7508

M

BELL SYSTEM PRACTICES
AT&TCo SPCS

SECTION 231-045-430

Issue 2, February

PERIPHERAL UNIT CONTROLLER
SOFTWARE SUBSYSTEM DESCRIPTION
2-WIRE NO. 1/1A ELECTRONIC SWITCHING SYSTEM

CONTENTS PAGE

1. GENERAL P i ., RN O T 2
INTRODUCTION s RS 3 5 o= o kN 2
SCOPEOF SECTION 2

2. PUC OVERVIEW T 2
CONFIGURATION 2

A. ESS-PUCInterface 3

B. Scan Memory e T G 6

3. PUC SOFTWARE OVERVIEW £ e b 8
FUNCTION 8

A. PUC-ESS Communication g N s 8

B. PUC Maintenance 9
SUBSYSTEM PROGRAMS § 5% e 9

4. PUC COMMON SOFTWARE PROGRAM DE-
SCRIPTION . . « & « & = o w @« =« .9

PERIPHERAL UNIT CONTROLLER INITIALIZA-

TION (PUCI) R T e 9
A. Function 9
B. Operation SERY BT TN o R | ¢

PERIPHERAL UNIT CONTROLLER INPUT/

OUTPUT CONTROL (PUCO) SRR B 1)

A. Function 12

B. Operation R I A N T |
NOTICE

CONTENTS

PERIPHERAL UNIT CONTROLLER UNLOADER
(PUCU)

A. Function
B. Operation

PERIPHERAL UNIT CONTROLLER F-LEVEL REC-
OGNITION (PUFR)

A. Function
B. Operation

PERIPHERAL UNIT CONTROLLER F-SCAN
(PUFS)

A. Function
B. Operation
STATE CONTROL MODULE (PUCO0-PUCS8)
A. Function
B. Operation
DIAGNOSTIC INTERPRETER (DIAL)
A. Function
B. Operation
DIAL PHASE TABLE (DYLT)
A. Function
B. Operation

PERIPHERAL UNIT CONTROLLER DIAGNOSTIC
ROUTINES (PUCR)

Not for use or disclosure outside the

Bell System except under written agreement

Printed in U.S.A.

1982

PAGE

13

13

13

15

15

15

15

15

15

16

16

18

18

19

19

19

19

19

Page 1

SECTION 231-045-430

CONTENTS PAGE
A. Function 19
B. Operation 19

PERIPHERAL UNIT CONTROLLER DIAGNOSTIC
(PUO1)

A. Function
B. Operation

PUC DIAGNOSTIC DATA ANALYSIS (PUDA)

A. Function
B. Operation

PERIPHERAL UNIT CONTROLLER ERROR ANAL-
YSIS (PUEA)

A. Function

B. Operation

5. ABBREVIATIONS AND ACRONYMS
6. REFERENCES
Figures
1. PUC Block Diagram
2. Block Diagram of Hardcore
3. ESS-PUC Interface
4. Mode and Enable Circvit Block Diagram
5. Data Input FIFO (DIF) and DIF Controller
(DIFC) Block Diagram S
6. DIF File Block Diagram
7. Block Diagram of SCAM
8. PUC Software Subsystem Functional Inter-
face
9. PUCI Program Structured Diagram

Page 2

21

21

21

23

23

23

24

24

25

27

28

11

CONTENTS PAGE
10. PUCU Program Structured Diagram . . 14
Tables
A. PUC Subsystem Common Programs . . 9
B. PUCI Program Units c o B o 2 =10
C. PUC Access Route Configurations . . . 26
1. GENERAL
INTRODUCTION

1.01 This section describes the functional opera-

tion of the peripheral unit controller (PUC)
software common programs for the No. 1/1A Elec-
tronic Switching System (ESS).

1.02 This section is reissued to include pidents

PUDA and PUEA. Change arrows are used to
indicate these additions and other significant
changes.

1.03 This description of the PUC software pro-
grams is based on the » 1E7 and 1AE74 generic
programs.

1.04 Part 5 provides a listing of the abbreviations
and acronyms used in this section and Part 6
contains additional reference material.

SCOPE OF SECTION

1.05 This document delineates the PUC software
subsystem as follows:

e Part 2—PUC Operational Overview

e Part 3—PUC Software Overview

e Part 4—PUC Common Software Programs.
2. PUC OVERVIEW
CONFIGURATION

2.01 The PUC is a general purpose microprocessor
based system which controls the digital car-
rier trunk (DCT) and data link (DL) facilities.

2.02 The PUC, Fig. 1, consists of two duplicated
controllers, each consisting of a hardcore,

- @ @

€

p

® o

@ ¢ o

memory, ESS-PUC interface, and a PUC-peripheral
interface. The controllers are normally operated in
the duplex mode, synchronized by means of a clock.
They are initially brought into sychronization by a
firmware routine coordinated by the two controllers.

TO/FROM ESS TO/FROM ESS
i L i
AV4 AV
PERIPHERAL BUS CIRCUITS
4N AN

—
Vv \V4
CONTROLLER ¢ r CONTROLLER 1
PUC
ESS-PUC INTERFACE ¢ ESS-PUC INTERFACE 1
L::) HARDCORE ¢ HARDCORE 1 C:

MEMORY + MEMORY 1

PUC-PERIPHERAL
INTERFACE «

PUC-PERIPHERAL
INTERFACE 1

i Y

TO PERIPHERALS TO PERIPHERALS

-

Fig. 1—PUC Block Diagram

ISS 2, SECTION 231-045-430

2.03 Each hardcore contains two microprocessors,

a read only memory (ROM), a random access
memory (RAM) which is a write-read memory, and
aPmaintenance circuit which matches the operations
of the two microprocessor complexes of the hardcore
(Fig. 2).4

MICRO MICRO
PROCESSOR PROCESSOR
NO. O NO. 1
MEMORY MEMORY
NO. O NO. 1

CONTROLLER
NO. O CONTROLLER
MATCHER

®Fig. 2— Block Diagram of Hardcored

2.04 The status and control of the PUC is main-
tained via bipolar central pulse distributor
(CPD) points, unipolar CPD points, and ferrods.

A. ESS-PUC Interface

2.05 A block diagram of the ESS-PUC interface is
shown in Fig. 3.

2.06 The ESS-PUC interface contains a mode and

enable circuit, a first-in/first-out buffer
(FIFO), and a scan memory. The mode and enable cir-
cuit allows the ESS to control and monitor the main-
tenance states of the controllers, enable the FIFO
buffer, and monitor the controller for failures. The
FIFO buffer is a first-in/first-out queue in which the
ESS places orders that are unloaded periodically by
the hardcore. The scan memory is a RAM in which
the hardcore stores call processing and maintenance
information.

Page 3

SECTION 231-045-430

ESS
CPD MODE CONTROL (BIPOLAR) o
MASTER
SCANNER MODE MONITOR i
ENABLE
FIFO ENABLES CIRCUIT
(UNIPOLAR) B
RECEIVER :
CIRCUIT
PERIPHERAL UNIT
ADDRESS BUS (PUAB) ol
FIFO
SCAN ENABLE
(UNIPOLAR) CPU
£
SCANNER ANSWER SCAM
BUS (SCAB)
BUS
DRIVER
CIRCUIT

®Fig. 3—ESS-PUC Interfaced

Mode and Enable Circuit (MEN)

2.07 Figure 4 shows a block diagram of the mode
and enable circuit.

2.08 The mode and enable (MEN) circuit contains

the mode flip-flops which establish the main-
tenance states of the controller, register controller
failures fault flip-flops, and the flip-flops for en-
abling the FIFO. The mode control block permits the
ESS to control and monitor the controller mainte-
nance states in the mode flip-flops. It also contains
bus receivers which interface the CPD leads, and
scanner drivers which operate the control windings
of the scan points used for monitoring the mode flip-
flops. The FIFO enable block of the mode and enable
circuit control the loading of the FIFO. This block
consists of the enable flip-flops and the gating cir-
cuitry. The failure indicator block, which allows the
ESS to monitor the controller for failures, contains
failure flip-flops controlled by the hardcore and scan-
ner drivers, which allow the ESS to monitor the state
of the failure flip-flops.

Data Input FIFO Buffer

2.09 Figure 5 depicts a simplified diagram of the
FIFO.

Page 4

Data Input FIFO Controller (DIFC)

2.10 The data input FIFO controller (DIFC) con-
sists of four parts:

(a) Control signal generator—Generates the sig-
nals required to allow the PUC to read the out-
put registers

(b) Sequencer—Controls the timing of FIFO read
and write operations and prevents simulta-
neous access by the ESS and hardcore

(¢) Address controller—Determines the address
at which FIFO is to be read or written

(d) Maintenance matcher—Compares the outputs
of the duplicated hardware, and if unequal,
signals a failure.

