ANALYZING AND LOCATING TROUBLE IN THE 8K CALL STORE NO. 1 ELECTRONIC SWITCHING SYSTEM

CONTENTS PAGE FIGURES PAGE

1. Call Store Duplication and Bus Duplication 3
2. General Troubleshooting Flowchart 5
3. Normal Diagnosis Troubleshooting Flowchart6
4. Raw Data Analysis Flowehart 9
5. Shorted Diode Causing Blind CS 19
6. Data Sensitive Troubleshooting Aid 25
7. Matrix Access Aid 27
8. D-Level Interrupt Register Locations 29
9. CSTF Register Layout 30
10. SESA Register Layout 31
11. MOCR Register Layout 32
12. ERRORS 43
13. MEMORY CURRENTS 43
A. General 45
B. Types of Currents in the CS 45
C. Amplitude Control of the Memory Currents 46
D. Correct Current Amplitudes 49
E. Failures Affecting Memory Currents 50
14. BLOWING FUSES 55

NOTICE
Not for use or disclosure outside the
Bell System except under written agreement
CONTENTSPAGE
20. Primary X Auxiliary Currents 49
21. Inhibit Currents 50
22. Current Regulating Scheme Block Diagram 51
23. X Access Currents 52
24. Y Access Currents 53
25. Bad Precharge Currents 54
26. Bad Module Connector 55
27. Effects of Access Diodes with Large Reverse Storage Conduction 56
28. Flowchart for Locating Faults of Blown Fuses 57
TABLES
A. Call Store Diagnostic 7
B. Primary Hardware Tested by Phase 1 and Phase 5 11
C. Test Run in Phase 1 and Phase 5 12
D. Call Store Private Scan Points 14
E. Primary Hardware Tested by Phase 2 and Phase 6 15
F. Primary Hardware Tested by Phase 3 and Phase 7 21
G. Primary Hardware Tested by Phase 4 and Phase 8 22
H. Phases 4 and 8 Interface Test Bit Failures 33
I. Delay Generator Circuit Pack Information 34
J. CSEI Layout 35

1. GENERAL

1.01 This section provides an approach to locating and analyzing many of the malfunctions that can occur in the 8 K call store used in 2 W and 4 W No. 1 ESS. Using a flowchart as a general procedure allows the detailed procedure to be referenced on the flowchart.
1.02 This section is reissued to include CTX-6 Issue 8 and later generics and to make the following changes:
(a) To make changes to Fig. 4 and 17
(b) To add Tables H and I .
1.03 The call stores (CSs) are memory units that store information related mainly to the handling of calls as they are processed. The CS is used for short term scratch pad storage of events that occur in the No. 1 Electronic Switching System (ESS). Certain long term information is also stored temporarily in the CS until enough of such information accumulates to make it worthwhile to write it into the program store memory cards.
1.04 The CSs are erasable read-write temporary memories used by the central control (CC) and the signal processor (SP). The information contained in a CS is organized in words of 24 bits. The 24th bit of each word is used for parity checking. Each word occupies one location in the memory unit of the CS and is identified by a unique address. Inputs from a CC or an SP specify the operation (reading or writing), CS address, and data (writing only). The CS responds to the order and, in the case of reading, sends the word read to the CC or SP.
1.05 The memory unit of each CS consists of four memory modules. Two of these modules are connected to make the G-half of the memory unit. The other two modules are connected to make the H-half of the memory unit. Each half has a storage capacity of 4096 words (24 bits each), and each CS memory has 8192 storage addresses. In order to achieve maximum reliability, all information stored in the H-half of one CS is duplicated in the G-half of another CS and vice-versa
(Fig. 1). The CC or SP communicates with the CSs over duplicated buses.
1.06 The number of CSs needed in each No. 1 ESS depends on the office size. For example, in a 2 -wire No. 1 ESS office, a maximum of 39 CSs (78 store halves) can be used with the pair of CCs and a maximum of 8 CSs (16-store halves) can be used with each duplicated pair of SPs.
1.07 The following abbreviations are used in this section:

ASW	All Seems Well
C	Celsius Temperature
CPD	Central Pulse Distributor
CS	Call Store
CW	Control Write
CR	Control Read
ESS	Electronic Switching System
FF	Flip Flop
MCC	

2. REFERENCE DOCUMENTS

CD-1A124-01 Circuit Description
IM-1A001 Input Message Manual
OM-1A001 Output Message Manual
PA-591003 Translation Specification
PD-1A018 Call Store Deferred Fault Recognition Programs Description

PD-1A019 Diagnostic Program Description
PD-1A120 Translation Program Description
PF-1A019 Program Flowchart
PK-1A019 Raw Data Analysis
PR-1A019-26 Program Listing
SD-1A124-01 Schematic Drawing
TLM-1A124 Trouble Locating Manual

Fig. 1-Call Store Duplication and Bus Duplication

231-006-101	8K Call Store Description
231-006-501	8K Call Store Margin Checks-Using 762A Tool
231-006-801	8K Call Store Memory Assembly Replacement Procedure
231-011-102	Maintenance Program Organization Description
231-109-301	Analyzing Maintenance Interrupts
$231-125-301$	Master Control Center-Alarm, Display, and Control Panel-Method of Operation

3. CALL STORE TROUBLESHOOTING OVERVIEW

3.01 The flowchart in Fig. 2 gives an overall indication of the types of CS troubles that can be encountered. The flowchart also references the procedure that can be used in troubleshooting.
3.02 The basis of the flowchart layout is to deal with one type of trouble at a time.

4. DIAGNOSTIC FAILURES

NORMAL DIAGNOSTIC FAILURE

4.01 A normal diagnostic printout can be generated by the system. It can also be requested via the TTY with the CS-DGN input message (refer to IM-1A001 for complete message) or via the appropriate CS frame control. The output message is as follows:

DR01 DGN RES CS 2
$057700346600=$ universal trouble number.
4.02 The first line of the above message identifies the failing unit as CS 2. Line two contains the 12 -digit trouble number that may be found in TLM-1A124. First, however, the maintenance personnel should request another diagnosis to insure a solid fault. The flowchart procedure is given in Fig. 3. A step-by-step procedure is given in TLM-1A124, Section B.

RAW DIAGNOSTIC FAILURE

4.03 The CS diagnostic program is comprised of a series of diagnostic tests. Basically, it divides the CS into four functional hardware blocks. The tests are run first on bus 0 , then on bus 1 (Table A). Figure 4 gives a flowchart approach to troubleshooting a CS using the raw data printout.

Phase 1 and Phase 5

4.04 Phase 1 and phase 5 are used to test basic internal CS circuitry associated with routing, lockout conditions, and voltage levels. Most of the tests in these phases are carried out by operating central pulse distributor (CPD) points or relays within the CS, and scanning either the CS monitor bus or private scan points to verify expected results. A list of primary hardware tested by these phases is shown in Table B. The tests that are run are shown in Table C.
4.05 The CS monitor bus consists of eight scan points having a fixed assignment on master scanner 00 , row 50 , ferrods 0 through 7. These scan points are connected to all the CSs in the office. However, only the store currently being diagnosed will have relays operated to connect the monitor bus leads to the internal CS circuitry.

Fig. 2-General Troubleshooting Flowchart

Fig. 3-Normal Diagnostic Troubleshooting Flowchart

TABLE A

CALL STORE DIAGNOSTIC

PHASE	NO. OF WORDS OF TEST DATA GENERATED	PRIMARY HARDWARE TESTED PER PHASE
1	29	CPD, SD, and MS access to the call store via CS bus 0
2	40	Control and maintenance logic circuitry via CS bus 0
3	2	CS X and Y servo counters via CS bus 0 4
5	29	Memory access and logic circuitry via CS bus 0 CPD, SD, and MS access to the call store via CS bus 1
6	40	Control and maintenance logic circuitry via CS bus 1
7	2	CS X and Y servo counters via CS bus 1 8

Fig. 4-Raw Data Analysis Flowchart

TABLE B

PRIMARY HARDWARE TESTED

 BY PHASE 1 AND PHASE 5| $\begin{aligned} & \text { FS IN } \\ & \text { SD-1A124 } \end{aligned}$ | DESCRIPTION |
| :---: | :---: |
| 33 | CS (i) lamp fuse |
| 33 | CS (i) manual control panel status and fuse alarm |
| 24 | Lockout conditions and circuitry
 (a) Permanent RO sync |
| 24 | (b) Permanent precharge enable |
| 21 | (c) Permanent H code enable |
| 22 | TBL0 FF, TBL1 FF, RO FF |
| 35 | CS monitor bus
 (a) Verify all CS disconnected from the CS monitor bus
 (b) Check for false currents |
| 35 | (c) Check for false grounds
 (d) CS (i) relays (primary and secondary) |
| 34 | (e) CS (i) voltage regulator |

TABLE C
TEST RUN IN PHASE 1 AND PHASE 5

TEST RUN	RESULTs	REFERENCE
1. Lamp Fuse	The lamp fuse scan point is read and the result recorded. Curent should flow; thus, the lamp fuse scan point (SC2) should read 0.	PD-1A019-01 (Page 53) SD-1A124 (FS 33 Power Control LF Lead)
2. Manual Control Panel Status and Fuse Alarm Circuit	The manual control panel status scan points SC0 and SC1 are scanned and recorded. If the manual control panel is in the normal state, both scan points should read 0. Any non-normal state, inhibit request, manual power off, or fuse alarm will yield a non-zero reading.	PD-1A019-01 (Page 53) SD-1A124 (FS 33 Power Control SC0 and SC1
leads)		

4.06 In addition to the eight common scan points of the CS monitor bus, each CS has nine private scan points. To determine the scan points associated with a particular CS, use the TTY input message VFY-UNTY-1503XX. (Refer to input message manual IM-1A001 for the complete message.) The TR13 output message received from this request will yield not only the private scan point for a given CS, but the CPD and signal distributor (SD) assignments as well. The TR13 output message is shown below. (Refer to OM-1A001 for complete message format.) CS private scan points and their significance are shown in Table D.

