Nortel Networks

BroadBand STP
 Centillion 1200N ATM Switch Command Manual

SSR3.0 Standard 1.01 August 2000

All rights reserved

Published in Canada

NORTEL NETWORKS CONFIDENTIAL: The information contained in this document is the property of Nortel Networks. Except as specifically authorized in writing by Nortel Networks, the holder of this document shall keep the information contained herein confidential, shall disclose the information only to its employees with a need to know, and shall protect the information, in whole or in part, from disclosure and dissemination to third parties with the same degree of care it uses to protect its own confidential information, but with no less than reasonable care. Except as expressly authorized in writing by Nortel Networks, the holder is granted no rights to use the information contained herein.

Information subject to change without notice
Nortel Networks, the Nortel Networks logo, the Globemark, How the World Shares Ideas, and Unified Networks are trademarks of Nortel Networks.

REGULATORY INFORMATION

Network Equiipment Building Systems (NEBS)

This product has been tested and found to comply with the criteria of NEBS level 1,2 , and 3.

FCC Part 15 Requirements

In compliance with FCC Part 15 Rules, the following statement is provided:

WARNING

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference in which case the user at their expense will be required to take whatever measures may be required to correct the interference.

FCC Part 68 Registration

Company Notification

If this product is provided with either a CE-DS1 or an ATM-DS1 interface then the following applies:

Before installing the Centillion 1200N ATM Switch to the telephone network, the telephone company must be provided with the following:

- Your telephone number
- The FCC registration number: AY5JPN-32775-XD-N
- The required USOC jack is RJ45

Without a CE-DS1 or an ATM-DS1 interface, the Centillion 1200N FCC registration number is 5CNJPN-32940-XD-N.

Service Requirements

In the event of equipment malfunction, Nortel Networks or an authorized distributor of Nortel Networks will perform all repairs. It is the responsibility of users requiring service to report the need for service to Nortel Networks or to one of their authorized distributors.

Location of FCC Compliance Labels

Labels stating the Centillion 1200N ATM Switch FCC registration number and compliance with FCC Part 15 and 68 are attached to the Base Chassis. The appearance of the labels is as shown below:

Regulatory Information for Analog Telephone

The equipment uses the following USOC jacks: RJ45.
If the equipment causes harm to the telephone network, the telephone company will notify you in advance that temporary discontinuance of service may be required. If advance notice is not practical, the telephone company will notify the customer as soon as possible. Also, you will be advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations, or procedures that affect the operation of the equipment. If this happens, the telephone company will provide advance notice in order for you to make necessary modifications in order to maintain uninterrupted service.

If trouble is experienced with this equipment, please contact NEC America, Inc.'s National Technical And Support Center (NTAC) at 800-538-8166 for repair and/or warranty information. If the trouble is causing harm to the telephone network, the
telephone company may request that you remove the equipment form the network until the problem is resolved.

NO REPAIRS CAN BE DONE BY THE CUSTOMER.

IC CS03 Certification (Canada)

Certification number: 1408642
Load Number of the equipment: N/A
NOTICE: The Industry Canada label identifies certified equipment. The certification means that the equipment meets certain telecommunications network protective operational and safety requirements. The department does not guarantee the equipment will operate to the user's satisfaction.

Before installing the equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. In some cases, the companies inside wiring associated with a single line individual service may be extended by means of a certified connector assembly (telephone extension cord). The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situation.

Repairs to certified equipment should b made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or installations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request that the user disconnect the equipment.

Users should ensure for their own protection that the electrical ground connections of the power utility, telephone lines, and internal metallic water pipe system, if present, are connected together. This protection may be particularly important in rural areas.

CAUTION: Users should not attempt to make such connections themselves, but should contact the appropriate electric inspection authority, or electrician, as appropriate.
CAUTION: The act of monitoring or recording telephone conversations under certain circumstances may violate federal or state statutes. Consultation with your legal counsel prior to engaging in such practices would be advisable.

Safety Certifications

This equipment has been listed by Underwriters Laboratories and found to comply with all the applicable requirements of the standard for Information Technology equipment UL $19503^{\text {rd }}$ edition. This equipment complies with CSA standard C22.2 No $9503^{\text {rd }}$ edition.

Table of Contents

Table of Contents i
Instructions on Commands 1-1
Principal Commands 1-1
Entering Commands 1-3
Example Command Entry Formats 1-3
Command Help 1-4
Commands Reference 2-1
General Commands 2-1
Privileged Commands 2-4
Commands 3-1
ATM Switch Commands 3-1
?/HELP 3-1
BACKUP ? (Privileged Command) 3-3
BACKUP config (Privileged Command) 3-4
CLEAR? (Privileged Command) 3-5
CLEAR config (Privileged Command) 3-6
DEBUG ? (Privileged Command) 3-7
DEBUG ilmi (Privileged Command) 3-8
DEBUG pnni (Privileged Command) 3-9
DEBUG signaling (Privileged Command) 3-12
DEBUG sscop (Privileged Command) 3-13
DELETE ? (Privileged Command) 3-14
DELETE cevc (Privileged Command) 3-15
DELETE configserver (Privileged Command) 3-16
DELETE dlci (Privileged Command) 3-17
DELETE froam (Privileged Command) 3-18
DELETE frprofile (Privileged Command) 3-19
DELETE ilmi (Privileged Command) 3-20
DELETE iproute (Privileged Command) 3-21
DELETE nms (Privileged Command) 3-22
DELETE oamcon (Privileged Command) 3-23
DELETE oamend (Privileged Command) 3-24
DELETE oamf5end (Privileged Command) 3-25
DELETE pnni (Privileged Command) 3-26
DELETE profile (Privileged Command) 3-27
DELETE shaper (Privileged Command) 3-28
DELETE signaling (Privileged Command) 3-29
DELETE tunneling (Privileged Command) 3-30
DIAGNOSIS ? (Privileged Command) 3-32
DIAGNOSIS all (Privileged Command) 3-33
DIAGNOSIS cpu (Privileged Command) 3-34
DIAGNOSIS slot (Privileged Command) 3-35
DIAGNOSIS switch (Privileged Command) 3-36
DISPLAY ? (General Command) 3-37
DISPLAY alarm (General Command) 3-39
DISPLAY all (General Command) 3-47
DISPLAY atmsig (General Command) 3-48
DISPLAY boot (General Command) 3-50
DISPLAY calledsoftpvp (General Command) 3-52
DISPLAY cdvt (General Command) 3-53
DISPLAY cevc (General Command) 3-54
DISPLAY clock (General Command) 3-56
DISPLAY configserver (General Command) 3-57
DISPLAY configuration (General Command) 3-58
DISPLAY dlci (General Command) 3-59
DISPLAY dynamicroute (General Command) 3-61
DISPLAY ether (General Command) 3-62
DISPLAY froam (General Command) 3-63
DISPLAY frprofile (General Command) 3-64
DISPLAY frversion (General Command) 3-66
DISPLAY iisp (General Command) 3-67
DISPLAY ilmi (General Command) 3-69
DISPLAY interface (General Command) 3-73
DISPLAY iproute (General Command) 3-82
DISPLAY line (General Command) 3-83
DISPLAY looptime (General Command) 3-85
DISPLAY mac (General Command) 3-86
DISPLAY manufacturingid (General Command) 3-87
DISPLAY network (General Command) 3-88
DISPLAY oamcon (General Command) 3-90
DISPLAY oamend (General Command) 3-91
DISPLAY oamf5end (General Command) 3-94
DISPLAY pnni (General Command) 3-95
DISPLAY profile (General Command) 3-103
DISPLAY pvc (General Command) 3-104
DISPLAY redundancy (General Command) 3-107
DISPLAY route (General Command) 3-109
DISPLAY scope (General Command) 3-110
DISPLAY scroll (General Command) 3-111
DISPLAY server (General Command) 3-112
DISPLAY shaper (General Command) 3-113
DISPLAY signaling (General Command) 3-115
DISPLAY softpvp (General Command) 3-116
DISPLAY sscop (General Command) 3-119
DISPLAY status (General Command) 3-121
DISPLAY svc (General Command) 3-123
DISPLAY svcline (General Command) 3-128
DISPLAY t309trg (General Command) 3-129
DISPLAY telnetlimit (General Command) 3-130
DISPLAY time (General Command) 3-131
DISPLAY traffic (General Command) 3-132
DISPLAY tunneling (General Command) 3-146
DISPLAY version (General Command) 3-147
ENABLE (General Command) 3-148
EXIT (General Command) 3-150
EXIT (Privileged Command) 3-151
FAILUREDUMP (Privileged Command) 3-152
FAILURELOG (Privileged Command) 3-156
GENERATE ? (Privileged Command) 3-157
GENERATE f4 (Privileged Command) 3-158
GENERATE f5 (Privileged Command) 3-159
GENERATE feac (Privileged Command) 3-160
INSTALL config (Privileged Command) 3-161
OPEN (General Command) 3-163
PASSWD (Privileged Command) 3-164
PVC ? (Privileged Command) 3-165
PVC add (Privileged Command) 3-166
PVC delete (Privileged Command) 3-168
PVC establish (Privileged Command) 3-170
PVC flush (Privileged Command) 3-172
PVC remove (Privileged Command) 3-173
RESET ? (Privileged Command) 3-174
RESET slot (Privileged Command) 3-175
RESET switch (Privileged Command) 3-176
ROUTE ? (Privileged Command) 3-177
ROUTE add (Privileged Command) 3-178
ROUTE delete (Privileged Command) 3-180
ROUTE flush (Privileged Command) 3-181
ROUTE resume (Privileged Command) 3-182
SAVE (Privileged Command) 3-183
SET ? (Privileged Command) 3-184
SET atmsig (Privileged Command) 3-185
SET boot (Privileged Command) 3-186
SET calledsoftpvp (Privileged Command) 3-188
SET cdvt (Privileged Command) 3-189
SET cevc (Privileged Command) 3-191
SET clock (Privileged Command) 3-195
SET configserver (Privileged Command) 3-197
SET dlci (Privileged Command) 3-198
SET ether (Privileged Command) 3-199
SET froam (Privileged Command) 3-200
SET frprofile (Privileged Command) 3-201
SET iisp (Privileged Command) 3-202
SET ilmi (Privileged Command) 3-204
SET interface (Privileged Command) 3-206
SET iproute (Privileged Command) 3-212
SET linestatus (Privileged Command) 3-213
SET local (Privileged Command) 3-215
SET loopback (Privileged Command) 3-216
SET looptime (Privileged Command) 3-217
SET mib (Privileged Command) 3-218
SET nms (Privileged Command) 3-219
SET oamcon (Privileged Command) 3-220
SET oamend (Privileged Command) 3-221
SET oamf5end (Privileged Command) 3-222
SET pnni (Privileged Command) 3-223
SET profile (Privileged Command) 3-230
SET prompt (Privileged Command) 3-232
SET scope (Privileged Command) 3-233
SET scroll (Privileged Command) 3-234
SET server (Privileged Command) 3-235
SET shaper (Privileged Command) 3-236
SET signaling (Privileged Command) 3-237
SET sscop (Privileged Command) 3-238
SET svcline (Privileged Command) 3-239
SET t309trg (Privileged Command) 3-240
SET telnetlimit (Privileged Command) 3-241
SET time (Privileged Command) 3-242
SET tunneling (Privileged Command) 3-243
SOFTPVP? (Privileged Command) Function 3-244
SOFTPVP addparty (Privileged Command) 3-245
SOFTPVP delete (Privileged Command) 3-246
SOFTPVP dropparty (Privileged Command) 3-247
SOFTPVP establish (Privileged Command) 3-248
SOFTPVP flush (Privileged Command) 3-250
SOFTPVP release (Privileged Command) 3-251
SOFTPVP setup (Privileged Command) 3-252
TELNETPASSWD (Privileged Command) 3-253
Error Messages 4-1
Glossary A-1

Instructions on Commands

Principal Commands

The ATM Switch is controlled by entering commands from an external Maintenance and Administration Terminal (MAT) connected via an RS-232C interface.

The commands of the ATM Switch are divided into two types:

- General Commands
- Privileged Commands

While General Commands can only be used to see system data, Privileged Commands can be used to set or change system data. Privileged Commands should only be used by system managers and service personnel. The execution of a Privileged Command requires the entry of a password registered in advance. Commands are divided into the two types to prevent system data and networkrelated data from being changed by unauthorized personnel.

The mode in which General Commands (only) can be used is referred to as the General Command Mode. The mode in which both General Commands and Privileged Commands can be used is referred to as the Privileged Command Mode.

When the power is turned on, the ATM Switch defaults to General Command Mode.

To change from the General Command Mode to the Privileged Command Mode, execute the ENABLE command.

NOTE All commands may be shortened at the command line for quicker entry; however, there is no listing of abbreviated commands. Simply type the fewest number of letters until the command displays. For example:

```
Long: HOSTNAME#show interface
Short: HOSTNAME#sh int
```

The ATM Switch will then prompt for a password. The password is set on the initial entry into Privileged Mode, whereby the ATM Switch will prompt for a new password and verification, along with a Telnet password and verification.

