ANALYZING AND LOCATING TROUBLES(SHORTED FERRODS)
IN SCANNERS USING FERRODS TYPE $1,2,3,4$, or 5 NO. 1 ELECTRONIC SWITCHING SYSTEM
CONTENTS PAGE CONTENTS PAGE

1. GENERAL 1
2. LOCATION OF SCANNER TYPES IN EQUIPMENT2
Line Scanner (4 to 1 Concentration)2
Line Scanner (2 to 1 Concentration)2
Junctor Scanner 2
Universal Trunk Scanners 2
Master Scanners 2
3. EXAMPLE OF SHORTED FERROD 2
4. TESTING FOR SHORTED FERRODS 3
Apparatus 3
Ferrods Shorted to Voltage Source 3
Ferrods Shorted to Ground 3
5. ISOLATION OF SHORTED FERROD 3
FIGURES
CONTENTS
PAGE
6. Line Scanner With $\mathbf{4}$ to $\mathbf{1}$ Concentration 5
7. Line Scanner With 2 to $\mathbf{1}$ Concentration 6

NOTICE

Not for use or disclosure outside the Bell System except under written agreement
1.03 The types of scanners used in the No. 1

ESS are the line scanners (4 to 1 and 2 to 1 concentration), junctor scanners, universal trunk scanners, and master scanners. Each scanner consists of a ferrod sensor matrix and a controller that is duplicated. The ferrod sensors are scanned in groups of 16 at specified intervals of time, depending on what information the system desires.
1.04 The various types of scanners that are used in the No. 1 ESS are listed in Table A. Each scanner uses a ferrod sensor assembly that is listed in the table along with the ferrod matrix size. Also shown is the location of the scanner and the function it performs.

2. LOCATION OF SCANNER TYPES IN EQUIPMENT

Line Scanner (4 to 1 Concentration)

2.01 The line scanner (4 to 1 concentration) has an equipment arrangement as shown in Fig. 1. The home frame and the mate frame each contains 512 ferrods (256 -type 1 B assemblies). The home frame contains the controls for the ferrods in both the home and mate frames.
2.02 Each ferrod is designated by five digits based on the position of the associated line switch (see bottom of Fig. 1). From left to right, the first digit corresponds to the bay (0 or 2); the second, to the line concentrator (0 through 7); the third, to the switch number within the line concentrator (0 through 3); and the remaining two, to one of the 16 inputs (00 through 15) on the switch input. A group of 16 ferrods is associated with each line switch. One such group of line scanner ferrods is shown shaded in the upper left of Fig. 1.

Line Scanner (2 to 1 Concentration)

2.03 The location of the scanner in the line switching equipment with 2 to 1 concentration is shown in Fig. 2. Each home frame contains 512 ferrods and the controls for 1024 scan points. The associated mate frame contains 512 ferrods and uses the controls mounted in the home frame. Each line link network has cutoff contacts between its lines and the line scanner.

Junctor Scanners

2.04 Each junctor circuit has two scan points.

One ferrod is used to scan the calling customer line, and the other ferrod is used to scan the called customer line. The ferrods located in junctor circuits have seven digit designations (Fig. 3). These designations are based on the location designations of the associated circuits which the ferrods scan.

Universal Trunk Scanners

2.05 The ferrod designations (Fig. 4 and 5) are based on the frame location of the associated trunk circuits. Each trunk circuit has two supervisory scan points similar to the scan points for each circuit in the junctor scanners.

Master Scanners

2.06 The master scanner is shown in Fig. 6. The ferrods are designated by four digits (Fig. 7). Master scanners provide supervisory and information access for the control unit of the system. Scan points are assigned into two areas called supervisory and directed fields. Some scan points have fixed assignments that is, the same location in the first master scanner (MS-00) of all No. 1 ESS central offices. Other scan points have group assignments that is, they are assigned to adjacent positions in a given master scaner row. Nonfixed assignments are job-engineered for each No. 1 ESS central office. Assignment of master scanner points is covered in SD-1A272-01.

3. EXAMPLE OF SHORTED FERROD

3.01 Figure 8A shows the readout circuit for one scanner bit. One of the ferrods is shown with a short between the readout winding and the control winding of a ferrod connected to a customer dial pulse receiver (CDPR). Dial pulses from the CDPR cause -48 volt to ground voltage pulses on the readout loop. The positive going -48 volt to ground transition is differentiated and coupled through the interwinding capacitance (Cps) of transformer (T1) to the base of transistor Q2 in both A50 circuit packs. This causes false "one" bits to be transmitted onto the scanner answer buses from the scanners with shorted ferrods. A positive going transition as small as 20 volts on the readout loop is sufficient to cause marginal "one" bits to be sent out on the scanner answer
buses. The pulses are sent out on the buses even if the scanner with the shorted ferrod is not enabled and the strobe pulse to A 50 is not present. Therefore, a false "one" received on a scan order can come from any scanner in the office as well as the scanner frame being addressed.
3.02 Shorts in line-scanner, loop-start ferrods generally cause 24 -volt transitions on the readout loop which produce marginal pulses on the scanner answer buses. Because of the difference in sensitivities of the cable drivers and receivers on the scanner answer buses, the marginal pulses are frequently seen as false "one" bits by only one CC or SP when there are 24 -volt transitions on the readout loop. The marginal pulses cause SP match errors and C-level interrupts whereas the larger amplitude pulses produced by the 48 -volt transitions on the readout loop cause the troubles described above in 3.01 .

