Don’t we all remember the following common setup from our introductory security course? Bob wants to send a secret message to Alice. In order to obtain a key for encrypting the message, Alice and Bob first use Diffie-Hellman (DH) to exchange a fresh session key. With this fresh session key, Bob symmetrically encrypts the message and sends it to Alice. Carol volunteers to transmit the messages between Bob and Alice. Here is the setup:

One of the first things we learn in our introductory security course is that Carol could Man-in-the-Middle (MitM) the DH exchange to obtain session keys with Alice and Bob herself, while poor Alice and poor Bob still believe they are talking privately with each other. The next thing an introductory security course teaches us is how to prevent this attack. And here is how this article differs from an introductory security course: Bob has the misconception that he can use encryption to prevent unauthorized modification. As the title suggests, this does not work out well for Bob. Neighbors, don’t act like Bob.

Let us hear the story of Alice, Bob, and Carol. Bob will make five different attempts to transmit the encrypted message to Alice. He will try to use RSA encryption to prevent a MitM attack. The protocol aborts prematurely if Carol could break the key before Bob has sent the message.

I hear our quality-conscious readers ask “Story?”, surely followed by “PoC or GTFO!” Esteemed reader, don’t worry, the text you are reading right now was generated by poc.py36

“Couldn’t Bob just use TLS?”, you might ask. For sure! A TLS handshake would authenticate the DH values and everything would be fine. But using a ready-made TLS implementation would also be boring. Furthermore, the handshake sketched above is not TLS. In the course of this story, Bob will use parts of the OpenSSL library to do parts of the DH handshake for him. Will this help? Let the story begin.

Run 0: Prologue and Short recap of Diffie-Hellman

Alice and Carol are just returning from their introductory security course. Bob, who also attended the lecture, walks over to Alice. “If a message is encrypted, an attacker cannot read it and thus cannot modify it,” Bob says to Alice. Alice knows that encryption does not provide integrity and immediately wants to call bullshit on Bob’s claim. But she hesitates for a moment. Bob won’t appreciate an abstract explanation anyway. “Let’s see where this is going,” she thinks and agrees to follow his explanation. “I hope there will be code!” Alice responds. Bob nods.

“Carol, come over, Bob is explaining crypto,” Alice shouts to Carol. Bob starts explaining, “Let’s first create a fresh session key so I can send a secret message to you, Alice.” Alice agrees, this sounds like a good idea. To make the scenario realistic, Alice makes sure that neither Bob nor Carol can see her screen. Alice opens her python3 shell and is about to generate some DH values.

Alice: “We need a large prime \(p \) and a generator \(g \),”

Alice, hoping that Bob is joking about the size of his prime, suggests the smallest prime from RFC 3526 as an example:

```
62
```

36 unzip pocorgtfo20.pdf poc.py or git clone https://github.com/diekmann/encryption-is-not-integrity.git
This is a 1536-bit prime. Alice notes fascinated, “this prime has \(\pi \) in it!” According to the RFC, the prime is \(p = 2^{1536} - 2^{1472} - 1 + 2^{64} \cdot (\lfloor 2^{1406} \pi \rfloor + 741804) \). Alice continues to think aloud, “Let me reproduce this. Does that formula actually compute the prime? Python3 integers have unlimited precision, but \(\pi \) is not an integer.”

“Python also has floats,” Bob replies. Probably Bob had not been joking when he suggested 607 as large prime previously. It seems that Bob has no idea what ‘large’ means in cryptography. Meanwhile, using

```python
>>> import decimal
```

Alice has reproduced the calculation. By the way, the generator \(g \) for said prime is conveniently 2.