2.11 Control Signal Generator: The control
signal generator is the prineipal means by

which the hardcore accesses the FIFO. The hardcore

performs the following actions on the FIFO:

(1) #Clears the output register which initiates the
movement of the next word in the FIFO to be
moved to the output registerd

(2) Reads the output registers and the words-in-
use counter

@ o -6

‘ . o

ISS 2, SECTION 231-045-430

MASTER (LOW)
DIVORCE (LOW) ——p
SCANNER BUS ACCESS ————
LOCKOUT ————p
HARDCORE ———p»

MODE CONTROL BLOCK > HARDCORE (CONTROL)
b PUC PERIPHERAL INTERFACE (CONTROL)
c:gogugL’;ESE{gggs & SCANNERS (MODE MONITOR)
SCANNER DRIVERS l & SCAN (CONTROL)

INTERNAL ['DIVORCE (LOW) FLIP-FLOP
CONTROL MASTER (LOW) FLIP-FLOP
PERIPHERAL BUS CIRCUIT —— >

(FAILURE CONTROL) DATA INPUT FIFO —»
MODE AND ENABLE CIRCUIT (OTHER) ——
HARDCORE ———————

FIFO ENABLE BLOCK | & PERIPHERAL BUS CIRCUIT (ENABLE VERIFY)
ENABLE FLIP-FLOPS | & DATA INPUT FIFO (BUS SELECT AND ENABLE)

ENABLE CIRCUIT (OTHER
ENABLE GATING MODE AND ()

HARDCORE —————p»

SCAN ——— o

FAILURE INDICATOR BLOCK

FAILURE FLIP-FLOPS | ———p SCANNERS
SCANNER DRIVERS
RESET CIRCUIT

#Fig. 4—Mode and Enable Circuit Block Diagram4

DATA INPUT FIFO DATA INPUT FIFO
CONTROLLER
MODE AND ENABLE —p» | P MODE AND ENABLE
CIRCUIT CIRCUIT
CONTROL SIGNAL INPUT BLOCK
HARDCORE ——— > GENERATOR 5> HARDCORE
PERIPHERAL ————> MEMORY
SEQUENCER WITH BUS CIRCUIT ——> HARDCORE
EXTENSION
DATA CHECKER
ADDRESS
CONTROLLER » > OUTPUT BLOCK
MAINTENANCE
MATCHER
Fig. 5—Data Input FIFO (DIF) and DIF Controller (DIFC) Block Diagram
(3) Forces a mismatch in the maintenance quencer A controls the ESS write operation. Se-

matcher for maintenance checking

(4) Resets counters and pointers

quencer B controls the hardcore read-to-output
register and ensures that reads and writes do not

conflict.
(5) Resets various flip-flops.
2.12 Sequencer: The sequencer contains two 2.13 Address Controller: The address control-
counters: sequencer A and sequencer B. Se- ler contains an input counter, an output count-

Page 5

SECTION 231-045-430

er, and a words-in-use counter. In addition, it
contains a multiplexer which selects the pointer used
to address the memory.

2.14 Maintenance Matcher: The maintenance

matcher contains a comparator which moni-
tors selected signals in the FIFO controller for mis-
matches and signals a failure by setting a flip-flop.
Maintenance access is provided at every input of the
comparator, allowing the hardcore to force mis-
matches, thus verifying the correct operation of the
matcher.

Data Input FIFO (DIF)

2.15 Figure 6 shows a block diagram of the data
input FIFO (DIF).

2.16 The DIF consists of four essential parts:

(a) Input block—Receives the ESS data from the
peripheral unit address bus (PUAB)

(b) Output block—Controls the flow of data to the
PUC

(¢c) Memory—Contains two hundred fifty-six 24-
bit words

(d) Data checker—Generates check bits which are
stored in a check bit memory during write op-
erations and used to check the data for validity.

B. Scan Memory

2.17 The scan memory (SCAM) is the principal

means by which information is passed from
the controller to the ESS. The SCAM appears to the
ESS as a group of six scanners. It appears to the
hardcore as a block of memory. The hardcore can
both read and write the SCAM. The SCAM receives
enables and addresses from the ESS and returns 16
bits of data via the scanner answer bus.

2.18 A block diagram of the SCAM is shown in Fig.
7. It contains the following:

e Addressing block
e ESS read sequencer
e Control signal generator

Memory block

Data input-output block.

Addressing Block

2.19 The addressing block transforms the enables,

starts the sequencer, and generates the enable
verify. When an enable is received at the input regis-
ter, it is encoded into a binary address. This address
is then decoded and combined with the original signal
to produce the enable verify. The enable circuitry also

DIFC ——p>

INPUT BLOCK

DIFC ———p> & DIFC

MODE AND BUS SELECTOR
ENABLE CIRCUIT ———B»| INPUT REGISTER

PARITY CHECKER i

ESS PERIPHERAL ———» ZERO DETECTOR
UNIT BUS

DATA

FIFO OUTPUT BLOCK
MEMORY BERS ————
PUC BUS
TRANSCEIVER & PUC
DATA PARITY GENERATOR

OUTPUT REGISTER

DATA

CHECK BIT GENERATOR
CHECK BIT MEMORY

DIFC — b

DATA CHECKING CIRCUIT

CHECK BIT CHECKER
CHECKER MAINTENANCE ACCESS

Fig. 6—DIF File Block Diagram

Page 6

ISS 2, SECTION 231-045-430

ENABLE SCAB
> VERIFY
PARITY:
CHECK
[t DATA DATA
INPUT-OUTPUT 7
BLOCK 2
.3
MEMORY
CONTROL DATA
FUAE MEMORY
2 oaLe ADDRESSING
&S ENABL
BLOCK
—> Ess
READ
SEQUENCER
CONTROL
SIGNAL
GENERATOR
-t
o
=
=
o
(&)
CPU

® Fig. 7—Block Diagram of SCAM4¢

controls the multiplexer which selects the peripheral
unit bus.

ESS Read Sequencer

2.20 The sequencer governs the operation of the

ESS read. It is initiated when the enable (ac-
tive high) is received from the address block. The se-
quencer responds with signals that block the
hardcore access to the SCAM, enables the memory,
gates the data into the scanner address bus, and re-
sets the input registers in the address block.

Control Signal Generator

2.21 The control signal generator decodes instruc-
tions received from the hardcore and produces
the signals necessary to execute the instructions.

Memory

2.22 The memory consists of two parts, namely, the

data memory and check bit memory. When-
ever data is written into the data memory, check bits
are generated and stored. Whenever data is read

Page 7

SECTION 231-045-430

from the data memory, check bits are regenerated
and compared with those in the check bit memory.

Data Input-Output Block

2.23 The data input-output block contains the out-

put buffers for the ESS data, the input-output
transceivers for the hardcore data, and a parity
checker. The parity checker performs the following
actions:

(a) Checks parity on data received from the
hardcore

(b) Generates parity over either byte of data
being sent to the hardcore

(c) Generates parity over the whole word before
sending it to the ESS.

PERIPHERAL BUS INTERFACE

2.24 The PUAB and the scanner address bus

(SCAB) provide supervision interface between
the central control and the PUC. Data is transmitted
from the central control to the PUC over the PUAB.
The SCAB carries the data that is transmitted from
the PUC to the central control.

3. PUC SOFTWARE OVERVIEW
FUNCTION

3.01 The PUC software subsystem programs pro-
vide the capability for the use of a PUC to con-
trol the switching process between the central
control and the DCT and DL transmission facilities.
Figure 8 shows a block diagram depicting the PUC

subsystem functional interface between the ESS ap-
plication programs and the PUC.

A. PUC-ESS Communication

3.02 The central control communicates with the

PUC via orders. The PUC communicates with
the central control via messages loaded in a dedicated
area of the PUC memory called the message buffer.
The message buffer appears to the central control as
a scanner.

3.03 Each PUC contains a duplicated message
buffer. Both of the message buffers are nor-

mally operated in the duplex mode (both buffers op-

erable, one active and the other on standby).

3.04 Data is transmitted from the central control
to the PUC over the PUAB in data blocks

ESS
SOFTWARE SYSTEM PUC SOFTWARE SUBSYSTEM PUC
FAULT RECOGNITION PUFS INITIALIZE
INTERRUPT
RECOVERY (GPFR) PUFR
mucn STATE
CONTROL
ENABLE UPDATE PUCT
(NSUP)
MAINTENANCE Puo”“: DIAGNOSTICS
(MACR, TTIA)
DIAL
el DYLT
TTY PUCD TTY INTERFACE
(TTIA,DFMP,DCTT)
EXECUTIVE CONTROL PUCU UNLOAD BUFFERS
(ECWP)
MAINTENANCE PUEA ERROR ANALYSIS

Fig. 8—PUC Software Subsystem Functional Interface

Page 8

(messages). All data sent to the PUC passes through
the FIFO buffer stack.

Buffer Unload

3.05 Message buffers are unloaded during the class

Clevel job schedule. Each time a PUC message
buffer is unloaded, a finished unload order is sent to
the PUC from the base level program. This order in-
forms the PUC to update the control word that is
used to prevent the unloading program from unload-
ing a message the second time. The message buffer,
associated with the master controller, is unloaded in
the duplex mode. The inactive buffer is unloaded,
when requested by maintenance, in the simplex
mode.

B. PUC Maintenance
3.06 Software maintenance is based on:

(a) The ESS has ultimate control of all PUC main-
tenance states.

ISS 2, SECTION 231-045-430

(b) The PUC provides the first level of fault recov-
ery and all internal diagnostic routines.

(c) The ESS controls diagnostics of the PUC-ESS
interface circuitry.

