
21:13 Solving the Load Address; or,
Fixing Useless Firmware Disassembly

by EVM

Our Objective
In this article, I present a little trick for determining
the load address in a processor’s memory space for
a piece of embedded code when the load address is
not on a nice clean boundary. Oftentimes, the load
address is easy to figure out, but in certain cases it
might not be, such as when Flash code is copied into
RAM or when a firmware update file contains code
for multiple processors.

The concept is to load the code at 0, locate all
the absolute function calls, and sort them starting
from the lowest address. Then choose the two lowest
function addresses, f1 and f2. Calculate d = f2−f1.
Scan through the functions starting from 0, look for
the first pair of functions that are offset by d, and
call these s1 and s2. The load address is then deter-
mined by calculating f1 − s1.

The reader convinced of the need for such a tech-
nique will desire to know why this works, we’ll cover
that in a moment. First, we’ll remind other readers
how much of a pain finding a firmware load address
can be.

Motivation; or, Why Bother?
The problem we’re dealing with is determining the
load address for a piece of firmware that doesn’t load
on a round number boundary. This problem seems
to primarily arise in two situations.

The first situation is when a piece of firmware
is written to run mostly from RAM. This firmware
will generally have a small stub at the beginning
that copies the code from Flash into RAM and then
jumps to it.

The second situation is when you have a
firmware update file that is used to update multiple
processors on a system. (For example, a drone that’s
got a handful of processors but only one update pro-
cess.) So we might be able to clearly identify a blob
within the file as belonging to a particular CPU, but
we don’t know how that blob ends up loaded in the
processor’s address space.

Many times it’s pretty easy to solve the load ad-
dress by just doing a disassembly and guessing a
round number as the base address for the code. For
instance, you may try to load the image at address
0, which IDA does by default, and then realize that
all of the absolute addresses of functions begin with
0xC0. This works most of the time because sec-
tions of memory often start on a nice round number
in their address space. If we see sub_10, sub_24,
sub_3A and then absolute references to 0xC00010,
0xC00024, and 0xC0003A, it’s probably safe to as-
sume that 0xC00000 is the load address.

However, it’s not always that straightforward.
(Figure 13.) What sometimes happens in Situation
1 is that the image might get loaded at some offset
that’s not a round number. In Situation 2, what can
happen is you may not know exactly where the code
begins, so it may load on a round number but you
may not know exactly which part of the code gets
loaded on the round number.

The main symptom of loading at the wrong load
address is broken absolute calls, which results in
some form of bad disassembly. Depending on the ar-
chitecture or the size of the code, there may not be
that many absolute calls, so the failure may be sub-
tle. A secondary symptom of loading at the wrong
address is that a disassembler will fail to recognize
large sections of code as subroutines because it does
not look like any code is calling functions at those
addresses.

67

Loader Code (runs in Flash) CPU 1 Code

Main Program Code (runs in RAM)
CPU 2 Code

CPU 3 Code

Situation 1 Situation 2

Figure 13: (Left) Situation 1: a program with an initial stub that copies the rest of the code into RAM and
executes it. (Right) Situation 2: multiple pieces of code within a single firmware update file.

Our Clinical Trial
In an era where science is sometimes forgotten, it’s
helpful to look at a specific example as a study.
For our clinical trial to determine technique efficacy,
we’ll look at a SH-2 microprocessor image that is an
example of Situation 1. The code is initially run
from Flash, but then most of the code was copied
to RAM and run from there. The RAM code was
loaded at a round number, but the RAM code be-
gan several functions into the binary image, which
caused the disparity. I use IDA Pro for this exam-
ple, but any other disassembler could just as easily
be used.

Relative vs. Absolute Calls
Most processor architectures contain both absolute
and relative jump and call instructions. In most
programs, most of the jump and call instructions
are relative. Relative means that the address of the
target function is encoded within the instruction as
an offset (usually from the start of the next instruc-
tion). Relative jumps and calls are position inde-
pendent, meaning they can be moved around and
will work correctly. They will disassemble to cor-
rectly target the right offset wherever they might be
loaded.

Figure 14 shows an example of a relative call
instruction (branch to subroutine) in SH-2. The
processor makes the calculation: 0x401C32 + 4 +
2*(0x209) = 0x402048, since 0x209 is the offset in
2-byte words, and the program counter value is ac-
tually four bytes ahead of the beginning of the in-
struction. (This is because it is just past the branch
delay slot, which I’ll just skip over explaining for
now!)

However, you might notice that for SH-2, the
maximum offset for the branch-to-subroutine in-
struction is ±0x7FF. This means you cannot jump

more than 4K away from your current position,
which is a problem. As such, we need to be able
to specify the absolute address for a call. An ab-
solute call (also known as a far call or far jump)
specifies the full (in this case, 32-bit) address of the
target function. Figure 15 shows an example of an
absolute call instruction (jsr) in SH-2.

