TEST BOARDS
DESCRIPTION AND USE

CONTENTS PAGE
1. GENERAL 1
2. LINEN TEST BOARDS 1
3. FIBER TEST BOARDS 4
4. METHODS OF BOARDING 4
5. NUMBER BOARDS FOR CABLE TRANSFERS 4

1. GENERAL

1.01 This section describes the different types of test boards used for identifying cable pairs.

1.02 The section has been reissued to include the modifications in the B and C Fiber Test Boards and to delete all reference to the fully numbered series in both linen and fiber test boards.

1.03 Linen boards are generally used at splices where the work may not be completed in one day and the splice may have to be temporarily wrapped. These boards are flexible enough to be included within the temporary closure. Fiber boards are too hard and rigid to be wrapped readily in the splice and are generally used for boarding small complements, where the splice will not ordinarily have to be wrapped during the splicing operation. Both the linen and fiber boards are suitable for reuse if in satisfactory condition.

2. LINEN TEST BOARDS

2.01 Linen Test Boards are available in a one numbered series for boarding cables up to and including the 2700-pair size. The series consists of two boards each having 71 consecutively numbered holes, 1 to 71 and 51 to 99, 00, and 1 to 21. With these boards the hundreds digit is added as required. Fig. 1 illustrates both linen and fiber test boards using this type of numbering series.
Fig. 1—Linen and Fiber Test Boards
2.02 *D and E Linen Test Boards* are for use in identifying pairs in *EVEN* count cables. These boards have 50 consecutively numbered holes marked 1 to 50 and 51 to 100 as illustrated in Fig. 2. The E Test Board has an additional hole numbered *X*. The hundreds digit, if required, should be added by the workman as the boards are used.

![Diagram of D and E Linen Test Boards](image-url)
2.03 Linen Test Boards for Quadded Cable are available in sets of five boards having 40 holes in each and are numbered consecutively from 1 to 200 (Fig. 3). These boards are made of heavier material and have larger holes than the other linen boards, to accommodate the four wires of a quad in each hole.

3. FIBER TEST BOARDS

3.01 Fiber Test Boards are available in one numbered series for boarding cable up to and including the 2700-pair size. The series consists of two boards each have 71 consecutively numbered holes, 1 to 71 and 51 to 99, 00, 1 to 21. With these boards the hundreds digit is added as required. The Fiber Test Board is shown on Fig. 1 along with the Linen Test Board.

3.02 B and C Fiber Test Boards are rigid, hard, vulcanized fiber test boards for tagging identified pairs of EVEN count cables in cable splicing work. Both type boards have 50 consecutively numbered holes which are labeled with the EVEN count color code designations. The C Test Board has an additional hole designated X. Each board has the numbers and letters stamped in the fiber and inlaid with a white filler (Fig. 4).

4. METHODS OF BOARDING

4.01 In boarding pairs or quads at the free end of a cable, the identified conductors are placed in the hole in the test board having the same number as the conductor.

4.02 In boarding pairs or quads in a working cable the end of a piece of insulated wire is tied around the identified conductor. Then the other end of the insulated wire is placed in the hole in the test board having the same number as the pair or quad.

4.03 In each of the preceding cases, the boards are positioned so that the numbers face the center of the splice, the back of the board being toward the butt of the cable.

5. NUMBER BOARDS FOR CABLE TRANSFERS

5.01 In making pair transfers from one cable to another, or to a different complement in the same cable, it is sometimes advantageous to number both sides of the boards that are used for tagging the conductors in the old cable. The old count of the conductor is marked on the back of the board alongside the hole which has the new count printed on it on the front of the board. This
facilitates splicing, since the identified conductors are boarded according to the old count and later spliced according to the new count. In such cases the boards are positioned with the old count toward the butt of the cable and the new count facing the center of the splice. The specially numbered boards required for large transfers are generally prepared before going to the job, but they may be made up by the workman on the job, if necessary.