(d) The SCAB contains parity.
SUBSYSTEM PROGRAMS

3.07 Table A lists the PUC software subsystem
common programs described in this section.

4. PUC COMMON SOFTWARE PROGRAM DESCRIP-
TION

PERIPHERAL UNIT CONTROLLER INITIALIZATION (PUCI)
A. Function

4.01 The peripheral unit controller initialization
(PUCI) program is entered from the enable
table maintenance routines (NSUP) program to:

(a) Initialize PUC fixed memory head cells

PTABLE A¢

PUC SUBSYSTEM COMMON PROGRAMS

PIDENT LISTINGS
ACRONYM NO. 1 ESS NO. 1A ESS NAME
DIAL 1A035 6A035 Diagnostic Interpreter
DYLT 1A463 6A463 DIAL Phase Table
PUCI 1A448 6A448 Peripheral Unit Controller Initialization
PUCO 1A448 6A448 Peripheral Unit Controller Input/Output Control
PUCR 1A473 6A473 Peripheral Unit Controller Diagnostic Routines
PUCU 1A450 6A450 Peripheral Controller Unloader
PUDA 1A100 6A100 Peripheral Unit Controller Data Analysis
PUEA 1A831 6A831 Peripheral Unit Controller Error Analysis
PUFR 1A617 6A617 Peripheral Unit Controller F-Level Recognition
PUFS 1A448 6A448 Peripheral Unit Controller F-Scan
PUCO 1A953 6A953 Peripheral Controller State Control Module
PUC1 1A954 6A954 Peripheral Unit Controller State Control Module
PUC2 1A955 6A955 Peripheral Unit Controller State Control Module
PUC3 1A956 6A956 Peripheral Unit Controller State Control Module
PUC4 1A957 6A957 Peripheral Unit Controller State Control Module
PUC5 1A958 6A958 Peripheral Unit Controller State Control Module
PUC6 1A959 6A959 Peripheral Unit Controller State Control Module
PUCT 1A960 6A960 Peripheral Unit Controller State Control Module
PUCS8 1A961 6A961 Peripheral Unit Controller State Control Module
PUO1 1A473 6A473 Peripheral Unit Controller Diagnostic

Page 9

SECTION 231-045-430

(b) Initialize maintenance buffer and application
status head cells

(c) Initialize all enable and master scanner num-
ber (MSN) tables

(d) Initialize PUC application
(e) Initialize F-scan call store enable tables.
B. Operation

4.02 The program is structured in format consist-
ing of three global program units and thirteen

nonglobal program units. Table B lists the subrou-
tines in structured sequence.

4.03 A diagram of the functional interface between
the program units is depicted in Fig. 9.

PUC Initialization
Head Cell Initialization—PUCOMP

4.04 Upon entry to global PUCALL from NSUP,

subroutine PUCOMP is called to initialize the
PUC Compool memory. Subroutine PUCOMP trans-
fers to subroutine PUEAHC which initializes the
fixed call store enable table head cell with the param-

TABLE B

PUCI PROGRAM UNITS

NAME FUNCTION
PUCALL Initializes all PUCs
PUCOMP Initializes PUC Compool memory
PUEAHC Initializes fixed CS enable head cell
PUMAHC Initializes fixed CS maintenance buffer head cell
PUINIT Administers initialization of a single PUC
PUIOIN Initializes enable tables
PUEAIN Initializes enable table for specific PUC
PUMSIN Initializes expanded F-scan MSN pointer
PUAPSP Stores application status block pointer
PUSTATE Establishes bus and CPD for enable
PUPAPP Initializes a specific PUC application
PUDLIN Establishes PUC-RSS interface exchange data for final phase
PUINDT Establishes PUC-DCT interface exchange data for final phase
PUCIFS Initializes F-scan MSNs
PUCAPP Administers non-phase PUC application enables
DCT_INIT Correct current PUC-DCT SDs and TSs initializes PUC-DCT

Page 10

o

P

L1 @6ng

NSUP ENTRY NSUP ENTRY PUPM ENTRY
| |
PUCIFS PUCALL PUCAPP
INITIALIZES INITIALIZES ADMINISTERS
F-SCAN MSNS ALL PUCS INITIALIZATION
OF NON-PHASE PUC
$ APPLICATION
& } DCT-INIT
PUCOMP PUINIT INITIALIZES
INITIALIZES ADMINISTERS i
PUC COMPOOL INITIALIZATION
MEMORY OF A SINPLE PUC
PUEAHC PUMAHC PUIOIN PUSTATE PUPAPP
INITIALIZES INITIALIZES INITIALIZES ESTABLISHES INITIALIZES A
CS ENABLE CS MAINTENANCE ENABLE TABLES REGISTER FOR SPECIFIC PUC
TABLE HEAD CELL BUFFER HEAD CELL PHASE IN PROGRESS APPLICATION
PUEAIN PUMSIN PUAPSP PUINDT PUDLIN
INITIALIZES INITIALIZES STORES ESTABLISHES ESTABLISHES
ENABLE TABLES EXPANDED APPLICATION PUC-DCT EXCHANGE PUC-DL EXCHANGE
FOR SPECIFIC PUC F-SCAN MSNS STATUS BLOCK DATA FOR DATA FOR
POINTER FINAL PHASE FINAL PHASE

Fig. 9—PUCI Program Structured Diagram

0EY-S+0-1€Z NOILD3S ‘T SSI

S At

—

=

SECTION 231-045-430

eter stored data. Upon return to PUCOMP, a transfer
is made to subroutine PUMAHC. This subroutine ini-
tializes the fixed call store maintenance buffer head
cell. The buffer end address is placed in the head cell
and program control is returned to PUCOMP which
gives it to its client, PUCALL.

Initialization Control—PUINIT

4.05 Subroutine PUCALL then calls subroutine

PUINIT to administer the initialization of
each PUC. This subroutine is the control point for the
initialization. It calls two subroutines, PUIOIN and
PUSTATE, which determine configuration, request
route update via state control, and initiate specific
application for each PUC.

Input-Output Initialization—

PUIOIN

Memory

4.06 Subroutine PUIOIN utilizes subroutines

PUEAIN and PUMSIN. Subroutine PUEAIN
initializes the current PUC enable block. The
PUIOIN subroutine calls subroutine PUMSIN which
initializes the pointer to the expanded F-scan MSNs
associated with the PUC. After storing the pointer in
the enable table, program control is returned to
PUIOIN. A transfer is then made to subroutine
PUAPSP to store the application status block point-
er. It determines the DCT and the Remote Switching
System (RSS) applications and associated block
memory sizes. Program control is then returned to
subroutine PUIOIN.

Phase Initialization—PUSTATE

4.07 Subroutine PUSTATE is called by subroutine

PUINIT to establish the peripheral bus and
CPD to be used in communicating with the PUC
frame. Upon control return, subroutine PUPAPP is
called.

PUC Application Initialization—PUPAPP

4.08 Subroutine PUPAPP is a control routine for

the emergency action initialization of PUC
application data. For DCT applications, subroutine
PUINDT is called to establish the PUC-DCT inter-
face exchange data. For RSS applications, subroutine
PUDLIN is called to establish the PUC-RSS interface
exchange data.

Nonphase Initialization—PUCAPP

4.09 Global PUCAPP is entered from PUC3 and
PUC4 to determine the initialization of a spe-

Page 12

cific nonphase application of the PUC. Subroutine
DCT_INIT is called by PUCAPP to initialize the
PUC-DCT function. This subroutine corrects the cur-
rent PUC-DCT universal signal distributor (SD) and
universal trunk scanner (TS) data. Subroutine
PUCDL_INIT is utilized to update the parameter and
sample block data for the RSS application.

F-Scan MSN Initialization—PUCIFS

4.10 Global PUCIFS is entered from NSUP to ini-
tialize all the F-scan MSNs. The PUCs are ini-

tialized eight at a time. When the initialization is

completed, program control is returned to NSUP.

PERIPHERAL UNIT CONTROLLER INPUT/OUTPUT CON-
TROL (PUCO)

A. Function

4.11 The peripheral unit controller input/output

control (PUCO) program performs two basic
functions, namely, (1) unload maintenance buffer,
and (2) service PUC TTY input maintenance support
messages.

B. Operation
Main Program Class E Update

4.12 A class E periodic entry is made from the

main program (Job #389) to subroutine
PUFUPD to ensure that the enable table FIFO point-
ers are updated. If an update is required, a transfer
is made to subroutine PUCFCT which updates the
FIFO counts in the enable table.

Main Program Class E Buffer Unload

4.13 Subroutine PUMHUL is entered from the
main program as a class E Job #381. This sub-
routine unloads the maintenance hopper buffer. The
removed message is verified per the valid message
table and is passed to the appropriate processing rou-
tine. All maintenance messages from the PUC pass
through this routine. Therefore, PUMHUL acts as an
executive for the message handling routines. It en-
forces a 10-ms time limit on all other subroutines.

4.14 Subroutine PUMMUL is utilized by clients of

the PUMHUL subroutine to unload multiple
word messages from the maintenance buffer into
specified memory areas. The PUMMUL subroutine is

® 0

called by the TTY output message subroutines
PUCRED, PUCHSH, PUCRIT, and PEUROR and all
clients of PUMHUL who receive the multiple word
messages.

TTY Input Message Routines
Read and Write Memory

4.15 When the TTY input message PUC-READ is

entered, a transfer is made from the TTY
input messages—directory and catalog (TTIA) pro-
gram to subroutine PUREAD. This subroutine for-
mats the data for subroutine PUCSND which sends
the order DUMP_32 to the PUC. The DUMP_32 order
message is accepted by subroutine PUCRED which
also formats the data for the output message
PUCREAD. The output message contains data start-
ing with the byte address specified and includes 32
consecutive bytes.

4.16 Subroutine PURITE is entered when TTY

input message PUC-WRITE is typed. This
subroutine formats the data for subroutine PUCSND
which sends the order requesting the PUC to write
the data at the specified location in its memory. A
PUC-WRITE output message is returned verifying
that one byte of data was written as requested. This
message is passed to routine PUCRIT which produces
a PUC-WRITE complete TTY output message.

4.17 When TTY input message PUC-HASH is en-

tered, a transfer is made to subroutine
PUHASH. This subroutine formats the data and re-
quests the PUC to compute a 16-bit checksum over its
program store.

4.18 Subroutine PUCHSH accepts the 16-bit
checksum message and causes a printout of
the TTY output message, a 16-bit octal response.

4.19 Whenever an invalid TTY input message is

encountered, subroutine PUEROR formats
the data and provides the TTY output error message
PUCERROR.

4.20 In the case of PUC maintenance message

buffer overflow or an invalid head cell condi-
tion, subroutine PUBFAL is called to print the mes-
sage loaded in the maintenance buffer.