To change from the Privileged Command Mode to the General Command Mode, execute the EXIT command.
The format of the prompt displayed on the MAT screen is used to determine whether the current mode is the General Command Mode, indicated by the > prompt, or the Privileged Command Mode, indicated by the \# prompt. In addition, if a host name is set to the system, the host name is also displayed as part of the prompt. The host name is set by executing the SET LOCAL command.

Default Prompt

General Command Mode:	HOSTNAME>
Privileged Command Mode:	HOSTNAME\#

Entering Commands

A command is entered after the prompt (> or \#). While some commands are used alone, many are used in combination with a subcommand or parameter. When entering a subcommand or parameter, enter a [space] to divide the entries.

Some parameters can be defaulted while others cannot, depending on the type of command and the conditions of specification. In this manual, parameters that can be defaulted are enclosed in brackets, such as $\{\mathrm{P} 1\}$. When you have finished entering a command, press the [ENTER] key.

A command may be entered in capital letters or lower case letters; however, the password is case sensitive.

Example Command Entry Formats

General Command Mode

1. >Command[ENTER]

Example: HOSTNAME>enable[ENTER]
2. >Command[space] Subcommand [ENTER]

Example: HOSTNAME>show[space]time[ENTER]
3. >Command[space] Subcommand [space] Parameter1 [ENTER]

Example: HOSTNAME>show[space]pvc[space] OO[ENTER]

Privileged Command Mode

1. \#Command[ENTER]

Example: HOSTNAME\#save[ENTER]
2. \#Command[space] Subcommand[ENTER]

Example: HOSTNAME\#save[space]act [ENTER]
3. \#Command[space] Subcommand [space] Parameter1[space]

Parameter2[space] . . . [ENTER]
Example: HOSTNAME\#set[space] local[space] switch1
[space]10.5.1.50[space] 255.255.255.0[space] 3900 [ENTER]

Command Help

Help is available for each command. Use HELP or ? for a brief description of each command and learn the types of parameters and their possible setting ranges.

Following are example Help Commands.

Command	Function
\#? [ENTER]	Displays list of commands that can be entered in General Mode or Privileged Mode and a brief description.
\#COMMAND? [ENTER]	Displays list of subcommands that follow the specified commands and a brief description.
\#COMMAND [space] Subcommand? [ENTER]	Displays the next parameter and the possible setting ranges. (Displays types of parameters and possible setting ranges following the specified command+subcommand.) Example:
\#COMMAND [space] Subcommand [space] P1 [space] ? [ENTER] \#DELETE configserver ? $0-3$ LECS index (If there is more than one parameter, the types of parameters and their possible setting ranges following the specified command+Subcommand+parameter will be displayed.) Example:	

NOTE
Entering ? after a command only shows the next parameter versus all parameters. For example, if a command has five parameters and a ? is typed after entering two of them, only the next parameter is shown, not the remaining three.

ATM Switch commands are described in "Commands" on Page 3-1.
Error messages are described in "Error Messages" on Page 4-1.

Commands Reference

General Commands

Command	Sub-Command	Function	Page
?/HELP	-	Command help	3-1
DISPLAY/SHOW	?	DISPLAY command help	3-37
	alarm	Display alarm information	3-39
	all	Display all configuration data	3-47
	atmsig	Display Q. 2931 parameter	3-48
	boot	Display boot mode	3-50
	calledsoftpvp	Display recognition standard of called SoftPVP	3-52
	cdvt	Display cell delay variation tolerance (CDVT) configuration	3-53
	cevc	Display circuit emulation connection information	3-54
	clock	Display clock mode	3-56
	configserver	Display ILMI ATM address table of LAN emulation configuration server (LECS)	3-57
	configuration	Display all configuration data	3-58
	dlci	Display DLCI data	3-59
	dynamicroute	Display dynamic routing table	3-61
	ether	Display IP address of Ethernet	3-62
	froam	Display OAM endpoint information (FR-ATM).	3-63
	frprofile	Display FR profile information	3-64

Command	Sub-Command	Function	Page
DISPLAY/SHOW	frversion	Display ROM/software version of FR card	3-66
	iisp	Display ON/OFF status of Split Horizon, loopcheck, and swaproute	3-67
	ilmi	Display ILMI connection information	3-69
	interface	Display line interface information	3-73
	iproute	Display IP routing information via ATM, or Ethernet	3-82
	line	Display line status	3-83
	looptime	Display per port clock recovery status; on or off	3-85
	mac	Display MAC address	3-86
	manufacturingid	Display manufacturing ID number	3-87
	network	Display network information	3-88
	oamcon	Display OAM connecting point information	3-90
	oamend	Display OAM end point information	3-91
	oamf5end	Display F5 OAM endpoint information	3-94
	pnni	Display PNNI connection information	3-95
	profile	Display profile information	3-103
	pve	Display PVC information	3-104
	redundancy	Display redundancy of the server card	3-107
	route	Display SVC routing table	3-109
	scope	Display Scope	3-110
	scroll	Display MAT display line count	3-111
	server	Display TATP server IP address	3-112
	shaper	Display shaping rate	3-113
	signaling	Display signaling connection information	3-115
	softpvp	Display soft PVPC/PVCC setting information	3-116
	sscop	Display SSCOP parameter	3-119
	status	Display hardware status	3-121
	svc	Display SVC connection table	3-123
	svcline	Display signaling line status	3-128
	t309trg	Display signaling line failure timing	3-129

Command	Sub-Command	Function	Page
DISPLAY/SHOW	telnetlimit	Display time limit of Telnet	$3-130$
	time	Display system date/time	$3-131$
	traffic	Display call traffic counter values	$3-132$
	tunneling	Display tunneling connection information	$3-146$
	version	Display ROM/Software Version	$3-147$
ENABLE	-	Go to Privileged Mode	$3-148$
EXIT	-	Log out during Telnet connection	$3-150$
OPEN	-	Open an access to a server card	$3-163$

Privileged Commands

Command	Sub-Command	Function	Page
?/HELP	-	Command help	3-1
BACKUP	?	BACKUP command help	3-3
	config	Backup configuration data	3-4
CLEAR	?	CLEAR command help	3-5
	config	Initialize all configuration data	3-6
DEBUG	?	DEBUG command help	3-7
	ilmi	Set ILMI debug flag	3-8
	pnni	Set PNNI debug flag	3-9
	signaling	Set Q. 2931 debug flag	3-12
	sscop	Set SSCOP debug flag	3-13
DELETE	?	Delete command help	3-14
	cevc	Delete circut emulation information	3-15
	configserver	Delete ILMI ATM address table entry of LAN emulation configuration server	3-16
	dlci	Delete DLCI data	3-17
	froam	Delete OAM endpoint information (FR-ATM)	3-18
	frprofile	Delete FR profile information	3-19
	ilmi	Delete ILMI connection (0,16)	3-20
	iproute	Delete IP routing information	3-21
	nms	Delete NMS information	3-22
	oamcon	Delete OAM connecting point	3-23
	oamend	Delete OAM endpoint	3-24
	oamf5end	delete F5 OAM endpoint	3-25
	pnni	Delete PNNI connection (0,18)	3-26
	profile	Delete profile information	3-27
	shaper	Delete shaping rate	3-28
	signaling	Delete signaling connection (0,5)	3-29
	tunneling	Delete tunneling connection information	3-30

Command	Sub-Command	Function	Page
DIAGNOSIS	?	DIAGNOSIS command help	3-32
	all	Diagnose all units	3-33
	cpu	Diagnose CPU board	3-34
	slot	Diagnose line packages	3-35
	switch	Diagnose switch board	3-36
EXIT	-	Go to General Mode	3-151
FAILUREDUMP		Display failure information	3-152
FAILURELOG		Display failure log	3-156
GENERATE	?	GENERATE command help	3-152
	f4	Generate OAM cells (loopback cells) in the " $f 4$ " mode	3-158
	f5	Generate OAM cells (loopback cells) in the "f5" mode	3-159
	feac	Transmit FEAC code at DS3 package	3-160
INSTALL	config system	Install software or configuration data via ATM or ethernet line	3-161
OPEN	-	Open an access to a CPU built-in card, for example LAE/IPOA card	3-163
PASSWD	-	Set Privileged Mode password	3-164
PVC	?	PVC command help	3-165
	add	Add PVC end point (P-to-MP)	3-166
	delete	Delete PVC	3-168
	establish	Build a PVC connection	3-170
	flush	Delete all PVC connections (for each line)	3-172
	remove	Delete PVC end point (P-to-MP)	3-173
RESET	?	RESET command help	3-174
	slot	Reset line card	3-175
	switch	Reset system	3-176

Command	Sub-Command	Function	Page
ROUTE	?	ROUTE command help	3-177
	add	Set SVC routing table	3-178
	delete	Delete one entry from SVC routing table	3-180
	flush	Delete all entries from SVC routing table	3-181
	resume	Resume SVCs across a previous link	3-182
SAVE	-	Save configuration	3-183
SET	?	Set command help	3-184
	atmsig	Set Q. 2931 parameter	3-185
	boot	Set boot mode	3-186
	calledsoftpvp	Switch recognition standard of called SoftPVP	3-188
	cdvt	Set CDVT configuration	3-189
	cevc	Set circuit emulation connection information	3-191
	clock	Set clock mode (master, slave)	3-195
	configserver	Set ILMI ATM address table of LAN emulation configuration server	3-197
	dlci	Set DLCI data	3-198
	ether	Set Ethernet IP address	3-199
	froam	Set OAM endpoint information (FR-ATM)	3-200
	frprofile	Set FR profile information	3-201
	iisp	Set ON/OFF status of Split Horizon, loopcheck or swaproute	3-200
	ilmi	Enable ILMI and set configuration	3-204
	interface	Set port configuration	3-206
	iproute	Set IP routing information	3-212
	linestatus	Set line status; up or down	3-213
	local	Set Switch name, ATM IP address, mask, and ATM prefix information	3-215
	loopback	Set loopback on line interface	3-216
	looptime	Set per port clock recovery	3-217
	mib	Set MIB contact/location information	3-218

Command	Sub-Command	Function	Page
SET	nms	Set NMS information	3-219
	oamcon	Set OAM connecting point	3-220
	oamend	Set OAM endpoint	3-221
	oamf5end	Set F5 OAM endpoint	3-222
	pnni	Set PNNI configuration	3-222
	profile	Set UPC (policing) information	3-230
	prompt	Set prompt type	3-232
	scope	Set Scope	3-233
	scroll	Set MAT display line count	3-234
	server	Set server IP address	3-235
	shaper	Set shaping rate	3-236
	signaling	Set signaling connection	3-237
	sscop	Set SSCOP information	3-238
	svcline	Enable/disable signaling	3-239
	t309trg	Set signaling line failure timing	3-240
	telnetlimit	Set time limit of Telnet	3-241
	time	Set system date/time	3-242
	tunneling	Set tunneling connection information	3-243
SOFTPVP	?	SOFTPVP command help	3-244
	addparty	Add soft PVPC/PVC end point (P-to-MP)	3-245
	delete	Delete soft PVPC/PVCC	3-246
	dropparty	Delete soft PVPC/PVCC end point (P-to-MP)	3-247
	establish	Set soft PVPC/PVCC	3-248
	flush	Delete soft PVPC/PVCC (for each line)	3-250
	release	Delete soft PVPC/PVCC	3-251
	setup	Set soft PVPC/PVCC by PNNI	3-252
TELNETPASSWD	-	Set Telnet password	3-253

This page is for your notes.

Commands

ATM Switch Commands

NOTE The Centillion 1200N is a 2.5 Gbps ATM switch.

For details on command error messages, see "Error Messages" on Page 4-1.

?/HELP

Function

This command is used to display system commands.

Format

HOSTNAME\# HELP
Output (General Mode)

DISPLAY<cmd>	Display configuration data. (Type "display ?" for list.)
ENABLE	Enable privileged commands (Password required)
EXIT	Exit from privileged mode or close current Telnet session
OPEN	Show available commands
SHOW<Cmd>	Enable access to card's CPU
	Display configuration data (Type "show ?" for list.)