The processor makes the calculation 0x40083A +
4 + 2*(0xD) = 0x400870, and this address is then
dereferenced to get the full 32-bit address of the
function, in this case 0x409FD8.

You’ll notice that we need to look at absolute
calls for clues to where the program is loaded. From
this one absolute call example above, we can see that
the code is likely loaded somewhere in the area of
0x400000.

68

1 ROM:0401C32 B2 09 bsr sub_402048

Figure 14: An example of a relative call instruction (branch to subroutine) in SH-2.

1 ROM:0040083A D3 0D mov . l #sub_409FD8 , r3
ROM:0040083C 43 0B j s r @r3 ; sub_409FD8

3 . . .
ROM:00400870 00 40 9F D8 dword_400870 : . data . l h ’ 409FD8

Figure 15: An example of an absolute call instruction in SH-2. Note that the full 32-bit target address is
embedded as data just after the instruction.

Walkthrough: Measuring the (Social)
Distance

In this example, IDA did an initial disassembly with
the code loaded at 0. We see the following in the
Functions window:

sub_0
2 sub_2A

sub_34
4 sub_66

sub_8A
6 sub_9C

Most of the absolute calls are in the 0x400000
range and are simply broken. Rebasing the image
to 0x400000 (the obvious guess) makes those calls
point to valid addresses; however, the calls land at
seemingly random code addresses, in the middle of
functions.

So here’s the trick: we ask IDA to give us all
of the absolute calls by doing a text search for the
instruction, such as jsr for SH-2. We then sort
these by the instruction. IDA helpfully labels the
jsr instructions with their target functions, so this
sorts these instructions by target function, with the
smallest target function at the top:

j s r @r2 ; sub_400000
2 j s r @r2 ; sub_400000

j s r @r2 ; sub_400036
4 j s r @r2 ; sub_400036

. . .

I’m oversimplifying here because the compiler
will use different registers, so you may need to sort
and then look for the low addresses used for each
register. Regardless, the objective remains as locat-
ing the lowest two functions referenced by absolute
calls.

Next, we choose the two smallest target func-
tions. We calculate the difference (d) between the
two functions. We then scan starting from the small-
est function which IDA lists and look to see whether
there is a function defined at distance d. For this ex-
ample, d = 0x36. Scanning through the beginning
of the functions list, we see sub_66 and sub_9C are
0x36 apart. This means that sub_66 gets loaded at
0x400000, and consequently sub_9C gets loaded at
0x400036.

See Figure 16 for some code to help with this
if you use IDA. In this example, sub_0 was an en-
try vector in the Flash code that eventually called
sub_34, an initialization function that copied the
Flash program beginning at offset 0x66 to 0x400000
in RAM.

Using our newfound knowledge, we can do two
things. Either we can rebase the entire image to
0x3FFF9A, or instead we can reload the input file,
creating a new segment for RAM, telling IDA to
start at offset 0x66 in the file. (Rebasing to an ad-
dress beneath the section isn’t technically correct,
but it’s quick and easy.)

69

1 d e f i n e f i nd_o f f s e t_ func t i on s (de l t a) :
f = idc . get_next_func (0)

3 while (f != idc .BADADDR) :
f 2 = idc . get_next_func (f)

5 while ((f 2 != idc .BADADDR) and (f2 − f <= de l t a)) :
i f (f 2 − f == de l t a) :

7 p r i n t ("Functions %s and %s are 0x%x o f f s e t " %
(idc . get_func_name (f) , i dc . get_func_name (f2) , d e l t a))

9 f2 = idc . get_next_func (f 2)
f = idc . get_next_func (f)

Figure 16: IDA Python code to print a list of functions offset by a given amount.

With whom might we share this?
In addition to matching deltas between absolute
function calls, this process can be similarly applied
in other situations where differences between objects
in the binary can be matched to differences between
absolute addresses in the code.

This approach has been successfully employed on
a processor with separate code and data segments
to determine the load address of the data segment.
In this case, a function had been identified which
was presumed to be a debug print function, and it
took the address of a string as the first parameter.
The load address was determined by dumping all of
the first parameters in calls to the debug function,
and then dumping all string offsets in the file, and
matching the differences in those lists.

It seems possible to automate this approach by
treating the two lists of offsets as signals and run-
ning a correlation function on both of them to deter-
mine the best match. The difficulty to automation
would most likely be ensuring that disassembly is
clean and accurate, and that a majority of subrou-
tines are properly identified, even when the code is
loaded at the wrong address.

70