Transmittal of Orders

4.21 Orders generated by TTY input message sub-
routines, PUREAD, PURITE, and PUHASH

ISS 2, SECTION 231-045-430

are transmitted by the PUCSND subroutine to a
given PUC. A regulation action on orders sent per
PUC program cycle is maintained so that the PUC is
not saturated with ESS orders which limit call pro-
cessing capabilities. A limit of eight orders can be
bypassed by using the force bit.

Data Conversion

4.22 Data (ASCII hexadecimal characters) pro-

cessed by subroutines PUREAD and PURITE
is converted to binary values by subroutine ASCBIN.
This subroutine converts up to four numbers and
packs the result in the location of the first number.

PERIPHERAL UNIT CONTROLLER UNLOADER (PUCU)
A. Function

4.23 The executive control main program (ECMP)

transfers to the peripheral unit controller un-
loader (PUCU) as one of its class C jobs to unload the
call processing and maintenance messages from the
PUC message buffer located in the PUC RAM memo-

ry.
B. Operation
Message Buffers

4.24 Each PUC has two message buffers (one for

each controller) which are normally operated
in a duplex mode. The message buffer, associated
with the master controller, is unloaded in this mode.
The inactive message buffer is unloaded, when re-
quested by maintenance, in the simplex mode (only
one buffer is operable). In this case, the inactive mes-
sage buffer is unloaded immediately after the active
one has been unloaded.

4.25 The maintenance messages are separated

from call processing messages and stored in a
dedicated maintenance call store buffer. Call pro-
cessing messages are passed.

Program Structure

4.26 The PUCU is divided into seven program units
(Fig. 10):

(a) PUPREP—Makes preparation to unload a
PUC buffer

(b) UNLOAD—Unloads a single PUC message
buffer

Page 13

SECTION 231-045-430

(¢) TOG_MISMATCH—Processes toggle mis-
matches

(d) UPDATE_LL—Prints PUC message when
control word is invalid

(e) SEND_FIN_ORDER—Sends finished unload
order

(f) LOAD_MAINT_MESS—Stores message into
maintenance buffer

(g) OFF_LINE—Makes preparation to unload an
off-line buffer.

ENTERED FROM | (PUCL)
ECMP ON AR,

CLASS C JOB

EXECUTION &

PUPREP OFF-LINE

OFF-LINE - PUC

RETURN FOR BUFFER \
MORE WORK PREPARES ON- | —— — 5| PREPARES OFF-
| LINE MESSAGE | ReTURN LINE MESSAGE
BUFFER FOR FOR WORK | BUFFER FOR
UNLOAD [} §——— UNLOAD
ACTIVE
BUFFER
MAINTENANCE
MESSAGE
UNLOAD REQUESTED | LOAD-MAINT .MESS
UNLOADS ——— L0ADS
MESSAGE ﬁ:’:;:g“ MAINTENANCE
BUFFER lg—— | BUFFER
MESSAGE BUFFER TOGGLE
wcomwkszsu e MISMATCH ERROR
BUFFER
CONDITION
SEND-FIN-ORDER TOG-MISMATCH
8 TOGGLE | MISMATCHES
| | senos PROCESSES
FINISHED TOGGLE
UNLOAD ORDER MISMATCHES
CONTROL UPDATE =1L TOGGLE RESET
WORD UPDATED \| UPDATES
LAST LOOK
CONTROL WORD

Fig. 10—PUCU Program Structured Diagram

Page 14

Preparation to Unload

4.27 Subroutine PUPREP is entered from ECMP

during its class C job execution to unload the
PUC message buffers. This subroutine loads the
pointers for the active and off-line buffers which are
to be unloaded by the UNLOAD routine.

Buffer Unload

4.28 The PUC message buffer is unloaded by sub-

routine UNLOAD. Upon entry, the buffer con-
trol word is examined for a valid condition (start row
equals the end row from the last look and toggle bit
equals toggle bit in last look). If the control word is
invalid, a transfer is made to subroutine UPDATE_
LL. The control word is checked to determine if the
buffer contains messages. The active message buffer
is unloaded and, if requested by maintenance, the
inactive message buffer is unloaded.

Toggle Mismatch

4.29 Subroutine TOG_MISMATCH allows time for

the PUC to respond to the finished unload
order during lightly loaded conditions. A toggle mis-
match condition is allowed to fail eight times before
another finished order is sent.

Invalid Control Word Print

4.30 Subroutine UPDATE_LL is entered when the

control word that was read from the PUC is
invalid. This subroutine updates the control word
with the contents of the PUC message buffer control
word.

SEND_FIN_ORDER

4.31 Subroutine SEND_FIN_ORDER sends the
finished unload order to the PUC FIFO from
the base level client.

LOAD_MAINT_MESS

4.32 Subroutine LOAD_MAINT_MESS is respon-

sible for loading the maintenance buffer. Mes-
sages may be either single word or multiple word
messages. If there is insufficient room in the buffer
to load a message, the buffer is marked full, message
is lost, and the message lost indicator is set.

OFF_LINE_PUC

4.33 Subroutine OFF_LINE_PUC is entered from
the PUPREP subroutine when the off-line

indicator is set indicating a request by maintenance.
This subroutine unloads the off-line PUC message
buffer after the active message buffer is unloaded.

PERIPHERAL UNIT CONTROLLER F-LEVEL RECOGNITION
(PUFR)

A. Function

4.34 The purpose of the peripheral unit controller

F-level recognition (PUFR) program is to de-
termine and isolate the PUC fault which caused the
F-level interrupt.

4.35 Program PUFR contains two global subrou-
tines:

(a) PUFLEV—Locates and isolates the PUC fault

(b) PUFLRC—Entered from CPFR to verify the
system was able to switch the CPD and bus.

B. Operation
Interrupt Level Entry

4.36 Subroutine PUFLEV is entered at an F-level
interrupt to determine the source of the PUC
operational failure. The data defining the PUC is
stored via subroutine STFINF located in the CPD
fault recognition program (CPFR). A check is then
made to determine if the frame is equipped. If so, the
F-level counters (CPD activity counts and system
activity counts) are updated. An error check is then
performed to ensure that a failure is not repeated.

4.37 The updated counters are examined to deter-

mine if at least nine failures have occurred
within the last eight minutes. If more than nine fail-
ures occur, the failing enable activity count is exam-
ined. Then if the activity count is greater than three-
fourths of the failure counts, maintenance is removed
from the controller. The order is retried and, if the
retry order fails, the status of the frame is obtained.

Simplex State

4.38 If the frame is in the simplex state, the order
is retried using an alternate route.

4.39 If the second order attempt fails on the alter-
nate route and if an alternate SCAB is avail-
able, the order is retried again. If this second attempt

ISS 2, SECTION 231-045-430

fails, a fault is indicated. The original SCAB configu-
ration is restored, and the data relating to the failure
is formatted for a TTY F-level printout.

4.40 If the second order attempt is a success using

the alternate route, an enable update is made,
an F-level interrupt is initiated, and maintenance is
removed from the frame.

Duplex State

4.41 If the frame is operating in the duplex mode,

the enables are updated to the new controller
and route. If a failure occurs on the new controller,
the order is retried using an alternate route. Then if
this second attempt is a success, the enables are up-
dated, an F-level interrupt is initiated, and mainte-
nance is removed from the frame.

4.42 If the order was a success when using the al-
ternate route, the F-level fault is printed by
the TTY.

CPD and PU Bus Test

4.43 A transfer is made to subroutines CPPUCK

and CP2TST when an enable is required. Sub-
routine CPPUCK handles the testing of the CPD and
peripheral unit (PU) bus for scanner enable orders.
Subroutine CP2TST handles the testing of the CPD
and PU bus for all other types of orders.

CPD and PU Verification

4.44 Program PUFR is entered from the CPFR

program at subroutine PUFLRC to verify that
the system was able to switch the CPD and PU bus
when the request was made. If the enables are not
updated, a fault is reported and maintenance is re-
moved from the frame.

PERIPHERAL UNIT CONTROLLER F-SCAN (PUFS)
A. Function

4.45 The peripheral unit controller F-scan (PUFS)

program administers PUC hardware and PUC
application faults detected by peripheral fault scan-
ning. It also monitors the state (simplex or duplex)
of the PUC for unloading buffer messages.

B. Operation

4.46 Program PUFS contains two global subrou-
tines.

Page 15

SECTION 231-045-430

(a) PUFSMM —Determines state (simplex or du-
plex) of PUC, detects PUC application and
hardware faults

(b) PUWORK —Determines whether deactivated
peripheral order buffers (POBs) should be
reactivated or placed in a failure state.

PUC State

4.47 An entry is made to global PUFSMM to deter-
mine the state (simplex or duplex) of the PUC.

4.48 The primary function of PUFSMM is to ad-

minister any PUC hardware fault or applica-
tion fault. The PUFSMM subroutine calls subroutine
TRUTYN in basic trunk translation routines (TRBT)
program to obtain the PUC auxiliary block address.
After determining which controller is active, the
hardware and control ferrods are scanned to deter-
mine if a PUC controller fault exists.

Duplex State Fault

4.49 If a hardware fault is detected, a delay in POB

input-output execution is made by subroutine
POB_DELAY. This action allows the detection of
possible application faults during the next machine
cycle. Subroutine PUPAM of the state control module
(PUCO0-PUCS8) program is called to allow state con-
trol to take corrective action on the fault.

Simplex State Fault

4.50 Subroutine PUPAM is then called to allow
state control to take corrective action.

Application Fault

4.51 Application faults are detected by performing

scans on the auxiliary memory. If an applica-
tien fault is detected, action is taken to remove the
POB associated with the fault. For a PUC-DCT appli-
cation the most current application failures are sepa-
rated from the older failures by subroutine POB_
AEA_SRCH. The POB associated with each new fail-
ure is deactivated. In the case of a failing order, a
transfer is made to subroutine MRKOB in the net-
work management (NMRF) program to mark the
POB which contains the address enable address
(AEA) of the failing order.