Output (Privileged Mode)

BACKUP < cmd>	Backup configuration data
CLEAR<cmd>	Clear configuration data or traffic counter (Type "clear ?" for list.)
DEBUG<cmd>	Debug protocol (Type "debug ?" for list.)
DELETE<cmd>	Delete configuration data (Type "delete ?" for list.)
DIAGNOSIS<cmd>	Diagnose hardware (Type "diagnosis ?" for list.)
DISPLAY<cmd>	Display configuration data (Type "display ?" for list.)
ENABLE	Enable privileged commands (Password required)
EXIT	Exit from privileged mode or close current Telnet session
GENERATE<cmd>	Generate OAM cells (Type "generate ?" for list.)
?/HELP	Show available commands
INSTALL	Install system files or configuration data. OPEN Enable access to card's CPU
PASSWD	Change password
PVC<cmd>	PVC commands (Type "pvc ?" for list.)
RESET<cmd>	Reset switch/line card (Type "reset ?" for list.)
ROUTE<cmd>	Configure SVC routing table (Type "route ?" for list.)
SAVE	Save configuration data to flash memory
SET<Cmd>	Set configuration data (Type "set ?" for list.)
SHOW<cmd>	Display configuration data (Type "show ?" for list.)
SOFTPVP<cmd>	Softpvp commands (Type "softpvp ?" for list.)
TELNETPASSWD	Change Telnet password

NOTE The output for ? or HELP lists all possible commands in General Mode and Privileged Mode.

BACKUP ?
(Privileged Command)

Function

This command is used to display the help message for the BACKUP command.

Format
HOSTNAME\# BACKUP ?

Output
config Backup configuration data

BACKUP config

 (Privileged Command)
Function

This command is used to back up configuration data from the DRAM into the specified Trivial File Transfer Protocol (TFTP) server.

Format

HOSTNAME\# BACKUP config P1 P2

Format Explanation

P1 : Server IP address (x.x.x.x (x=0~255))
P2 : Configuration directory file name (max. 127 characters)

Example

HOSTNAME\# Backup config 10.1.1.3 /user/2.5G/config.file

Output

```
<File name>....!......
Configuration data have been written?
```

NOTE 1. This command uses a TFTP server to write binary data to a backup file. A blank file MUST be created on the TFTP server beforehand to allow a TFTP write to work properly.
2. The backup file must be accessible for reading and writing; otherwise an error message will be displayed.
3. "!" will be displayed if the command is retried due to timeout $(2,4,8,16,32$ sec.) during transmitting and 64 sec time-out will result in command error.

CLEAR ?
 (Privileged Command)

Function

This command is used to display the help message for the CLEAR command.

Format

HOSTNAME\# CLEAR ?

Output

```
config Clear configuration data
```

NOTE This command will clear all of your configuration data and reset the switch to factory default. It should only be used by your network administrator.

CLEAR config
(Privileged Command)

Function

This command is used to initialize all the configuration data currently saved and reset the system.

Format

HOSTNAME\# CLEAR config

Output

If \mathbf{Y} is entered in response to the confirmation message:

```
Are you sure [Y or N] ? Y
Do not push reset button until save finishes.
#####
The system coming up now.
If you want to enter boot program, push [ESC] key immediately.
If the [ESC] key is detected within 3 seconds, boot program is
loaded.
Otherwise, online program will be loaded from the flash memory.:
```

If anything other than \mathbf{Y} is entered in response to the confirmation message:

```
Are you sure [Y or N] ? n
Configuration data stored in flash memory is not erased !
```

This command will clear all of your configuration data and reset the switch to factory default. It should only be used by your network administrator. System passwords are not affected.

DEBUG? (Privileged Command)

Function

This command is used to display the help message for the DEBUG command.

Format

HOSTNAME\# DEBUG ?

Output

ilmi	ILMI debug flag
pnni	PNNI debug flag
signaling	Q.2931 debug flag
sscop	SSCOP debug flag

sscop SSCOP debug flag

NOTE Debug information is only displayed on a RS-232 connected MAT. Debug information is not displayed over a Telnet session.

DEBUG ilmi
(Privileged Command)

Function

This command is used to turn on the display tree for DEBUG ilmi.

Format

HOSTNAME\# DEBUG ilmi P1 \{P2\}

Format Explanation

P1: Flag ID
0 - off ILMI flag off
1 - on ILMI flag on
P2: Line number (00~33)

Output

```
ILMI debug flag has been set.
```


DEBUG pnni (Privileged Command)

Function

This command is used to set a flag for Private Network-Network Interface (PNNI) debugging.
If this flag is set, the PNNI unit outputs a message to the MAT each time it receives a signaling message.

Format

 HOSTNAME\# DEBUG pnni P1 \{P2\} \{P3\}
Format Explanation

P1: Flag ID	
"00" or "disable"	all flags off
"01" or "event"	event flag on
"02" or "process"	process flag on
"03"	event and process flag on
"04" or "data"	data flag on
"05"	event and data flag on
"06"	process and data flag on
"07"	event, process, and data flag on
"08"	error flag on
"09"	event and error flag on
"10"	process and error flag on
"11"	event, process, and error flag on
"12"	data and error flag on
"13"	event, data, and error flag on
"14"	process, data, and error flag on
"15"	event, process, data, and error flag on
"16" or "packet"	packet flag on
"17"	event and packet flag on
"18"	process and packet flag on
"19"	event, process, and packet flag on
"20"	data and packet flag on
"21"	event, data, and packet flag on
"22"	process, data, and packet flag on

"23"	event, process, data, and packet flag on
$" 24 "$	error and packet flag on
$" 25 "$	event, error, and packet flag on
$" 26 "$	process, error, and packet flag on
$" 27 "$	event, process, error, and packet flag on
$" 28 "$	data, error, and packet flag on
$" 29 "$	event, data, error, and packet flag on
$" 30 "$	process, data, error, and packet flag on
$" 31 "$	All flags on

P2 : Packet type (flag)

"00" or "hello" to specify a logical port number without specifying a packet type
"01" hello select
"02" or "PTSP" PTSP select
"03" hello and PTSP select
"04" or "PTSP Ack." PTSP Ack. select
"05" hello and PTSP Ack. select
"06" PTSP and PTSP Ack. select
"07" hello, PTSP and PTSP Ack. select
"08" or "DSSummary" DS Summary select
"09" hello and DS Summary select
"10" PTSP and DS Summary select
"11" hello, PTSP and DS Summary select
"12" PTSP Ack. and DS Summary select
"13" hello, PTSP Ack. and DS Summary select
"14" PTSP, PTSP Ack. and DS Summary select
"15" hello, PTSP, PTSP Ack. and DS Summary select
"16" or "PTSEReq." PTSE Req. select
"17" hello and PTSE Req. select
"18" PTSP and PTSE Req. select
"19" hello, PTSP and PTSE Req. select
"20" PTSP Ack. and PTSE Req. select
"21" hello, PTSP Ack. and PTSE Req. select

"22"	PTSP, PTSP Ack., and PTSE Req. select
"23"	hello, PTSP, PTSP Ack,. and PTSE Req. select
"24"	DS Summary and PTSE Req. select
"25"	hello, DS Summary, and PTSE Req. select
"26"	PTSP, DS Summary, and PTSE Req. select
"27"	hello, PTSP, DS Summary, and PTSE Req. select
$" 28 "$	PTSP Ack., DS Summary, and PTSE Req. select
$" 29 "$	hello, PTSP Ack., DS Summary, and PTSE Req. select $" 30 "$
PTSP, PTSP Ack., DS Summary, and PTSE Req.	
"31"	select hello, PTSP, PTSP Ack., DS Summary, and PTSE Req. select

P3 : Logical port number (00~157)

Output

PNNI debug flag has been set.

DEBUG signaling

(Privileged Command)

Function

This command is used to set a flag for Q. 2931 debugging.
If this flag is set, the Q. 2931 unit outputs a message to the MAT each time it receives a signaling message.

Format

HOSTNAME\# DEBUG signaling P1

Format Explanation

P1 : Flag ID
00 - disable all "flag" types
01 - or event - event flag on
02 - or packet - packet flag on
03 - event and packet flag on
04 - error flag on
05 - event and error flag on
06 - packet and error flag on
07 - all flag on (error, packet and event)

Output

NOTE
Q. 2931 debug flag has been set.
\qquad
Debug information is only displayed on a RS-232 connected MAT. Debug information is not displayed over a Telnet session.

DEBUG sscop (Privileged Command)

Function

This command is used to set a flag for SSCOP debugging.
If this flag is set, the SSCOP unit outputs a message to the MAT each time it receives a SSCOP message.

Format

HOSTNAME\# DEBUG sscop P1

Format Explanation

P1: Flag ID
00 - disable all flag types
01 - event flag on
02 - packet flag on
03 - event and packet flag on
04 - error flag on
05 - event and error flag on
06 - packet and error flag on
07 - all flag on (error, packet, and event)

Output

SSCOP debug flag has been set.

NOTE Debug information is only displayed on a RS-232 connected MAT. Debug information is not displayed over a Telnet session.

DELETE ?

(Privileged Command)

Function

This command is used to display the help message for the DELETE command.

Format

HOSTNAME\# DELETE ?

Output

```
cevc Circuit emulation configuration
configserver Configuration server information
ilmi ILMI connection
iproute IP route information
nms IMS information
oamcon OAM connecting point
oamend OAM endpoint
PNNI PNNI information
profile PCR,SCR,MBS,EPD configuration
shaper Shaping rate
signaling Signaling connection
tunneling Tunneling information
```


DELETE cevc (Privileged Command)

Function

This command is used to delete the connection information for circuit emulation (CE).

Format

HOSTNAME\# DELETE cevc P1 P2

Format Explanation

P1 : Line number (00~33)
P2: VCI
CE-J2:32~127
CE-DS3:256~287
CE-DS 1/E1 Port0:256~287
CE-DS1/E1 Port1:288~319
CE-DS1/E1 Port2:320~351
CE-DS1/E1 Port3:352~383

Output

Circuit emulation connection has been deleted.

PVCs must be deleted before executing this command.

DELETE configserver (Privileged Command)

Function

This command is used to remove a LAN Emulation Configuration Server (LECS) address in the LECS address table.

Format

HOSTNAME\# DELETE configserver P1 P2

Format Explanation

P1 : LECS address table index (0~3)
P2 : ATM address (max. 40char (0~9, a~f, A~F))

Example

Configuration server has been deleted.

NOTE
Through Interim Link Management Interface (ILMI), a user may request LECS addresses from the switch. This table has a maximum of four entries. The user should use these addresses to locate the LECS for joining into a LAN Emulation (LANE) server.

DELETE dlci
(Privileged Command)

Function

This command is used to delete the DLCI data for each line or connection.

Format

hOSTNAME\# DELETE dlci P1 (P2)

Format Explanation

P1: Line Number (00~33)
P2: DLCI Number (16~991)
If only line number is specified, all the DLCI data of the line will be deleted.

Output
When DLCI number is not specified:

```
Line xxx All DLCI interface will be deleted.
1
Are you sure [Y or N]?
```

If \mathbf{Y} is input:

```
Line xxx DLCI interface has been deleted.
```

1

If \mathbf{N} is input:

```
Line xxx DLCI interface not deleted.
```

1

When DLCI number is specified:

```
Line xxx DLCI interface has been deleted.
1
```


Output Explanation

1. Line Number

DELETE froam
(Privileged Command)

Function

This command is used to delete the OAM endpoint of f 5 (VC level) between frame relay and ATM.

Format

```
    HOSTNAME# DELETE froam P1 P2 P3 P4 P5 P6
```


Format Explanation

P1: Line Number of Point 1 (00~33)
P2: VPI of Point 1 ($0 \sim 4095$)
P3: VCI of Point 1 (32~16383)
P4: Line Number of Point 2 (00~33)
P5: VPI of Point 2 ($0 \sim 4095$)
P6: VCI of Point 2 (32~16383)

Output

FROAM connection has been deleted.

DELETE frprofile
 (Privileged Command)

Function

This command is used to delete the profile for frame relay.
Format
HOSTNAME\# DELETE frprofile P1
Format Explanation
P1: Name of the profile for frame relay (Up to 10 alphanumeric letters)

Output

FR profile data has been deleted.

DELETE ilmi
(Privileged Command)

Function

This command is used to delete an ilmi connection.

Format

HOSTNAME\# DELETE ilmi CONNECTION P1 P2

Format Explanation

P1 : Line number (00~33)
P2: VPI (0~4095)

Example

$$
\text { HOSTNAME\# Delete ilmi connection } 010
$$

Output

```
ILMI connection has been deleted.
```


DELETE iproute (Privileged Command)

Function

This command is used to delete IP routing information.

Format

HOSTNAME\# DELETE iproute P1 P2 P3

Format Explanation

P1 : Interface type (atm0 or ec0)
P2 : Destination type (network or host)
P3 : Destination IP address (x.x.x.x ($\mathrm{x}=0 \sim 255$) or default (default router IP address)

Example

```
HOSTNAME# Delete iproute ec0 net 10.1.1.2
```


Output

> IP route information has been deleted.

DELETE nms
(Privileged Command)

Function

This command is used to delete Network Management System (NMS) information.

Format

hostname \# Delete nms P1

Format Explanation
P1 : NMS number (0~3)
Example

HOSTNAME\# Del nms 1

Output

```
nms has been deleted.
```

NOTE To display currently configured NMS IP addresses, use the DISPLAY network command.

DELETE oamcon (Privileged Command)

Function

This command is used to delete the connecting point setting of a connection for transferring an alarm by OAM cell (alarm cell).