TR13 30
04236400
05004151
02000254
07001500
$3=$ Unit type $0=\operatorname{CS} 00$
Convert octal numbers to binary Use PA-59103, Section 030, unit type 3 for complete breakdown of translators.
4.07 Phase 1 and phase 5 failures can be located by using one of the following test methods, assuming TLM-1A124 does not aid in finding the trouble. DC test procedures can be used. This consists of displaying the CS monitor bus ferrods at the master control center (MCC) and duplicating the failing test. (Refer to Section 231-125-301 for procedures.) First, consult the raw data printout and PK-1A019 to determine the state of the hardware components. Next, block/operate the indicated relays and observe the ferrod condition. From here, the trouble can be pursued by using either a meter or an oscilloscope.
4.08 Similar steps can be followed when the trouble is detected over one of the CS private scan points. Consult the raw data printout and PK-1A019 to obtain all the circuitry involved. Using the VFY-UNTY message, obtain scanner, CPD, and SD assignments. Refer to IM-1A001 for complete input message. By displaying the proper scan row at the MCC and pulsing the CPD or SD points using the TTY input message T-CPD or T-MISD, the suspected ferrod point can be observed. Use DC test procedures to clear the trouble.

Phase 2 and Phase 6

4.09 Phase 2 and phase 6 are carried out by using control read (CR) and control write (CW) orders. These control orders have the facility of testing most internal CS circuitry without accessing the memory area. There are twelve control orders, six CR and six CW orders. Control instructions can be recognized by the nonmemory mnemonic N (NX, BN, NBTA, etc).
4.10 Data register can be written into and can also be read. This operation verifies that the CS can receive each bit from the bus and also the ability to send 24 bits of data back to the CC.
4.11 Name and Answer Flip Flops (FFs) can be both written and read. The name FFs are used to establish the K code for the G-half of a CS. The answer FFs control selection of the bus to be used for sending data back to the CC (GS0, GS1, HS0, and HS1 FFs).
4.12 Accumulate timing 1 and 2 can only be written. In each case a CS FF is set. This will start the timing sequences. At proper intervals, designated timing points are interrogated and the results gated into the data register. Either of these orders will normally be followed by a CR order of the data register.

4.13 Servo counters can be read or control

 written to either the set or reset states. The servo counters are 3 -bit binary counters designed to regulate the X and Y current drives. These counters can be control written to either all ones or all zeroes, and not to any value in between.4.14 DC switches and parity: These 16 Y access switches and 16 X access switches can be control read. The dc switches provide the access into the memory module. They are activated by decoding bits in the address register. In addition to the dc switches, there are five points in the parity check circuit which are checked by this control read order.
4.15 Fault test points are tested with a control read of several semi-dc gate conditions which are fixed during a cycle and can be gated onto the bus. This test group includes the fault FFs.

TABLE D

CALL STORE PRIVATE SCAN POINTS

SCAN	POINT	PURPOSE
$\begin{array}{r} \mathrm{SC0} \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	SC1	
	0	CS control panel keys normal
	1	Manual power off
	0	Inhibit request
	1	Fuse alarm
	SC 2	LF scan point - current flows if the lamp fuse is good
	SC3	DC0 - Reset only via CPD operation
	SC4	TBL1 scan point
		Set - Inhibits CS communication via CC-CS Bus 1
		bus 1 if the RO FF is reset
	SC5	TBL0 scan point
		Set - Inhibits use of CC-CS Bus 0
		Reset - Allows use of CC-CS Bus 0 if RO FF is set
	SC6	RO1 scan point - RO FF set allows CS to receive over Bus 0 if the TBLO FF is reset
	SC7	RO0 Scan point - RO FF reset allows CS to receive from BUS 1 if the TBL0 FF is reset
	SC8	VT scan point - saturated indicates that the CS is disconnected from the CS monitor bus

4.16 Any failure in either phase 2 or phase 6 will result in omitting the remainder of the diagnostic phases usually run on the same CS bus. For example, if phase 2 fails, phase 3 and phase 4 will not be run. The primary hardware tested by phase 2 and phase 6 is given in Table E.
4.17 Failures in phase 2 or phase 6 can be located by using the input message CS-PARDGN and analyzing the printout. (Refer to IM-1A001 for complete message.) Also use the \emptyset FL-EXEC message to loop on a section of the program which will duplicate the first failure in the raw data printout. (Refer to Section 231-117-301.) To accomplish this, use PF-1A019 to locate the global that can serve as a reference into PR-1A019. Once the specific test has been identified in PR-1A019, the address can be applied to the ØFF-LINE
message. The trouble can be located with an oscilloscope.

> Caution: The following procedure requires additional analysis and should not be considered until all other methods have failed.
4.18 The appropriate $C R$ and $C W$ orders can be written on a program store card and executed by means of the \emptyset FL-EXEC-03 program (Section 231-117-301 for 2-wire and Section 231-417-301 for 4 -wire). The orders to be written can be determined from analysis of the raw data and PK-1A019.

Example of Phase 2 and Phase 6 Failure

4.19 The following is a step-by-step procedure used for locating one fault in phase 2. This

TABLE E

PRIMARY HARDWARE TESTED BY PHASE 2 AND PHASE 6

$\begin{gathered} \text { FS IN } \\ \text { SD-1A124 } \end{gathered}$	description
6	Y access de switches
7	X access dc switches
10	*Bus 0 receiver cores
12	*Code register (a) Bus 0 inputs and sync
13	*Mode register (C,G,H,R,W,PKA) (a) Bus 0 inputs and syncs
14	*Address register (a) Bus 0 inputs and sync
15	*Bus 0 data inputs (pulse directors) and syfics
16	Enable decoder (H and G name)
17	Mode decoder (C,G,H)
18	Order decoder (CR,CW,NBTA,NBTB, GMR,GMW,HMR,HMW,NR,NW)
19	Control address decoder
20	Test register (TT FFs and control and normal or MTCE data reg FFs reset)
21	Fault register (ASW,GH,MUM,TCF,DC0 FFs)
22	System control (code, mode, and address register bus inhibit gates and O.5T4.5 cycle lockout gates)
23	*Answer control (bus 0 routing of control and MTCE order info onto output bus 0)
24	Sequence control (CS timing chain)
25	Data register
26	Parity check (code, address, PKA parity check circuit)
27	*Bus 0 bus sending transformers (SP0) (Control mode sending only)
15	Variable G name FFs and normal mode answer routing FFs
	*FOR PHASE 6 CHANGE BUS 0 TO BUS 1

procedure will show the logic used in finding the fault.

CS-DGN-RCS03.PF

08 DR02 RAW	CS 3
PH 1 ATP	PH 5 ATP
PH 2 STF	PH 6 STF
00000000	00000000
00160000	00160000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000052	00000052
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
37777777	37777777
551449430422	
	597214092404
	UNIV TBL NO.
	329573912760

4.20 The DR02 printout shows that phase 2 and phase 6 failed the same on both buses. It also shows that bits 13,14 , and 15 failed in word 2 .
4.21 Use PK-1A019 to analyze failing word and bits. Word 2 in this case is testing the X dc switches. The first bit to fail was bit 13, which is looking at the state of gate XDC5C'.
4.22 Use SD-1A124, sheet index, to locate the X access FS. The sheet index shows that the X access is in FS 7 . The $\mathrm{XDC5C}^{\prime}$ gate is shown on sheet B38 and is from circuit pack 08-12, a dc switch.
4.23 Another possible failure might be circuit pack 08-10. The printout shows bits 14 and 15 failing. These two bits are gates $\mathrm{XDC6C}^{\prime}$ and $\mathrm{XDC}^{\prime} \mathrm{C}^{\prime}$.
4.24 The DR02 printout also gives a universal trouble number at the end of the printout. Use TLM-1A124 by finding the exact match; it shows circuit pack $08-12$ could be the trouble.

Example of Fault in Phase 2 and Phase 6

4.25 The following is a step-by-step procedure used for locating one fault in phase 2. This procedure will show the logic used in finding the fault.
4.26 The following messages were received on the TTY. Some were machine generated and some were requested at the TTY.

27 MA14A
000000000110233301024345010265322125475001572000
27 MA14 CC INT
011654400116544010300000011654320000000000000000 000114000116367103777777000000003661233701165440 000105100002050302000040031014010001055000002010

27 DR01 TBL NOS CS 1

PH 2 STF
474234167205
PH 6 STF
250261093750
UNIV TBL NO.
724515258141
4.27 The TLM approach does not yield a solution, so the next step would be to request a cell data printout as follows:

CS-DGN-CCS01.PF

**29 DR01 TBL NOS CS 1
CELL NOS
429518831497
741348391617
699850211710
101863161755
010768111039
281530521280
448551841656
479400101130
754913141620
788121271940
4.28 Using TLM-1A124, look for an exact match in section E. In this case, there is no match that yields a solution to this fault. The next step would be to request a raw data printout as follows:

CS-DGN-RCS01.