Deactivated POB

452 Global PUWORK is entered to determine
whether a deactivated POB should be either

Page 16

reactivated or failed. The result is based on the suc-
cess or failure of the PUC retry order and on the fail-
ure option.

4.53 The address of a failing POB is located by sub-

routine NMP4WD of the NMRF programs.
Subroutine FOPR_ZERO processes the failure option
0 work. The failing POB is then placed on the mainte-
nance unexpected result list (MURL). Subroutine
PUSND, located in the PUCO program, is called to
send clear messages to clear the F-scan application
fault data.

PSTATE CONTROL MODULE (PUCO-PUCS)

A. Function

4.54 The state control module (PUC0-PUCS8) pro-
gram is made up of nine pidents (PUC0, PUC1,
PUC2, PUC3, PUC4, PUC5, PUC6, PUCT7, and PUCS).
This program administers and maintains control of
the state of the PUC maintenance and diagnosis.

PUC Maintenance States

4.55 The PUC maintenance is based on the follow-
ing 14 possible frame states:

(a) ACTIVE:STANDBY-SUPPORT—This is the

state for normal operations. It signifies a
frame with full availability and the controllers are
up and matching. One controller is designated
ACTIVE and the other in a standby support role.
This mode provides for a smooth transmission to
simplex operation should either controller experi-
ence a fault or an access problem is encountered on
the ACTIVE controller from the HOST. The appli-
cation function should be undisturbed by any sin-
gle fault when in this mode.

(b) ACTIVE:OUT OF SERVICE-OFF-LINE—

Routine exercise of the standby controller is
accomplished at the midnight routine. When the
PUC diagnostic is in MAC and the routine exercise
bit has been set, the diagnostic requests the
standby controller to be made available for diag-
nostic. The state of the frame is then classified as
ACTIVE:OUT OF SERVICE OFF-LINE. This
state thus represents a state with full availability,
but operating in a simplex environment for the
duration of the diagnostic. Should a fault occur on
the controller designated ACTIVE during this pe-
riod, a hard switch is ordered bringing in the OFF-
LINE controller and initializing it.

(¢) ACTIVE:OUT OF SERVICE-MANUAL—This

state reflects a frame that ostensibly has two
all tests pass (ATP) controllers but has removed
one to a nonfunctional mode awaiting manual in-
tervention. The transition to this state is effected
by: manual request, which can only be accommo-
dated from a ACTIVE:STANDBY SUPPORT
state, or by the automatic system reacting to a
failure of the standby to achieve STANDBY SUP-
PORT or the transition to ACTIVE:STANDBY
SUPPORT exceeding an hourly allowed threshold.
The mechanism for return of this out-of-service-
manual controller to the system is via a TTY re-
store message.

(d) ACTIVE:OUT OF SERVICE-FAULT-—This

state signifies a viable controller serving the
ACTIVE role and an out-of-service controller that
is either verified as some tests fail (STF) or as-
sumed to be bad. Entry to this state is effected by
an STF of the diagnostic or an abort of the diag-
nostic if the previous state was ACTIVE:OUT OF
SERVICE REMOVED. Manual action via TTY
may also place the out-of-service controller in this
state from any simplex defined state.

(e) ACTIVE:OUT OF SERVICE-REMOVED-—

This state is a transitory state in which the
out-of-service controller is awaiting the result of
an ordered diagnostic. An ATP indication from the
diagnostic will cause an attempt to return the
frame to the ACTIVE:STANDBY SUPPORT state.
An STF of the diagnostic will effect a transition to
a fault state, namely, ACTIVE:OUT OF SERVICE
FAULT. The ACTIVE:OUT OF SERVICE RE-
MOVED state can be attained by degrading from
a ACTIVE:STANDBY SUPPORT state due to a
fault; or an upgrading from a maintenance re-
moved state resultant from a diagnostic ATP; or
by virtue of a manual request to restore the out-of-
service controller from ACTIVE:UNAVAILABLE
FORCED state.

(f) ACTIVE: UNAVAILABLE-FORCED—This

state provides retreat for a controller to be
exempt from recall by the automatic recovery. The
state is entered via a TTY request from either the
ACTIVE:OUT OF SERVICE FAULT state or the
ACTIVE:OUT OF SERVICE MANUAL state. Di-
agnostic results will not affect the definition of
this state.

(g) ACTIVE MAINTENANCE REMOVED:OUT
OF SERVICE-FAULT-—This state connotes

ISS 2, SECTION 231-045-430

the same as described for ACTIVE MAINTE-
NANCE REMOVED:OUT OF SERVICE RE-
MOVED except the out-of-service controller is
verified as not being an ATP controller. When in
this state the TTY PUC-SW-xx. message provides
a mechanism to interchange the roles of the con-
trollers.

(h) ACTIVE MAINTENANCE REMOVED:OUT

OF SERVICE-REMOVED—This state indi-
cates that neither controller is evaluated as an
ATP controller and the oyt-of-service controller is
in a state of evaluation. Transition to this state
from any ACTIVE defined state will cause a major
alarm.

(i) ACTIVE MAINTENANCE REMOVED:

UNAVAILABLE-FORCED—The controller
designated UNAVAILABLE-FORCED remains
unavailable to the automatic recovery even though
a diagnostic may ATP. Manual intervention is re-
quired to place this UNAV controller back in the
system. The PUC RSTXXX. message will return it
to the system.

(j) ACTIVE:OUT OF SERVICE-POWER OFF—

This state signifies an up and functioning PUC
with reduced availability due to the power down
state of the out-of-service controller.

(k) POWER OFF:POWER OFF—This state re-

flects the consequences of a blown fuse on the
controller designated ACTIVE when power has
been removed from the alternate. This represents
a totally nonfunctional PUC.

(1) ACTIVE MAINTENANCE REMOVED:OUT
OF SERVICE-POWER OFF —This state rep-
resents a mode where the functional role of the
PUC is indeterminate but less than acceptable.
Power restored to the out-of-service controller
would identify this new resource as ACTIVE.

(m) ACTIVE:PREVIOUS STATE RETURNED—

The mode of the PUC in this state is to recog-
nize a power-off condition but treat any restoral of
power in a nonnormal sense; ie, restoral of power
will not return the controller to the automatic re-
covery, but rather return it to the state occupied
before the removal of power.

(n) ACTIVE MAINTENANCE
REMOVED:PREVIOUS STATE

Page 17

SECTION 231-045-430

RETURNED—This state indicates the degraded
performance of the PUC with the additional con-
straint that when power is restored to the out-of-
service controller no attempt shall be made to de-
clare it ACTIVE in response to the initial declara-
tion that the unit was made unavailable to the
system by manual intervention.4

B. Operation

4.56 The PUCO0-PUCS8 program contains six global
subroutines which provide the following inter-
face: ’

(a) Supervisory— PUCPWR

(b) TTY—PUSCRE,
PUSCMS

PUSCSW, PUSCST,

(¢) PUC adjudication—PUPAM.
Supervisory

4.57 Subroutine PUCPWR is entered from the sys-

tem alarm (MALM) program when there is an
alarm condition on the PUC. Subroutine PUPAM is
called to adjudicate the PUC configuration. The sub-
routine then transfers to ECMP.

TTY Interface
Change State

4.58 Subroutine PUSCRE provides the craftsper-

son the capability to change the state of the
PUC via the TTY. The message allows the changes of
state:

(a) When the PUC is in the duplex mode, the inac-
tive controller may be placed in the mainte-
nance mode.

(b) The manually removed controller may be re-
stored to the system.

(¢) If the system has placed a controller in a

faulted state or the craftsperson has removed
a controller for maintenance, then the input mes-
sage will make the specified controller unavailable
to the automatic system reconfiguration.

(d) The controller may be returned from the
maintenance mode to a faulted state.

(e) The controller can be reset and initialized, in-
cluding a segmented memory pump-up.

Page 18

Controller Interchange

4.59 The request for interchange of the active and

inactive controllers is processed by subroutine
PUSCSW, when either controller is in duplex mode
and neither is in a manual maintenance environ-
ment.

Controller State ‘

4.60 Subroutine PUSCST is entered in response to
a TTY input requesting the status of the

frame and identification of the active controller.

Controller Maintenance Message

4.61 Subroutine PUSCMS provides means to pro-
cess the TTY input message used to inhibit or

allow PUC state change maintenance type messages
to be performed on a priority basis.

PUC Adjudication

4.62 Subroutine PUPAM analyzes the PUC config-
uration in response to the input diagnostic

request.

4.63 The category (administrative or hardware
configuration) is determined by subroutine

PPUACFRA. The appropriate subroutine is called to
perform the necessary actions to allow diagnostics.

4.64 The subroutines perform actions such as:
(a) Determine which controller to diagnose
(b) Perform power and direct scans
(¢) Update hardware configuration
(d) Update enable words.

DIAGNOSTIC INTERPRETER (DIAL)

A. Function

4.65 WThe diagnostic interpreter (DIAL) program

contains the subroutines to interpret the test
vectors generated by the DIAL macros assembled in
program PU01.4

B. Operation
Global Subroutines

4.66 Global subroutines DIALAU, DIALPD, and

DIALST provide interface entries for the
maintenance MAC1 interface (MRAM) program.
Subroutine DIALAU is entered from the subsystem
status table; DIALST is entered from the routine re-
quest table for a complete diagnostics; and DIALPD
is entered from the routine request table for a partial
diagnostic.

4.67 The peripheral unit controller diagnostic
(PUCR) program utilizes globals DIALPD,
DIALST, DIALTS, and DLVRFY. Subroutine
DIALPD is accessed if the input TTY message is a
request for a partial diagnostic. Subroutine DIALST
provides a complete diagnostic of the PUC when re-
quested via TTY input message PUC-FULDGN.