Format

(1) HOSTNAME\# DELETE oamcon f4 P1 P2 P3 P5 P6
(2) HOSTNAME\# DELETE oamcon f5 P1 P2 P3 P4 P5 P6 P7

Format Explanation

P1: Point type
(segcon or 0 if the switch is a connecting point in the segment flow) (endcon or 1 if the switch is a connecting point in the end-to-end flow)

P2 : Ingress line number (00~33)
P3 : Ingress Virtual Path Identifier (VPI) (0~4095)
P4 : Ingress Virtual Channel Identifier (VCI) (32~16383)
P5 : Egress line number (00~33)
P6 : Egress VPI (0~4095)
P7 : Egress VCI (32~16383)

NOTE
In f 4 mode it is not necessary to specify VCI value.

Example (f4)

```
HOSTNAME# del oamcon f4 seg 00 1 10 2
```


Example (f5)

```
HOSTNAME# del oamcon f5 end 00 1 100 10 2 200
```


Output

```
OAM connecting point has been deleted.
```

DELETE oamend (Privileged Command)

Function

This command is used to delete the endpoint setting of an OAM connection for transferring an alarm by OAM cell (alarm cell).

Format

HOSTNAME\# DELETE oamend P1 P2 P3 P4 \{P5\}

Format Explanation

P1 : Mode (f4 (Virtual Path (VP) level) or f5 (Virtual Channel (VC) level))
P2 : Point type
(segend or 0 if the switch is an endpoint in the segment flow)
(endend or 1 if the switch is an endpoint in the end-to-end flow) (f4 only)
P3 : Line number (00~33)
P4 : VPI (0~4095)
P5 : VCI (32~16383 (defaulted when the mode is f5)

Example (f4)

```
HOSTNAME# del oamend f4 1 00 1
```


Example (f5)

```
HOSTNAME# del oamend f5 0 00 1 100
```


Output

```
```

OAM endpoint has been deleted.

```
```

```
```

OAM endpoint has been deleted.

```
```


DELETE oamf5end (Privileged Command)

Function

This command is used to delete F5 (VC level) OAM endpoint.

Format
 hoStnamen delete oamffend P1 P2 p3

Format Explanation
P1: Line Number (00~33)
P2: VPI (0~4095)
P5: VCI (32~16383)

Output

OAM f5end endpoint has been deleted.

DELETE pnni
 (Privileged
 Command)

1. To delete the PNNI reachable address:

Format

```
HOSTNAME# DELETE pnni address
```

PNNI PR1 P2 P3 P4 P5 P6

This command cancels the PNNI reachable address. After the command is executed, the PNNI> prompt is shown in the Editor Mode. Type a period (.) to exit the Editor Mode.

Format Explanation

P1 : Address type ("internal" or "exterior")
P2 : SCOPE (0~104)
P3: Valid bit length for reachable address
P4 : Reachable address
P5 : Line number ($00 \sim 33$)
P6 : VPI (0~4095)

Output

```
PNNI reachable address has been deleted.
```


2. To delete the PNNI connection:

Format

HOSTNAME\# DELETE pnni connection P1 P2

Format Explanation

P1 : Line number (00~33)
P2 : VPI (0~4095)

Output

```
PNNI connection has been deleted.
```


DELETE profile (Privileged Command)

Function

This command is used to delete a policing profile.

Format

HOSTNAME\# DELETE profile P1

Format Explanation

P1 : Profile name

Example

```
HOSTNAME# del pro my_cbr
```


Output

```
Profile data has been deleted.
```

NOTE
If a PVC connection exists that is currently using this profile when this command is entered, an error message is displayed.

DELETE shaper
(Privileged Command)

Function

This command is used to delete shaping rate.

Format

HOSTNAME\# DELETE shaper P1 P2

Format Explanation

P1 : Line number (00~33)
P2 : Shaper number (1~8)
Example

HOSTNAME\# del shaper 124

Output

```
Shaping rate has been deleted.
```

NOTE If a PVC connection using the specified shaper exists when this command is entered, an error message is displayed.

DELETE

 signaling (Privileged Command)
Function

This command is used to delete a signaling path. This command effectively removes a Switched Virtual Circuit (SVC) signaling connection.

Format

hoStwamen delete signaling P1 P2

Format Explanation

P1 : Line number (00~33)
P2 : VPI (0~4095)

Example

```
HOSTNAME# set svcl 13 0 suspend
```

NOTE
To delete the signaling path on an interface, the signaling path svcline must be suspended.

```
HOSTNAME# del sig 13 0
```

Output

```
Signaling connection has been deleted.
```


DELETE

 tunneling (Privileged Command)
Function

This command is used to delete a tunneling connection.

Deletion Procedure

1. All connections (PVCs or soft PVPs), if any, must be deleted from the tunneling VPI that you wish to delete.
2. Use the SET svcline command to suspend the line (and VPI).
3. If signaling connection has been set in the tunneling VPI that you wish to delete, use the DELETE signaling command to delete the connection.
4. If ILMI connection has been set in the tunneling VPI that you wish to delete, use the DELETE ilmi command to delete the connection
5. If PNNI connection has been set in the tunneling VPI that you wish to delete, use the delete pnni connection command to delete the connection
6. Enter the DELETE tunneling command.
7. Resume the line by executing the SET svcline command.

Format

HOSTNAME\# DELETE tunneling P1 P2

Format Explanation

P1: Line number (00~33)
P2 : VPI (1~4095)

Example

```
HOSTNAME# del sig 30 2
```

HOSTNAME\# del ilmi 302

HOSTNAME\# del pnni 302

HOSTNAME\# del tun 302

Output

Tunneling information database has been deleted.

NOTE The tunneling connection cannot be deleted if signaling/ILMI/pnni connection exists on the specified line.

DIAGNOSIS ?
 (Privileged Command)

Function

This command is used to display the help message for the DIAGNOSIS command.

Format

HOSTNAME\# DIAGNOSIS ?

Output

```
all CPU, Switch and Slot diagnosis
cpu CPU diagnosis
slot Slot diagnosis
switch Switch diagnosis
```


DIAGNOSIS all (Privileged Command)

Function

This command is used to perform a full diagnosis.
The diagnostic result is reported as an autonomous message. If the diagnostic result is not good (NG), the detailed possible causes can be viewed by executing the DISPLAY alarm command.

NOTE

Important: All communication is interrupted during diagnosis. This command should normally be executed when a hardware error is detected or when the system is initially installed. This testing takes approximately 3 to 5 minutes to complete.

Format

HOSTNAME\# DIAGNOSIS all

Output

```
Diagnosis in progress..
```


DIAGNOSIS cpu

(Privileged Command)

Function

This command is used to diagnose the CPU board.
The diagnostic result is reported as an autonomous message. If the diagnostic result is not good (NG), the detailed possible causes can be viewed by executing the DISPLAY alarm command.

NOTE Important: All communication is interrupted during diagnosis. This command should normally be entered when a hardware error is detected or when the system is initially installed. This testing takes approximately 1 to 2 minutes to complete.

Format

HOSTNAME\# DIAGNOSIS cpu

Output

```
Diagnosis in progress...
```


DIAGNOSIS slot
 (Privileged
 Command)

Function

This command is used to diagnose installed line packages.
The diagnostic result is reported as a restart message during startup after diagnosis. If the diagnostic result is not good (NG), the detailed possible causes can be viewed by executing the DISPLAY alarm command.

Format

HOSTNAME\# DIAGNOSIS slot \{P1\}

Format Explanation

P1 : Slot number (00-33)

Output

If \mathbf{Y} is entered in response to confirmation message:

```
Are you sure? [Y or N] y
Diagnosis in progress...
```

NOTE This command should normally be used when when setting up the system for the first time, or when a hardware failure is detected.

DIAGNOSIS
switch
(Privileged Command)

Function

This command is used to diagnose the switch board.
The diagnostic result is reported as an autonomous message. If the diagnostic result is not good (NG), the detailed possible causes can be viewed by executing the DISPLAY alarm command.

NOTE Important: All communication is interrupted during diagnosis. This command should normally be entered when a hardware error is detected or when the system is initially installed. This testing takes approximately 1 to 2 minutes to complete.

Format

HOSTNAME\# DIAGNOSIS switch

Output

```
Diagnosis in progress...
```


DISPLAY ?

(General Command)

Function

This command is used to display the help message for the DISPLAY command.

NOTE
DISPLAY ? and SHOW ? serve the same purpose.
Format
HOSTNAME> DISPLAY ?

Output

```
alarm All alarms
all
atmsig
boot
calledsoftpvp
cdvt
cevc
clock
configserver
configuration
dynamicroute
ether
iisp
ilmi
interface
iproute
line
looptime
mac
network
oamcon
oamend
pnni
profile
pvc
redundancy
route
scope
scroll
server
shaper
signaling
softpvp
sscop
status
SVC
svcline
T309trg
telnetlimit
time
traffic
tunneling
version
All alarms
All configuration data
Q.2931 parameters
Boot parameters
Called softpvp check flag
CDVT configuration
Circuit emulation configuration data
Clock mode
Configuration server information
All configuration data
Dynamic route information
IP address of Ethernet interface
Crankback information
ILMI connection
Line interface parameters
IP route information
Line interface status
Looptime switch
LAN card MAC address
Network configuration data
OAM connecting point
OAM endpoint
PNNI information
PCR, SCR, MBS, EPD configuration
PVC information
Redundancy of card's CPUs
SVC static routing table
Scope information
Scroll lines
Server IP address
Shaping rate
Signaling connection
Soft PVPC/PVCC
SSCop parameters
Hardware operating status
SVC connection
SVC line status of the line interface
T309 when interface failure has occured
Telnet session timeout
System time
Traffic \& Performance value
Boot/Software Version
Boling information
```


DISPLAY alarm (General Command)

Function

Displays the latest information on errors in progress. Displays each error by failed area. (This command will not display information on properly functioning areas.)

Format

HOSTNAME> DISPLAY alarm

Output

```
Hardware Alarm
**.**.** **:**:** - ************ ************ ********
    1 2 3 4
```


Output Explanation

1. Date and time of failure (year.month.day hour:minute:second)
2. Failed part

Environment
FAN <side number>
Power Unit <side number>
CPU
Switch
Line Board <slot number>
Line Buffer <slot number>
Line Card <slot number> : <Line Card Type>
3. Alarm type

Control Alarm : Indicates a control error.
Clock Alarm : Indicates a clock error.
Path Alarm : Indicates a path error.
Diagnosis NG : Indicates diagnosis NG.
4. Alarm ID

Refer to Hardware Alarms table.

Example

```
Hardware Alarm
96.03.10 20:11:48 - Environment000001
96.03.12 12:33:21 - FAN 0
96.02.22 08:47:38 - FAN 1
96.02.07 15:56:08 - Power Unit 0
96.02.08 12:36:15 - CPUDiagnosis NG070002
96.10.13 21:02:40 - SwitchClock Alarm010002
96.03.24 05:32:20 - Line Board 0 Buffer 2Clock Alarm000001
96.02.17 18:36:28 - Line Buffer 1 Control Alarm010001
96.07.18 02:03:49 - Line Card 2 OC3c/STM-1(MMF)Path Alarm010001
```

Hardware Alarms

Alarm		
Alarm number		
PShell error>	-	-
FAN alarm	-	-
<Environment error>		
Abnormal rise in environmental temperature	-	000001
<Switch/CPU card error>	Path Alarm	020002
Cell alignment signal error	Path Alarm	020003
BMT parity error	Path Alarm	020004
SC diagnosis NG	Path Alarm	030001
Regression enable match error	Path Alarm	030002
Regression clear match error	Path Alarm	030003
BF0 parity error	Path Alarm	030004
BF diagnosis NG	Path Alarm	030103
BF1 parity error	Path Alarm	040001
ES0 Up side sync error	Path Alarm	040002
ES0 Down side sync error	Path Alarm	040004
ES0 port A FIFO overflow	Path Alarm	040006
ES0 port B FIFO overflow	Path Alarm	040007
ES0 diagnosis NG	Path Alarm	040101
ES1 Up side sync error	Path Alarm	040102
ES1 Down side sync error	Path Alarm	040104
ES1 port A FIFO overflow		

