on next page)

1 Bluetooth Core Specification 5.0, Volume 3, Part G, Section 3.3.3.3
2 ISO/IEC. Extended Backus–Naur Form, 1996

2.3. Protocol Description 41

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
https://www.bluetooth.com/specifications/bluetooth-core-specification
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

Reverse Engineering BLE Devices Documentation

(continued from previous page)

| window-mode | set-offset;

set-date-time = ’03’, year, month, day, hour, minutes, seconds;

set-temp = ’41’, temperature;

set-comfort = ’43’;

set-reduced = ’44’;

modify-comf-reduced = ’11’, temperature, temperature;

boost = ’45’, (on | off);

auto = ’4000’;

manual = ’4040’;

holiday = ’40’, temperature-128, day, year, hour-and-minutes, month;

lock = ’80’, (on | off);

create-profile = ’10’, day-of-week, interval, 6*[interval];

read-profile = ’20’, day-of-week;

window-mode = ’14’, temperature, window-minutes;

set-offset = ’13’, offset-range;

Notification Description

notification = status-notification | profile-notification;

status-notification = ’02’, ’01’, valve-state, [holiday-parameters];

profile-notification = success-modify, profile-read;

valve-state = mode, byte, ’04’, temperature;

holiday-parameters = day, year, hour-and-minutes, month;

success-modify = ’0202’, day-of-week;

profile-read = ’21’, day-of-week, 7*interval;

42 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

Generic Types

on = ’01’;

off = ’00’;

year = (’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’), hexdigit;

month =
’0’, (’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ |

→˓’A’ |
’B’ | ’C’);

day = (’0’ | ’1’), hexdigit;

hour = (’0’ | ’1’), hexdigit;

minutes = (’0’ | ’1’ | ’2’ | ’3’), hexdigit;

seconds = (’0’ | ’1’ | ’2’ | ’3’), hexdigit;

temperature-128 = (’8’ | ’9’ | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’),
→˓hexdigit;

temperature = byte;

hour-and-minutes = byte;

day-of-week = ’0’, (’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’);

interval = temperature, byte;

window-minutes =
’0’, (’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ |

→˓’A’ |
’B’ | ’C’);

mode = (’0’ | ’2’), (’8’ | ’9’ | ’A’ | ’C’ | ’D’ | ’E’)

offset-range =
’0’, (’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ |

→˓’A’ |
’B’ | ’C’ | ’D’ | ’E’)

byte = hexdigit, hexdigit

hexdigit =
(continues on next page)

2.3. Protocol Description 43

Reverse Engineering BLE Devices Documentation

(continued from previous page)

’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ | ’A’ |
→˓’B’ |

’C’ | ’D’ | ’E’ | ’F’

Commands

Commands must be sent to the valve using the hexadecimal system, so the values shown below
have already been converted. Alphabetic characters can be indifferently used in uppercase or
lowercase.

Note that the valve, and consequently also the CalorBT application, is capable of handling only
temperatures whose decimal part is rounded to .0 or .5.

Set Current Date And Time

Tells the valve the current date and time. In general it is used to synchronize with the device. The
notification returned as a result of its execution makes it possible to obtain information about the
state.

The command consists of 7 bytes:

byte 0: 03
byte 1: year % 100
byte 2: month
byte 3: day
byte 4: hour
byte 5: minutes
byte 6: seconds

Notes

• the % symbol represents the modulo operation

• months and days are calculated starting from 1. As a result, both the month of January and
the first day of each month will be identified by the value 0x01

Example

The date and time 25/05/2016 11:27:28 become 03 10 05 19 0B 1B 1C. At the same way
29/08/2016 09:55:20 becomes 03 10 08 1D 09 37 14.

Select Temperature (manual)

Activates the selected temperature.

44 Chapter 2. Contents

https://en.wikipedia.org/wiki/Modulo_operation

Reverse Engineering BLE Devices Documentation

The command consists of 2 bytes:

byte 0: 41
byte 1: temperature * 2

Example

Setting the temperature to 18°C is done with command 4124. This is because 18*2 = 36 = 0x24.
In the same way, to set the valve at 20.5°C it is necessary to send 4129.

Select Comfort Temperature

Activates the comfort temperature. To modify its default value use this command.

The command consists of 1 byte:

byte 0: 43

Select Reduced Temperature

Activates the reduced temperature. To modify its default value use this command.

The command consists of 1 byte:

byte 0: 44

Set Comfort And Reduced Temperature

Changes the default comfort and reduced temperature values within the valve settings.

The command consists of 3 byte:

byte 0: 11
byte 1: new_comfort_temperature * 2
byte 2: new_reduced_temperature * 2

Example

To set the default values for comfort and reduced temperatures to 23°C and 18.5°C respectively,
the command 112E25 must be sent to the valve. This is because 23 * 2 = 46 = 0x2E while 18.5
* 2 = 37 = 0x25

2.3. Protocol Description 45

Reverse Engineering BLE Devices Documentation

Start/Stop Boost Mode

Starts or stops the boost mode on the valve.

The command consists of 2 byte:

byte 0: 45
byte 1: 01 on // 00 off

Select Auto Mode

Activates the automatic mode on the valve. The temperature will reflect the one selected through
the weekly schedule.

The command consists of 2 byte:

byte 0: 40
byte 1: 00

Select Manual Mode

Activates the manual mode on the valve. The temperature must be selected using the command
already shown.

The command consists of 2 byte:

byte 0: 40
byte 1: 40

Select Holiday Mode

Activates the holiday mode on the valve. To be activated, it requires: the temperature to be kept
and the end date and time.

The command consists of 6 byte:

byte 0: 40
byte 1: (temperature * 2) + 128
byte 2: day
byte 3: year % 100
byte 4: (hour*2) + (minutes/30)
byte 5: month

Notes

46 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

• the % symbol represents the modulo operation

• months and days are calculated starting from 1. As a result, both the month of January and
the first day of each month will be identified by the value 0x01

• minutes can only be programmed in half-hour intervals (i.e. XX:00 or XX:30), so the value
of minutes/30 will always be equivalent to 0 or 1.

Example

To maintain the temperature at 17.5°C up to 8.00pm on 10/09/2017 the command is 40 A3 0A
11 28 09. The byte 0xA3 is derived from the computation of (17.5 * 2) + 128 = 163 = 0xA3,
while byte 0x28 was calculated through the selected time as (20 * 2) + (00/30) = 40 + 0 = 0x28.

Enable/Disable Command Block

It allows to lock the physical buttons on the valve. Note that it allows however to manage the valve
through the application.

The command consists of 2 byte:

byte 0: 80
byte 1: 01 on // 00 off

Set Temperature Offset

Allows to set a temperature offset in a range between -3.5°C and +3.5°C.