A small refresher on DH follows. Note that the RFC uses \(^\wedge\) for exponentiation.

```latex
\begin{verbatim}
>>> def RSA_enc(k_pub, msg):
...     return k_pub.encrypt(msg, None)[0]
\end{verbatim}
```

He comments, “We can ignore this None and only need the first value from the tuple. Both exist only for compatibility.” Bob is right about that and we now have a convenient textbook RSA encryption function at hand.
Run 1: RSA-Encrypted textbook DH in one line of python

Now Alice and Bob are ready for their DH exchange. In contrast to their original sketch, they will encrypt their DH values with RSA. Alice generates:

```py
>>> xa = int.from_bytes(os.urandom(192), byteorder='big')
>>> ya = pow(g, xa, p)
```

and sends

```py
>>> RSA_enc(k_Bob_pub, (ya, g, p))
```

Alice sends 67507dee555403ad... [504 bytes omitted]. How does Alice send the message? She hands it over to Carol. Carol starts fiddling around with the data. “What are you doing?” Bob asks. Alice replies, “It is encrypted, those were your words. Carol will deliver the message to you.”

Carol forwards 23159f4e2daf11a6... [504 bytes omitted]. Bob decrypts with his private RSA key, parses ya, g, p from the message, and computes

```py
>>> xb = int.from_bytes(os.urandom(192), byteorder='big')
>>> yb = pow(g, xb, p)
>>> ZZ_b = pow(ya, xb, p)
```

and sends

```py
>>> RSA_enc(k_Alice_pub, yb)
```

Bob sends 86dcf718bad3ee88... [504 bytes omitted]. Carol forwards a different message. Alice performs her part to finish the DH handshake. Carol exclaims, “The key is 1!” Bob and Alice check. Carol is right. How can Carol know the established keys? Bob is right about one thing, the DH values were encrypted, so a trivial textbook DH MitM attack does not work since Carol cannot get the ya and yb values. But she doesn’t need to. This is what happened so far:

The prime p, the generator g, and the public keys are public knowledge, also known to Carol (check your textbook, neighbor). Consequently, Carol can encrypt DH values, but she cannot read the ones from Alice and Bob. Bob computes the shared DH key as ya^xb mod p, where Carol supplied 1 for ya. Carol can be sure that Bob will compute a shared key of 1, she doesn’t need to know any encrypted values. Same goes for the exchange with Alice.

“No No,” Bob protests, “these values are not allowed in DH.” Alice checks RFC 2631 and quotes: “The following algorithm MAY be used to validate a received public key y [...] Verify that y lies within the interval [2,p-1]. If it does not, the key is invalid.” Bob replies, “So y = 1 is clearly invalid, you must not do this Carol.” Alice objects, “The check is optional, see this all-caps MAY there?” But Bob feels certain that he is right and insists, “Any library would reject this key!”

Run 2: RSA-Encrypted textbook DH using parts of the OpenSSL library

“Sure, we’ll give it a try.” Alice responds. She sticks to her old code because the RFC clearly states the check optional, but Bob can reject the weak values.

Alice sends 9bbc45d463d85250... [504 bytes omitted]. Carol, testing the same trick again, forwards 23159f4e2daf11a6... [504 bytes omitted]. Bob now uses pyca/cryptography with the openssl backend to do the DH computation. Maybe just doing ZZ_b = pow(ya, xb, p) was too simple? Let’s see what happens when we use some part of the OpenSSL library (wrapped by pyca/cryptography) to perform the same computation. A word of clarification: The OpenSSL library is only used to implement the DH part on Bob’s side, the exchange is not tunneled over TLS. The RSA-part remains unchanged.

```py
>>> from cryptography.hazmat.primitives.asymmetric import dh
>>> from cryptography.hazmat.backends import openssl
>>> pn = dh.DHParameterNumbers(p, g)
>>> parameters = pn.parameters(openssl.backend)
>>> xb = parameters.generate_private_key()
>>> # feed ya to the openssl library backend
>>> alice_public_key = dh.DHPublicNumbers(ya, pn).public_key(openssl.backend)
>>> assert alice_public_key.key_size == 1536 # 1536-bit MODP group of our prime
>>> yb = xb.public_key().public_numbers().y
>>> ZZ_b = xb.exchange(alice_public_key)
```
And indeed, the last line aborts with the exception 'ValueError: Public key value is invalid for this exchange.' Alice and Bob abort the handshake. This is what happened so far:

```
Alice
Carol
Bob

RSA(k_Bob_pub, (ya, g, p))

RSA decrypt
with (ya = 1, g, p)
using openssl.backend
raise ValueError

