True Colors (Autumn, 1993) -------------------------- By Billsf There still seems to be much confusion on the color coding scheme of various "Toll Fraud Devices" (TFDs). The mainstream media has confused colors, made many up, and most important of all, usually failed to properly describe their operation. There have been many papers posted by "phreaks," which might be considered the same kind of unintentional (?) disinformation the mainstream has put out for years. Many of the world's best phreaks are a generation younger than the "originals" and may simply not know the operation or history or even the color that was generally agreed upon for a particular device. The real list of colors is quite short, and their operation may come as a surprise to many. To set the record straight, here they are: Black Box While in electronics it refers to an often complicated subsystem that somebody else made and whose internal operation is of little concern to the system designer. To the phone, it is simply a means to reduce the loop current to the point where it appears the phone is back on the hook. The construction was one of the easiest ever. Many variations existed, in fact a field phone or old crank unit with internal battery could be modified to eliminate the loop current, reducing greatly the chance of being caught! (This is the real "black box.") A resistor of a value between about 2.2k to 10k was placed in series with the phone loop. This resistor supplied enough current to power the talk circuit of a non-electronic phone. A capacitor of about 330nF or so was often placed in parallel with the resistor to cancel the increase of impedance caused by the resistor, resulting in increased audio level. In parallel also was a small toggle switch, labeled "free" (open) and "normal" (closed). In principle this was all that was really needed! (To allow ordinary people like the parents of the student in a distant city to use it, some way to very briefly seize the line was provided: a pushbutton switch, Zener diode, etc.). Operation was simple phone would ring and be picked up with the above circuit in. The switch (in the basic device) would be briefly placed to "normal" and back to "free." This would be long enough to trip the ring off, yet within the "grace period" of the caller's CO s billing system, then two to five seconds. Operation of this was possible in North America because administrative billing requires a "grace period." Older switches had the voice path present during the ringing, so the caller would hear the "fart ring" and finally North America had no timeout then on long-distance calls! While possible on some older switches today, reduced "grace periods" and ring timeouts make it rather impractical. It is interesting to note that there was a timeout on local call ringing then in the U.S.A., so "normal" was usually used. A caller could have the recipient use the device for a quick pay phone call and get his dime back. Operator assisted calls, for obvious reasons, were out of the question! Red Box This is a device to simulate the coin signals at pay phones in North America, in some parts of Australia, and perhaps a few other places. In other places details vary from the following description of the North American system. COCOTs may also use this system, but it is unlikely. In the first practical pay phones, a series of bell sounds were used. $0.05 was a single, high-pitched "ding," a dime two, and a quarter a lowerpitched "gong" sound. In later models a contact mic in the phone was switched in to allow the operator to hear the money pass through the phone. This system was much more secure than today's! Clever tricks were, however, developed to beat it. A recording of the whole process, a toy xylophone, and even bringing the horn in an adjacent booth were all used, among others. Carefully scratching the outside of the phone with a coin or key made a very convincing "coin dropping through" sound. When the "fortress phones" were introduced in 1970, all this was replaced by a simple 2200 Hz beep. (The original internal tone generating device, a simple one transistor L/C oscillator based on the early DTMF generator, was housed in a pinkish red plastic case, probably giving rise to the name "red box.") The correct timings are one 55-65 mS beep for a nickel, two beeps separated by 55-65 mS silence for a dime, and five 35-40 mS with equal length separations for a quarter. Only the quarter signal is needed, as "some money" should be put in to activate the ground function - two 1k resistors to A and B, with the other sides connected to ground. Later a second tone, 1700 Hz was added to allow automatic coin collection (ACTS) and later still the option to change the second tone to 1500 Hz (IPTS) was added, but is rarely used. Selection of this tone can take place at coin box collection intervals, alternated between callers, or controlled by the ACTS machine (see green box). Use of the above parameters in a real red box is probably the safest method of phreaking, since it forces you to use a coin phone. Use of the modified dialer with the 6.5536 MHz crystal, now very popular in the States, is anything but safe! Do not use! Yellow Box Earlier signaling systems use a continuous tone in either direction to indicate supervision states. Examples are R1, C3, and 1vf systems. A trunk idle has the tone (2600 Hz in R1) coming from both ends of the circuit. Upon seizing, the forward tone is removed and the backward tone is removed briefly and put back on to acknowledge. This tone then remains on until the called phone is answered. Removal is referred to as supervision on or just suped. The tone is put back on (in the proper direction) when either end hangs up. The end that stays on hears a very short beep ("pliek") since a filter cuts in in a matter of a few milliseconds, so a disturbing loud, high pitched tone is not heard by the customer. A yellow box simply generates the tone (2600 for R1) and provides a filter so the user (the person receiving the call) does not hear the tone. Operation is identical to the "black box," except a tone is used instead of dropping the loop current. Advantages of this one are DC parameters of the subscriber loop are normal and it works on modern exchanges and PBXs! Use today is limited for the same reasons of the "black box" and also because most of today s signaling systems don't use this method. This same device