The command consists of 2 byte:

byte 0: 13
byte 1: (temperature * 2) + 7

Change Window Mode Settings

Allows to set the duration and the temperature to keep when the window mode takes over. The
window mode is activated automatically when the valve detects a significant temperature drop.

The command consists of 3 byte:

byte 0: 14
byte 1: (temperature * 2)
byte 2: (minutes / 5)

Notes

2.3. Protocol Description 47

https://en.wikipedia.org/wiki/Modulo_operation

Reverse Engineering BLE Devices Documentation

• minutes can only assume values that are multiples of 5, so the final content of byte 2 will be
between 0x00 and 0x0C

Example

To change the window mode settings to 12°C for the duration of 15 minutes it is necessary to send
the command 14 18 03. Indeed 12*2 = 24 = 0x18 and 15/5 = 3 = 0x03.

Daily Profile Request

It requires data relating to the schedule of a given day. The information is received as a notification.

The command consists of 2 byte:

byte 0: 10
byte 1: day of the week

Notes

• the days of the week are counted starting from Saturday (00 is Saturday, .., 06 is Friday)

Set Daily Profile

Set the schedule for a given day of the week. It is necessary to choose a base temperature and it is
possible to modify it for at most three time intervals. If a profile is already present for the chosen
day, it will be replaced.

The command consists of at most 16 byte:

byte 0: 10
byte 1: day of the week
[byte 2-15]: a sequence of at most seven pairs of bytes

In each pair (XX,YY):

• YY is the time, coded as (minutes/10), up to which to maintain the temperature declared in
XX

• XX represents the temperature to be maintained until then, codified as (temperature*2)

Notes

• the entire sequence of bytes [2-15] must allow to deduct the temperature to be maintained at
any moment of the day

• any unnecessary (because in excess) pairs of bytes can be kept at zero or omitted

• the number of minutes in (minutes/10) is calculated from the beginning of the day (00:00)

• the days of the week are counted starting from Saturday (00 is Saturday, .., 06 is Friday)

48 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

Example

We want to program the valve so that every Tuesday maintains a base temperature of 17°C and
automatically sets itself at:

• 20°C in the range 10:00-12:30

• 19°C in the range 12:30-14:00

• 20°C in the range 15:00-17:00

The command to be sent is 10 03 22 3C 28 4B 26 54 22 5A 28 66 22 90 00 00,
built in the following way:

byte 0: 10 (default value)
byte 1: 03 (tuesday = 0x03)
byte (2,3): 22 3C (17°C base temperature up to 10:00)
byte (4,5): 28 4B (20°C up to 12:30)
byte (6,7): 26 54 (19°C up to 14:00)
byte (8,9): 22 5A (17°C up to 15:00)
byte (10,11): 28 66 (20°C up to 17:00)
byte (12,13): 22 90 (17°C base temperature up to 24:00)
byte (14,15): 00 00 (unnecessary, can be omitted)

Notifications

As already discussed, notifications are sent from the radiator valve to the central device in order to
report to the user the status of the device or the outcome of an operation.

Also in this case the values are already converted into the hexadecimal numerical system.

Status Notif. (auto/manual mode)

They occur after the execution of any command if the valve is in automatic or manual mode. Note
that another type of notification is received after the read profile or write profile command.

The notification consists of 6 byte:

byte 0: 02
byte 1: 01
byte 2: XY (see below)
byte 3: undefined
byte 4: undefined
byte 5: (temperature * 2)

In the second byte:

• X indicates if the physical key block is active:

2.3. Protocol Description 49

Reverse Engineering BLE Devices Documentation

X=0 keypad unlocked
X=1 locked due to open window detection
X=2 locked due to manual lock enabled
X=3 locked due to open window detection && manual lock enabled

• Y indicates the active mode on the valve:

Y=8 auto mode
Y=9 manual mode
Y=A holiday mode
Y=C boost mode. at the end it returns to automatic mode
Y=D boost mode. at the end it returns to manual mode
Y=E boost mode. at the end it returns to holiday mode

Example

If the valve is in automatic mode, set to 20°C without physical buttons locked, by executing the
“Activate boost mode” command, the notification 02 01 0C XX XX 28 is received. The byte
0x0C supplies the information related to the unlock status and the mode in use, while the last byte
0x28 corresponds to twice the set temperature.

According to the same logic, by setting the valve in manual mode, with the physical buttons locked
and setting the temperature to 21.5°C, the notification takes the value 02 01 29 XX XX 2B.

Status Notif. (holiday mode)

They occur after the execution of any command if:

• the valve is in holiday mode

• the valve is in boost mode and at its end it will return to holiday mode

Note that another type of notification is received after the read profile or write profile command.

The notification consists of 10 byte:

byte (0-5): same as in previous section (3.4.1)
byte 6: end_holiday_day
byte 7: end_holiday_year%100
byte 8: (end_hour*2) + (end_minutes/30)
byte 9: end_holiday_month

Notes

• minutes can only be programmed in half-hour intervals (i.e. XX:00 or XX:30), so the value
of end_minutes/30 will always be equivalent to 0 or 1.

Example

50 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

By activating the holiday mode with the physical buttons locked, temperature at 20°C and the end
date set to 18:30 on 14/12/2016, the valve provides the following notification: 02 01 2A XX
XX 24 0E 10 25 0C.

The first six bytes are consistent with what was stated in the previous section: 0x2A declares that
the holiday mode is active. Of the remaining four bytes, 0x0E, 0x10 and 0x0C indicate the day,
year, and month respectively. Finally, the 0x25 encodes the time “18:30” according to the method
described: (18*2) + (30/30) = 36 + 1 = 37 = 0x25.

Profile Notif. (modify)

They appear after the Set Daily Profile command has been sent. They confirm the execution.

The notification consists of 3 byte:

byte 0: 02
byte 1: 02
byte 2: modified_day

Notes

• the days of the week are counted starting from Saturday (00 is Saturday, .., 06 is Friday)

Profile Notif. (request)

They appear after the Daily Profile Request command has been sent. They provide all the infor-
mation necessary to identify temperatures and time ranges for the selected day.