Alarm	Alarm number	
ES1 port B FIFO overflow	Path Alarm	040106
ES1 diagnosis NG	Path Alarm	040107
SAR register NG	Diagnosis NG	050005
Header conversion table parity error	Path Alarm	060004
<Switch/CPU card error>		
DI diagnosis NG	Diagnosis NG	610010
Memory diagnosis NG	Diagnosis NG	070002
<Line buffer error>		
Received cell parity error	Path Alarm	040001
RIRO SGRAM test error	Control Alarm	040002
HT SGRAM test error	Control Alarm	040003
RIRO SRAM test error	Control Alarm	040004
Illegal interruption	Control Alarm	040005
Illegal cell transmission error	Control Alarm	040007
IBC diagnosis NG	Diagnosis NG	040008
IBC RIRO SGRAM diagnosis NG	Diagnosis NG	040009
IBC HT SGRAM diagnosis NG	Diagnosis NG	040010
IBC RIRO SRAM diagnosis NG	Diagnosis NG	040011
OBC diagnosis NG	Diagnosis NG	040012
OBC Cell Buff diagnosis NG	Diagnosis NG	040013
OBC HTM diagnosis NG	Diagnosis NG	040014
OBC BCT/BMT diagnosis NG	Diagnosis NG	040015
<Line card error>		
OC-3c/STM-1		
PHYO reception FIFO overflow	Path Alarm	010001
PHY1 reception FIFO overflow	Path Alarm	010101
PHY2 reception FIFO overflow	Path Alarm	010201
PHY3 reception FIFO overflow	Path Alarm	010301
PHYO diagnosis NG	Diagnosis NG	010002
PHY1 diagnosis NG	Diagnosis NG	010102
PHY2 diagnosis NG	Diagnosis NG	010202
PHY3 diagnosis NG	Diagnosis NG	010302
PHY (OC3C-SMF-L) diagnosis NG	Diagnosis NG	010002
UTOPIA parity error	Path Alarm	020001

Alarm	Alarm number	
50 MHz clock interruption	Clock Alarm	020002
MUX diagnosis NG	Diagnosis NG	020012
OC-12c/STM-4		
UTOPIA parity error	Path Alarm	030001
CU2INF diagnosis NG	Diagnosis NG	030002
Transmission clock interruption	Clock Alarm	040001
SFIT4 FIFO error	Path Alarm	040002
UNIC diagnosis NG	Diagnosis NG	040003
UCFAD reception FIFO overflow	Path Alarm	050001
UCFAD transmission FIFO overflow	Path Alarm	050002
CFAD diagnosis NG	Diagnosis NG	050003
Reception clock interruption	Clock Alarm	070002
System clock interruption	Clock Alarm	070003
FPGA diagnosis NG	Diagnosis NG	070004
reception FIFO underrun	Path Alarm	120001
reception FIFO overrun	Path Alarm	120002
transmission parity error	Path Alarm	120003
S/UNI diagnosis NG	Path Alarm	120004
TAXI		
UTOPIA level 2 parity error	Path Alarm	020001
50 MHz clock interruption	Clock Alarm	020002
12.5 MHz clock interruption	Clock Alarm	020003
Input 8 MHz clock interruption	Clock Alarm	020004
MUX diagnosis NG	Diagnosis NG	020012
TAC0 diagnosis NG	Diagnosis NG	130002
TAC1 diagnosis NG	Diagnosis NG	130102
TAC2 diagnosis NG	Diagnosis NG	130202
TAC3 diagnosis NG	Diagnosis NG	130302
6.3M		
TX UTOPIA level 2 parity error	Path Alarm	020001
TX UTOPIA level 2 operation clock interrupted	Clock Alarm	020002
Transmission clock interrupted	Clock Alarm	020005
PLO transmission clock interrupted	Clock Alarm	020006
MUX diagnosis NG	Diagnosis NG	020012

Alarm	Alarm number	
UCFAD reception FIFO overflow	Path Alarm	050001
UCFAD transmission FIFO overflow	Path Alarm	050002
LCA Common diagnosis NG	Diagnosis NG	150001
LCA Separate diagnosis NG	Diagnosis NG	150002
UCFAD2 diagnosis NG	Diagnosis NG	160001
DS3/E3		
UTOPIA level 2 parity error	Path Alarm	020001
50 MHz clock interruption	Clock Alarm	020002
UTOPIA level 1 parity error \#0	Path Alarm	020007
UTOPIA level 1 parity error \#1	Path Alarm	020008
MUX diagnosis NG	Diagnosis NG	020012
Input 8 KHz clock interruption	Clock Alarm	060001
PLD diagnosis NG	Diagnosis NG	060003
FRAMER\#O reception FIFO underflow	Path Alarm	080001
FRAMER\#O reception FIFO overflow	Path Alarm	080002
FRAMER\#0 transmission FIFO overflow	Path Alarm	080003
FRAM0 diagnosis NG	Diagnosis NG	080004
FRAMER\#1 reception FIFO underflow	Path Alarm	080101
FRAMER\#1 reception FIFO overflow	Path Alarm	080102
FRAMER\#1 transmission FIFO overflow	Path Alarm	080103
FRAM1 diagnosis NG	Diagnosis NG	080104
PR-1.5M		
UTOPIA level 2 parity error	Path Alarm	020001
50 MHz clock interruption	Clock Alarm	020002
Transmission clock interrupted	Clock Alarm	020005
PLO transmission clock interrupted	Clock Alarm	020006
MUX diagnosis NG	Diagnosis NG	020012
LCA diagnosis NG	Diagnosis NG	150001
Frame aligner parity error	Path Alarm	150003
UCFAD2 diagnosis NG	Diagnosis NG	160001
UCFAD reception FIFO overflow	Path Alarm	160002
UCFAD transmission FIFO overflow	Path Alarm	160003
DS1/E1		
UTOPIA level 2 parity error	Path Alarm	020001

Alarm	Alarm number	
50 MHz clock interruption	Clock Alarm	020002
UTOPIA level 1 parity error \#0	Path Alarm	020007
UTOPIA level 1 parity error \#1	Path Alarm	020008
UTOPIA level 1 parity error \#2	Path Alarm	020009
UTOPIA level 1 parity error \#3	Path Alarm	020010
19 MHz clock interruption	Clock Alarm	020011
MUX diagnosis NG	Diagnosis NG	020012
8 KHz clock interruption	Clock Alarm	060001
16 KHz oscillator clock interruption	Clock Alarm	060002
PLD diagnosis NG	Diagnosis NG	060003
12 KHz oscillator clock interruption	Clock Alarm	060004
FRAMER\#O reception FIFO overflow	Path Alarm	140001
FRAMER\#O reception FIFO underflow	Path Alarm	140002
FRAMER\#0 transmission FIFO overflow	Path Alarm	140003
FRAMER\#0 UTOPIA level 1 Down side	Path Alarm	140004
FRAMER\#0 (PM7345) diagnosis NG	Diagnosis NG	140005
FRAMER\#1 reception FIFO overflow	Path Alarm	140101
FRAMER\#1 reception FIFO underflow	Path Alarm	140102
FRAMER\#1 transmission FIFO overflow	Path Alarm	140103
FRAMER\#1 UTOPIA level 1 Down side	Path Alarm	140104
FRAMER\#1 (PM7345) diagnosis NG	Diagnosis NG	140105
FRAMER\#2 reception FIFO overflow	Path Alarm	140201
FRAMER\#2 reception FIFO underflow	Path Alarm	140202
FRAMER\#2 transmission FIFO overflow	Path Alarm	140203
FRAMER\#2 UTOPIA level 1 Down side	Path Alarm	140204
FRAMER\#2 (PM7345) diagnosis NG	Path Alarm	140205
FRAMER\#3 reception FIFO overflow	Path Alarm	140301
FRAMER\#3 reception FIFO underflow	Path Alarm	140302
FRAMER\#3 transmission FIFO overflow	Path Alarm	140203
FRAMER\#3 UTOPIA level 1 Down side	Path Alarm	140304
FRAMER\#3 (PM7345) diagnosis NG	Diagnosis NG	140305
FRAMER\#0 (PM4341A) diagnosis NG	Diagnosis NG	170001
FRAMER\#1 (PM4341A) diagnosis NG	Diagnosis NG	170101
FRAMER\#2 (PM4341A) diagnosis NG	Diagnosis NG	170201

Alarm	Alarm number	
FRAMER\#3 (PM4341A) diagnosis NG	Diagnosis NG	170301
FRAMER\#0 (PM6341) diagnosis NG	Diagnosis NG	180001
FRAMER\#1 (PM6341) diagnosis NG	Diagnosis NG	180101
FRAMER\#2 (PM6341) diagnosis NG	Diagnosis NG	180201
FRAMER\#3 (PM6341) diagnosis NG	Diagnosis NG	180301
Server Card		
WDT overflow	Control Alarm	090001
CPU clock disconnected	Clock Alarm	090002
PCI bus clock disconnected	Clock Alarm	090003
PCI bus parity error	Control Alarm	090004
RICE401 memory parity error	Control Alarm	090005
FR-Buffer SDRAM diagnosis NG	Diagnosis NG	090006
PCI bus clock disconnected	Clock Alarm	100001
PCI SERR	Control Alarm	100002
SW50M clock disconnected	Clock Alarm	100003
MemOut	Control Alarm	100004
DMAOut	Control Alarm	100005
SSCOP link interrupted among cards	Control Alarm	110003
CE-DS1		
UTOPIA level2 parity error	Path Alarm	020001
50 MHz clock interrupted	Clock Alarm	020002
19MHz clock interrupted	Clock Alarm	020011
MUX diagnosis NG	Diagnosis NG	020012
FRAMER \#0 (PM4341A) diagnosis NG	Diagnosis NG	170001
FRAMER \#1 (PM4341A) diagnosis NG	Diagnosis NG	170101
FRAMER \#2 (PM4341A) diagnosis NG	Diagnosis NG	170201
FRAMER \#3 (PM4341A) diagnosis NG	Diagnosis NG	170301
1.544M clock generated in PKG interrupted	Clock Alarm	210001
38.8M clock generated in PKG interrupted	Clock Alarm	210002
FPGA diagnosis NG	Diagnosis NG	210003
IGT SAR diagnosis NG	Diagnosis NG	240001
FR-DS1		
WDT overflow	Control Alarm	090001
CPU clock interrupted	Clock Alarm	090002

Alarm	Alarm number
PCI BUS clock interrupted	Clock Alarm 090003
PCI BUS parity error	Control Alarm 090004
RICE401 mamory parity error	Control Alarm 090005
FR-Buffer SDRAM diagnosis NG	Control Alarm 090006
Server Card / FR-DS1	
CPU DRAM on card side diagnosis NG	Diagnosis NG 250001
CPU on card side diagnosis timeout	Diagnosis NG 250002

DISPLAY all (General Command)

Function

This command is used to display all the information registered in the configuration data.

Format

HOSTNAME> DISPLAY all

Output

Same as output for DISPLAY ? command.
NOTE Information for a line that is in Admin Down status cannot be displayed.

DISPLAY atmsig
 (General Command)

Function

This command is used to display Q. 2931 parameters.

Format

HOSTNAME> DISPLAY atmsig

Example

HOSTNAME\# display atmsig																
Line	VPI	U/N	301	303	308	309	310	313	316	317	322	397	398	399	UNIve	
00	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
01	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
02	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
03	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
10	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
11	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
12	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
13	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
20	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
21	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01)
22	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
23	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
30	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
31	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
32	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
33	0	Network	180	4	30	10	10	4	120	60	4	180	4	14	4.01	-)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	161	17

NOTE

Timer designation may be found in the User Network Interface (UNI) specifications of the ATM Forum.

Output Explanation

1. Line number ($00 \sim 33$)
2. VPI
3. IISP user side "User" or IISP network side "Network"
4. T301 timer value
5. T303 timer value
6. T308 timer value
7. T309 timer value
8. T310 timer value
9. T313 timer value
10. T316 timer value
11. T317 timer value
12. T322 timer value
13. T397 timer value
14. T398 timer value
15. T399 timer value
16. UNI Version in the configuration data
17. UNI Version under operation (may be different than configured version if reported differently through ILMI)

DISPLAY boot
(General Command)

Function

This command is used to display the firmware boot source for the next restart. After restart, the boot mode will default back to the flash mode.

Format

HOSTNAME> DISPLAY boot

Output

-FLASH mode

Online program stored in the flash memory will be loaded after reset.
-FLASH_UP mode

Online program stored in the PCMCIA\#O flash memory will be loaded after reset. Configuration data will be loaded from the PCMCIA\#1 flash memory. Configuration data will not be stored to the PCMCIA\#0 flash memory.
-FLASH_UP SAVE mode

Online program stored in the PCMCIA\#O flash memory will be loaded after reset. Configuration data will be loaded from the PCMCIA\#1 flash memory. Configuration data will be stored to the PCMCIA\#O flash memory.
-INITIALIZE mode

Online program stored in the workstation will be loaded after reset. Configuration data will be initialized. Online program and configuration data will not be stored to the flash memory.
-INITIALIZE_SAVE mode

Online program stored in the workstation will be loaded after reset. Configuration data will be initialized. Online program and configuration data will be stored to the flash memory.
-NETWORK mode

Online program stored in the workstation will be loaded after reset. Configuration data will be loaded from the flash memory. Online program and configuration data will not be stored to the flash memory.
-NETWORK_SAVE mode

Online program stored in the workstation will be loaded after reset. Configuration data will be loaded from the flash memory. Online program and configuration data will be stored to the flash memory.

DISPLAY calledsoftpvp (General Command)

Function

This command is used to display the recognition standard of calledsoftpvp.