The system responds with the following printout:

32 DR02 RAW CS	1
PH 1 ATP	PH 5 ATP
PH 2 STF	PH 6 STF
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
00000000	00000000
34036303	34036303
04036303	04036303
37777777	37777777
37777777	37777777
37777777	37777777
37777763	37777763
00000100	00000100
00000100	00000100
26374040	26374040
26365076	26365076
26305044	26305044
26074044	26074044
26374076	26374076
26374076	26374076
26374076	26374076
26374076	26374076
26374076	26374070
26374076	26374070
26374074	26374074
26374074	26374074
05416317	05416317
05411477	05411477
00000000	00000000
01360000	01360000
00000100	00000100
00260000	00260000
00000000	00000000
474234167205	

[^0]4.29 The following procedure is used to analyze the raw data and to locate the fault. It should be noted that several documents are used in analyzing the failure.
4.30 Raw data: word 14, phase 2 and phase 6, is the first failing word. Phase 2 and phase 6 fail exactly the same. The fault is probably not in circuits associated with only one bus. PK-1A019 shows that word 14 is the result of testing address parity checker outputs PAR 1 and PAR 2.
4.31 PF-1A019 A sheets show that phase 2 and phase 6 are in SFC 13, and the E sheets show that the parity checker test begins at CDPARS. CDPARS can be found in PR-1A019-26. Using the B sheets of PF-1A019, it is found that ADRKK is the CS location where word 14 of phase 2 and phase 6 is stored. Finding ADRKK in the symbol table of PR-1A019-26 will give the page that CDPARS starts on.
4.32 Word 15 also fails: PR-1A019-26 and PD-1A019 state that if both words 14 and 15 fail, the fault is not in the parity checker circuit. The circuits for PAR 1 and 2 are independent of the circuits for PAR 3 and 4. A single fault in the parity check circuits will make one word or the other fail, but never both. If both fail, the fault must be in a circuit other than the parity checker.
4.33 The test of the next 3 raw data words (16, 17,18) is omitted and the raw data is faked in as all 1s. The test resumes at word 19 at CDCMIT in PR-1A019-26. Word 19 points toward gates CR6', CR5', and CR1' in the control address decoder. These gates are on circuit packs 26-07 and 26-09.
4.34 Words 20 and 21 point towards failure of the CS to return an all seems well (ASW) signal. Word 22 points towards no CS response to control mode operations. At this point, it might indicate a faulty mode register. Words 23 through 40 failures do not match any patterns given in PK-1A019. The list of possible circuit packs has grown quite large at this point.
4.35 Using ØFF-LINE methods to locate the fault, the following procedure was used (Section 231-117-301 for 2-wire and Section 231-417-301 for 4 -wire).
$\emptyset F L-C Q N F I G-$
ФFL-M \varnothing DE-05.
ФFL-EXEC-11 0002050300020504

4.36 Using an oscilloscope, it soon becomes apparent that nothing is happening in the store. Both TBL0 and TBL1 FFs are set. This cuts the store off from both buses. By trying to reset the TBL0 FF, it is found that it sets right away.

Caution: Do not reset the TBL1 FF. As shown in the D-level interrupt, this is the active bus and will put the store back on-line.
4.37 With the oscilloscope connected to the PD0-P' lead ($30-26$ pin 20) with the TBL0 FF reset, the set pulse appears every cycle on the PD0-P' lead. Tracing back to the GO FF with the oscilloscope, a low is found feeding back to the 1
output from the PG lead. The low was from a shorted diode on pin 4 of gate ASW'. This is an A2 pack at location 28-29. Figure 5 shows the shorted diode in the circuit.

4.38 What the shorted diode does: At

 the end of the CS cycle, the code mode and address registers are reset by RST1-P'. This makes leads PG and GR0' go low. Even though GO1 also goes low at the same time, the 1 output of GO FF is locked low through the shorted diode. The 0 side is then locked high. If the next CS operation is not a control mode operation (CM^{\prime} high), the sync 2 (the sync that accompanies R, W , and PKA at 19T21) will fire the gate and set both TBLO and TBL1. The GO FF circuit is supposed to fire in the event the CS gets a fault which makes it recognize a permanent name match.4.39 The CS will run okay as long as a string of control mode operations is received. A normal, G , or H maintenance mode will set both TBL0 and TBL1. With both FFs set, the store is blind to anything on the buses.
4.40 The diagnostic program carefully resets both TBL0 and TBL1 FFs at the beginning of each segment. The fault does not show up as a test failure until the parity circuit test of CDPARS. The program takes a segment break and does a couple of BMAPs (normal mode). Then the program

Fig. 5-Shorted Diode Causing Blind CS
does the parity circuit test. The BMAPs set TBL0 and TBL1 FFs, so the test fails whenever a 1 is expected from the CS .

Phase 3 and Phase 7
4.41 Phase 3 and phase 7 test the servo circuitry over each of the two CS address buses. Since the address bus should have no effect on the servo system, the results of phase 3 and phase 7 should be identical. If the results of these two phases differ, refer to Fig. 4 to determine some of the possible trouble causes.
4.42 Two binary counters of three bits each comprise the servo control system. These counters are used to alter the current in the X and Y current drives. During each CS cycle, the read current is monitored, and either increments or decrements the servo binary counter when the current deviates up or down from a predetermined level. This change in the binary counter causes a 4 ma change in the read current during the next CS cycle.
4.43 Under ideal conditions the three-bit servo binary counters should be stabilized at a setting of 3 or 4 . This phase tests the servo circuitry by setting or resetting the binary counters to one of two extremes. Following a series of test orders, the servo counters are tested to verify that the CS circuitry has caused the binary counter to step from the extreme to a new state. Additionally, each binary counter is tested for 64 consecutive cycles to verify that an oscillation condition does not exist which will cause a change on each operation.
4.44 Since the servo system is directly related to the X and Y current drives, troubles in either of these drives can result in any invalid trouble indication in phase 3 or phase 7 . In some instances, a failure in phase 3 or phase 7 does not warrant the CS being left out of service. These failures may be caused by the servo binary counter operating at one of the extremes, while the operation of the CS is not otherwise affected. Such a
condition could be the result of temperature or component changes and, in some programs, is commonly encountered during the midnight routines. The primary hardware tested by phase 3 and phase 7 is shown in Table F.

Phase 4 and Phase 8

4.45 Phase 4 and phase 8 consist of testing the CS memory modules. These phases generate nine words of test data. Unlike the other CS diagnostic, these phases produce raw data which must be considered as a nine-word entity and not as individual failure bits. This means that to locate a failure point in PK-1A019, an exact match must be found for all nine words of the raw data printout.
4.46 The tests which are used to derive each of the nine test result words are as follows:

Test Word

1. H-half addresses $\emptyset .0000$ through $\emptyset .0077$ are written first with a test word of $\emptyset .14631463$ and then read to verify the proper data. Next, the same procedure is followed using test word $\emptyset .23146314$. These tests are repeated four times at each address, with any failing bit positions being marked in the test results. For example, if the first word of raw data equals $\emptyset .00002400$, it indicates that bits 8 and 10 failed at least one of the 512 tests performed by this series. If no failures are detected in the 23 bits of data, the 24 th bit is checked for any parity failure. This bit is the PFC FF in CC buffer bus B8SESA.
2. H-half addresses $\emptyset .4400$ through $\emptyset .4477$ are tested by the same methods used in test word 1 .
3. G-half addresses $\emptyset .0000$ through $\emptyset .0077$ are tested identically to test word 1.
4. G-half addresses $\emptyset .4400$ through $\emptyset .4477$ are tested identically to test word 1.

TABLE F

PRIMARY HARDWARE TESTED
 BY PHASE 3 AND PHASE 7

FS IN SD-1A124	DESCRIPTION
7	X servo three cell FF binary counter
7	Logic stepping circuitry to X servo binary counter
6	Y servo three cell FF binary counter
6	Logic stepping circuitry to Y servo binary counter
6,7	Control read servos gating Control read servos readout circuitry
19	Control write set servos 19
Control write reset servos Normal and MTCE order servos enable	

5. The 64 addresses shown below are tested in the H-half of CS. Each address is tested four times, with the same test words used in test one.

TEST

DATA BITS
TEST ADDRESSES

0	0000	1010	2020	3030
1	4040	5050	6060	7070
2	0101	1111	2121	3131
3	4141	5151	6161	7171
4	0202	1212	2222	3232
5	4242	5252	6262	7272
6	0303	1313	2323	3333
7	4343	5353	6363	7373
8	0404	1414	2424	3434
9	4444	5454	6464	7474
10	0505	1515	2525	3535
11	4545	5555	6565	7575
12	0606	1616	2626	3636
13	4646	5656	6666	7676
14	0707	1717	2727	3737
15	4747	5757	6767	7777

6. This test is the same as test word 5 , but with the addresses listed below.

TEST DATA BITS

TEST ADDRESSES

0077	1067	2067	3047
4037	5027	6017	7007
0176	1166	2156	3146
4136	5126	6116	7106
0275	1265	2255	3245
4235	5225	6215	7205
0374	1364	2354	3344
4334	5324	6314	7304
0473	1463	2453	3443
4433	5423	6413	7403
0572	1562	2557	3542
4532	5522	6512	7502
0671	1661	2651	3641
4631	5621	6611	7601
0770	1760	2750	3740
4730	5720	6710	7700

0
1
2
3
4
5
6
7
8
9
10
11

12

13
14
15
7. G-half addresses are tested using the same procedures and test addresses listed in test word 5 .
8. G-half addresses are tested using the same procedures and test addresses listed in test word 6 .
9. Routing of both the H - and G-half of CS to the active bus is tested. This includes both sending and inhibiting CS readouts.
4.47 Failures in either phase 4 or phase 8 have to be considered in conjunction with any failures that may have been indicated in phase 3 or phase 7. This is necessary because of the relationship between the servo system and the X and Y current drives. A circuitry failure in phase

3 or phase 7 can result in meaningless data being received for phase 4 or phase 8 , or vice versa. The primary hardware tested by phase 4 and phase 8 is shown in Table G.
4.48 For offices with CTX-6 Issue 8 and later generic except CTX-8, Issues 2.1 and 2.2, phases 4 and 8 have a test to detect interference on the CS answer bus. This test is run only if all previous tests have passed.

The raw data is stored in the last raw data word for phase 4 or phase 8 . The raw data pattern for bits 0 through 22 will have a 1 in the bit position corresponding to the interfering bit on the A74 circuit board. No new trouble number will be produced. See Table H for pack location and corresponding raw data values.