4.68 If the identified controller is not in a valid

state to be diagnosed, subroutine DIALTS will
provide a segment break. This subroutine saves the
essential registers, transfers to subroutine MACP05
in the maintenance administration control (MACR)
program for the segment break and restores the reg-
isters.

4.69 During the diagnosis of a PUC controller and

after a real-time break has been taken, sub-
routine DLVRFY is called to verify the peripheral
unit bus and CPD paths.

DIAL PHASE TABLE (DYLT)
A. Function

4.70 The dial phase table (DYLT) program is table-

oriented and is used in executing the diagnos-
tic phases on the PUC. The program is utilized by the
PUCR and DIAL programs.

B. Operation

4.71 Entry is made to DYLT via global subroutine

DLOPHT. This subroutine provides the phase
table address for the diagnostic phase to be per-
formed on the controller.

ISS 2, SECTION 231-045-430

PERIPHERAL UNIT CONTROLLER DIAGNOSTIC ROUTINES
(PUCR)

A. Function

4.72 The peripheral unit controller diagnostic rou-

tines (PUCR) program provides routines nec-
essary to interface the diagnostic of the PUC with the
ESS which operates at the base level.

4.73 Program PUCR is composed of eight basic
subroutines:

(a) PUCFUL—Provides TTY input interface for
PUC diagnostic

(b) PUCPAR—Provides TTY input interface for
PUC diagnostic

(c) PPUCMOD—Provides TTY input interface for
PUC diagnostic4

(d) PUCINT—Provides the initialization of the
diagnostic maintenance control scratch area
with the PUC unit type auxiliary block data

(e) PUCRDR—Provides the automatic diagnostic
request interface with maintenance control

(f) PUCRBS—Initiates segment routine
(g) PUCREP—Terminates phase routine
(h) PUCRAB—Terminates diagnostic routine
(i) PUCRBP—Initiates phase routine.
B. Operation

4.74 In order to diagnose the PUC via the TTY

input messages provided by this program, the
controller must be in the appropriate maintenance
state (off-line controller of a simplex pair). If the re-
quested controller is not in the correct state, the
input message is rejected. If, during the diagnostic,
the state of the controller changes to an unacceptable
state (as a result of system action), the bit will be
aborted.

TTY Input or PUC Diagnostic

4.75 Subroutines PUCFUL, PUCPAR, and #»
PUCMOD provide the interface for the TTY

Page 19

=

SECTION 231-045-430

input messages PUC-FULDGN, PUC-PARDGN, and
PUC-MODDGN4 respectively. Input parameters are
checked for a valid range. If the specified controller
can be diagnosed, an entry is made in the mainte-
nance control routine request table (RRT). The PUC-
FULDGN message is used to request a complete diag-
nosis of a PUC. If the request is accepted, either a
DRO01 or a DR02 TTY output message is returned. The
PUC-PARDGN message is used to request a partial
diagnosis of a PUC. Diagnostic phases 1 through 6,
performed by the PUO1 program, will be run auto-
matically even though not specified in the input mes-
sage. The message parameters provide a selection of
phases to be run. #The PUC-MODDGN message is
the same as PUC-FULDGN except that it allows
inputting the number of PROMS, RAMS, and input-
output decoders when the number of these devices is
being changed.4

4.76 Subroutine PUCFUL calls subroutine PUCR_

TTY to check and set up all the common data
required for a full diagnostic printout on the PUC. If
the specified PUC can be diagnosed, subroutine
PUCR_MAC_RRT is utilized to enter the input re-
quest into either the routine request table A or into

routine request table B, if there is no room in table
A.

4.77 Subroutine PUCPAR utilizes subroutine

PUCR_TTY to check and set up all the com-
mon data required for a partial diagnostic printout
on the PUC. Subroutine PUCRSC is called to check
the state of the controller. If the specified PUC is
diagnosable, subroutine PUCR_MAC_RRT enters
the input request into either the routine request table
A or into routine table B, if there is no room in table
A.

4.78 W#Subroutine PUCMOD calls subroutine

PUCR_TTY to check and set up all common
data required for full diagnostic printout on the PUC.
If the specified PUC is in either active-unavailable-
force or active-faulted, it will call subroutine PUCR_
MAC_RRT to enter diagnostic request into either
routine request table A or routine request table B if
there is no room on A. The number of PROMS, RAMS
and input-output decoders specified in the input will
also be stored away for use in the diagnostic. If the
number of PROMS, RAMS, or input-output decoders
is specified as 0, the value specified by parameters
will be used.4

PUC Auxiliary Block Initialization

4.79 The DIAL program makes a global entry into
PUCR at subroutine PUCINT which unloads

Page 20

the data from the unit type auxiliary block into the
maintenance control scratch area. The PUCINT ad-
dress is the first entry in the phase table. This sub-
routine performs the unit type member number
translation for the PUC member. If no auxiliary
block exists for the specified member, the diagnostic
is aborted. Otherwise, the data is unloaded into the
appropriate maintenance control scratch area for the
diagnostic.

Automatic Diagnostic Request Check

4.80 Subroutine PUCRDR is entered when mainte-

nance control is searching for diagnostic re-
quests. The PUCRDR subroutine searches the PUC
enable blocks looking for diagnostic work. If no work
is found, program control is returned to maintenance
control for other types of diagnostic work. However
if work is found, an indicator is set for maintenance
control to perform the work.

Initiate Segment Routine

4.81 Subroutine PUCRBS provides for the DIAL

program to begin a segment routine. It is re-
quested upon return from a real-time break during
the diagnosis of a PUC. Subroutine DLVRFY is called
to verify the current status of the PU bus and CPD
paths. The PUC member being diagnosed is verified
per subroutine PUCRSC which determines that the
PUC member can continue to be diagnosed.

Terminate Phase Routine

4.82 At the end of every phase for which looping is
permitted, subroutine PUCREP is entered to
check if the current phase is the phase to loop.

Note: 1If a full diagnostic was requested, the
entry would be made to pident PUDA before
subroutine PUCREP.

If this is the case, this subroutine will overwrite the
start and end phase parameters to the expected for-
mat (start phase equals current phase and end phase
equals 0).

Initiate Phase Routine

4.83 At the beginning of phase 1, subroutine

PUCRBEP is entered to check if the requested
controller is in a valid state to be diagnosed by check-
ing its enable block. If invalid, a segment break is

® O .

® o

taken. If after checks the PUC is still not in a valid
state for diagnosing, the diagnostic is aborted.

Terminate Diagnostic Routine

4.84 Subroutine PUCRAB provides the DIAL pro-

gram interface abort diagnostic function. This
subroutine clears the active indicator in the PUC
enable block. For the DCT function, this subroutine
calls a special abort routine for initialization of the
DCT frame.

PERIPHERAL UNIT CONTROLLER DIAGNOSTIC (PUO1)
A. Function

4.85 The purpose of peripheral unit controller di-

agnostic (PUO1) program is to perform diag-
nostics on the PUC and print the results on the TTY.
The diagnostics are applied in phases, each phase is
a sequential set of tests to determine the fault.

B. Operation

4.86 The PUO1 program contains 20 sets of tests

called phases, sequentially applied dependent
upon the successful results of prerequisite phases.
The TTY output messages provide raw data to be
used for interpreting the failing data words. The
phases are:

(1) Phase 1—Tests the power ferrod

(2) Phases 2 through 5—Exercise the scan mem-
ory and associated circuitry

(3) Phase 6—Tests the FIFO

(4) Phase 7—Verifies a fault will set the fault flip-
flops and the controller can reset them

(5) Phase 8—Tests PROM boards of the controller

(6) Phase 9—Tests RAMs

(7) Phase 10—Tests the memory matching and
maintenance circuits in the SCAM

(8) Phase 11—Tests the DIF circuitry
(9) Phase 12—Tests the DIFC circuitry

(10) Phase 13—Tests the hardcore matching and
maintenance circuits

ISS 2, SECTION 231-045-430

(11) Phase 14—Tests the input-output matchers
(12) Phase 15—Tests the input-output matchers

(13) Phase 16—Tests the circuit packs associated
with input-output decoder

(14) Phase 17—Tests the direct memory access
circuit

(15) #Phase 18—Tests fault flip-flops
(16) Phase 19—Scans fault flip-flops4

(17) Phase 20—Performs the administration
functions.

Power Ferrod Test

4.87 Phase 1 of the program contains a single test

that scans the controller power ferrods. If the
test fails, that is, the PUC does not have power, all
remaining phases of tests are skipped. One word of
raw data is printed indicating power is off. If the
power trouble is corrected, a full diagnostic is nor-
mally requested.

Scan Memory and Associated Circuitry Test

4.88 A set of tests, which exercise the scan memory
and associated circuitry, are performed by
program phases 2 through 5.

4.89 These tests are initiated by a reset pulse sent

by the ESS on one of the duplicated reset
leads. This causes the controller to execute an initial-
ization sequence, then wait for orders to arrive in the
FIFO. After waiting long enough for the controller to
finish its initialization sequence, the ESS orders the
controller to start testing the SCAM. After the con-
troller verifies that each memory location in the
SCAM is working properly, it loads test patterns to
be read out by the ESS. The ESS reads the test pat-
terns using each of the four possible bus configura-
tions. When the ESS has finished, it orders the
controller to clear the SCAM.

4.90 The above procedure is repeated by the ESS

using the opposite reset lead to initiate the
sequence. The purpose of the second pass is to test the
other reset lead.

491 The mode flip-flops are set by the ESS before
the test is started. The ESS then scans the

Page 21

— =

SECTION 231-045-430

flip-flops to verify that they are in the correct state.
If the divorce (DIV) flip-flop is reset, orders sent to
the on-line controller may reach the controller being
diagnosed. Also, if the scanner access (SBA) flip-flop
is reset, the controller being diagnosed cannot be con-
nected to the scanner answer bus and all tests will
fail.