Format

```
        HOSTNAME> DISPLAY calledsoftpvp
```

Output

Output Explanation

1. Flag ("ON" (enable), "OFF" (disable))

DISPLAY cdvt
 (General
 Command)

Function

This command is used to display the Cell Delay Variation Tolerance (CDVT) data the system currently manages.

Format

HOSTNAME> DISPLAY cdvt

Example

NOTE Cell delay variation is dependent on cell transfer rate.

DISPLAY cevc
(General Command)

Function

This command is used to display Circuit Emulation (CE) connection information.

Format

```
HOSTNAME> DISPLAY cevc P1 {P2}
```


Format Explanation

P1: Line number (00~33)
P2: VCI
CE-DS 1/E1 Port0 : 256~287
CE-DS 1/E1 Port1 : 288~319
CE-DS1/E1 Port2 : 320~351
CE-DS1/E1 Port3 : 352~383

Output

When VCI is defaulted:

Line:	XX	1	
VCI	Direction	Number	of Timeslot
	Up/Down		
XXX	XXXX	$x \mathrm{x} / \mathrm{xx}$	
2	3	4	

Output Explanation

1. Line number ($00 \sim 33$)
2. VCI
3. Direction ("bi," "up" (STM->ATM), "down" (ATM->STM))
4. Number of timeslot

When VCI is specified:

Output Explanation

1. Line number (00~33)
2. Virtual Channel Identifier (VCI)
3. Direction ("bi," "up," "down")
4. Condition data. IDLE cell pattern of CE
5. Partial Fill Size
6. Peak Cell Rate (PCR)
7. Number of Timeslot
8. Timeslot
9. Value of Cell Delay Variation Tolerance (CDVT)
10. Channel Status ("Normal," "Sequence Error," "Pointer Mismatch," "Pointer Parity Error," "FIFO overflow," "FIFO underflow")

NOTE In case of a single direction (either up or down), only information for up or down will be displayed. In case of bi-direction, information for both up and down directions will be displayed. With this software, Channel Associated Signaling (CAS)/Basic is fixed to Basic.

DISPLAY clock
(General Command)

Function

This command is used to display the current clocking source mode.

Format

HOSTNAME> DISPLAY Clock

Example

If the "master" system clock mode is selected:

```
Clocking mode: Master
```

If the "slave" system clock mode is selected and the slave lines are registered:

```
Clocking mode:Slave
SlavelineStatus
*030Good
031Good
032Failure
033Failure
```

If the "slave" system clock mode is selected:

```
Clocking mode: Slave
Slave line Status\
    ** ****
    1 2
```

NOTE - Output format for slave mode. Output format is not needed for master mode.

Output Explanation

1. Line number ($00 \sim 13$)

The current clock sampling line (slave clock mode) is identified by an asterisk $(*)$ at the left of the line number.
2. Line status (GOOD, Failure, AdminDown, Not Installed, Not supported or Diagnostics, Inaccurate, Frequency out of range, Loss of 8K clock or Loss of 64 K clock)

Slave lines do not include 100M-TAXI lines. If, after a line package has been removed, another line package of different type is inserted, and no slave line is available, that line will be indicated as "Not installed."

DISPLAY configserver (General Command)

Function

This command is used to display the LECS ATM address table. These addresses may be retrieved, through ILMI, by an end-user. In turn, the end-user may use these addresses to connect to the LECS.

Format

HOSTNAME> DISPLAY configserver \{P1\}

Format Explanation

P1 : LECS address table index (00~33) (optional)
NOTE All entries will be shown unless a specific index $\{\mathrm{P} 1\}$ is given.

Example

```
INDEX
    *
    1
    0
                Configuration server
                *.**********.****.********
                            2
                            47.000000000000000000000000.00A145711144.00
```


Output Explanation

1. Index
2. ATM address

DISPLAY configuration (General Command)

Function

This command is used to display the entire configuration data of the switch.

Format

HOSTNAME> DISPLAY configuration

DISPLAY dlci
 (General
 Command)

Function

This command is used to display the DLCI set information of the specified line.

1. Display DLCI set information

Format

```
    HOSTNAME> DISPLAY dlci configuration P1
```

Format Explanation
P1: Line Number (00~33)

Output

LINE	$\begin{aligned} & \mathrm{xx} \\ & 1 \end{aligned}$	Interworking : xxxxxxx					
DLCI	VPI	VCI	FR-Profilename	PCR	SCR	MBS	PVC
xxx	x Xx	xxx	xxxxxxxxxx	x xxx	xxxx	xxxx	xxxx
3	4	5	6	7	8	9	10

Output Explanation

1. Line Number
2. Interworking type
3. DLCI Number
4. VPI
5. VCI
6. Profile name for frame relay
7. PCR
8. SCR
9. MBS
10. Set PVC set / not set ("exist" / "-")

2. Display frame relay PVC status confirmation procedure/OAM setting

Format

HOSTNAME> DISPLAY dlci status P1 (P2) (P3)
Format Explanation
P1: Line Number (00~33)
P2: Display start DLCI Number (16-991; 16 is default)
P3: Displayed data count (1-120; 120 is default)

Output

Line:	xxx1	
DLCI	Status	OAM
xxx	xxxxxx	xxx
$(x \times x$	xxxxxx	xxx)
2	3	4

Output Explanation

1. Line Number
2. DLCI Number
3. Status ("Active," "Inactive")
4. OAM setting ("on," "off")

DISPLAY dynamicroute (General Command)

Function

This command is used to display the information registered in the dynamic routing table. Through ILMI, a user registers an ATM address and associated port with the switch. Upon successful ILMI address registration, the information may be displayed with this command. Also, LANE server routing addresses are stored in this table.

Format

 HOSTNAME> DISPLAY dynamicroute $\{P 1\}$
Format Explanation

P1 : Line number (00~33)
NOTE All registered addresses will be shown, unless a specific port $\{\mathrm{P} 1\}$ is designated. Then only information pertaining to the chosen port is shown.

Output

Destination	Type	Line	VP I	HopCount
*.************.******.*	****	***	***	*******
1		345		
47.000000000000000000000	. 00 N	01-1		

NOTE Two digits designate one byte.

Output Explanation

1. End user ATM address (switch prefix + ESI + SEL)
2. ATM address type (NSAP or E.164)
3. Line number associated with address
4. Tunneling VPI value or "-"
5. Hop count if tunneling; displays the number of tunneled switches.

NOTE If the server address has been registered from the server card, the slot number of the server card will be displayed as the line number. In addition, the following server type will be displayed as the VPI:

VPI:	Server type
$66:$	LECS
$67:$	LECS
$68:$	BUS

DISPLAY ether (General Command)

Function

This command is used to display IP address and mask value of the Ethernet port. The Ethernet port is used for download of system software, Telnet sections for MAT commands, and a NMS link.

Format

HOSTNAME> DISPLAY ether

Output

```
IP address/mask of Ethernet interface:***.***.***.***, ***.***.***.***

\section*{Output Explanation}
1. Ethernet IP address
2. Mask value of Ethernet

DISPLAY froam (General Command)

\section*{Function}

This command is used to display the OAM endpoint of f 5 (VC level) between frame relay and ATM.

\section*{Format}

HOSTNAME> DISPLAY froam

Output
\begin{tabular}{|lllll|}
\hline Line & VPI/VCI & Line & VPI/VCI & status \\
xxx & \(\mathrm{xxx} / \mathrm{xxx}\) & xxx & \(\mathrm{xxx} / \mathrm{xxx}\) & xxxxxx \\
xxx & \(\mathrm{xxx} / \mathrm{xxx}\) & xxx & \(\mathrm{xxx} / \mathrm{xxx}\) & xxxxxx \\
1 & 23 & 4 & 56 & 7
\end{tabular}

\section*{Output Explanation}
1. Line Number of Point 1 ( \(00 \sim 33\) )
2. VPI of Point 1 ( \(0 \sim 4095\) )
3. VCI of Point 1 (32~16383)
4. Line Number of Point 2 (00~33)
5. VPI of Point 2 ( \(0 \sim 4095\) )
6. VCI of Point 2 (32~16383)
7. Status ("Normal," "Failure," "AIS," "RDI")

DISPLAY frprofile
(General Command)

\section*{Function}

This command is used to display the set information of profile for frame relay.

\section*{Format}

HOSTNAME> DISPLAY frprofile (P1)

\section*{Format Explanation}

P1: Name of the profile for frame relay
If a profile name is specified, only the data related to this profile name is displayed. If not, all profiles are displayed.

\section*{Output}

If the profile name is not specified:
\begin{tabular}{|llc|}
\hline FR-Profilename Interworking & type \([k b p s]\) \\
xxxxxxxxxx & xxxxxxx & xxx \\
xxxxxxxxxx & xxxxxxx & xxx \\
1 & 2 & 3 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Frame relay profile name
2. Interworking type ("Network," "Service")
3. CIR value (1~1984)

If the profile name is specified:
\begin{tabular}{|lll|}
\hline FR-Profilename: & xxxxxxxxxx & 1 \\
Interworking Type: & xxxxxxx & 2 \\
CIR [kbps]: & xxxx & 3 \\
DE to CLP mapping mode: & xxxxx & 4 \\
CLP value: & x & 5 \\
CLP to DE mapping mode: & xxxxx & 6 \\
DE value: & x & 7 \\
Protocol encapsulation mode: \(x x x x x x x x x x x\) & 8 \\
Congestion indication mode: & xxxxx & 9
\end{tabular}

\section*{Output Explanation}
1. Frame relay profile name
2. Interworking type ("Network," "Service")
3. CIR value ( \(1 \sim 1984\) )
4. Cell loss priority mode ("Mode1," "Mode2")
5. Set CIR value ( \(0 / 1\) )
6. Frame discard priority mode ("Mode1," "Mode2")
7. \(\quad\) Set DE value \((0 / 1)\)
8. Encapsulation mode ("Transparent," "Translation")
9. Forward congestion (FECN) mode ("Mode1," "Mode2")

DISPLAY
frversion
(General
Command)

\section*{Function}

This command is used to display the version of software and boot ROM of the frame relay card CPU in the specified slot.

\section*{Format}
```

 HOSTNAME> DISPLAY frversion P1
    ```

\section*{Format Explanation}

P1: Slot Number (0~3)

\section*{Output}
\begin{tabular}{|lll|}
\hline Slot: & xx & 1 \\
Frame relay software version: & xxxxxxx & 2 \\
Frame relay boot ROM version: & xxxxxxx & 3 \\
& & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Slot Number
2. Frame relay software version
3. Frame relay Boot ROM version

DISPLAY iisp (General Command)

\section*{Function}

This command is used to display the status of the three different IISP mode types the system currently manages.

\section*{Format}

HOSTNAME DISPLAY iisp P1

\section*{Format Explanation}

P1: Mode type (loopcheck, splithorizon, or swaproute)
■ "Loopcheck" displays a setup loop protection.
■ "Splithorizon" displays status whether or not to allow a call forwarding to the signaling connection which has received a setup message.

■ "Swaproute" displays an operation status of the simulated crank back.

\section*{Output}

If P 1 is loopcheck:
```

******* 1
Hopcount:** 2

```

If P1 is splithorizon:


If P1 is swaproute:
\begin{tabular}{|ll|}
\hline\(\star \star \star \star \star * *\) & 6 \\
Timer \([\min ]: \star *\) & 7 \\
& \\
\hline
\end{tabular}

NOTE
See SET IISP for mode type explanation.

\section*{Output Explanation}
1. Status (disabled or enabled)
2. Hop count (not displayed in disabled status)
3. Line number ( \(00 \sim 33\) )
4. VPI
5. Status (disabled or enabled)
6. Status (disabled or enabled)
7. Resume timer value (not displayed in disabled status)

\section*{DISPLAY ilmi (General Command)}

\section*{Function}

This command is used to display the ILMI path and parameters the system currently uses.

\section*{Format}
\begin{tabular}{lcl} 
HOSTNAME & DISPLAY ilmi & P1 \(\{\mathbf{P 2}\}\) \\
Connection & \(\{\mathrm{P} 1\}\) & Control connection \\
Configuration & \(\{\mathrm{P} 1\}\) & Auto configuration \\
Neighbor & \(\{\mathrm{P} 1\}\) & Neighbor information \\
Discovery & \(\{\mathrm{P} 1\}\) & Auto discovery information \\
Process & \(\{\mathrm{P} 1\}\) & Process flag information
\end{tabular}

\section*{Format Explanation}

P1: One of "connection," "configuration," etc.
P2: Line number (00~33) (optional)

NOTE
If a line number \(\{\mathrm{P} 1\}\) is specified, only the data related to this line number is displayed. If not, all lines are displayed.