TABLE G

PRIMARY HARDWARE TESTED BY PHASE 4 AND PHASE 8

$\begin{gathered} \text { FS IN } \\ \text { SD-1A124 } \end{gathered}$	DESCRIPTION
1	Preamplifiers
2	Discriminators
2,24	Associated discr logic
3	H and G inhibit generators
24	Associated inhibit gen logic
25	Regenerate gates in data reg
27	Normal and MTCE mode SP0 (bus 0 outputs)
4,5	H and G diode matrices
6,7	H and G input markers
6,7	H and G output markers
6,7	H and G ac switches
6,7	X and Y access current drivers, cur driver trnsf, std sig ref SR3
23	H and G normal mode answer bus routing onto output bus 0
24,34	Discr strobes STB0-P', STBE-P', STB2-P
18	Data reg logic gates WDC1', WDC2'

Example of Phase 4 or Phase 8 Failure

4.49 The following is an example of a phase 4 or phase 8 failure, with possible ways for finding the fault.

```
    23 MA14A
    00000000 0163016401024345 01152306 01152726 00000000
**23 MA14 CC INT
    0 0 5 0 6 6 0 5 1 1 0 5 1 1 0 5 0 0 0 1 4 2 7 3 0 1 0 7 4 5 5 6 0 0 5 0 6 6 0 5 0 0 0 0 0 0 0 0
    0 0 0 1 2 3 1 7 0 0 5 0 6 6 3 2 1 7 7 7 7 7 7 7 ~ 0 0 5 0 6 6 0 5 0 0 5 0 6 4 0 5 0 1 0 5 1 1 0 5
    0 0 0 1 0 5 1 0 0 0 0 1 4 2 7 3 0 0 0 0 0 0 0 0 ~ 1 2 2 0 1 4 0 1 0 0 0 1 0 5 5 0 0 0 0 0 2 0 1 0
**24 DR01 TBL NOS CS 3
    PH 4 STF
    527669406650
    PH }8\mathrm{ STF
    161471326793
    UNIV TBL NO.
    6 8 9 1 7 1 5 1 6 0 9 8
```

4.50 From these messages, the following can be determined.
4.51 The TLM approach yields no match, so the next step is to request a cell data printout as follows:
(1) The failing instruction
(2) The failing CS address
(3) The configuration of CS, CS buses, and CSs in effect at the time of the failure.
CS-DGN-CCS03.PF
**59 DR01 TBL NOS CS 3
CELL NOS 314121471379

 062175150997

 352012791306

 353324671120

 788605121030

 000000000000

 000000000000

 000000000000

 000000000000

 000000000000
 4.52 The cell data does not yield a match, so in this case it cannot be used. The next step would be to request a raw data diagnostic as follows:

CS-DGN-RCS03.PF

20 DR02 RAW CS 3

PH 1 ATP
PH 2 ATP
PH 3 ATP
PH 4 STF
00125252
00125252
00125252
00125252
00000000
00000000
00000000
00000000
00000000
527663406650
PH 5 ATP
PH 6 ATP
PH 7 ATP
PH 8 STF
00125252
00125252
00125252
00125252
00000000
00000000
00000000
00000000
00000000

161471326793
UNIV TBL NO.
689171516098
4.53 The following procedure is used to analyze the raw data and locate the fault. It should be noted that several documents are used in analyzing the failure.
4.54 The DR02 analysis, using the PK approach, shows that the following conditions exist.
(1) Word 1 failed bits $15,13,11,09,07,05$, 03 , and 01 at one time or another in the first 100 (octal) H-half locations (name +0000) through name +7777).
(2) Word 2 failed in the same manner as word 1, H-locations 4400 through 4477.
(3) Words 3 and 4 failed with the same results in G-half as failed in H -half.
(4) Phase 8 failed the same as phase 4 .
4.55 The conclusions reached at this point are
(1) The fault is not bus-sensitive. Any circuitry assosciated with only one bus should be OK.
(2) The fault is not G- or H-half sensitive (affects both G- and H-half the same). Any circuitry associated with only the H-half or only the G-half should be OK.
(3) Only odd-numbered bits 15 through 01 failed. The fault appears to be a bit-associated trouble; but it is not yet possible to tell if the failure is on a write or the subsequent read, or whether it is in the accessing, writing, or readout circuits.

BIT POSITION

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	C.P.	FUNCTION	FS	
34-40						34-39						34-38						34-45						A18	CA. RCV. BUS 0	11	B
34-48						34-47						34-46						34-37						A18	CA. RCV. BUS 1	11	S
28-24						28-20						28-16						28-14						A 72	PULSE DIR. BUS 0	15	E
28-26						28-22						28-18						28-12						A 72	PULSE DIR. BUS-1	15	1
				32-24		32-20						32-16						32-14						A72	PULSE DIR. BUS-0	15	V
				32-26		32-22						32-18						32-12						A 72	PULSE DIR. BUS-1	15	
$\begin{array}{r} 32 \\ 36 \\ \hline \end{array}$				$\begin{aligned} & 24-\sqrt{24-} \quad 47 \\ & \hline 8 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 24- \\ 46 \\ \hline \end{array}$	26-32				26-31				26-30				26-29				A06	CONTROL WRITE GATES	25	
$\begin{aligned} & 24- \\ & 48 \end{aligned}$	$\begin{aligned} & 24 \\ & 47 \end{aligned}$	$\begin{array}{\|l\|} \hline 24- \\ 46 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & 45 \end{aligned}$	$\begin{aligned} & 24- \\ & 40 \end{aligned}$	$\begin{aligned} & 24- \\ & 39 \end{aligned}$	$\begin{aligned} & 24- \\ & 38 \end{aligned}$	$\begin{aligned} & 24- \\ & 37 \end{aligned}$	$\begin{aligned} & 24- \\ & 32 \end{aligned}$	$\begin{aligned} & 24- \\ & 31 \end{aligned}$	$\begin{aligned} & 24- \\ & 30 \end{aligned}$	$\begin{array}{\|l\|} \hline 24- \\ 29 \\ \hline \end{array}$	$\begin{aligned} & 24- \\ & 24 \end{aligned}$	$\begin{aligned} & 24- \\ & 23 \end{aligned}$	$\begin{aligned} & 24- \\ & 22 \end{aligned}$	$\begin{aligned} & 24- \\ & 21 \end{aligned}$	$\begin{aligned} & 24- \\ & 16 \end{aligned}$	$\left\|\begin{array}{l} 24- \\ 15 \end{array}\right\|$	$\begin{aligned} & 24 \\ & 14 \end{aligned}$	$\begin{aligned} & 24- \\ & 13 \end{aligned}$	$\begin{array}{\|c\|} \hline 24- \\ 08 \end{array}$	$\begin{aligned} & 24- \\ & 07 \end{aligned}$	$\begin{aligned} & 24- \\ & 06 \end{aligned}$	$\begin{aligned} & 24 \\ & 05 \end{aligned}$	A06	DATA REGISTER	25	
$\begin{aligned} & 06- \\ & 30 \end{aligned}$	$\begin{aligned} & 21- \\ & 30 \end{aligned}$	$\begin{aligned} & 06 \\ & 26 \end{aligned}$	$\begin{aligned} & 21- \\ & 26 \end{aligned}$	$\begin{aligned} & 06- \\ & 24 \end{aligned}$	$\begin{aligned} & 21- \\ & 24 \end{aligned}$	$\begin{aligned} & 06- \\ & 20 \end{aligned}$	$\begin{aligned} & 21 \\ & 20 \end{aligned}$	$\begin{aligned} & 06- \\ & 18 \end{aligned}$	$\begin{aligned} & 19- \\ & 30 \end{aligned}$	$\begin{aligned} & 06- \\ & 14 \end{aligned}$	$\begin{array}{\|l\|} 19- \\ 26 \end{array}$	$\begin{aligned} & 04- \\ & 30 \end{aligned}$	$\begin{aligned} & 19- \\ & 24 \end{aligned}$	$\begin{aligned} & 04- \\ & 26 \end{aligned}$	$\begin{aligned} & 19- \\ & 20 \end{aligned}$	$\begin{array}{\|l} \hline 04- \\ 24 \end{array}$	$\begin{aligned} & 17 \\ & 30 \end{aligned}$	$\begin{aligned} & 04- \\ & 20 \end{aligned}$	$\begin{aligned} & 17- \\ & 26 \end{aligned}$	$\begin{array}{\|l\|} \hline 04- \\ 18 \end{array}$	$\begin{aligned} & 17- \\ & 22 \end{aligned}$	$\begin{array}{\|l\|} \hline 04- \\ 14 \end{array}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	A89	READOUT PREAMP	01	
$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \end{aligned}$	$\begin{array}{\|l\|} \hline 21 \\ 41 \\ \hline \end{array}$	$\begin{aligned} & 21- \\ & 42 \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21 \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \end{aligned}$	$\begin{array}{\|l\|} \hline 21- \\ 41 \\ \hline \end{array}$	$\begin{aligned} & 21- \\ & 42 \end{aligned}$	$\begin{aligned} & 21- \\ & 41 \end{aligned}$	$\begin{aligned} & 21- \\ & 42 \end{aligned}$	A08	UNCLAMP GATES	02	
$\begin{aligned} & 06 \\ & 28 \end{aligned}$	$\begin{aligned} & 21- \\ & 28 \end{aligned}$	$\begin{aligned} & 06- \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 21- \\ & 28 \end{aligned}$	$\begin{aligned} & 06 \\ & 22 \end{aligned}$	$\begin{aligned} & 21- \\ & 22 \end{aligned}$	$\begin{aligned} & 06- \\ & 22 \end{aligned}$	$\begin{aligned} & 21- \\ & 22 \end{aligned}$	$\begin{aligned} & 06- \\ & 16 \end{aligned}$	$\begin{aligned} & 19- \\ & 28 \end{aligned}$	$\begin{aligned} & 06- \\ & 16 \end{aligned}$	$\begin{aligned} & 19- \\ & 28 \end{aligned}$	$\begin{aligned} & 04- \\ & 28 \end{aligned}$	$\begin{aligned} & 19- \\ & 22 \end{aligned}$	$\begin{aligned} & 04 \\ & 28 \end{aligned}$	$\begin{aligned} & 17- \\ & 28 \end{aligned}$	$\begin{aligned} & 04 \\ & 22 \end{aligned}$	$\begin{aligned} & 17- \\ & 28 \end{aligned}$	$\begin{aligned} & 04- \\ & 22 \end{aligned}$	$\begin{aligned} & 17 \\ & 28 \end{aligned}$	$\begin{array}{\|l\|} \hline 04- \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 17 \\ & 20 \end{aligned}$	$\begin{aligned} & 04- \\ & 16 \end{aligned}$	$\begin{aligned} & 17 \\ & 20 \end{aligned}$	A90	DISCR	02	
17	-48	19-46		17-46		19-44		17-44		19-42		17-42		19-40		17-40		19-38		17-38		19-36		A96	H. INHIBIT GEN.	03	
06	-46	04-44		06-44		04-42		06-42		04-40		06-40		04-38		06-38		04-36		06-36		06-34		A96	G. INHIBIT GEN.	03	
24-42				24-34				24-26				24-18				24-10				24-02				A74	SENS. PULS. ORIG. B 0	27	S
24-44				24-36				24-28				24-20				24-12				24-04				A74	SENS. PULS. ORIG. B-1	27	$\begin{array}{ll} B & N \\ U & S \\ \hline \end{array}$
26-44								26-40								26-36								A21	C.D. BUS 0	27	$\begin{array}{ll} \mathrm{S} & \mathrm{~T} \\ \mathrm{I} \end{array}$
26-46								26-42								26-38								A21	C.D. BUS 1	27	$\begin{aligned} & V \\ & E \end{aligned}$