```

"Now you must behave, Carol. We will no longer accept your MitMed values. Now that we prohibit the two bad DH values and everything is encrypted, we are 100%

Run 3: RSA-Encrypted textbook DH using parts of the OpenSSL library and custom Primes

Alice and Bob try the handshake again. Carol cannot send $ya = 1$ because Bob will detect it and abort the handshake. Alice sends 09a4b88232b16136... [504 bytes omitted]. But Carol knows the math. She chooses a specially-crafted ‘prime’ pc and computes a random, valid yc value.

```
>>> pc = pow(2, 1536) - 1
>>> xc = int.from_bytes(os.urandom(192), byteorder='big')
>>> yc = pow(g, xc, pc)
```

Well, pc isn’t actually a prime. Let’s see if OpenSSL accepts it as prime. Reliably testing for primality is expensive,\(^\text{37}\) chances are good that the prime gets waved through. Carol forwards 2f5bed0189fac5f0... [504 bytes omitted]. After RSA decryption, Bob’s code with the OpenSSL backend happily accepts all values. Bob sends a79fd65fb6c163e... [504 bytes omitted]. Alice still thinks that the RFC 3526 prime is used. Carol just forwards random plausible values to Alice, but she won’t be able to MitM this key. Carol forwards a7ed7cf2c5065833... [504 bytes omitted]. The DH key exchange is completed successfully. Now Bob can use the key ZZ_b established with DH to send an encrypted message to Alice.

```
>>> iv = os.urandom(16)
>>> aeskey = kdf128(ZZ_b) # squash the key to 128 bit
>>> ct = aes128_ctr(iv, aeskey, b'Hey Alice! See, this is perfectly secure now.\''
>>> wire = ",".format(hexlify(iv).decode('ascii'), hexlify(ct).decode('ascii'))
```

Bob sends the IV and the ciphertext message 1f f0 07 7f f9 9a a1 19 9b bc cc c3 3d db b5 52 28 4f f8 8d d0 03 38 8d d6 68 81 17 73 39, ed dc ed dd d5 5f f0 0e ed d0 03 3b b8 89 9b b6 b6 a8 8e ec c7 78 8a a0 0b b7 79 9d d3 33 32 22 27 7e ed de e6 67 7d d1 12 29 94 44 49 96 6f f5 58 8d df fe e4 4c e6 62 2c cd dd d5 52 24 4d d7 79 91 17 7e e5 5e e8 89 9e c3 32 2f f6 0e 0e 6e 62 26 65. In summary, this is what happened so far:

```
Alice
Carol
Bob

RSA(k_Bob_pub, (ya, g, p))

RSA(k_Bob_pub, (yc, g, pc))

RSA decrypt
using openssl.backend
ZZb = pow(yc, xb, pc)

RSA(k_Alice_pub, yb)

RSA decrypt
ZZa = garbage2

ciphertext = Enc(ZZb, message)
```

Carol chose a great “prime” $pc = 2^{1536} - 1$ and knows the key is broken: Only one bit is set! She can just brute force all possible keys, the one that decrypts the ciphertext to printable ASCII text is most likely the correct key.

```
>>> iv, ct = map(unhexlify, wire.split(','))
>>> for i in range(1536):
...     keyguess = pow(2, i)
...     msg = aes128_ctr(iv, kdf128(keyguess.to_bytes(192, byteorder='big')), ct)
...     try:
...         if not all(c in string.printable for c in msg.decode('ascii')):
...             continue
...     except UnicodeDecodeError: #not ASCII
...         break
```