The notification consists of 16 byte:

byte 0: 21
byte 1: day_of_the_week
(byte 2-15): a sequence of seven pairs of bytes (see below)

In each pair (XX,YY):

• YY is the time, coded as (minutes/10), up to which to maintain the temperature declared in
XX

• XX represents the temperature to be maintained until then, codified as (temperature*2)

Notes

• the entire sequence of bytes (2-15) allows to deduct the temperature to be maintained at any
moment of the day

• any unnecessary (because in excess) pairs of bytes will have the value
XX=base_temperature and YY=0x90

2.3. Protocol Description 51

Reverse Engineering BLE Devices Documentation

• the days of the week are counted starting from Saturday (00 is Saturday, .., 06 is Friday)

Example

We program the valve so that every Monday maintains a base temperature of 17°C and automati-
cally sets itself at:

• 21°C in the range 06:00-06:00

• 21°C in the range 17:00-23:00

We request the profile and we get the notification: 21 02 22 24 2A 36 22 66 2A 8A 22
90 22 90 22 90, built as follows:

byte 0: 21 (default value)
byte 1: 02 (Monday = 0x02)
byte (2,3): 22 24 (17°C up to 06:00)
byte (4,5): 2A 36 (21°C up to 09:00)
byte (6,7): 22 66 (17°C up to 17:00)
byte (8,9): 2A 8A (21°C up to 23:00)
byte (10,11): 22 90 (17°C up to 24:00)
byte (12,13): 22 90 (unused)
byte (14,15): 22 90 (unused)

2.3.2 Laica PS7200L Protocol

The PS7200L is a BLE scale produced by the italian company Laica. In addition to measuring
weight, it allows the calculation of:

• fat percentage

• water percentage

• skeletal muscle mass percentage

• skeletal system weight

• base metabolism

• body mass index

To use all the features of the scale, the company provides an application, called laicabodytouch,
for Android and iOS devices. The application receives the data from the scale, keeps track of it
and shows it to the user through simple graphs.

52 Chapter 2. Contents

https://www.laica.com/product/smart-electronic-scale-with-body-composition-calculator-ps7002/
https://www.laica.com/
https://play.google.com/store/apps/details?id=com.whb.loease.bodytouch&hl=en_US

Reverse Engineering BLE Devices Documentation

Fig. 26: Laica PS7200L BLE Scale

It is interesting to observe the permissions required by the application to perform such a “simple”
task. Some of them are quite ambiguous and are not essential to use Bluetooth4. For example,
some required permissions are:

• retrieve running apps

• find/add/remove accounts on the device

• read phone status and identity

• view Wi-Fi connections

Note: At present, the PS7200L protocol has been reverse-engineered only in a small part. How-
ever, it has been included in this guide because it shows aspects that have not been dealt within
other sections.

BLE Communication

After analyzing the log files using the methods described in the Logging Via Android section, it
becomes clear that the application does not send commands to the scale.

The operation principle is based on the fact that when a person is on the scale, this starts broad-
casting advertising packages. These packages contain all the information about the device and the
person using it. For this reason, there is not even a pairing procedure between the central device
and the BLE device.

Through the advertising packages, the scale provides the application two essential information:

1. the weight in Kg

2. a value used to derive all the other parameters (such as fat%, water%, etc..)

Note: To achieve the goal of point 2 (derive all the parameters), the application also uses three
manually entered data: gender, age and height.

4 Android Bluetooth Permissions

2.3. Protocol Description 53

https://developer.android.com/guide/topics/connectivity/bluetooth#Permissions

Reverse Engineering BLE Devices Documentation

Advertising Packets Content

The structure of an advertising package is clearly described in the Bluetooth specifications3. In
addition to a field that indicates the MAC address of the device who sent the package, there is an
Advertising Data field that basically represents the payload.

Referring to the way Wireshark presents the packages (see Wireshark log of Advertisement pack-
ets), the data that compose the communication protocol between the two devices are the 12 Byte
under Advertising Data > Manufacturer Specific > Data. Their meaning is as
follows:

..
byte (2,3): weight*10 (in Kg)
byte (4,5): used to derive other parameters (fat%, water%, etc..)
..

At the moment it is not clear how the value of the bytes (4,5) can lead to the calculation of all
the other data. Even decompiling the Android application the analysis is blocked by the fact that
these two bytes are used as input to a function called getHealth() in the proprietary library
libyohealth.so.

We decompiled the library using objdump (with an ARM toolchain) and the RetDec decompiler,
which provides output in C language. However, for obvious reasons, the results are not easily
readable. The outputs obtained from the decompilation process are available here.

2.4 Script Creation

This section wants to introduce some useful tools to search for Bluetooth devices and to communi-
cate with them. In particular, we consider the tools provided by the BlueZ stack. Then we explain,
as an example, some details on the scripts created for the management of the Eq3 Eqiva radiator
valves discussed in the Introduction.

2.4.1 Bluez Stack

BlueZ is the offical Linux Bluetooth protocol stack and is part of the Linux kernel since version
2.4.6 was released4. It provides the necessary modules to manage both classic and low energy
Bluetooth devices5. Along with these modules, there is a series of command-line tools (bluez-
tools) that interact with the main core.

3 Bluetooth Core Specification 5.0, Volume 2, Part E, Page 1193
4 BlueZ - Common Questions
5 Ubuntu Bluez Documentation

54 Chapter 2. Contents

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://retdec.com/
https://gitlab.com/sergioalberti/gsoc-blereverse/tree/master/laica_PS7200L_reveng/libyohealth_source
http://www.bluez.org/
https://www.bluetooth.com/specifications/bluetooth-core-specification
http://www.bluez.org/faq/common/
https://docs.ubuntu.com/core/en/stacks/bluetooth/bluez/docs/

Reverse Engineering BLE Devices Documentation

Debian provides all the necessary packages in its repositories. The installation can be performed
through the apt package manager:

$ sudo apt install bluez bluez-tools

Many tools are available. Below we describe the use of those needed to send a command to a BLE
device and to search for its MAC address.

Hcitool

As specified in its manual6, hcitool is used to configure Bluetooth connections and send some
special command to Bluetooth devices. It allows, among other things, to send HCI commands,
make connections and manage the authentication phases.

Furthermore, it is able to scan for both BLE and non-BLE devices. This allows us to identify the
MAC address of the device we want to work on. However, it’s not possible to search both types
of devices simultaneously:

• to start a classic scan, use the command:

$ sudo hcitool scan

• to start a BLE scan, use the command:

$ sudo hcitool lescan

The following image shows the result of a BLE scan. Each line contains the MAC address of the
identified device followed by its name (if readable).

Fig. 27: Scan for BLE devices

Note: The scan and lescan commands ignore advertising packages received from devices
they already know about. To prevent those packages from being ignored (in some cases it may be
necessary) use the --duplicate parameter.

6 hcitool manpage

2.4. Script Creation 55

https://en.wikipedia.org/wiki/List_of_Bluetooth_protocols#Host_Controller_Interface_(HCI)
https://linux.die.net/man/1/hcitool

Reverse Engineering BLE Devices Documentation

Hcidump

Hcidump is a tool that can read the contents of the HCI packets sent and received by any Bluetooth
device.

Despite the BlueZ stack integrates this tool (since version 5), it requires to be installed separately.
As always, in Debian this can be done using the apt package manager:

$ sudo apt install bluez-hcidump

Among other things, we will use this software to read the contents of the advertising packages
during the scan phase. To do this:

1. start a scan through hcitool:

$ sudo hcitool lescan --duplicate

2. while hcitool is running, start hcidump:

$ sudo hcidump --raw

The --raw parameter allows to obtain data in the “original” format. Other parameters (--hex,
--ascii) can be used to get them in other formats. Refer to the manual8 for these details.