4.56 One method for finding the fault is to use the $\emptyset \mathrm{FL}-\mathrm{EXEC}-09$ message and the failing address from the D-level interrupt. Refer to Section 231-117-301 for 2-wire and Section 231-417-301 for 4 -wire for off-line procedures.
4.57 This method is a write order, but the CS performs a readout/write-in operation. This will allow observing a readout fault in action even though the store is receiving only write commands from CC.
4.58 The scope sync should be on the sync 1 input (SD-1A019) to the CS and the probing should start at the readout circuits and work backwards towards the ferrite module.
4.59 Compare a good bit (bit 00) with a bad one having the same value (bit 01) on the 2 scope channels. It will be found in this fault where address bit X5 does not equal address bit Y5 that bit 01 never gets its unclamp signal for address. Gate UCB4-P' on sheet B26 in SD-1A019 has 2 highs on its inputs and one high on its output; also, the output should be low. This circuit pack is an A8 in location 21-41.
4.60 Another method for locating a fault of this type is to use the bit sensitive troubleshooting aid shown in Fig. 6. Using the failing word in the phase $4 / 8$ raw data printout, convert the octal number to binary. Put this data into the bit position on the chart. The only pack common to all the odd failing bits and none of the even bits is the Unclamp Gates, an A8 circuit pack at location 21-41.
4.61 Since it is known that the fault is not bus-sensitive, the circuit packs listed on the first six lines and the last four lines are ruled out. It could also possibly be more than the discriminator circuit pack (A90). It could not be the A96 inhibit generators since the trouble is common to both H - and G -halves.

Phase 9 and Phase 10 (CTX-6, Issue 8)

4.62 For offices with CTX-6 Issue 8 and later generics except CTX-8, Issues 2.1 and 2.2 , phases 9 and 10 detect access rate dependent faults in CC or XP call stores. This functional access test run over BUS 0 (phase 9) and BUS 1 (phase 10), is primarily directed at faults in the CS timing chain and bus lockout circuitry. Depending upon the complex, either the CC or SP will be used to verify that the CS under diagnosis can be accessed at a 5.5 microsecond rate without CS errors re-read failures.
4.63 Because these tests are functional rather than diagnostic in nature, there is no meaningful raw data produced by phases 9 and 10 . A test failure causes a constant raw data word (37777777) to be generated and a TLM\# of 6308 63644264 (PH9) or 218960963575 (PH10) to be produced. Phases 9 and 10 are run only if all other tests pass.

4.64 When phases 9 or 10 fails, the faulty circuit

 pack can be isolated by looping on phase 9 or 10 and checking the outputs of the delay generator circuit packs with an oscilloscope. The location of these packs and their normal output pulse width are given in Table I.
5. CHECKERBOARD TEST

5.01 This test consists of multiple write-read operations at each CS address. Basically, this test walks a 1 or 0 through a field of opposite bits, and extensively exercises the CS circuitry to detect noise problems. However, when this test is requested, all checks are made over the presently active CS bus. The full value of this test can only be realized if it is run over both buses. Therefore, once a checkerboard test has been run over one bus, switch the active CS bus and request a new checkerboard test.

CALL store selections in g-half x matrix
(SEE NOTE 2)

NOTES:

1. K-CODES AND OCTAL NUMBERS DEFINED BY BITS AIT-AIZ ARE SHOWN ON SHEET D25.
2. CHOOSE THE ADDRESS STATES. THEN FOLLOW THE arROWS TO THE MATRIX INTERSECTION.

Fig. 7-Matrix Access Aid
5.02 Use the address that failed in CS03 printout to access sheets D21 through D24 in SD-1A124 to determine access circuits that failed. See the example below and in Fig. 7. Use bits that failed to determine readout circuit packs that failed.

CS03	
00007330	CHKBD CC 3
00000001	
00007323	00000001
00007152	00000001
00007142	00000200
00007142	00000400
00007020	00000001
00006774	00000001
00006752	00000001
00006647	00000001
00006611	00000001
00006375	00000001
00005372	00000001
00005113	00000001
00004521	00000001
00002462	00000001
00001403	00000001
00007137	00000000
00004157	00000000

5.03 The printout should be analyzed to determine the possible trouble; for example, more than one bit failing might be a voltage pack, or bits failing next to each other might be a readout pack.

Fig. 8-D-Level Interrupt Register Locations

DATA $=$ ADDRESS

5.04 For offices with CTX 6 Issue 8 and later generics except CTX-8, Issues 2.1 and 2.2, a demand exercise has been added to verify CS memory integrity. This test is done by initialzing and then verifying every word in the call store under test with DATA=ADDRESS and DATA=ADDRESS complemented test patterns. This test can be requested via the CS partial diagnostic message. This test can be used with the checkerbord test to locate faults.

6. D-LEVEL INTERRUPTS

6.01 A D-level maintenance interrupt occurs when a reread or rewrite failure of a CS word is encountered or an invalid transfer to a CS address rather than to a PS address. When one of these failures is detected and the interrupt request is made by the system, the address that the failure occurred at is saved in the CC match registers.
6.02 The system prints out the MA14 registers for D-level interrupts as shown in Fig. 8. This layout ṣhows the following registers:
B register $\quad Z$ register
ASR register L register
F register addend K register
J register ARO register (contains the complement of the B reg.)

DRO register (contains the interrupted PS address)

AR1 register (contains CSTF before the interrupt)

DR1 register (contains failing CS address)

MOCR and MACF register
SESA register (store error summary FFs)
ILAF register

BUFFER REGISTER BIT POSITION	NAME OF BIT	
0	AU	COMMENTS
1	TCC	Marines active CC
2	PBO	
3	PBA	PS bus control
4	PBT	
5	CBO	
6	CBA	CS bus control
7	CBT	
8	CW	Control word bus selection
9	CWC	Enable standby to receive control words

PROGRAM STORE AND CALL STORE BUS SELECTION

PS BuS	PBO	PBA	PBT			STA	cc
cs bus	cBo	CBA	CBT	SEND	REC	SEND	REC
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0+1 \\ & 0+1 \\ & 0+1 \\ & 0+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
$\begin{aligned} & 0=\text { FF Reset } \\ & 1=\text { FF Set } \end{aligned}$				$\begin{aligned} & 0=\text { Bus } 0 \\ & 1=\text { Bus } 1 \\ & \mathrm{X}=\text { Neither Bus } \end{aligned}$			

Fig. 9-CSTF Register Layout
6.03 The data contained in the CSTF (Fig. 9), SESA (Fig. 10), and the MOCR/MACF determines the validity of the information contained in the other registers. If (1) CBT (bit 7 of CSTF) is reset and (2) MOCR (Fig. 11) indicates routine
matching by having HM, I, and X set (1401 in least significant bits), the parity failure PFC and the ASWC of the active CC and active bus determine the CS at fault. If either PFC or ASWC for the active CS bus is set and the system was in normal
configuration before the interrupt occurred, the active CC recognized the problem and the even-numbered CS that contains the address specified in the DR1 register is at fault. Comparing the B registers of the two CCs (the standby CC B registers complement is in the ARO) or, depending on the instruction being performed at the time of the interrupt, the active B register and the data or the complement of the standby B register should produce the bit in error. It is the bit that disagrees in the active register. If no mismatch is present and PFC is set, the parity bit (bit 23) is at fault. (Check instruction for possible masking.) If, under the same condition of CSTF and MOCR, SESA does not have PFC or ASWC set, the failing address belongs to an odd-numbered CS. Since the standby CC recognized the mismatch, the standby B register (ARO) should contain the failing bit. If there is no mismatch, parity bit 23 is the fault.
6.04 In the case where the CSTF CBT bit is set, both CCs receive from the active bus. The
failing address given in the DR1 register would belong to the H -half of the CS specified. The B register and the ARO register would not indicate the bit in error.
6.05 The signal processor (SP) CSs in the normally functioning office are configured in the same manner as the CC CSs. This means that the even-numbered CSs are on the active bus. The active CC CS bus and the SP CS bus do not have to be the same. For D-level interrupts that indicate an SP CS address in the DR1 register of the MA14 message, the same conditions apply that were previously explained with the following exceptions. D-level interrupts on write into SP CS implies that the SP saw the failure and not the SP CS. It would imply that the SP CS saw the failure on a read. If the SP CS failure is on a write, the system will generate an F-level interrupt.
6.06 In some cases, bit 11 of ILAF register is set on an interrupt, indicating an internal

BUFFER REGISTER BIT POSITION	NAME OF BIT	COMMENTS	
0	ASWPF-0	ASW failure from PS Bus 0	PS error summary flip- flops have inputs from error detection and cor- rection circuits - gated on interrupt request or on maintenance orders
1	ASWPF-1	ASW failure from PS Bus 1 Address Error Double Error 3	ADEF DBEF PF
6	ASWC-0	ASgle Error	ASW failure from CS Bus 0 ASW failure from CS Bus 1 Parity failure of CS word at buffer register

Fig. 10-SESA Register Layout

BUFFER REGISTER BIT POSITION	NAME OF BIT	Access (SEE NOTE)			comments	Location in SD
		R	w	c		
00	X	X	X	X	These bits establish matching mode	FS 85 Maintenance Control System M
01	Y	X	X	X		
02	MS	X	X	X		
03	TD	X	X	X		
04	CB	X	X	X		
05	PB	X	X	X		
06	TR	X	X	X		
07	IC	X	X	X		
08	I	X	X	X	Interrupt on abnormality	
09	HM	X	X	X	Stop match on abnormality	
10	E	X	X	X	Stop standby with execute-stop on abnormality	
11	F	X	X	X	Stop standby with fast-stop on abnormality	

Note: $\quad \mathrm{R}$ - Bit position can be read with read-memory orders.
W - Bit position can be written into with write-memory orders.
C - Bit position can be, written into with control-write orders.