492 The SCAM is tested after the ESS has reset

the controller. If when the order is sent, en-
able-verify fails or the bus is not available, the ESS
retries the order on the other bus. When the ESS
completes the SCAM tests, it orders the controller to
clear the SCAM. A raw data printout is made which
summarizes the enable-verify and bus availability
information when there is a reasonable chance that
the controller did not receive the order.

4.93 Phases 4 and 5 of the program repeat the tests
in phases 2 and 3. The only difference is that
the opposite reset is used to initiate the sequence.

494 Raw data is printed on the TTY to assist the

craftsperson in locating the fault in the cir-
cuitry associated with the scan memory, PUAB re-
ceiver, encoder receiver, and SCAB driver.

FIFO Test

4.95 Upon successful completion of the SCAM

tests, the controller performs the FIFO tests
(phase 6). A total of 512 tests are performed during
phase 6.

4.96 After clearing the SCAM, the controller waits

for test patterns to arrive in the FIFO from
the ESS. The ESS then sends 512 test patterns which
exercise each bit of the FIFO memory. Each test pat-
tern is returned to the ESS via the SCAM. Both the
ESS and controller maintain a current test counter.
With each test pattern, the controller returns the
value of the counter. The ESS then compares the con-
troller’s version of the counter with its version to de-
termine if the last test pattern sent was actually
received. Any time a test pattern is not received, it is
retried on the opposite PUAB.

4.97 The parity is inverted on half of the test pat-
terns. Enable-verify and parity failures are
expected on these tests. If these failures do not occur,
the test is considered a failure. The TTY printout in-
dicates both of the expected failure patterns.

Page 22

Mode Flip-Flop Test

498 The ability of the ESS to set, reset, and moni-

tor each of the mode flip-flops is tested during
phase 7 of the program. The ESS pulses the appropri-
ate CPD leads and then verifies the order by scanning
the ferrods.

4.99 If the first test of phase 7 is a success, the abil-

ity of the controller is tested to detect a mis-
match between the duplicate master flip-flops, the
effectiveness of the lock-out flip-flops, and ability of
the controller to set and reset the master flip-flops
when the lock-out flip-flop is reset.

PROM Board Test

4.100 Phase 8 of the program tests the PROM
boards of the controller. Phases 1 through 6
must be performed before running phase 9 tests.

RAM Test

4.101 If tests in phases 1 through 6 pass, phase 9

performs tests on the RAMs. Raw data is
printed on the TTY indicating the faulty RAM and
circuit pack.

SCAM Memory Circuitry

4.102 Phase 10 is performed, if phases 1 through 6

pass, to check the memory matching and as-
sociated maintenance circuits in the SCAM. A 1-word
of raw data is printed, if the test fails, which indi-
cates the faulty maintenance circuit.

DIF Circuit Test

4.103 The DIF circuitry is checked by phase 11 of
the program. Phases 1 through 6 are prereg-

uisite. If the test fails, a 1-word raw data is printed.

DIFC Circuit Test

4.104 Phase 12 of the program tests the DIFC cir-
cuitry. It is performed upon successful com-

pletion of tests in phases 1 through 6. If the test fails,

a 1-word TTY output message of raw data is printed.

Hardcore Matcher Test

4.105 The hardcore matching circuits and associ-
ated maintenance circuitry are checked by

s

C

phase 13 tests. If the test fails, a 1-word TTY output
message of raw data is printed. This phase is run only
if tests in phases 1 through 6 were successful.

Input-Output Matcher

4.106 Phase 14 connects the remaining circuit

packs to the internal bus of the controller
and does some cursory tests of the input-output
matchers. Phases 1 through 6 are prerequisite. If the
test fails, a 1-word of raw data is printed indicating
the failure.

4.107 The input-output matcher is tested by phase
15. If the associated circuitry is faulty, a 1-
word of data is printed.

Input-Output Decoder Test

4.108 Circuit packs associated with the input-

output decoder are tested by phase 16. The
faulty circuit is indicated by a 1-word TTY printed
output message.

Direct Memory Access (DMA) Circuit Test

1]
4.109 The DMA circuit is tested by phase 17. The
prerequisite phases are 1 through 6. If the
circuit is faulty, a 1-word TTY message is printed.

Flip-Flop Fault Test

4.110 The fault flip-flops are tested by phase 18. #

The prerequisite phases are 1 through 6.4 An
order is sent for the controller to clear all fault flip-
flops. The ESS then scans to verify that they were
cleared. If they are, the ESS orders the controller to
set all the flip-flops by inducing faults in the
hardcore and scan memory.

PFault Ferrod Check Test

4.111 Phase 19 will reset the controller, put the

controller in a maintenance access state, and
turn on maintenance. After a delay of 500 ms, if the
first 18 phases have passed, a scan of the fault fer-
rods in the standby controller (test controller) will be
done. If they fail, additional tests will be done to pro-
vide additional test data from both controllers to
help resolve phase 19 failures.4

Administration Test

4.112 Phase 20 performs the necessary administra-
tion functions, such as reporting the termi-

ISS 2, SECTION 231-045-430

nation status of the diagnostic to the PUC state
control programs.

PPUC DIAGNOSTIC DATA ANALYSIS (PUDA)
A. Function

4.113 The peripheral unit controller diagnostic

data analysis (PUDA) program analyzes the
data produced by the PUC diagnostic pident PUO1
and identifies the suspected bad circuit packs. Pro-
gram PUDA then calls Dictionary Trouble Number
Production (DOCT) to print out a word description of
suspected faults and a list of faulty circuit packs in
decreasing order of probability.

B. Operation

4.114 After completion of a diagnostic phase,
pident PUCR enters pident PUDA at routine
PUCDDA.

Note: This pident has no effect until the PUC
diagnostic has an STF phase.

4.115 Pident PUDA first checks if the fault deter-

mination flag was set on the previous entry
to PUDA. If so, PUC state control will be informed
that the diagnostic has failed and control will output
the suspected fault on the TTY; then the PUC diag-
nostic will terminate. If the fault determination flag
is not set (which means PUDA needs more data to
decide) then PUDA branches to 20 different paths
corresponding, respectively, to the 20 phases of PUC
diagnostic.

4.116 When interpretation of failing phases 1 and

7 through 19 is done by PUDA, a list of cir-
cuit packs associated with that particular phase is
printed.

4.117 For phases 2 through 6, the operation of
PUDA is described as follows:

(a) Phase 2—Word 1 of phase 2 is checked for a
zero or nonzero. If nonzero, then the mode and
enable flag is set and PUDA exits. If word 1 is zero,
then the failing raw data is analyzed according to
the combination of PUAB and SCAB that fail. The
number of the failing test is pegged against eight
different fault counters corresponding to the eight
different fault categories. These categories are:

(1) PUABO fault

Page 23

SECTION 231-045-430

(2) PUABI fault
(3) SCABO fault
(4) SCABI fault

(5) SCAM, SCAM controller (SCAMC) or
hardcore (HC) fault

(6) Power to BUS 0
(7) Power to BUS 1 fault

(8) Others (a catch all category that does not
belong to the above seven categories).

There are six other flags besides the mode and
enable flag to indicate how the data fails. These
flags are:

(1) Low byte flag—Set if there is a nonzero
value in bits 0 through 7 of the failing data.

(2) Mid byte flags—Set if there is a nonzero
value in bits 8 through 15 of the failing data

(3) Parity flag—Set if bit 16 (parity bit) of the
failing data is 1

(4) All seems well flag—Set if bit 17 of the fail-
ing data is set

(5) Enable verify flag—Set if bit 18 of the fail-
ing data is set

(6) Hardcore flag—Set if word 61 of phase 2
has a value of 10.

(b) Phase 3—Perform the same operation as
phase 2 except word 56 is checked for MEN cir-
cuit failure.

Note: If word 56 is nonzero, the MEN failure
flag is set.

(¢) Phase 4—PUDA checks if phase 2 has STF and

phase 4 is ATP; then reset lead 0 is considered
faulty. If phase 2is ATP and phase 4 has STF, then
reset lead 1 is faulty. Once the fault has been iden-
tified, PUDA generates the pointers to the table
that contains a list of word descriptions of the
faults and a set of pointers to the circuit packs ta-
ble.

(d) Phase 5—PUDA first checks to find if the
MEN flag is set or reset. If set, then, the fault

Page 24

is the MEN circuit fault. If the MEN circuit flag
is not set, then PUDA finds the maximum of the
eight counters that corresponds to the eight differ-
ent fault categories. Once the fault categories are
determined, the six flags are used to determine the
exact fault and its associated suspected circuit
packs.

(e) Phase 6—Word 1 of phase 6 is checked for zero

or nonzero. If word 1 of phase 6 is nonzero,
then the suspected problem is DIF, DIFC, or MEN
fault. If word 1 of phase 6 is zero, then the remain-
ing data is examined to determine if there is a bus-
related problem.

Note: After examining the remaining data
and if determining that the suspected problem
is not the bus, then the problem is DIF, DIFC
or MEN. This determination is obtained by ex-
amining the failing data, whether both buses
fail or only one bus fails. If both buses fail, then
it is a DIF, DIFC, or MEN problem. If one bus
fails, then the failing bus—DIF, DIFC or
MEN—in that order are suspected. When the
exact fault is determined, associated circuit
pack numbers are printed.

PERIPHERAL UNIT CONTROLLER ERROR ANALYSIS
(PUEA)

A. Function
4.118 There are eight basic areas within the pe-
ripheral unit controller error analysis

(PUEA) program that support this deterministic
performance evaluation. They are:

(1) Heart Beat

(2) Figure of Merit

(3) PUC Error Resolution

(4) Background Firmware Tests

(5) PUC Memory Access

(6) Internal PUC Hardware State Changes

(7) External PUC Hardware Tests

(8) PUC History Data.