Fig. 28: Hcidump (right) running while scanning (left)

The image above shows the execution of the previous commands. The terminal on the right lists
the intercepted HCI packets. They are all advertising packages, because the first bytes are 04
3E. As indicated by the Bluetooth specifications, 04 stands for HCI Event while 3E means LE
Advertising Report.

An example of the use of hcitool and hcidump is given in the Laica PS7200L Scripts section.

Gatttool

Gatttool is designed for Bluetooth Low Energy. It therfore works exploiting the concept of GATT
and its ATT protocol, which is adopted only by BLE devices. Basically, it allows you to connect
to a device, discover its characteristics, write/read attributes and receive notifications. Optionally,
it can also be used in interactive mode through a CLI.

8 hcidump manpage

56 Chapter 2. Contents

https://en.wikipedia.org/wiki/List_of_Bluetooth_protocols#Host_Controller_Interface_(HCI)
https://en.wikipedia.org/wiki/Command-line_interface
https://linux.die.net/man/8/hcidump

Reverse Engineering BLE Devices Documentation

Possible uses are described in the manual7 and through the command gatttool --help. Be-
low we show how to write a value on a characteristic, which is what we want to do in order to send
commands to BLE devices.

To this end, you need:

• the MAC address of the target device

• the Handle that identifies the characteristic.

Given this data, the following command sends the value represented by <value> to the device:

$ gatttool -b <mac_address> --char-write-req -a <handle> -n <value> --
→˓listen

Note: The --listen parameter requires gatttool to wait for a notification. However, this
puts the process in a waiting state until it is manually terminated.

The following image shows the output obtained from the command execution. As you can see, the
characteristic has been written correctly and information about the received notification is shown.

Fig. 29: Gatttool Characteristic Write

2.4.2 Eq3 Eqiva Script

An english translation of the software is available here (while here is the original) and consists of:

• a series of functions useful to interact with a single valve

• some scripts for the simultaneous management of multiple valves

Everything has been developed and tested on a bash shell and this should ensure portability on
most Unix systems without having to make many changes. However, the BlueZ stack dependency
limits its use to GNU/Linux operating systems.

Updated:

We have created an updated version of the scripts. It corresponds to the one implemented in the
eq3eqiva .deb package. The next sections will refer to the “original” (old) version. Changes and
additions of the new implementation will be reported with the Updated tag.

7 gatttool manpage

2.4. Script Creation 57

https://gitlab.com/sergioalberti/gsoc-blereverse/tree/master/eq3_eqiva_reveng/reference_implementation
http://sl-lab.it/dokuwiki/doku.php/tesi:reveng-termovalvole
https://gitlab.com/sergioalberti/gsoc-blereverse/tree/master/eq3_eqiva_reveng/updated_implementation
https://gitlab.com/sergioalberti/gsoc-blereverse/blob/master/eq3_eqiva_reveng/eq3eqiva-deb/eq3eqiva_1.0-1_all.deb
http://manpages.org/gatttool

Reverse Engineering BLE Devices Documentation

GPLv3 License

As mentioned in the Introduction, the project is (among other things) aimed at providing the pos-
sibility to integrate these valves into free home automation systems.

The code is then released under the GPLv3 license (GNU General Public License), the condi-
tions of which have to guarantee the four fundamental freedoms1 defined by the Free Software
Foundation:

1. The freedom to run the program as you wish, for any purpose (freedom 0).

2. The freedom to study how the program works, and change it so it does your computing as
you wish (freedom 1). Access to the source code is a precondition for this.

3. The freedom to redistribute copies so you can help others (freedom 2).

4. The freedom to distribute copies of your modified versions to others (freedom 3). By doing
this you can give the whole community a chance to benefit from your changes. Access to
the source code is a precondition for this.

Basically, it is a noticeably copyleft license: anyone who wants to distribute copies of a software
bound to these conditions, whether free or behind the payment of a price, is obliged to recognize
the same rights that it received to the recipient. He must also guarantee access to the source code.

Single Valve Management

Everything necessary to manage a single valve is contained in two files:

• basic_functions.sh deals with sending and receiving data, translating notifications
and also contains some frequently used functions.

• valve_commands.sh deals with the syntactic/semantic composition of each command

Both files are commented and describe each function, therefore only some relevant aspects will be
discussed below.

It is interesting to note that, although the CalorBT application requires a pairing procedure in
order to be able to communicate with the valve, this procedure is not necessary outside the An-
droid/iOS context. This is clearly a security flaw because it allows communication with the device
while knowing only the MAC address, which can easily be obtained through external tools such as
the already described hcitool

basic_functions.sh File

send_command()
1 The Free Software Foundation. What is free software?

58 Chapter 2. Contents

http://www.gnu.org/philosophy/free-sw.html

Reverse Engineering BLE Devices Documentation

input: <device_address> <command>
output: value of the notification received after execution

It writes the value of the command argument on the “send command” characteristic, thus causing
the execution of the corresponding command.

The transmission is based on the use of the Gatttool tool, as discussed in the previous section,
through the following line of code:

output=$(timeout $TIMEOUT_SEC gatttool -b $1 --char-write-req -a
→˓0x0411 -n $2 --listen)

The parameters -b and -n allow to specify respectively the address of the device and the value to
send; at the time of execution they will be replaced by <device_address> and <command>.
The use of -listen puts the tool in a locked state, waiting for one or more notifications from the
counterpart.

However, there is no way to indicate a temporal term to this condition, and it is necessary to
use timeout $ TIMEOUT SEC to store what is received in the output variable after a certain
period of time and move on to the next instruction. The TIMEOUT SEC variable is defined in the
config.sh file and will be detailed in the Field Test section.

parse_return_value()

input: <notification_value>
output: notification translated into readable content

It translates the notification content and brings it to the standard output through a series of echo
commands. The parameter <notification_value> must be composed of the received bytes,
each separated by a space: the same format used by Gatttool.

The translation is performed by interpreting the value of each byte consistently with the informa-
tion in section Notifications. If it is a Holiday Mode notification, the parsing is done with the help of
the parse_holiday_params() function, which is also contained in basic_functions.
sh, using bytes 7, 8, 9 and 10.

As an example, the profile_req.sh script allows to request information on a day sched-
ule using the appropriate command. The output produced is an example of using the
parse_return_value() function. The above figure shows the translation of the notifica-
tion received following the request relating to the day of Tuesday (indicated by the parameter 02)
to the valve called “camera”.

calculate_temp()

2.4. Script Creation 59

Reverse Engineering BLE Devices Documentation

Fig. 30: profile_req.sh example

input: temperature in decimal base
output: (temperature*2) in hexadecimal base and rounded

It allows to encode the temperature according to the format used by the valve. The result is obtained
by multiplying by 2 and then rounding to a value equal to XX.0 or XX.5.