Fig. 11-MOCR Register Layout

CS failure (CSFI). This means the CC suspected an error on the storage of the registers in the interrupt bins. The printout may or may not contain valid information and should be analyzed carefully.
6.07 To analyze a D-level maintenance interrupt printout, use the following procedure.
(1) Determine the matching mode of the CCs by examining the MOCR. This register should indicate routine matching with interrupts in effect at the time of interrupt. (The four
rightmost octal digits printed out in MOCR should be Ø.1401.)
(2) Determine the status of the send bus (CBO, bit 5), the bus that is active (CBA, bit 6), and the status of the standby bus (CBT, bit 7), using CSTF in the MA14 printout. Bus information can also be obtained from CSEI (Table J).
(3) Determine if the active CC recognized the problem by examining the status of PFC (parity bit 7) bit in SESA register.

TABLE H

PHASES 4 AND 8 INTERFERENCE TEST BIT FAILURES

BIT POSITION	BUS 0 PACK LOCATION	BUS 1 PACK LOCATION	RAW DATA WORD
0	$24-02-08$	$24-04-08$	00000001
1	$24-02-13$	$24-04-13$	00000002
2	$24-02-20$	$24-04-20$	00000004
3	$24-02-26$	$24-04-26$	00000010
4	$24-10-08$	$24-12-08$	00000020
5	$24-10-13$	$24-12-13$	00000040
6	$24-10-20$	$24-12-20$	00000100
7	$24-10-26$	$24-12-26$	00000200
8	$24-18-08$	$24-20-08$	00000400
9	$24-18-13$	$24-20-13$	00001000
10	$24-18-20$	$24-20-20$	00002000
11	$24-18-26$	$24-20-26$	00004000
12	$24-26-08$	$24-28-08$	00010000
13	$24-26-13$	$24-28-13$	00020000
14	$24-26-20$	$24-28-20$	00040000
15	$24-26-26$	$24-28-26$	00100000
16	$24-34-08$	$24-36-08$	00200000
17	$24-34-13$	$24-36-13$	00400000
18	$24-34-20$	$24-36-26$	01000000
19	$24-34-26$	$24-36-26$	02000000
20	$24-42-08$	$24-44-08$	04000000
21	$24-42-13$	$24-44-13$	10000000
22	$24-42-20$	$24-44-20$	20000000
Parity	$24-42-26$	$24-44-26$	25252525

TABLE I

DELAY GENERATOR CIRCUIT PACK INFORMATION

TYPE CIRCUIT PACK	FRAME LOCATION	NORMAL PULSE WITHIN μ SEC	BUS DEPENDENCY
A88	$19-08$	2.2	0
A88	$19-10$	2.2	1
A88	$19-12$	2.2	0
A88	$19-14$	2.2	1
A88	$28-40$	2.2	None
A83	$28-42$.25	None
A86	$28-44$	1.0	None
A85	$28-46$.5	None
A85	$30-40$.5	None
A85	$30-40$.5	None
A88	$30-44$	2.2	None
A113	$30-48$.75	None
A84	$32-46$.35	None

TABLE J

CSEI LAYOUT

BIT	FF OR LEAD	description
0	$\mathrm{LF}=1$	Lamp fuse power failure
1	$\mathrm{GOHI}=1$	GO is high = code match
2	TBL1 $=1$	Bus 1 trouble FF set
3	TBL0 $=1$	Bus 0 trouble FF set
4	$\mathrm{RO}(0)=1$	RO FF reset - receive from Bus 1
5	$\mathrm{RO}(1)=1$	RO FF set - receive from Bus 0
6	$\mathrm{VT}=1$	One of the 7 voltage monitor relays is operated
7	SPARE	
8	HS0 $=1$	Send normal readouts from fixed half (H) on Bus 0
9	HS1 $=1$	Send normal readouts from fixed half (H) on Bus 1
10	GS0 $=1$	Send normal readouts from variable half (G) on Bus 0
11	GS1 $=1$	Send normal readouts from variable half (G) on Bus 1
12 and 13	SPARE	
14	DCO $=0$	FF is set - decoder output FF (indicates code match)
15	ASW $=0$	FF is set - ASW failure
16	$\mathrm{GH}=0$	FF is set - error G and H halves of CS selected simultaneously
17	CKGF $=0$	FF is set - clock fault FF (readout sync and test point sync occurring simultaneously)
18	$\mathrm{TC}=0$	FF is șet - test clock fault FF (readout sync and test point sync occurring simultaneously with a fault in 0 MEM or 1 MEM)
19	CR5 ${ }^{\prime}=1$	Type 5 control read
20	$\mathrm{PGO}=1$	Permanent GO signal
21	CW3A ${ }^{\prime}=1$	Type 3 control write
22	CW4A ${ }^{\prime}=1$	Type 4 control write

(4) Determine in which CS the failure occurred and if the CS address is in-range or out-of-range by analyzing the failing CS address. Use the following procedure. (In-range address designates a hardware reread or rewrite failure; out-of-range address designates a software problem.)
(a) Drop off the four least significant CS address digits. (CS address is 6 digits.)
(b) Subtract 1 octally from the remaining 2 digits.
(c) Convert remainder to decimal number.

Example: If $\emptyset .203157$ is the CS address, the 4 least significant digits (3157) are dropped. From the remaining 2 digits (20), subtract 1 octally, which leaves 17 . Converting $\emptyset .17$ to a decimal number results in decimal 15. This means that the CS address belongs to the H -half of CS 15, and the G-half of the preceding store (CS 14) has the same memory block address.

Note: If the resulting decimal CS number is within the limits of the office, the resulting number is the failing CS number.
(5) Compare the active B register contents with the complement of the ARO register and look for any mismatch.
6.08 A flowchart approach for analyzing D-level interrupts is given in Fig. 12. For an indepth analysis of D-level interrupts, refer to Section 231-109-301.

Example: CC CS ERROR

6.09 Bit positions 3 and 10 of ILAF (Fig. 13) indicate that a valid D-level interrupt occurred. The MOCR has $\emptyset .1401$ in the four least significant digits, indicating that both CCs are in service and in the routine matching mode. The CBT bit (bit 7 of CSTF) is 0 , indicating that the standby CC was receiving on the standby bus. CBA (bit 6) is set to 1 , indicating bus 1 was active. CBO (bit 5) is 0 , indicating the standby CC was sending on the standby bus. PFC (bit 7 of SESA) is set to 1 , indicating the active CC saw an error in the computation of the parity check over the data and address. Since the even-numbered CSs in a normal configuration are connected to the active CC, the
even-numbered CS caused the interrupt. Looking at the failing CS address $\emptyset .00177743$ and dropping off the four least significant digits leaves $\emptyset .17$. Subtracting 1 leaves 16 , which, when converted to decimal, shows that this address belongs to the H-half of CS14. Comparing the active B register with the complement of the data in the ARO register, bit 10 shows a mismatch. Since the active CC detected the error, and a 1 was received instead of a 0 , the logic associated with bit 10 in the H-half of CS 14 should be checked.

Example: SP CS ERROR

6.10 Bits 3 and 10 of ILAF register (Fig. 14) indicate a normal D-level interrupt occurred. The system was in a routine matching mode as indicated by the MOCR register (four least significant bits equal Ø.1401). CBO and CBT bits are zeros (CSTF register), indicating that the standby CC was sending and receiving on the standby bus. CBA bit was set to 1 , indicating bus 1 was active. PFC bit (bit 7 in SESA) is 0 , indicating that the standby CC saw the error. Checking the ARO register, it shows the complement of the data in the B register. Comparing the two registers after complementing the ARO register shows that the standby CC received an extra bit in bit position 3 . The failing address in the DR1 register belongs to an SP CS.
6.11 A D-level interrupt can be generated on a CC read of a faulty SP CS. On a CC write into a făulty SP CS , an SP interrupt occurs. If a D-level interrupt should occur on a write of SP CS, the SP circuitry that interfaces the CC and SP CS would be suspect.
6.12 Next, check the match cycle flip-flops which are in bit positions 12 through 20 of the MOCR/MACF registers (Fig. 15). Bit position 16 indicates that a read order was being performed. Bit 19 indicates that the match cycle counter has a value of 2 . Knowing that the system is performing a read instruction indicates an SP CS fault. The failing address was checked and the results corresponded to the address range of SP CS 1, H -half, an odd-numbered store.
6.13 Since the SP CSs are normally configured in the same way as the CC CSs (even-numbered to this active system), SP CS 1 and also the logic in the standby $S P$, which permits the $C C$ to communicate with the SP CS , was suspected.

NOTES:

1. FROM THE FAILING AdDRESS DROP THE FOUR LEAST SIGNIficant digits, subtract one from the remaining number and convert the results fROM OCTAL TO DECIMAL. THIS GIVES THE CS NUMBER WITH THE FAILING address in its h-half. the preceeding cs also contains this ADDRESS IN ITS G-HALF.