4. TESTING FOR SHORTED FERRODS

Apparatus

4.01 The following apparatus is required when testing for shorted ferrods:
(a) Clip-on de milliammeter, HP 428B or equivalent
(b) Oscilloscope, Tektronix 465 or equivalent
(c) 200 K to 500 K ohm resistor $-1 / 4$ watt.

Ferrods Shorted to Voltage Source

4.02 Shorted ferrods can be found by using an oscilloscope with DC input coupling to observe the voltage on each of the 16 readout loops. The scanner readout loops should have no DC connection to ground or to a voltage source. Either one of the input pins on the A 50 s or the A 49 pack can be used to observe the voltage on a readout loop. If a negative or positive voltage exists on the loop (generally -48 volts or +24 volts), one or more of the ferrods on that readout loop have shorts to a voltage source.

Ferrods Shorted To Ground

4.03 To test for ferrods with shorts to ground +24 volts can be applied to the readout loop through a 200 K to 500 K ohm resistor as shown in

Fig. 8B while observing the voltage on the loop with the oscilloscope. If the voltage does not go to +24 volts, one or more of the ferrods is shorted to ground.

5. ISOLATION OF SHORTED FERROD

5.01 The ferrod can be isolated by connecting +24 volts to the loop through a resistor as shown in Fig. 8C. Measure the current between the ferrods with a Hewlett Packard clip-on DC milliammeter (or equivalent) on the one milliampere range. As shown in Fig. 8B, the ferrod can be found since the direction of the current is always toward the short. When the current probe is moved beyond the short, the direction of the current reverses.
5.02 Since the shorted ferrods can be caused by the pins on the front or back of the ferrods being shorted together by extérnal wiring, the wiring should be checked before attempting to use the current meter to isolate the shorted ferrod. The removal of the short can be verified by observing the oscilloscope when the wiring is moved. If it is necessary to remove the ferrod, normal use of jumpers for retaining continuity of the interrogate and readout loops should be observed.
5.03 On some scanners the wiring between ferrods is too tight to permit the DC current probe to be connected around the readout wire. On these scanners, the current probe can be attached as shown in Fig. 8C and the +24 volts applied at various points along the loop, such as point A and B. The current indicated by the meter will become less and less the closer the +24 volts is applied to the faulty ferrod. The current indicated by the meter will become less and less the closer the +24 volts is applied to the shorted ferrod. When the +24 volts is applied to the opposite side of the ferrod, the direction of the current will reverse. To obtain a measurable amount of current, it may be necessary to reduce the value of the resistor in series with the +24 volt source to 50 K ohms.
5.04 If a readout loop is shorted to +24 volts, a ground instead of +24 volts should be connected to the loop through a series resistor to permit the shorted ferrod to be isolated by measuring currents.

TABLE A
TYPES OF SCANNERS

TYPE OF SCANNER	FERRod SEnSor ASSEmbly	matrix Size	location	FUNCTION
Line (4 to 1)	1B	$\begin{gathered} 16 \text { by } 32 \\ (512) \end{gathered}$	Line Switching Frame (4 to 1), home and mate	Detection of call origination by customer (off-hook)
Line (2 to 1)		16 by 32 (512)	*Line Switching Frame (2 to 1)	
Junctor	1C	16 by 32 (512)	*Junctor Frame	Supervision of intraoffice calls
Universal Trunk	1C and 1D	$\begin{gathered} 16 \text { by } 32 \\ (512) \end{gathered}$	*Universal Trunk Frame	Supervision of interoffice calls
Master	1D	$\begin{gathered} 16 \text { by } 32 \\ (512) \end{gathered}$	Master Scanner Frame	Monitoring of points within the electronic central office for various purposes such as routine tests, trouble diagnosis, administration, and other requirements.
	1E	$\begin{aligned} & 16 \text { by } 64 \\ & (1024) \end{aligned}$		

*For each pair of mate and home frames, the control for both 512-point matrixes are located on the home frame.

LINE SWITCHING FRAME

(4:1 CONCENTRATION)

NOTE: EACH FERROD SCANNER IS DIVIDED INTO 8 AREAS (0-7) NUMBERED TO AGREE WITH THE LINE CONCENTRATOR SWITCHES TO WHICH THE LINE FERRODS ARE WIRED.