\(^{37}\)Common primality tests are probabilistic and relatively fast, but can err. Deterministic primality tests in polynomial time exist. Note that DH does not need an arbitrary prime and some g, but the generator should generate a not-too-small\(^{\text{TM}}\) subgroup.
The brute-forced key is 79,792,228,281,816,162,625,251,514,142,426,264,643,433,337,375,759,593,935,354,543,439,395,950,503,033,336, or in hex \x00\x00\x00\x00\x00\x00 (exactly one bit set). Carol is correct. She immediately shouts out the message “Hey Alice! See, this is perfectly secure now.” Bob is depressed. “Why doesn’t my code work?”, he asks. “Probably DH is not strong enough and we need to use elliptic curve DH?”, he conjectures. “Maybe Carol even has a quantum computer hidden in her pocket, let me find a post-quantum replacement for Diffie-Hellman…” he continues. Carol interferes, “The same ideas of my attack also apply to ECDH or a post-quantum drop-in replacement with the same properties. Don’t waste your time on this line of thought. If you cannot use textbook DH, ECDH (or the post-quantum candidates) won’t help.”

Run 4: Textbook DH signed with textbook RSA

Alice tries to put Bob on the right track, “Maybe RSA encryption does not help, but can we use RSA differently? Remember, encryption itself does not provide integrity.” “Of course,” Bob replies, “we need to sign the DH values. And signing with RSA is just encryption with the private key.” “Don’t forget the padding,” Alice is trying to help, but Bob immediately codes:

```python
>>> import Crypto.PublicKey.RSA
>>> def RSA_sign(k_priv, msg):
...     # ignore the compatibility parameters
...     return k_priv.sign(msg, None)[0]

>>> def RSA_verify(k_pub, msg, signature):
...     # ignore the compatibility parameters
...     return k_pub.verify(msg, (signature, None))
```

Again, Bob is right about ignoring the compatibility parameters. However, Carol smiles as Bob completely ignored Alice’s comment about padding. “Let’s hardcode the prime \(p \) and generator \(q \) for simplicity and switch back to the trivial non-OpenSSL implementation.” Alice suggests and everybody agrees. This simplifies the DH exchange as now, only \(y \) and the signature of \(y \) will be exchanged. Alice only sends the following in the first step:

```python
>>> *, format(ya, RSA_sign(k_Alice_priv, ya))
```

Alice sends 45e59717fd2ad3aa...[184 bytes of \(y \) omitted], 5ee95099ea63afc6...[504 bytes of signature omitted]. Carol just forwards 1,1. Bob parses the values, verifies the signature correctly and performs his step of the DH exchange.

```python
>>> ya, signature = map(int, wire.split(','))
>>> if not RSA_verify(k_Alice_pub, ya, signature):
>>>     print("Signature verification failed")
>>>     return 'reject'

>>> return *, format(yb, RSA_sign(k_Bob_priv, yb))
```

Bob sends f543932fd7646f7e...[184 bytes of \(y \) omitted], 8a3c8e3aac04e59d...[504 bytes of signature omitted]. Carol just forwards 1,1. Bob parses the values, verifies the signature correctly and performs his step of the DH exchange.

```python
>>> ya, signature = map(int, wire.split(','))
>>> if not RSA_verify(k_Alice_pub, ya, signature):
>>>     print("Signature verification failed")
>>>     return 'reject'

>>> return *, format(yb, RSA_sign(k_Bob_priv, yb))
```

Carol exclaims “The key is 1!” Bob is all lost, “How could this happen again? I checked the signature!” “Indeed,” Carol explains, “but you should have listened to Alice’s remark about the padding. RSA signatures are not just the textbook RSA operation with the private key. Plain textbook RSA is...
just $msg^d \mod N$, where d is private. Guess how I could forge a valid RSA private key operation without knowledge of d if I may choose msg freely?” Bob looks desperate. “Can Carol break RSA? What is the magic math behind her attack?”, he wonders.