Notes

This function must not be used for the Select Holiday Mode command. It uses the rule
(temperature*2)+128. For this purpose there is the function calculate_temp_128(),
which is also contained in basic_functions.sh.

search_by_name()

input: <valve_name> <file_name>
output: valve MAC address (-1 if it does not exists)

It allows to find the MAC address of a single device.

For this purpose, each valve is identified by a user-assigned name within the file file_name.
Within this file, each valve must be represented on a new line according to the format:
NAME/ADDRESS. The function does not distinguish between uppercase and lowercase letters;
therefore, the line valve1/00:11:22:33:44:55 is completely equivalent to VALVE1/
00:11:22:33:44:55.

The file is scanned line by line: if there are duplicates, the first occurrence will be selected.

Updated:

The following functions have been included in the updated version.

check_bt_status()

60 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

input: -
output: an error message if Bluetooth isn't active

Refer to this section for more details.

validate_mac()

input: <MAC_address>
output: 0 if valid, -1 otherwise

Check if a MAC address is syntactically valid. To be valid, an address must be composed of a
succession of six pairs of hexadecimal values, separated by “:”. The check is done through a
regular expression, using the following code.

#check if $1 is a valid mac address
if [["$1" =~ ^([a-fA-F0-9]{2}:){5}[a-fA-F0-9]{2}$]]; then

echo "0"
else

echo "-1"
fi

In particular, it requires that a pair {2} of hexadecimal values [a-fA-F0-9] be repeated five
times {5}, each time followed by “:”. There must then be a sixth pair, again identified by
[a-fA-F0-9]{2}, which must not be followed by the separator “:” (because it is the last pair).

valve_commands.sh File

As already disclosed, valve_commands.sh manages the syntactic composition of every pos-
sible command and requires its execution through the following functions. Note that all functions
automatically round the entered temperature to values of the type XX.0 or XX.5.

• send_init() <device_address> Send the current date and time, automatically calcu-
lated through the command date. It is not essential, but it is useful to start the com-
munication in order to guarantee the synchronization between the central device and
the valve and to receive a notification that reports the status.

• boost_mode() <device_address> Causes boost mode activation.

• stop_boost_mode() <device_address> Causes boost mode deactivation.

• auto_mode() <device_address> Activate the automatic mode and adjust the tempera-
ture accordingly (as selected in the weekly schedule).

• manual_mode() <device_address> Activate the manual mode.

• set_temperature() <device_address> <temperature> Set the temperature to the
value indicated by the second parameter.

2.4. Script Creation 61

https://en.wikipedia.org/wiki/Regular_expression

Reverse Engineering BLE Devices Documentation

• set_comfort_reduction_temp() <device_addr> <comf_temp> <red_temp>
Changes the “comfort temperature” and “reduced temperature” values within the
valve settings.

• holiday_mode() <device_address> <DD/MM/YYYY> <hh:mm> <temperature>
Activate the holiday mode; therefore maintains the same temperature until the end
indicated by the parameters.

• read_profile() <device_address> <day> Require the daily schedule. Days of the
week are counted starting from Saturday (00 is Saturday, .., 06 is Friday)

• set_profile() <device_address> <day> <int1> [int2] [int3] [int4]
[int5] [int6] [int7]

Set the daily schedule. Days of the week are counted starting from Satur-
day (00 is Saturday, .., 06 is Friday). Each interval intX must be in the
form TEMPERATURE/hh:mm and together they must guarantee coverage for the
whole day following the guidelines in the section Set Daily Profile. As a result, the
intervals 2-7 may turn out to be unnecessary and certainly the last one specified
must have the time 24:00 or 00:00.

• lock() <device_address> Locks the physical keys on the valve.

NOTE: This does not prevent interaction through Bluetooth.

• unlock() <device_address> Unlocks the physical keys on the valve.

• set_window() <device_address> <temperature> <duration> Set window
mode temperature and duration.

• set_offset() <device_address> <temperature> Set the offset temperature. It must
be between -3.5 and +3.5.

The following is a general example of how these functions work, since they are all quite similar.

1 read_profile() {
2 if [$2 -lt 0 -o $2 -gt 6]; then
3 echo "Week goes from 00 (saturday) to 06 (friday)."
4 return
5 fi
6

7 day=$(printf "%02x" $2) # $2 = day
8 echo $(send_command $1 20$day) # $1 = device_address
9 }

The first part, represented here by lines 2-7 but not always necessary, checks the correctness of
the inputs and calculates the coding of the parameters according to the format required by the
valve. The second part (line 8) sends the command using the send_command function and prints
the notification received.

Parsing/Translation

62 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

As shown in the example, the default behavior does not provide parsing and translation of what
has been received. For this to happen you need to use the parse_return_value method, in two
possible alternative ways:

1. replacing it with the echo command in the last line of each function (line 8 in the example):

parse_return_value $(send_command $1 20$day)

2. moving the parse_return_value() call outside of the requested function
(read_profile() in the example), thus obtaining the following code:

parse_return_value $(read_profile)

Multiple Valve Management

The functions described in the previous section are useful to create larger scripts that automate the
management of multiple valves. Below are listed the scripts made, which want to form a simple
guideline in the development of larger projects.

Configuration

For simplicity, using the scripts requires assigning a name chosen by the user to the MAC address
of each valve. It is therefore necessary to indicate which will be the file containing the name-
address associations through the VALVE_FILE variable inside the config.sh file.

The file referred to by VALVE_FILE must be compiled according to the syntax required by the
documentation of search_by_name, thus using the format NAME/MAC_ADDRESS.

MAC addresses can be found as described in the Bluez Stack section through the hcitool
lescan command.

In order to run the scripts you need execution permissions:

$ cd /path/to/scripts/directory
$ chmod u+x *.sh

Then, to run a script:

$./script_name.sh parameter1 parameter2

Updated:

For each script, except for profile_req, you can use the -p or --parse option to activate the
parsing of the received notifications. Otherwise, the value of notifications is shown in hexadecimal
base.

Example: ./auto_mode.sh -p bathroom kitchen

2.4. Script Creation 63

Reverse Engineering BLE Devices Documentation

• auto_mode <valve_name> [valve_name ...] Set the “auto mode” on all the
valves identified by the names provided by command line. At least one parameter
is required, while the subsequent ones are optional.

NOTE: the temperatures set on each valve after the execution of the script are depen-
dent on how they have been programmed individually.

• manual_mode <temperature> <valve_name> [valve_name ...] Set the
“manual mode” on all the valves identified by the names provided by command line.
At least one parameter is required, while the subsequent ones are optional.

• set_temperature <temperature> <valve_name> [valve_name ...] Rounds
the <temperature> value and sends it to all the valves identified by the names
provided by command line. Requires the first and second parameters, while the
subsequent ones are optional.