Fig. 1-Line Scanner with 4 to 1 Concentration

8 SHADED PAIRS OF FERRODS ARE SCANNED SIMULTANEOUSLY
home line switching frame
(2:1 CONCENTRATION)

FERROD DESIGNATION
NOTE:
THE MATE FRAME IS IDENTICAL TO THE HOME FRAME EXCEPT THAT IT DOES NOT CONTAIN SCANNER CONTROL CIRCUITS.

Fig. 2-Line Scanner with 2 to 1 Concentration

8 SHADED PAIRS OF FERRODS ARE SCANNED SIMULTANEOUSLY
$L=T Y P E$ IC $R=T Y P E$ IC

Fig. 3-Ferrod Designations in Junctor Scanner

Fig. 4-Ferrod Designations in Universal Trunk Scanner

Fig. 5-Universal Trunk Frame Ferrod Matrix

Fig. 6-Master Scanner

Fig. 7-Ferrod Designations in Master Scanner

FiG. 8 A

FIG. $8 B$

FIG. 8 C

Fig. 8-Partial Schematic of Scanner Ferrod Matrix

FIG. A

FIG. B

SCALE FOR ALL GRIDS VERT - 2V/DIV HORZ- 0.5 USEC/DIV

Fig. 9—Oscilloscope Tracings of A50 Output
47 MA16 SP INT 67
$00016670 \quad 0010567300047740 \quad 01016670 \quad 00026430 \quad 14157777$
$00000260 \quad 00034210 \quad 00000000 \quad 00010000 \quad 00400001 \quad 00026426$
$\begin{array}{lllllll}11624413 & 21414000 & 27600010 & 00000001 & 04004445 & 00001003\end{array}$
$\begin{array}{lllllll}00000347 & 32726430 & 31726427 & 00000000 & 00100210 & 00011570\end{array}$
47 DR01 TEL NOS CPD 3
ATP
47 SP12

00016670	00105673	00047740	01016670	00026430	14157777
00000260	00034210	00000000	00010000	31726427	32726430
00400001	00026426	00000001	04004445	00000002	27600010
00000347	00276000	03506141	00011570	00013213	00001003
00026432	00130270	00047740	01016670	00000103	14000000
00000300	00100210	00000000	00000000	00100210	00000000
00400001	00026431	00004001	06407444	00000002	00000000
00000347	00330000	00402141	00001564	00013214	00000003

Fig. 10-Sample A Printout

```
**05 DR01 TBL NOS CC 1
    ATP
**07 CT0407 46 743 2950 0 42 25
    10 MA14A
                            00000000}001667704 01413153 01670060 01562432 01674601
**10 MA16 SP INT }6
            00016300 00000000 00155740 01016300 00024402 00040000
            00000000 00177777 20000000 00040000 00400001 00024400
            11050164 21404000 27600100 00000000 04004405 00001017
            00000347
    1 1 \text { SP12}
        00016300 00000000 00155740 01016300 00024402 00040000
        00000000 00177777 20000000 00040000 31724401 31724401
        00400001 00024400 00000000 04004405}000000002 2760010
        00000347 00276000 03512140 00011520 00012200 00001017
        00016300 00000000 00155740 01016300 00024402 00150000
        00000000 00177777 20000000 00150000 00150000 00040000
        00400001 00024400 00000000 04004405 00000002 27600100
        00000347 00330000 00402140}000011460 00012200 00001017
```

Fig. 11-Sample B Printout
40 SA03 ERROR 2344$0000006500000000 \quad 0173560400076066$$00074377 \quad 00074377 \quad 0173547100074377$
40 MA14A$0007351201630065010243450161074401611021 \quad 01607054$
40 MA16 SP INT 67$\begin{array}{lllllll}00016514 & 00040055 & 12251740 & 01016514 & 00030324 & 00070157\end{array}$$00001220 \quad 0010776000000000 \quad 00000100 \quad 00400001 \quad 00030322$$01611021 \quad 21404000 \quad 27600020 \quad 00000001 \quad 04004401 \quad 00001013$$00000347 \quad 35730323 \quad 35730323 \quad 00040155 \quad 00141155 \quad 00011520$
41 SP12

00016514	00040055	12251740	01016514	00030324	00070157
00001220	00107760	00000000	00000100	35730323	35730323
00400001	00030322	00000001	04004401	00000002	27600020
00000347	00276000	03512140	00011520	00014151	00001013
00016514	00040055	12251740	01016514	00030324	00171157
00001220	00107760	00000000	00101100	00141155	00040155
00400001	00030322	00000001	04004401	00000002	27600020
00000347	00330000	00402140	00011460	00014151	00001013

Fig. 12-Sample C Printout