EX: 1 - FAILING ADDRESS $=\boldsymbol{\phi} .126032$
2 - DROP FOUR LS DIGITS = $\boldsymbol{\phi} .12$
3- SUBTRACT ONE = $\varnothing .11$
4-CONVERT TO DECIMAL $=9$
5 - the failing address is in the h-half of cs no. 9 and the G-HALF OF CS NO. 8
2. If no mismatch is shown between the active br and the standby br (aro) the parity bit 23 caused the failure.
3. REVIEW THE CS STATUS PRINTOUT FROM THE PREVIOUS hOUR, AND if this store was out of service, determine if it was restored by the SYSTEM AUTOMATICALLY OR MANUALLY.
caution:
if other half goes into trouble the cs with the checkerboard test
may be put on line with the checkerboard information in the cs.
run these test during periods of light traffic.

Fig. 12—D-Level Interrupł Analysis Flowchart

MA14 CC INT

Fig. 13-Example of CC CS Error

Example: CC CS ERROR

6.14 Bits 3 and 10 of ILAF register (Fig. 16) indicate that a valid D-level interrupt occurred. MOCR indicates that the system was operating in routine matching mode (0.1401 in the four least significant digits). CSTF indicates that the standby CC is sending and receiving on the standby bus (CBO and CBT reset) and that bus 1 was active (CBA set). The active CC saw the error since PFC bit (bit 7) in SESA register is set. The failing CS address (DR1) shows it to be the H-half of CS 14, an even-numbered store. Comparing the active CC B register with the complement data in the ARO register, bit 8 was found to be failing. The circuitry associated with bit position 8 is suspected.

DETECTING FAILING CALL STORE FROM D-LEVEL INTERRUPT

6.15 A brief analysis of the MA14 CC INT printout will give the failing CS. Using the contents of B8 DR1 (see example in 6.18), drop the rightmost 4 digits as shown in example. Take the remaining

2 digits, convert the octal digits to decimal, and subtract 1. This number should now equal the CS that failed, but it may be necessary to subtract 1 again from this number depending on which CC detected the error.
6.16 On CSs the active CC addresses the even-numbered CSs. The standby CC addresses the odd-numbered CSs. To determine which CC detected the trouble, refer to B8SESA on the MA14 CC INT printout. Convert the octal number to binary. If bits 5,6 , and 7 equal 0 , the standby CC detected the trouble on a parity failure. If bits 5,6 , and 7 do not equal 0 , the active CC detected the trouble unless the routing FFs indicate that ASW failure was on the standby bus.
6.17 As shown in the example (6.18), the active CC detected the trouble. Since the number that was obtained in 6.15 is now an odd number, subtract one again; this will give $\mathrm{CS} 22_{10}$ as the failing CS.


```
CSTF
BIT 6 (CBA) = 1 = BUS 1 ACTIVE
BIT 7 (CBT) = 0 = STANDBY CC RECEIVING
    ON STANDBY BUS
```

Fig. 14-Example of SP CS Error

buffer REGISTER BITPOSITION	NAME OF BIt	AcCESS (SEE NOTE)			COMMENTS	Location in Sd
		R	w	c		
00						
01						
02						
03						
04						
05						
06						
07						
08						
09						
10						
11						
12	M0	X				FS 85
13	M1	X				Control
14	PU	X	X	X	This flip-flop is set on peripheral orders	
15	WR	X	X	X	This flip-flop is set on write orders	
16	RE	X	X	X	This flip-flop is set on read orders	
17	EC	X	X	X	This flip-flop is set on error correction	
18	MC13	X	X	X		
19	MC23	X	X	X		
20						
21	MRC	X	X	X	Defines which CS bus is to be used for CS maintenance and control word reception	
22	MRP	X	X	X	Defines which PS bus is to be used for PS maintenance and control word reception	

Note: R - Bit position can be read with read-memory orders.
W - Bit position can be written into with write-memory orders.
C - Bit position can be written into with control-write orders.
Fig. 15-MACF Register Layout

Fig. 16-Example of CC CS Error No. 2
6.18 The location of valid registers for a D-level interrupt is as shown below:

7. ERRORS

7.01 Normally if the CS takes errors, the system will generate a D-level interrupt and request
a diagnostic on the CS. Occasionally, the CS will take a random error due to a marginal circuit pack or some intermittent trouble. Figure 17 gives a flowchart approach to locating error problems.

Fig. 17-Error Troubleshooting Flowchart
7.02 To trap random errors, two input messages can be used. The PCS-DUMPERR-. message will give the output messages PS08 and PS09 and a raw data dump. The PCS-TRAPERR-a. message, where a is equal to 2 for CC CSs and a is equal to 3 for SP CSs, will cause the PS08 and PS09 output messages to print on the TTY if an error
is detected. This message may time out before an error is detected. The PS08 and PS09 messages are also generated automatically by the system on a routine basis. The PS08 and PS09 output messages and the procedure for breaking them down is given below. (Refer to OM-1A001 for other breakdowns.)

PS09

7.03 To locate errors caused by a marginal circuit pack, it may be necessary to run the CS margin checks. Section 231-006-501 gives the complete procedure for this test.
7.04 Another method for trapping random errors is to use the \emptyset FL-EXEC-18 message. This off-line message causes the contents of the active CC and the buffer registers to be printed (dumped) on the TTY when a CS single error occurs. The dump is contained in the TW02 output message which consists of 32 words of 8 octal digits each.

Note: ØFL-EXEC-18 message will cause a dump if a bad PS word is read but not if control is transferred to a bad PS word. Check word 22 of the TW02 output message to see what type of error has occurred. If a valid CS single error has occurred, words 11 and 12 of the TW02 message will show the address of the CS error, and words 13 and 14 will show the contents of the word.
7.05 After completion of the dump, use the ØFL-MODE-03. message followed by CC-RESTØRE--- message to deactivate the trapping routine.

8. MEMORY CURRENTS

A. General

8.01 This part describes the memory currents in the No. 1 ESS 8K CSs. It is intended to help locate troubles in the case of faulty memory currents.
8.02 The analysis of memory current waveforms is much more complex than the analysis of logic type voltage waveforms. For example, a slight error (in the order of 5 to 10 percent) in rise time or amplitude may be very hard to detect, but may cause the CS to malfunction. It should be noted that the memory is an analog machine
as far as the currents are concerned, making their amplitude and waveshapes critical.

B. Types of Currents in the CS

Main Drive Currents

8.03 There are two identical sets of current drivers for both the X and Y access. Each set consists of two A97 circuit packs (Fig. 18). The current from both drivers can be steered into either the G-half or H-half. Each consists of 64 X coordinates and 64 Y coordinates, representing 4096 addresses (Fig. 19). The access circuitry steers the currents to the proper coordinate.

Auxiliary Drive Currents

8.04 The auxiliary drive currents are supplementary currents and are used to add or subtract correction currents to the main drive currents to compensate for drift. They are generated by two A130 circuit packs, one for each access (Fig. 18). Their variable amplitude is only a fraction of the access current amplitude. The magnitude is controlled by a servo system. Note that there is a READ as well as a WRITE auxiliary current, the magnitude of both being the same. The auxiliary currents flowing into the A130 circuit packs are four times larger than the auxiliary currents flowing through the memory modules due to a 4 to 1 turns ratio of the transformers on the A100 circuit packs. The waveforms of the primary auxiliary currents are shown in Fig. 20, representing a superposition of 16 pictures. Shown are both the READ and WRITE auxiliary currents with all possible current amplitudes corresponding to all states of the X-servo counter ranging from 0 to binary 7.

Inhibit Currents

8.05 The inhibit currents are two independent sets of inhibit drivers, one for the G-half and one for the H-half. In each set one inhibit driver is associated with one of the 24 -bit planes. Two inhibit drivers are mounted on an A96 circuit pack, one driving a bit plane in the G-half, the other driving a bit plane in the H-half. Since only one half is being addressed at a time, only one driver per circuit pack may be fired. The waveforms of the inhibit currents are shown in Fig. 21.

C. Amplitude Control of the Memory Currents

Current Regulating Scheme

8.06 The readout signal of the memory module is temperature dependent. In order to keep the readout of the memory at a constant level, the currents have to be adjusted for temperature compensation. A temperature sensitive regulator provides a reference voltage to all access and inhibit current drivers whose current amplitude is proportional to this reference voltage. This regulating scheme is indicated in Fig. 22. An A98 circuit pack serves as the temperature sensitive regulator while seven A133 tracking regulators share the load.
8.07 The output of the A98 circuit pack has a temperature coefficient of -14 millivolts per degree Celsius (C). This circuit pack is factory adjusted to $+5 \pm .010$ volts at 26 degrees Celsius. However, with an ambient of 25 degrees Celsius and the circuit pack plugged in place in the CS, its output voltage is somewhat lower due to an increased temperature within the frame of 5 degrees to 7 degrees Celsius at that particular location.
8.08 Note that the current values given in Fig. 21, 23 , and 25 correspond to a memory module temperature of 25 degrees Celsius. The A98 circuit pack causes these currents to change as a function of temperature as follows:

Access currents (Fig. 23 and 25): $-1.0 \mathrm{ma} /{ }^{\circ} \mathrm{C}$
Inhibit currents (Fig. 21): $-0.8 \mathrm{ma} /{ }^{\circ} \mathrm{C}$

Servo System

8.09 The A98 temperature coefficient, which determines the regulation, however, is not accurate enough over the operating temperature range to maintain a constant level of the memory readout signal. The servo system compensates for any additional current deviations which might occur. Separate independent acting servo systems are used for both X and Y access circuits; inhibit currents are not stabilized by a servo system. Figure 18 shows a simplified block diagram of the X-servo system.
8.10 The A131 package is a current amplitude detecting device. The two logical outputs indicate one of the following three conditions: the READ and WRITE currents are either too high,

Fig. 18-X Servo System Block Diagram

Fig. 19-Access Current Leads
correct, or too low. The associated logic circuitry controls a three-stage binary counter. This counter causes the binary-weighted auxiliary currents to flow through the memory module in addition to the main drive currents. One binary step corresponds
to a current increment of 4 ma in the memory and an increment of 16 ma at the A130s.
8.11 If the currents of the A97 drivers have been adjusted properly and the room temperature

TIME SCALE: O.B USEC/DIV.