• set_all_temp <temperature> Rounds the <temperature> value and sends it to all
the valves. Names and addresses of the valves to which the data are sent are taken from
the file referenced by VALVE_FILE.

NOTE: The file is scanned line by line. The presence of duplicates implies a double
execution of the command on the same valve

• set_profile <profile_file> <valve_name> [valve_name ...] Set profiles for
one or more days on all the valves identified by the names provided by command line.
The values to be set are supplied via a profile_file. It must contain the schedule
for one or more days in the following format:

day (1=monday, ..., 7=sunday)
base_temperature
HH:MM-HH:MM-TEMP (first interval)
HH:MM-HH:MM-TEMP (secondo optional interval)
HH:MM-HH:MM-TEMP (third optional interval)
end

NOTE: within the same file, you can specify the schedule for several days separating
each block by an empty line.

As an example, the Monday schedule with a base temperature of 18°C and 20°C in the
two ranges 06:30-08:00 and 17:00-20:00 is carried out in this way:

01
18
06:30-08:00-20
17:00-20:00-20
end

Updated:

In the new implementation days are indicated by their names and not numerically.

64 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

They must be written in English in complete or abbreviated form (e.g. “Saturday” is
equivalent to “sat”). They are not case sensitive.

The previous example becomes:

Monday
18
06:30-08:00-20
17:00-20:00-20
end

• profile_req <day> <valve_name> [valve_name ...] It requires and prints the
daily schedule for all the valves identified by the names provided by command line.
The <day> parameter is counted starting from 01 (Monday) up to 07 (Sunday).

Updated:

In the new implementation days are indicated by their names and not numerically.
They must be written in English in complete or abbreviated form (e.g. “Saturday” is
equivalent to “sat”). They are not case sensitive.

Example: ./profile_req Sunday bathroom kitchen

The operating principle of each script is almost identical. First of all, the presence of the parameters
required to run it is checked. Then each parameter representing a device activates the search
function of the MAC address. Once this is done, the commands are sent to the valves. The
following lines of code, extracted from the auto_mode.sh script, clarify the functions used.

1 #!/bin/bash
2 . ./valve_commands.sh
3

4 if [-z $1]; then
5 printf "Usage: ./auto_mode.sh <valve_name> [valve_name ...]\n"
6 exit
7 fi
8

9 for name in "$@"; do
10 address=$(search_by_name $name $VALVE_FILE)
11

12 if ["$address" != "-1"]; then
13 auto_mode $address
14 else
15 printf "%s valve not found\n" "$name"
16 fi
17 done

The inclusion of valve_commands.sh‘ (line 2) makes available all the primitives present in the
section Single Valve Management. This causes the implicit inclusion of basic_functions.sh
and config.sh and makes usable the search_by_name function and the VALVE_FILE variable.

2.4. Script Creation 65

Reverse Engineering BLE Devices Documentation

Lines 4-7 check for the required parameters and cause the script to exit if the check is not passed.
The for loop (lines 9-17) allows to go by all the names of the valves supplied as an argument to the
script. From each of these the MAC addresses are obtained. Now sending the request to the valve
is simple and is based on the call to an already known function (line 13): valve_commands.sh
provides the necessary to carry out all the operations made available by the CalorBT application.

The part of the code that deals with the transmission of data to the valve is located within the for
cycle. For this reason the requested command is sent to one device at a time, in the order in which
the names are supplied to the script at invocation time (see Sequence Diagram of auto_mode.sh).
The output produced corresponds to the notifications received from time to time, after the execution
of each command.

If the address of a valve is not found, a control (line 12) causes an error message to be printed (line
15). Then starts the search for the next address (if required by the entered parameters).

Fig. 31: Sequence Diagram of auto_mode.sh

The above Sequence Diagram2 shows the exchange of messages between three valves and the
central device during the execution of the auto_mode.sh script, activated as follows:

2 Sequence Diagram - Wikipedia

66 Chapter 2. Contents

https://en.wikipedia.org/wiki/Sequence_diagram

Reverse Engineering BLE Devices Documentation

./auto_mode.sh bedroom sitting_room office

Correctly, as we have just seen, the value 0x0400 (Select Auto Mode) is sent in succession for
each valve. The next command is sent only after receiving the notification of the previous one.

The set_profile.sh script is the only exception to this behavior, because it has to read the
supplied file. This can contain instructions related to the schedule of several days, making it
necessary to send several commands to the same valve. For this purpose it was decided to
minimize the number of calls to the search_by_name() function by immediately searching
for the requested MAC addresses and storing the result in an array (the VALVES_ADDR variable,
inside the script).

Updated:

In the new implementation, in each script was added a control on Bluetooth activation, syntax
validation of MAC addresses and the possibility to use the -p or --parse option (see the previous
note).

The first two points were obtained through the functions:

• check_bt_status

• validate_mac

The third point was obtained through the following code

1 #check if the -p or --parse option is present
2 case $1 in
3 -p|--parse)
4 parsing=1
5 shift #discard the argument
6

7 .. #do things
8 ;;
9

10 *)
11 parsing=0
12 ;;
13 esac

If the first parameter (represented by $1) corresponds to -p or --parse, the variable parsing is
set to 1 and the parameter already used is discarded through the shift command. Now $1 contains
the next parameter supplied by the user. In all other cases (identified by “*)”), parsing is set to
0 and no parameters need to be discarded.

As a result, the overall structure of each script is a little changed. The new structure is:

1 #check if the parameter -p is present
2 .. #code above

(continues on next page)

2.4. Script Creation 67

Reverse Engineering BLE Devices Documentation

(continued from previous page)

3

4 check_bt_status #check if bluetooth is active
5

6 for name in "$@"; do
7 address=$(search_by_name $name $VALVE_FILE)
8

9 if [["$address" != "-1" && $(validate_mac $address) != "-1"]]; then
10

11 notification=$(auto_mode $address)
12

13 if [[! -z $notification && $parsing = 0]]; then
14 printf "\n%s: %s\n" "$name" "$notification"
15 elif [[! -z $notification && $parsing = 1]]; then
16 printf "\n%s:\n" "$name"
17 parse_return_value $notification
18 else
19 #received empty notif
20 printf "\n%s: error. try to increase the timeout or move close

→˓to the valve\n" "$name"
21 fi
22 else
23 #mac address error or valve not found
24 printf "\n%s: not found in '%s' or invalid MAC address\n" "$name" "

→˓$VALVE_FILE"
25 fi
26 done

First of all we check the presence of the -p|--parse option and the activation of the Bluetooth
(line 4). Then there is the usual for cycle, in which there are some differences with respect to the
previous implementation.

The line 9 not only verifies that the MAC address has been found, but also that it is correct at
syntax level (through the validate_mac function).