\section*{Output}
```

HOSTNAME\# display ilmi ?
connection Control connection
configuration Auto configuration
neighbor Neighbor information
discovery Auto discovery information
process Process flag information
HOSTNAME\# display ilmi connection ?
xy x:Slot number, y:Port number (0 <= x <= 3, 0 <= y <= 3)
<cr>
HOSTNAME\# display ilmi connection 00 ?
<cr>
HOSTNAME\# display ilmi connection 00
Line VPI/VCI Timeout Retry Keepalive
00 0/16 1 % 4
HOSTNAME\# display ilmi connection
Line VPI/VCI Timeout Retry Keepalive
00 0/16 1
01 0/16 1
02 0/16 1 % 4
03 0/16 1 4 5
10 0/16 1 1 4
11 0/16 1
12 0/16 1
13 0/16 1 4 5
20 0/16 1 1 0/16
21 0/16 1
22 0/16 1
23 0/16 1 4 5
HOSTNAME\# dis ilmi configuration ?
xy x:Slot number, y:Port number (0 <= x <= 3, 0 <= y <= 3)
<cr>
HOSTNAME\# dis ilmi configuration 00 ?
<cr>
HOSTNAME\# dis ilmi configuration 00
Line VPI/VCI Valid VPI/VCI Interface UNIver PNNIver IME
00 0/16 - / - -

```
```

HOSTNAME\# dis ilmi configuration
Line VPI/VCI Valid VPI/VCI Interface UNIver PNNIver IME
00 0/16 - / - - -
01 0/16 - / -
02 0/16 - / - -
03 0/16 - / - -
10 0/16 - / - -
11
13 0/16 [- / -
llllllll
llllllll
HOSTNAME\# display ilmi neighbor ?
xy x:Slot number, y:Port number (0 <= x <= 3, 0 <= y <= 3)
<cr>
HOSTNAME\# display ilmi neighbor 00 ?
<cr>
HOSTNAME\# display ilmi neighbor 00
Line VPI/VCI Valid VPI/VCI Interface UNIver PNNIver
00 0/16 - / -
HOSTNAME\# display ilmi neighbor
Line VPI/VCI Valid VPI/VCI Interface UNIver PNNIver
00 0/16 - / -
0/16 - _ _ - _ -
lll
lll
11 0/16 - / -
lll
llllll
22 0/16
23 0/16 - / - - - - - -
HOSTNAME\# display ilmi discovery ?
xy x:Slot number, y:Port number (0 <= x <= 3, 0 <= y <= 3)
<cr>
HOSTNAME\# display ilmi discovery 00 ?
<cr>
HOSTNAME\# display ilmi discovery 00
Line VPI/VCI IP address IfName
00 0/16

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{HOSTNAME\# display ilmi discovery} \\
\hline Line & VPI/VCI & IP a & If Name \\
\hline 00 & 0/16 & & - \\
\hline 01 & \(0 / 16\) & & - \\
\hline 02 & \(0 / 16\) & & - \\
\hline 03 & \(0 / 16\) & & - \\
\hline 10 & \(0 / 16\) & & - \\
\hline 11 & \(0 / 16\) & & - \\
\hline 12 & \(0 / 16\) & & - \\
\hline 13 & \(0 / 16\) & & - \\
\hline 20 & \(0 / 16\) & & - \\
\hline 21 & \(0 / 16\) & & - \\
\hline 22 & \(0 / 16\) & & - \\
\hline 23 & 0/16 & & - \\
\hline \multicolumn{4}{|l|}{HOSTNAME\# display ilmi process ?} \\
\hline xy & x :Slot & mber, & \((0<=x\) \\
\hline \multicolumn{4}{|l|}{<cr>} \\
\hline \multicolumn{4}{|l|}{HOSTNAME\# display ilmi process 00 ? <cr>} \\
\hline \multicolumn{4}{|l|}{HOSTNAME\# display ilmi process 00} \\
\hline Line & VPI/VCI & Flag & \\
\hline 00 & \(0 / 16\) & OFF & \\
\hline \multicolumn{4}{|l|}{HOSTNAME\# display ilmi process} \\
\hline Line & VPI/VCI & Flag & \\
\hline 00 & \(0 / 16\) & OFF & \\
\hline 01 & \(0 / 16\) & OFF & \\
\hline 02 & \(0 / 16\) & OFF & \\
\hline 03 & \(0 / 16\) & OFF & \\
\hline 10 & \(0 / 16\) & OFF & \\
\hline 11 & \(0 / 16\) & OFF & \\
\hline 12 & \(0 / 16\) & OFF & \\
\hline 13 & \(0 / 16\) & OFF & \\
\hline 20 & \(0 / 16\) & OFF & \\
\hline 21 & \(0 / 16\) & OFF & \\
\hline 22 & \(0 / 16\) & OFF & \\
\hline 23 & \(0 / 16\) & OFF & \\
\hline
\end{tabular}

\section*{DISPLAY} interface (General Command)

\section*{Function}

This command is used to display line interface information.

\section*{Format}

HOSTNAME> DISPLAY interface \{P1\}

\section*{Format Explanation}

P1 : Line number (00~33) (optional)

NOTE
If a line number \(\{\mathrm{P} 1\}\) is specified, only the data related to this line number is displayed. If not, all information for all data lines is displayed.

\section*{Example}

If P1 is not specified:
```

Line ** 1
Interface ********* 2
Physical Layer *********** 3
Forum/ITU ********* 4
Unassigned/Idle ************* 5
Valid VPI/CPI **/** 6

```

\section*{Output Explanation}
1. Line number
2. Interface type (in the case of other than CE or FR, "pri_uni," "pri-nni," "pub_uni; in the case of FR, "UNI," "NNI"; in the case of CE, "-" is displayed)
■ pri_uni
- pri_nni
- pub_nni
3. Physical layer type
4. ATM Forum/ITU/TTC/ITU-T/FR-Forum/ANSI (in the case of CE, "-" is displayed)
5. Unassigned Cell/Idle Cell (in the case of CE, "-" is displayed)
6. Valid VPI/ VCI bit counts

If P1 is specified, in case of OC-3c, OC-12c, STS-3c/STM1(COAXIAL) and 100M-TAXI:
\begin{tabular}{lll} 
Line: & xxx & 1 \\
Interface type: & xxxxxxxxx & 2 \\
Physical layer: & xxxxxxx & 3 \\
Forum/ITU: & xxxxx & 4 \\
Unassigned/Idle: & xxxxxxxxx & 5 \\
Valid VPI: & xx & 6 \\
Valid VCI: & xx & 7 \\
Filter mask VPI: & xx & 8 \\
Filter mask VCI: & xx & 9
\end{tabular}

\section*{Output Explanation}
1. Line number
2. Interface type (pri_uni, pri_nni, pub_uni)
3. Physical layer type
4. ATM Forum/ITU
5. Unassigned Cell / Idle Cell
6. Valid VPI bit counts
7. Valid VCI bit counts
8. VPI filter mask value
9. VCI filter mask value

If P1 is specified, in case of DS3:
\begin{tabular}{lll} 
Line: & xx & 1 \\
Interface type: & xxxxxxxx & 2 \\
Physical layer: & xxxxxxx & 3 \\
Forum/ITU: & xxxxx & 4 \\
Unassigned/Idle: & xxxxxx & 5 \\
Valid VPI: & xx & 6 \\
Valid VCI: & xx & 7 \\
Filter mask VPI: & xx & 8 \\
Filter mask VCI: & xx & 9 \\
Cell mapping mode: & xxxx & 10 \\
Scramble: & xx & 11 \\
LBO: & xx & 12 \\
Frame mode: & xxxx & 13
\end{tabular}

\section*{Output Explanation}
1. Line number
2. Interface type (pri_uni, pri_nni, pub_uni)
3. Physical layer type
4. ATM Forum (fixed)
5. Unassigned Cell / Idle Cell
6. Valid VPI bit counts
7. Valid VCI bit counts
8. VPI filter mask value
9. VCI filter mask value
10. Cell mapping (PLCP, Direct)
11. Scramble (OFF, ON)
12. Line Build Out (Lo or Hi)
13. Frame mode (C-bit, M23)

If P 1 is specified, in case of E 3 :
```

Line: xx 1
Interface type: xxxxxxxxx 2
Physical layer: E3 3
Forum/ITU: xxxxx 4
Unassigned/Idle: xxxxxxx 5
Valid VPI: xx 6
Valid VCI: xx 7
Filter mask VPI: xx 8
Filter mask VCI: xx 9
Cell mapping mode: xxxx 10
Scramble: xx 11
Frame mode: xxxx 12

```

\section*{Output Explanation}
1. Line number
2. Interface type (pri_uni, pri_nni, pub_uni)
3. Physical layer type
4. ITU (fixed)
5. Unassigned Cell / Idle Cell
6. Valid VPI bit counts
7. Valid VCI bit counts
8. VPI filter mask value
9. VCI filter mask value
10. Cell mapping (PLCP, Direct)
11. Scramble (OFF, ON)
12. Frame mode Frame (G382, G804, G751)

If P 1 is specified, in case of DS1, E1:
\begin{tabular}{lll} 
Line: & xx & 1 \\
Interface type: & xxxxxxxxx & 2 \\
Physical layer: & xxxxxxx & 3 \\
Forum/ITU: & xxxxx & 4 \\
Unassigned/Idle: & xxxxxxx & 5 \\
Valid VPI: & xx & 6 \\
Valid VCI: & xx & 7 \\
Filter mask VPI: & xx & 8 \\
Filter mask VCI: & xx & 9 \\
Cellmapping mode: & xxxx & 10 \\
Scramble: & xx & 11 \\
LBO: & xx & 12
\end{tabular}

\section*{Output Explanation}
1. Line number
2. Interface type (pri_uni, pri_nni, pub_uni)
3. Physical layer type
4. ITU (fixed)
5. Unassigned Cell / Idle Cell
6. Valid VPI bit counts
7. Valid VCI bit counts
8. VPI filter mask value
9. VCI filter mask value
10. Cell mapping (PLCP, Direct)
11. Scramble (OFF, ON)
12. Line Build Out (DS1 only)

If P 1 is specified, in case of J 2 :
```

Line: xx 1
Interface type: xxxxxxxxx 2
Physical layer: xxxxxxx 3
Forum/ITU: xxxxx
xxxxx 4
Unassigned/Idle: xxxxxxx 5
Valid VPI: xx 6
Valid VCI: xx 7
Filter mask VPI: xx 8
Filter mask VCI: xx 9
Line rate: xxxx 10

```

\section*{Output Explanation}
1. Line number
2. Interface type (pri_uni, pri_nni, pub_uni)
3. Physical layer type
4. ITU (fixed)
5. Unassigned Cell / Idle Cell
6. Valid VPI bit counts
7. Valid VCI bit counts
8. VPI filter mask value
9. VCI filter mask value
10. Line rate

If P1 is specified (Primary):
\begin{tabular}{lll} 
Line: & xx & 1 \\
Interface type: & xxxxxxxxx & 2 \\
Physical layer: & xxxxxxx & 3 \\
Forum/ITU: & xxxxx & 4 \\
Unassigned/Idle: & xxxxxxx & 5 \\
Valid VPI: & xx & 6 \\
Valid VCI: & xx & 7 \\
Filter mask VPI: & xx & 8 \\
Filter mask VCI: & xx & 9 \\
Line rate: & xxxx & 10
\end{tabular}

\section*{Output Explanation}
1. Line number
2. Interface type (pri_uni, pri_nni, pub_uni)
3. Physical layer type
4. TTC/ITU-T
5. Unassigned Cell / Idle Cell
6. Valid VPI bit counts
7. Valid VCI bit counts
8. VPI filter mask value
9. VCI filter mask value
10. Line rate

If P 1 is specified, in case of CE-DS1:
```