Fig. 20-Primary X Auxiliary Currents
is approximately 25 degrees Celsius, the servo counters should be in a midrange state, preferably binary 4. This means the servo system is adding 16 ma into the memory. A decrease in the drive current causes the counter to step up, and vice versa.

D. Correct Current Amplitudes

Current Measurements

8.12 In order to determine the absolute magnitude of a current, the measurement should be taken with a calibrated current probe only. Otherwise, errors in the range of ± 5 percent or even larger are very likely to occur. If current standards are not available and a package must be checked (A96, A97, A130), make a relative measurement between several circuit packs.

Access Currents

8.13 Since the amplitude of the access currents is a function of the state of the servo counters, these currents should be measured under the following conditions (Fig. 24).
(a) Both X and Y servo counters clamped to state binary 4 by grounding the following points:

Y SERVO COUNTER X SERVO COUNTER
014-36-19
014-11-19
014-37-19
014-12-19
014-38-8
014-13-8
(b) Write all 0 s in all memory locations, using $\emptyset F L-E X E C-$ message. Refer to Section 231-117-301 for 2 -wire and Section 231-417-301 for 4 -wire for message for office generic.
(c) Memory temperature: 25 degrees Celsius. For different temperatures, the change is $\pm 1.0 \mathrm{ma} /{ }^{\circ} \mathrm{C}$.
8.14 The correct amplitudes are given in Fig. 23 and 25 . Note the slight difference in waveshapes between the X and Y access currents due to impedance differences. The four A97 current driver circuit packs, however, are interchangeable.
8.15 The currents shown in Fig. 23 and 25 flow through any of the coordinate wires shown

$100 \mathrm{ma} / \mathrm{DIV}$.
(c) WRITING OANDI IN A CHECKERBOARD FATTERN

Fig. 21-Inhibit Currents
in Fig. 20. These currents do not flow through any of the black wires, however. These wires are return leads and purposely carry a considerable amount of stray capacitive discharge current.

Inhibit Currents

8.16 The amplitudes of the inhibit currents are controlled only by the reference voltages of the A133 circuit packs. These currents should be measured under the following conditions:
(a) Write all 0 s in all memory locations.
(b) Memory temperature: $25^{\circ} \mathrm{Celsius}$. For different temperatures the correction is ± 0.8 $\mathrm{ma} /{ }^{\circ} \mathrm{C}$.
8.17 The correct amplitudes are given in Fig. 20. In case of writing a 1 , the inhibit drivers are fired at the end of the WRITE cycle. The significance of the narrow post write disturb pulse is to reduce the shuttle noise due to nonideal properties of the magnetic material. The inhibit currents can be monitored right at the terminals of the A96 circuit packs.

E. Failures Affecting Memory Currents

8.18 The following is a list of failures affecting the memory currents in the order of likelihood of occurrence. All these failures may cause memory malfunctions.

Fig. 22—Current Regulating Scheme Block Diagram

```
R=265 ma+5 mO FOR MEASUREMENT CONDITIONS
W=285 mat5 ma SEE PARAGRAPH 8.13
```


WRITING O IN ALL MEMORY LOCATIONS. PICTURE SHOWS CURRENTS THROUGH A BUNDLE OF 16 OUT
OF 64 Y -ACCESS LEADS.
SEE FIG. 19 FOR
LOCATION OF THESE LEADS.

WRITING IIN ALL MEMORY LOCATIONS.

WRITINGOANDIIN A CHECKERBOARD PATTERN. THIS PICTURE SHOWS THE CURRENTS THROUGH THE SAME 16 LEADS AND IS A SUPERPOSITION OF THE TWO PICTURES SHOWN ABOVE.

Fig. 23-X Access Currents

Fig. 24-Y Access Currents

WRITIN O IM ALL MEMORY LOCATIONS PICTURE SHOWS GURRENTS THROUGH A BUNDLE OF 16 OUT OF 64 X-ACCES 8 LEADS. SEE FIG. IG FOR LOCATION OF THESE LEAD.

WRITING I IN ALL MEMORY LOCATIONS. THIS PICTURE SHOWS THE CURRENTS THROUGH THE SAME IGLEADS.

WRITING O ANDI IN A CHECKERBOARD PATTERN. THIS PICTURE SHOWS THE CURRENTS THROUGH THE SAME 16 LEADS AND IS A SUPERPOSITION OF THE TWO PICTURES SHOWN ABOVE.

Fig. 25-Faulty Precharge Currents

Access Precharge Circuit Failures

8.19 The purpose of the precharge circuit is to prevent leakage through unselected paths of the coincident current memory system. Failures in the precharge circuit can affect the X or Y currents considerably. However, the precharge circuits are not operated during the READ interval and failures can be detected only during the WRITE interval when the precharging is activated, as shown in Fig. 25a and 25b. Figure 25a shows leakage current through unselected paths. Leakage,
however, causes current robbing from selected paths, as shown in Fig. 25a and 25b. Note that the waveform appears almost perfect. The trouble can be easily located by checking the operation of the precharge switches. These are the A94 circuit packs in locations 010-04, 012-04, 010-46, and 012-46. (See SD-1A12Y, FS 8 and FS 9, B-sheets.) Fourteen of the sixteen switches are simultaneously closed during any WRITE interval; the set of closed switches is a function of memory address location and operation of all switches can be observed by sequentially addressing all 4096 words of either
memory half. The black wires between the access circuitry and the memory modules are return leads and carry capacitive discharge currents supplied by the precharge circuit. These currents do not give any direct indication of the CS performance.

Open Access Lead

8.20 This trouble is most likely to occur within a memory module or in a memory connector. If a particular address wire with an open is selected, both READ and WRITE currents split and are forced into unselected paths. There they show up as leakage as illustrated in Fig. 26.
8.21 This failure is unlike a precharge fault where leakage occurs during the WRITE cycle only (Fig. 25a). Leakage as a result of an open lead occurs during both READ and WRITE intervals.

Excessive Storage Access Diodes

8.22 Figure 27a illustrates the result of a bad diode in a WRITE current path. Its reverse storage current adds to the READ current of the subsequent cycle, provided that the store is running at high speed. At low repetition rates, the diode has enough time to recover and no trouble can be detected. Figure 27b shows the effect of a bad diode in the READ path, which deteriorates the subsequent WRITE current pulse. This condition, of course, is not repetition rate sensitive. The
heavy trace in both figures indicates the undisturbed currents.

9. BLOWING FUSES

9.01 Replacing a blown fuse may not clear the trouble. If, upon replacing the fuse, it again blows, this condition is indicative of an existing fault in a circuit pack which causes the fuse to blow (Fig. 28).
9.02 To clear this type of trouble, locate the faulty pack causing the fuse to blow. The following steps should be considered and followed accordingly.
9.03 If any circuit packages are listed under the trouble number issued by the system for this blown fuse, replace each pack listed (one at a time) and the fuse simultaneously. If, upon replacing a pack, the fuse ceases to blow when power is returned to the store, this pack should be the faulty one and the trouble should be cleared.
9.04 If the above method failed to clear the trouble (fuse continues to blow) or if no circuit packages were listed under the trouble number issued by the system, remove all packs associated with this fuse. This information is supplied in SD-1A124, section D. Here are listed all circuit packs associated with each fuse. The

> CURRENTS THROUGH THE SAME IG LEADS AS SHOWN IN FIG. 24 A. ONE LEAD IN A Y-CONNECTOR IS OPEN. NOTE LEAKAGE DURING BOTH READ AND WMITE INTERVALS DUE TO CURRENT SPLITTING.

Fig. 26-Faulty Module Connector

(a)

GURRENTS THROUGH 16 LEADS
AS SHOWN IN FIG. 242
BAD DIODE IN"WRITE"
CURRENT PATH OF Y ACCESS
CIRCUIT. RESULT: DEFORMED
READ CURRENT WAVEFORM
OF SUBSEQUENT CYCLE AT HIGH REPETITION RATE (LIGHT TRACE).

Fig. 27 -Effects of Access Diodes with Large Reverse Storage Conduction
maintenance procedure for this type of trouble is as follows.
(a) Note the fuse that continues to blow and locate it in SD-1A124, section D.
(b) Remove all circuit packs associated with that fuse.
(c) Replace the fuse and return power to the CS. If the fuse again blows, go to 9.05 . If the fuse does not blow, turn off power, return one pack to the store, and turn on power. Repeat until fuse blows again. The pack just replaced and caused the fuse to blow should be the faulty circuit pack.

Caution: Replacing circuit packs with power on can damage the circuit packs.
9.05 If the above method failed to clear the trouble and the fuse continues to blow, remove all voltage regulators (all A64, A65, A66, A67, A98, A101 and A133 packs), replace the fuse, and return power to the CS. If the fuse blows again, go to 9.06 . If the fuse does not blow, turn off power, return one regulator pack, and turn on power. Repeat this step until fuse blows again. The pack just replaced and caused the fuse to blow should be the faulty circuit pack.
9.06 If the above method failed to clear the trouble and the fuse continues to blow, check the CS MONITOR BUS voltage monitoring circuitry in the CS. Check the monitoring circuitry relays for shorted contacts; also check behind the CS for shorted relay contact leads. If a shorted contact is found and repaired, replace all voltage regulators checked via this contact and all voltage regulators that are checked using the monitor bus lead

Fig. 28-Flowchart for Locating Faults of Blown Fuses
associated with this shorted contact. This information is located in SD-1A124 on B105. If no trouble can be located in the voltage monitoring circuit, go to 9.07.
9.07 If procedures in 9.03 through 9.06 failed to clear the trouble, check behind the CS for
wire strappings and other shorts in the vicinity of the packages as determined by procedures in 9.04 through 9.06.

[^0]: 250261093750
 UNIV TBL NO.
 724515258141