Furthermore, in this version the notification received from the valve is saved in the
notification variable (line 11). This is because depending on whether the parsing variable
is set to 0 or 1 (respectively, line 13 and line 15), the notification must be shown in hexadecimal
values (line 14) or translated (line 17).

The errors are substantially divided into two cases:

• something went wrong in the communication and the notification received is empty (line 20)

• no valve was found with that name or the MAC address entered by the user is not syntacti-
cally correct (line 24)

In both cases error messages are printed.

68 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

Field Test

The information in the previous sections was tested using:

• a Bluetooth 4.0 Class 2 adapter on the central device

• Ubuntu 14.04 LTS GNU/Linux

• the 4.101 version of the BlueZ stack (included by default in the chosen OS)

However, the scripts have also been tested on the latest BlueZ versions.

Range And Related Problems

The EQ3 company, which produces the valves, declares a maximum range of 10 meters outdoors
(and therefore in the absence of obstacles)3. Despite this, the use via smartphone (through the
appropriate application) allowed us to reach the distance of 12.5 meters without drops in reception.

The signal’s range and strength directly influence the content of the TIMEOUT_SEC variable,
defined in config.sh. This variable is used in the send_command function. Its value represents
the maximum time (in seconds) within which it is certain to be able to carry out the following
operations:

1. connect to the valve

2. send the command

3. receive the subsequent notification

DISTANCE AVERAGE TIME STD. DEV.
2 meters 02.99 sec. 0.44 sec.
4 meters 03.78 sec. 0.59 sec.
6 meters 13.73 sec. 1.80 sec.

The value (time) of TIMEOUT_SEC is set by default to 5 seconds, given the results obtained with
the Class 2 adapter used in the tests. As can be seen from the table, this adapter has signal losses
even at a distance of 6 meters, making it impossible to deepen the analysis. As a consequence,
the most appropriate value was selected with respect to the results obtained under good reception

3 Bluetooth Smart Radiator Thermostat - EQ3

2.4. Script Creation 69

https://www.eq-3.com/products/eqiva/bluetooth-smart-radiator-thermostat.html#technik

Reverse Engineering BLE Devices Documentation

conditions (2 and 4 meters). In all likelihood, these values will not suffer large increases over
medium to long distances using a more powerful Bluetooth connector (i.e. Class 1).

Note: TIMEOUT_SEC is in any case a fundamental parameter that needs to be manually adapted
depending on the application context. The goal is to find a good compromise between waiting
times and errors (due to not receiving the notification within the short time available).

The calculation of the elapsed time between connection, sending and receiving was done using the
time command in the following way:

time gatttool -b $ADDRESS --char-write-req -a 0x0411 -n 4000

This sends, by way of example, the Select Auto Mode instruction to the valve using gatttool. The
average times and standard deviations shown in the table result from the execution of this instruc-
tion on three different valves. In total, 20 trials were performed for each distance.

Each test was carried out by the same starting state: valves disconnected from the central device.
The disconnection automatically occurs 45 seconds after execution of a command.

Parallel Connection

The gatttool tool used for the connection does not allow parallel sending of commands. The central
device is able to communicate with only one device at a time.

Indeed, after a write operation of a characteristic, gatttool does not allow the execution of
operations on other devices until the actual confirmation of success (in the form of a notification)
is received. This makes every attempt useless.

Similar Projects

Recently a Python library that allows the use of these valves has been integrated into the home-
assistant platform. The library can be used “stand alone” (i.e. without home-assistant) through a
CLI interface. Here are some differences with respect to our implementation.

Pros:

• Better Bluetooth management, probably thanks to bluepy. It seems more reliable when
something goes wrong and on average requires less waiting time.

• Provides information on the status of the valve battery.

Cons:

• Requires python and bluepy (not present in Debian repositories).

• With the CLI interface it is possible to memorize only one valve (by exporting the MAC
address to an environment variable or by specifying it manually at each command). Through

70 Chapter 2. Contents

https://github.com/rytilahti/python-eq3bt
https://www.home-assistant.io/components/climate.eq3btsmart/
https://www.home-assistant.io/
https://www.home-assistant.io/
https://github.com/IanHarvey/bluepy

Reverse Engineering BLE Devices Documentation

the home-assistant platform apparently you can pair “name-address” (more than one),
but it is a feature implemented in home-assistant itself.

• There is no way to set up daily schedules. It also returns strange values (mixed with correct
information) when they are read.

Note: The repository does not provide information about the Eq3 Eqiva protocol: it is not docu-
mented. Although this is not a real “downside” in use, we think it is important to spread the result
of a reverse engineering activity.

2.4.3 Laica PS7200L Script

Scripts related to the Laica PS7200L BLE scale are available here. They have been tested on a
bash shell and the code is released under the GPLv3 License.

In addition to the BlueZ stack, they require the hcidump tool. Refer to the previous section for
clarification on use and installation.

Basically, the scripts are composed of two files:

• basic_functions.sh contains a series of functions to receive information from the
BLE scale and convert them to a readable format

• get_weight.sh automates calls to basic functions in order to get the weight in kg

basic_functions.sh File

check_bt_status()

input: -
output: an error message if Bluetooth isn't active

Check if the Bluetooth is active on the central device. Otherwise, prints an error message and the
list of each identified Bluetooth adapter (with its status).

For this purpose, the function uses the output generated by the hciconfig tool9, which is in-
cluded in the Bluez Stack. An example of output is present in the following image. As reported in
the manual, hciX is the name of a Bluetooth device/adapter installed in the system. (only one, in
this example).

The check_bt_status() function works by identifying each adapter through the following code,
which match lines that starts with a string like “hciX”:

9 hciconfig manpage

2.4. Script Creation 71

https://gitlab.com/sergioalberti/gsoc-blereverse/tree/master/laica_PS7200L_reveng/script
https://linux.die.net/man/8/hciconfig

Reverse Engineering BLE Devices Documentation

Fig. 32: Output of hciconfig tool

if [["$line" =~ ^hci[0-9]]]; then
..

fi

For each line identified (i.e. a BT adapter), it’s possible to understand if it represents a working
or a disabled adapter by checking the presence of UP or DOWN (on and off respectively) in the
following two lines. This is done through the following code:

read #skip a line
read adapter_status

if [[$adapter_status == *"UP"*]]; then
#bluetooth is active

else
#bluetooth is disabled (related to this adapter)
#save the adapter' status (for log purpose)

fi

If an active adapter is detected, it means that Bluetooth should be working. The function then
terminates without providing output. Otherwise a list of detected devices and their status is printed.

scan_address()

input: <device_name> <file_name> [timeout]
output: MAC address of <device_name> (-1 if not found)

It scans for [timeout] seconds (15, if no value is provided) looking for a BLE device called
<device_name> and saves the contents of the advertising packages in <file_name>.