Carol helps, “$1^d \mod N = 1$, for any d. Of course I did not break RSA. The way you tried to use RSA as a signature scheme is just not existentially unforgeable. Paddings, or signature schemes, exist for a reason.” By the way, the RSA encryption without padding used in the previous runs is also dangerous.38

\textbf{Run 5: Textbook DH signed with RSASSA-PSS}

Bob replaces the sign and verify functions:

```python
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import padding

>>> def RSA_sign(k_priv, msg):
...     return k_priv.sign(msg,
...         padding.PSS(mgf=padding.MGF1(hashes.SHA256()),
...             salt_length=padding.PSS.MAX_LENGTH),
...     hashes.SHA256())

>>> def RSA_verify(k_pub, yb, ZZa):
...     return yb == pow(yb, k_priv, p)
```

The \texttt{RSA_verify} function is replaced accordingly.

Now Alice and Bob can try their handshake again. Alice sends 9403c79416ebcedb...[184 bytes of y omitted],2043516ccf286cb4...[504 bytes of signature omitted]. Carol forwards the message unmodified. Bob looks at Carol suspiciously. “I cannot modify this without breaking the signature,” Carol replies. “Probably the DH prime is a bit too small for the future; Logjam predicts 1024-bit breakage. Maybe you could use fresh DH values for each exchange or switch to ECDH to be ready for the future. But I’m out of ideas for attack I could carry out on my slow laptop against your handshake for now.” Carol concludes.

Bob sends c02a4d6ecad839b93...[184 bytes of y omitted],642f187cf7ca041b...[504 bytes of signature omitted]. Carol forwards the message unmodified. Finally, Alice and Bob established a shared key and Carol does not know it.

To complete the scenario, Bob uses the freshly established key to send an encrypted message to Alice.

```python
>>> iv = os.urandom(16)
>>> aeskey = kdf128(ZZ_b) # squash the key to 128 bit
>>> ct = aes128_ctr(iv, aeskey, b'Hey Alice! See, this is perfectly secure now."
>>> wire = ",\text{format}(\text{hexlify}(iv).\text{decode('ascii')}, \text{hexlify}(ct).\text{decode('ascii'))}

Bob sends the IV and the ciphertext message 6e e1 1c c4 48 8a ad da ad d9 97 77 7c c8 86 6a aa a4 4e c0 0b b3 38 86 65 5f fc c9 99 90 0e, 3a a4 48 82 2f 5f fb b0 0b b7 7d d8 83 36 6a a8 8c c0 02 21 1f fc c7 75 59 91 1e c6 67 77 7f f4 48 83 38 86 6e ec cd d8 8c c3 31 1a ab bc c3 3d d5 5e c2 25 52 21 13 3e c3 34 4c c4 4d da a5 59 94 48 89 99 96 62 29 9a a2 26 66 60 01 1c cf fc cf fc c4 4e ed d4 45 51. Carol remembers the plaintext Bob sent in run 3. She realizes that this run’s ciphertext has exactly the same length as the plaintext in run 3. Carol forwards a ciphertext which is slightly shorter: 6e e1 1c c4 48 8a ad da ad d9 97 77 7c c8 86 6a aa a4 4e c0 0b b3 38 86 65 5f fc c9 99 90 0e, 37 74 43 33 35 50 0d d8 88 8a a8 8c c6 c5 3c 3a ca a2 28 8f f2 21 1c c6 66 63 3d d4 4a a4 43 38 8f f4 4c cb ba a6 6f f1 18 8c cc cf f0 0e ee ee e2 24 44 4f f2 2e e6 69. Alice reads out loud the message she received and decrypted: “Encryption is not Integrity.” Bob shouts, “This is not the message! How can this happen? Did Carol break AES-CTR?” Alice and Carol answer simultaneously, “AES-CTR is secure encryption, but Encryption is not Integrity.”

\textsuperscript{38}Use OAEP!