' ’ ’ o ’

B. Operation
Heart Beat

4.119 The Heart Beat test is a repetitive loop-

around order originated at the ESS and re-
turned by the active PUC controller once every six
seconds. This order goes through the PUC hardware,
firmware, and the ESS interface, thereby providing
a means of checking all these related areas for
functionability. On each transmission a counter is
incremented. A similar count of orders received is
also maintained. These counts are compared when 25
orders are sent. The resultant success ratio accord-
ingly classifies the functional performance of the
given controller. This percentage is used for the de-
termination of PUC relative ability. When heart beat
has an efficiency degrading to less than 75 percent,
a more definitive evaluation of the controller is im-
plemented. This evaluation is accomplished by using
the Figure of Merit test.

Figure of Merit

4.120 This function performs the Figure of Merit

(FM) tests. The FM tests check the access,
flip-flop control (ferrods), firmware cycling perfor-
mance, and ability to maintain on board fault detec-
tion for each controller.

4.121 The range of FM is 0 to 9, with a 5 being a

threshold for usable performance. A com-
pletely satisfactory controller will yield an FM=9.
Should the access check, the cycling firmware check,
or the (ferrod) flip-flop check produce a value of 0 for
their respective contributions to the FM, then the
value for the FM is set to 0. Otherwise the weighting
is as follows:

(a) Access—No route, one route, both routes sat-
isfactory yield a contribution of 0, 1 and 2, re-
spectively.

(b) Cyecling firmware—An 88 percent or greater

completed cycles provides a contribution of 2;
between 1 percent and 88 percent a contribution of
1 and 0 for less than 1 percent.

(c) Flip-Flop Control (ferrods)—For the active

PUC controller, the flip-flop control test is
performed in two parts. The first part checks the
master (MST) and scanner answer bus (SBA)
which yields a contribution of 0 or 2. A 2 is given

ISS 2, SECTION 231-045-430

if both flip-flops operate and 0 if either flip-flop is
nonoperative.

Note: In this case, a zero will cause the flip-
flop test to end and the FM to yield a contribut-
ing factor of 0.

The second part checks the divorce (DIV) and lock-
out (LKO) flip-flop which yield a contribution of
0 or 2. A 2is given if both flip-flops operate and a
0 if either flip-flop is nonoperative.

Note: In this case, a zero will not cause the
flip-flop test to end or the FM to yield a contrib-
uting factor of 0.

The maximum contributing factor yield is 4. For
the standby controllers the flip-flops are put
through 16 combinations of set and reset.

Note: If 4 flip-flop fails, the resultant is a
contributing factor of 0. The maximum contrib-
uting factor yield is 4.

(d) Maintenance Retention—The maintenance

retention test is used to check the ability of the
internal firmware maintenance to remain on and
produces a contribution of 1 otherwise 0. These
tests are performed manually by (via a TTY mes-
sage) or automatically (triggered by Heart Beat
criteria not being satisfied). The results of the FM
test, on each controller, determine the action that
will be performed (caused by Heart Beat). There
are three general actions that are performed.
These actions are:

Note: This check occurs only when the PUC
is active maintenance remove: out of service-
fault state (ACT_MR_OOS_FLT) but the FM
performs in any state.

(1) Standby value <5; Active value >5—When

this condition occurs, the automatic analy-
sis will not initiate further action. The values
returned indicate the active controller is the
better of the two controllers and should func-
tion properly. Note that the active is not perfect
since its inability to handle the heart beat was
the reason analysis was activated in the first
place. (See output message manual for MPPF
Report 4.)

(2) Standby Value >5; Active Value <5—1In this
case, analyses will perform a positive ac-

Page 25

SECTION 231-045-430

tion. The values returned indicate that the
standby controller is more functional than the
active controller. In this condition, analysis will
cause the standby controller to become active.
(See output message manual for MPPF Report
4.

(3) Standby Value <5; Active Value <5—This

situation indicates that neither of the two
controllers is in a condition to perform in any
working configuration. The most appropriate
action to take is initialize the frame with the
better of the two controllers declared active.
(See output message manual for MPPF Report
4.)

PUC Error Resolution

4.122 The PUC Error Resolution performs seven

possible areas of error locating tests. These
tests consist of PROM, RAM, 1I/0, HARDCORE,
SCAM, MEN, and DIF. A corresponding counter for
each test is used to count the number of errors that
occur. When the number reaches seven for any of the
counters, an entry into the background firmware test
occurs.

Background Firmware Test

4.123 The Background Firmware test is used to

diagnose the cause of an error in the PROM,
RAM, 1/0, HARDCORE, SCAM, MEN, or DIF areas.
This function occurs manually (via TTY request) or
automatically (via entry from PUC Error Resolution
function). The automatic tests are performed on the
active controller and manually requested tests are
run only on the off-line controller.

Note: When the background firmware test
occurs manually, a single section of PROM,
RAM, I7/0, HARDCORE, MEN, or DIF is tested.
When the background firmware test occurs au-
tomatically, a related section of hardware is
tested.

PUC Memory Access

4.124 The PUC Memory Access function provides
two capabilities:

(a) To scan (which is used to display any part of
the SCAM 0 memory), and

(b) To monitor (which is to monitor any word or
bit located in SCAM 0 memory).

Page 26

Internal PUC Hardware State Changes

4.125 The Internal PUC Hardware State changes

will provide the capability to single step the
PUC through internal hardware states. This will aid
in locating a problem with any controller not able to
perform state changes successfully.

External PUC Hardware Tests

4.126 The External PUC Hardware tests consist of

loop, access, and configuration tests. These
tests provide a way of checking the PUC external
hardware.

Note: These functions can only be performed
on the off-line controller.

4.127 In the loop test the ESS continuously sends

a series of four orders (all Os, all 1s, alternat-
ing 1010s, alternating 0101s) to the PUC. These bit
changes are used to check the ESS interface connec-
tions.

4.128 The access test provides a means of checking

the controllers off-line. This test checks the
combination (See Table C) of PUAB (0 or 1), CPD (0
or 1) and PUC (0 or 1). If the route chosen has trouble,
the system will take an F-level interrupt.

PTABLE C4
PUC ACCESS ROUTE
CONFIGURATIONS
PUC PUAB CPD
CONTROLLER
0 0 0
1 0 1
1 1 0
0 1 1

4.129 The configuration test checks the

controllability of the flip-flops (SBA, LKO,
DIV, and MST) by setting or resetting any of 16 possi-
ble combinations.

PUC History Data

4.130 The PUC History data block records the last
four PUC state control entries and recovery

3 ’ - :a

actions. This history is automatically output when-
ever any PUC frame goes maintenance removed or
upon demand. Associated with each block of informa-
tion is:

e Time of the event

e PUC state (software and hardware)

e Reason for entry

e Requester

e Ferrods for each controller

e Defined active and standby controllers (soft-
ware and hardware derived).4

5. ABBREVIATIONS AND ACRONYMS

5.01 The following abbreviations and acromyns are
used within this section.

AEA Address Enable Address

ATP All Tests Pass

CCU Combined Channel Unit

CPD Central Pulse Distributor

CPFR CPD Fault Recognition Program
DCT Digital Carrier Trunk

DIAL Diagnostic Language Program
DIF Data Input FIFO

DIFC Data Input Controller

DIV Divorce

DL Data Link

DMA Direct Memory Access

DYLT Dial Phase Table Program
ECMP Executive Control Main Program
ESS Electronic Switching System
FIFO First-In/First-Out Buffer

FM
MALM
MEN
MSN

MURL

NMRF

NSUP

POB
PU
PUAB
PUC

PUCI

PUCO

PUCR

PUCU

PUCO0-8

PUFR

PUFS

PUPM

PUO1

RAM
ROB

ROM

ISS 2, SECTION 231-045-430

Figure of Merit

System Alarm Program

Mode and Enable Circuit
Master Scanner Number

Maintenance Unexpected Result
List

Network Management Program

Enable Table Maintenance Rou-
tines Program

Peripheral Order Buffer
Peripheral Unit

Peripheral Unit Address Bus
Periphéral Unit Controller

Peripheral Unit Controller Initial-
ization Program

Peripheral Unit Controller Input/
Output Control Program

Peripheral Unit Controller Diag-
nostic Program

Peripheral Unit Controller Un-
loader Program

State Control Module Program

Peripheral Unit Controller F-level
Recognition Program

Peripheral Unit Controller F-Scan
Program

State Control Module Program

Peripheral Unit Controller Diag-
nostic Program

Random Access Memory
Remote Order Buffer

Read Only Memory

Page 27

SECTION 231-045-430

RSS Remote Switching System

SCAB Scanner Address Bus

SCAM Scan Memory

SCAMC Scanner Address Controller

STF Some Tests Failed

TRBT Basic Trunk Translation Routines
Program

TTIA TTY Input Message Directory and

Catalog Program
6. REFERENCES

6.01 For further information concerning these pro-
grams, consult the following references:

e PR-1A035 DIAL Program
e PR-1A448 PUCI Program
e PR-1A448 PUCO Program
e PR-1A448 PUFS Program
e PR-1A450 PUCU Program
PR-1A463 DIAL Program

Page 28
28 Pages

PR-1A473 PUCR Program
PR-1A473 PUO1 Program
PR-1A617 PUFR Program
PPR-1A953 PUCO Program
PR-1A954 PUC1 Program
PR-1A955 PUC2 Program
PR-1A956 PUC3 Program
PR-1A957 PUC4 Program
PR-1A958 PUC5 Program
PR-1A959 PUC6 Program
PR-1A960 PUCT Program
PR-1A961 PUC8 Program
PR-1A100 PUDA Program

PR-1A831 PUEA Program.4

?_;
i

®
[
x

®

®