After a first check on the presence of the necessary parameters, the following line of code carries
out the essential part of the work.

scan_results=$(sudo timeout $timeout hcitool lescan --duplicate &
sudo timeout $timeout hcidump --raw > $2)

Note that:

72 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

• Hcitool starts scanning for BLE devices. The output produced is saved in the
scan_results variable

• Hcidump intercepts the Advertising packages and redirects everything in a file identified
by the second parameter $2 (which corresponds to <file_name>)

• The & operator allows to run hcitool in the background (but still producing output) while
running hcidump

• using timeout is convenient for killing both tools, which otherwise need to be stopped
manually

At the end of the timeout, a while loop scrolls through the hcitool output (saved in the vari-
able scan_results), looking for the MAC address of the BLE device <device_name>. If
this is found then the loop is interrupted and the address is returned through an echo command.
Otherwise the value -1 is returned.

Note: Calling this function generates a <file_name> file. It contains the raw output of
hcidump.

format_address()

input: <MAC_address>
output: formatted address

It formats the MAC address provided as input to make it conform to the format used by hcidump.
To do this it is necessary to replace each : character with a white space and reverse the order of
each byte (the first becomes the last, the second becomes the penultimate etc..)

As an example, the address 00:11:22:33:44:55 becomes 55 44 33 22 11 00.

find_weight()

input: <MAC_address> <hcidump_file>
output:

weight in Kg
(-1 if <hcidump_file> does not contain adv packages sent from the

→˓scale)

It calculates the weight in Kg, given the MAC address of the scale and the name of the file previ-
ously generated by hcidump (and thus obtained with scan_address).

The function checks for the presence of the required parameters and the existence of the file. Then
it starts analyzing the file package by package. This is the example structure of the packages we
want to identify (formatted according to the hcidump standard):

2.4. Script Creation 73

Reverse Engineering BLE Devices Documentation

> 04 3E 29 02 01 03 01 D0 FF FF FF FF FF 1D 0F FF 02 A1 09 FF
02 F8 FF FF 82 FF FF 21 71 AA 02 01 06 09 09 59 6F 48 65 61
6C 74 68 B6

The beginning of a package is marked with the > symbol and in the first line it contains the MAC
address of the device that sent it (D0 FF FF FF FF FF in the example). This allows us to
identify the packages we are potentially interested in. Within these, the information concerning
the weight is contained in the first two bytes of the second row (02 F8 in the example).

Based on these considerations, the script reads the file looking for lines containing both the correct
MAC address and the > character through this code:

while read line
do

if [[$line = *'>'* && $line = *"$address"*]]; then

..

..
fi

done < "$hcidump_file"

If a consistent line is found, the next one is saved in a variable. However, our goal is to identify
the second line of the last consistent package, because it is the one containing the most accurate
weight. For this reason, the cycle does not break at the first detected occurrence, but continues the
inspection until the end of the file.

Once the cycle is complete, we have the desired line stored in the $last_occurrence variable.
If no packet has been detected, the variable contains an empty string and -1 is returned.

Having the desired line available, the function extracts the first two bytes and carries out the op-
erations required to obtain the weight (concatenation, conversion to base 16, division by 10). The
result is returned with an echo command.

get_weight.sh File

This script exploits the functions previously exposed to automate the reading of the weight from
the BLE scale. To do this two variables are defined:

hcidump_file="hcidump_output"
available_time=15

The first one indicates the name of the hcidump file that will be generated by the function
scan_address. The second allows you to select the time you have available to weigh yourself
from the moment the script is started or the password is entered (if required).

The order in which the operations are carried out is as follows:

74 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

1. import the functions defined previously:

./basic_functions.sh

2. check Bluetooth status, scan for the MAC address and save the output in a variabile (it also
generates the hcidump file)

check_bt_status
MAC_address=$(scan_address YoHealth $hcidump_file $available_time)

NOTE: YoHealth is the name of our target BLE device

3. if the MAC address has been found, analyze the hcidump file:

if [[$MAC_address = "-1"]]; then
echo "get_weight.sh error: MAC address not found"

else
find_weight $MAC_address $hcidump_file

fi

4. remove the $hcidump_output file (now useless)

Note: In order to run the scripts you need execution permissions:

$ cd /path/to/scripts/directory
$ chmod u+x *.sh

Then to run the script:

$./get_weight.sh

2.5 Contributions

The writing of this guide has mostly developed around a single BLE device. However, this doc-
ument does not mean to be a “closed chapter”. Instead, it would like to be an evolving project,
in which to gather information on reverse engineering techniques and to make available works
already done in this area.

Every contribution, regarding any section of the guide, is welcome. If you are interested, check
out our GitLab page.

2.5. Contributions 75

https://gitlab.com/sergioalberti/gsoc-blereverse

Reverse Engineering BLE Devices Documentation

2.5.1 Add Other BLE Devices

If you reverse-engineered a BLE device (even just some features) and you want to add it to this
project these are short guidelines to follow. Basically, you should document your work in these
two sections:

1. Protocol Description - mandatory

2. Script Creation - if you wrote some scripts/software

“Protocol Description” Section

This section should contain, not necessarily in this order:

• A description of the BLE device, its features and how to use it. In addition, you can add
details, useful information and issues related to the product or company. (e.g. permissions
required by the Android application or discussions/contacts with the company)

• Information on Bluetooth communication. That is: what features of the BLE are used to
exchange data between the peripheral and the central device. (e.g. services/characteristics
used, useful information in advertising packages, optional pairing)

• A detailed description of the protocol syntax. Describe accurately the composition of
the commands, of the notifications or in any case of all the data concerning the reverse-
engineering protocol.

• Optional - If the protocol is composed of several commands/notifications, represent it using
a formal method for syntax and grammars (e.g. EBNF)

“Script Creation” Section

This section is quite free, depending on the scripts/software created and how they work. In general,
it should contain:

• General information on what the scripts do, the system on which they were tested and the
license (essential!).

• Information on the software required to use the scripts and possibly an installation guide.

If you think the tools used are interesting, you can add a section about these at the top of the
page, after the one on the Bluez Stack (or integrating it).

76 Chapter 2. Contents

Reverse Engineering BLE Devices Documentation

• A description of:

– how to use the scripts (e.g. permissions, what each script does)

– interesting aspects of the implementation of each individual file/function (so
that the end user understands how it works)

• Optional - Tests, analysis, future developments or other interesting details.

Note: Scripts and other material can be uploaded to a devicename_reveng directory on our GitLab
repo

2.5.2 Translations

Translations of this guide in other languages (even just small parts) are always welcome. If you
are interested, contact us!

2.5. Contributions 77

https://gitlab.com/sergioalberti/gsoc-blereverse
https://gitlab.com/sergioalberti/gsoc-blereverse
https://gitlab.com/sergioalberti/gsoc-blereverse

	Notes (GSoC 2018)
	Contents
	Introduction
	Application Protocol Reverse Engineering
	Protocol Description
	Script Creation
	Contributions