was sometimes used to "shine a trunk" and intercept other people's calls. The victim was at the mercy of the phreak as far as billing went. He could talk to the person with the tone on or, if the person got huffy, take the tone off and charge him for the call. Of course the caller was billed for the number dialed (not the phreak's number)! Taking the tone off and leaving the line silent or playing a recording of a ring signal could rack a several minute charge for the victim caller! Another form is worth mentioning because of historical reasons, and because it can still work today! This is the C5 version. An 800 mS burst of 2400 Hz means supervision on and an 800 mS burst of 2600 means hang-up. Playing 2600 Hz while picking up the phone on an international call will, in effect, produce the same result of the black box! Since the tone need be only a few hundred milliseconds or so (not at all critical) no filter is needed and anybody can quickly learn how to whistle it! The Cap'n Crunch whistle is the most famous example and this is by far the simplest TFD! Calls placed from the U.S.A. on C5 circuits (say 80 percent of all IDDD countries) will still work for at least a three and a half minute chat (assuming cooperation of the called party) and some will allow you much longer to unlimited time. Calls from countries where there is no grace period (due to message unit billing) will not work and the ticker will keep on running! Again, as with the "black box," operator assistance is out of the question! Green Box This is included on the "blue box" for modern systems. These are the signals the ACTS or operator uses to control a coin phone, if the link does not supply a complete DC path, and almost none do today! Earlier systems used the lower call progress frequencies: 350, 440, 480, and 620 Hz for this purpose. This system varies from location to location in North America, so, if in numbering zone one, have someone call, long distance from a pay phone (from a real pay phone, not a COCOT) and put in at least one real coin. You then play long bursts of each of the 15 tones. At some point the coin will be returned or collected. Take note of the digit. Have the caller call again and continue on to find the other signal. In some (many?) cases the coin can only be returned when the ACTS machine comes on to "collect" overtime. You just have to beat it out by getting your return signal in before it sends the collect signal! Note: in some cases this system includes IPTS control, where available. Also note for the caller: the code 15 ( ST, 1500+1700 Hz) signal does interesting things! It can push off the ACTS machine and get your call through without coin deposit (and not return!) and push off the calling card validation system and/or operator and get your call through! The exact right time to make this one second signal is important. COCOTs and some pay phones in countries outside numbering zone one may use similar or completely different methods. Listen to what you hear while using a phone and be ready to use the programmable modes of your Demon Dialer! One final note: I've known people who have recorded these control tones on their answering machine OGM to give callers their coins back and allow message retrieval at no cost! The above information is phreaking in the here and now! Blue Box Also "phreaking in the here and now." This is perhaps hacking s trickiest art today! A blue box is any device that produces two-tone multifrequency signals other than customer dialing signals. MFC (C5 and R1, for example) and R2 forward are blue box "address signals." In-band supervisory signals ("plick menu") are probably included and are often, but not always, needed. Information on international and national signaling standards is available in most university technical libraries. Full details on this device are far beyond the scope of this article. Silver Box The predecessor to the blue box. For signaling systems C2, C3, and 1vf and 2vf systems, etc. Early versions were a single tone oscillator (C3, 1vf) and a salvaged rotary telephone dial. It was possible just after the war, first in Sweden, and later throughout Europe and then to the rest of the world. There are convincing rumors that phreaking got its start in Sweden in the forties with this kind of box that used a vacuum tube valve! A slight variation for 2vf and C2 required switching a resistor or a capacitor for frequency shift pulse dialing. C4 and some national 2vf used a binary coded signal for faster working. A somewhat different switching and timing method was required, which could be mechanical, electromechanical, or electronic on both the part of the operating company and foon phreak. C4 required the generating of two separate tones in compound for line signaling in the call buildup process. Two separate oscillators could be used, but some elegant single tube or transistor L/C oscillators were developed by Bell Labs for this purpose in the early days. It is unknown if early phreaks used them! These old systems are still used in underdeveloped and/or remote areas of the world. Some old PBXs also use this for "tie-line" (leased line) working. There are a few boxes the young generation has brought us. The following are likely to be adopted in Telco/phreak parlance and are therefore presented here: Silver Box (!) This is just a 16-button DTMF dialer and has nothing to do with the first real phreak toy! Available legally at better telephone shops. The A, B, C, and D buttons are intended to have special control functions for user devices. However, phone companies use them very secretively to access special tests. White Box Just a 12-key dialer box, available everywhere. Beige Box Nothing more than a lineman's test set. The original Bell System standard issue was a color that could be called beige. And finally, the newest of them all: Rainbow Box (Known to the old-timer as the mythical "mighty Wurlitzer.") As the name implies, it is capable of doing it all in the in-band arena. Can be implemented properly by the use of a modern DSP (modem) like the Zyxzel and proper software. Can also be properly implemented on a digital music synthesizer, like the Yamaha DX series. Personal computers and most "sound cards" can only do a not too convincing job. All of these are just theoretical possibilities for thought. The first and still only "true rainbow box" is the Hack-tic Technologies "Demon Dialer."