Line: xx 1
Interface type: xxxxxxxxxx 2
Physical layer: xxxxxxxxx 3
Forum/ITU: xxxxx 4
Unassigned/Idle: xxxxxxx 5
Valid VPI: xx 6
Valid VCI: xx 7
Service: xxxxxxxxx 8
LBO: xx 9
Frame mode: xxx 10
CAS mode: xxxx 11

```

\section*{Output Explanation}
1. Line number
2. Interface type (pri_uni, pri_nni, pub_uni) (not displayed)
3. Physical layer type
4. ATM Forum (fixed) (not displayed)
5. Unassigned Cell / Idle Cell (not displayed)
6. Valid VPI bit counts
7. Valie VCI bit counts
8. Service mode (Structured/Unstructured)
9. Line Build Out
10. Frame mode (ESF/SF)
11. CAS mode ("CAS/Basic" in the case of "Structured"; "-" in the case of "Unstructured")

If P1 is specified, in case of FR-DS1:
\begin{tabular}{|lll|}
\hline Line: & xxx & 1 \\
Interface type: & xxx & 2 \\
Physical layer: & FR-DS1 & 3 \\
Forum/ITU/ANSI: & xxxx & 4 \\
Interworking: & xxxxxxx & 5 \\
LBO: & xxxxxxx & 6 \\
Fractional type: & xxxxxxxxx & 7 \\
Fractional set: & xx xx xx xx & 8 \\
& & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line number
2. Interface ("UNI," "NNI")
3. Physical layer type
4. FR-Forum/ITU_T/ANSI
5. Interworking type ("Network," "Service")
6. Line Build Out ( \(0-110,110-220,220-330,330-440,440-550,550-660\) )
7. Fractional type ("Unchannelized," "Fractional")
8. Fractional setting ("-", if fractional type is unchannelized)

\section*{DISPLAY iproute}
(General
Command)

\section*{Function}

This command is used to display IP routing information the system currently uses.

\section*{Format}

HOSTNAME> DISPLAY iproute \(\{P 1\}\) \{P2\} \(\{P 3\}\)

\section*{Format Explanation}

P1 : Interface type (atm0 or ec0) (optional)
P2 : Destination type (net or host) (optional)
P3 : Destination on IP address (x.x.x.x ( \(x=0 \sim 255\) )) or default (optional).

\section*{Example}

NOTE All routes will be shown unless information is requested for a particular P1, P2, or P3.
\begin{tabular}{|llllll|}
\hline Type & Destination & Gateway & Interface & Line & VPI/VCI \\
\(* * *\) & \(* * * . * * * . * * * . * * *\) & \(* * * . * * * . * * * . * * * * * *\) & \(* *\) & \(* * * / * * *\) \\
1 & 2 & 3 & 4 & 5 & 6 \\
net & default & 10.1 .1 .10 & eco & & \(-1-\) \\
& & & & & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Destination type
2. Destination IP address
3. Gateway IP address
4. Interface type
5. Line number ( \(00 \sim 33\) )
6. VPI/VCI

DISPLAY line
(General Command)

\section*{Function}

This command is used to display physical line status.
No information will be displayed for uninstalled lines and lines whose installation cannot be recognized due to an error, etc.

\section*{Format}

HOSTNAME> DISPLAY line

Output
\begin{tabular}{|llll|}
\hline Line & Line status & Hardware status & Loop back \\
\(\star *\) & \(\star * * * * * * * * * * * * * * * * *\) & \(\star * * * *\) & \(\star * * * *\) \\
1 & 2 & 3 & 4 \\
& & & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. Line error

Admin down

AIS
AIS path
AIS section
Good
Idle
Initializing
Loss of cell delineation
Loss of frame
Loss of pointer
Loss of signal
Payload All One

PLCP loss of frame

PLCP out of frame
PLCP yellow

This port has been put out of service by SET linestatus command.

Alarm Indication Signal (AIS) received.
Path layer AIS received.
Section layer AIS received.
Functioning properly.
IDLE signal received.
Initialization is in progress.
Cell is out of sync.
Frame is out of sync.
STS frame pointer error.
Signal interruption occurred.
Payload in transmission frame is all " 1 " (main signal all " 1 ").

Physical Layer Convergence Protocol (PLCP) layer frame is out of sync.

PLCP layer frame end cannot be detected.
PLCP layer yellow signal received.

RDI
Red alarm
Remote Alarm Indication
Yellow path
Yellow section
3. Line card status

Normal
Failure
Diagnosis
Diagnosis NG
Initializing
4. Loopback status ("Normal" if not set)

Normal
local
remote

\section*{DISPLAY} looptime (General Command)

\section*{Function}

This command is used to display whether the per-port clocking recovery mode has been set (for active lines only). By default, all lines use the switch clock source (whether slave or master).

\section*{Format}

HOSTNAME> DISPLAY looptime
Output
```

Line **: ***
1 2
Line 012:On

```

\section*{Output Explanation}
1. Line number (00~33)
2. Loop time setting status
- on: Loop time is on

■ off: Loop time is off
- -: Package type is illegal.

DISPLAY mac
(General Command)

\section*{Function}

This command is used to display the Personal Computer Memory Card International Association (PCMCIA) Local Area Network (LAN) card Moves, Adds, and Changes (MAC) address.

\section*{Format}

HOSTNAME> DISPLAY mac
Example
```

HOSTNAME\# display mac
PCMCIAHOSTNAME\#1: 00.80.45.06.2e.5d

```

\section*{Output Explanation}
1. PCMCIAHOSTNAME\#1: MAC address

\section*{DISPLAY} manufacturingid (General Command)

\section*{Function}

This command is used to display Manufacturing ID of the SW-CPU card.

Format
HOSTNAME> DISPLAY manufacturingid

Output
\(x\) x. \(x x . x x . x x . x x . x x\)
1

\section*{Output Explanation}
1. Manufacturing ID

\section*{DISPLAY network Function}
(General
This command is used to display network information.
Command)

\section*{Format}

HOSTNAME\# DISPLAY network

\section*{Output}


\section*{Output Explanation}
1. Hostname of ATM displayed at the prompt: hOSTNAME
2. ATM IP address
3. Mask value of ATM IP address
4. Ethernet IP address
5. Mask value of Ethernet IP address
6. Default router IP address of Ethernet
7. sysContact of MIB
8. sysLocation of MIB
9. ATM prefix address (node ID)

If the ATM address is less than 26 digits, it will be padded with 0 .
10. NMS Number (0-3)
11. IP address of NMS
12. Community Name
13. Access privilege of Management Information Base (MIB)

DISPLAY oamcon
(General Command)

\section*{Function}

This command is used to display Operations, Administration, and Maintenance (OAM) connecting point information.

\section*{Format}

HOSTNAME> DISPLAY oamcon

\section*{Output}
\begin{tabular}{lcccc|} 
Line & VPI/VCI & Line & VPI/VCI & Point \\
\(\star *\) & \(\star * * / * * *\) & \(\star *\) & \(\star * * / \star * *\) & \(* * * * * * *\) \\
1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Ingress line number ( \(00 \sim 33\) )
2. Ingress VPI/VCI
3. Egress line number (00~33)
4. Egress VPI/VCI
5. Point type (f4/f5,Segment/End-to-End)

\section*{DISPLAY oamend \\ (General \\ Command)}

\section*{Function}

This command is used to display line status in line number ascending order when Alarm Indication Signal/Remote Defect Indication (AIS/RDI) cells are received by the switch at the end point.

\section*{Format}
```

HOSTNAME> DISPLAY oamend {P1}{P2} {P3}

```

\section*{Format Explanation}

P1 : Line number (00~33)
P2 : VPI (0~4095)
P3 : VCI (32~16383)

NOTE When line numbers \(\{\mathrm{P} 1\}\) and beyond are not specified, the end-point information and status (AIS/RDI) of all lines is displayed. If specified, the OAM cell being received when the command is entered is displayed in detail (only the specified line number, VPI, and VCI are displayed).

\section*{Output}

When no line is specified:
\begin{tabular}{|ccccc|}
\hline Line & VPI/VCI & Status & Defect & NODE-ID \\
\(\star *\) & \(\star * * / * * *\) & \(\star * *\) & \(* * *\) & \(* * * * * * * * * * * * * *\) \\
1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line number of endpoint
2. VPI/VCI of endpoint
3. Status of endpoint
4. Failure type of endpoint
- In case of OC-3c, OC-12c:

LOS, LOF, LOP, LOC, Path AIS (P_AIS), Segment AIS (S_AIS)
- In case of TAXI: LOS, LOC
- In case of 6.3M: LOS, LOF, LOC, AIS, PAO
- In case of DS3, E3:
*LOS, OOF, AIS, LOC, PLCP_LOF, PLCP_OOF
5. Node ID of the defective switch in the AIS/RDI cells

\section*{Output}

When line numbers \(\{\mathrm{P} 1\}\) and beyond are specified:
\begin{tabular}{lll} 
Line: & xxx & 1 \\
VPI: & xxx & 2 \\
VCI: & xxx & 3 \\
Point: & xxxx & 4 \\
Status: & xxxx & 5 \\
Defect: & xxxx & 6 \\
Node-ID: & xxxxxxxxxxxxxxxxx & 7
\end{tabular}

\section*{Output Explanation}
1. Line number of endpoint
2. VPI of endpoint
3. VCI of endpoint
4. Endpoint type (F4/F5, Segment/End-to-End)
5. Status of endpoint
6. Failure type of endpoint
- In case of OC-3c, OC-12c
- Loss of Signal (LOS)
- Loss of Frame (LOF)
- Loss of Pointer (LOP)
- Loss of Cell Delineation (LOC)
- Alarm Indication Signal (P_AIS)
- Alarm Indication Signal (S_AIS)
- In case of TAXI
- LOS
- LOC
- In case of 6.3 M
- LOS
- LOF
- LOC
- Alarm Indication Signal (AIS)
- PAO
- In case of DS3, E3
- LOS
- Out of Frame (OOF)
- AIS
- LOC
- Physical Layer Convergence Protocol (PLCP)_LOF
- PLCP_OOF
7. Node ID of the defective switch in the AIS/RDI cells.

DISPLAY oamf5end (General Command)

\section*{Function}

This command is used to display the OAM end points set at F5 (VC level). The end points are displayed in the descending order of line number, VPI, and VCI.

\section*{Format}
```

 HOSTNAME> DISPLAY oamf5end
    ```

\section*{Output}
\begin{tabular}{|lll|}
\hline Line & VPI & VCI \\
xx & xxx & xxx \\
xx & xxx & xxx \\
1 & 2 & 3 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line Number
2. VPI
3. VCI

\section*{DISPLAY pnni (General Command) \\ Function \\ 1. To display PNNI's reachable address:}

This command is used to display PNNI connection information.

\section*{Format}

HOSTNAME> DISPLAY pnni \{P1\}
Displays PNNI's reachable addresses currently managed by the system set with the SET pnni address command.

\section*{Format Explanation}

P1: Address type (Internal/External) may be omitted.

\section*{Output}

When address type is internal:
\begin{tabular}{|llllll|}
\hline Internal reachable address & & & & \\
Address & Length & Scope & Line & VPI \\
xxxxxxxxxxxxxxxxxxxxxxxx & xx & xx & xx & xxxxx \\
1 & 2 & 3 & 4 & 5 \\
& & & & \\
& & & & & \\
\hline
\end{tabular}

When address type is external:
```

Exterior reachable address
Address Length Scope Line VPI
/Transit network ID date

```

```

 1 2
 /Transit network ID
    ```

NOTE Internal address: an end user not supporting Interim Link Management Interface (ILMI) registration.

External address: an Information Infrastructure Standards Panel (IISP) connected node/network.

When address type is omitted:
\begin{tabular}{|c|c|c|c|c|}
\hline Internal reachable address Address & Length & Scope & Line & VP I \\
\hline  & xx & xx & xx & xxxxx \\
\hline 1 & 2 & 3 & 4 & 5 \\
\hline \multicolumn{5}{|l|}{Exterior reachable address} \\
\hline Address & Length & Scope & Line & VPI \\
\hline \multicolumn{2}{|l|}{/Transit network ID date} & \multicolumn{3}{|l|}{/Transit network ID} \\
\hline xxxxxxxxxxxxxxxxxxxxxxxxxx & \(x \mathrm{x}\) & xx & xx & xxxxx \\
\hline 1 & 2 & 3 & 4 & 5 \\
\hline & & \multicolumn{3}{|l|}{/ xxxxxxxxxx} \\
\hline & & \multicolumn{2}{|c|}{6} & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Reachable address
2. Significant address bits
3. Transferable level
4. Line number ( \(00 \sim 33\) )
5. VPI
6. Other network's identifier

\section*{2. To display PNNI's architectural variables:}

\section*{Format}

HOSTNAME> DISPLAY pnni architectural
Displays PNNI's timing/rate variables that have been set by SET pnni architectural command, and are currently managed by the system.

\section*{Output}
```

Minimum hello interval(s): xx 1
Hello interval(s): xx 2
DS rxmt interval(s): xx 3
Minimum PTSE interval(s): xx 4
PTSE interval(s): xx 5
Horizontal link inactivity(s): xx 6
Available of cell rate PM(%): xx 7
Available of cell rate mT(%): xx 8

```

\section*{Output Explanation}
1. Minimum transmission interval of "hello" (seconds)
2. Transmission interval of "hello" (seconds)
3. Transmission interval of database summary packet (seconds) and communication interval of PNNI Topology State Element (PTSE) request packet
4. Minimum transmission interval of PTSE (seconds)
5. Communication and retransmission interval of PTSE (seconds)

One-fifth of this time setting becomes the PTSE response delay time.
6. Ring down recognition time (seconds)
7. Percentage at which average cell rate change is notified (\%)
8. Minimum value at which average cell rate change is notified (\%)

\section*{3. To display PNNI connection:}

\section*{Format}

HOSTNAME> DISPLAY pnni connection \{P1\}
Displays the PNNI path \((0,18)\) that has been set by the SET pnni connection command and is currently managed by the system. If a line number is specified, only the relevant data is displayed. When no line is specified, all the data are displayed.

\section*{Format Explanation}

P1 : Line number (00~33)

\section*{Output}
\begin{tabular}{|llllllc|}
\hline Line & & & & & \\
& VPI & VCI & Weight & Token & Best effort band \\
& xx & xxx & xxxxx & xxx & xxx & xxxx \\
& 1 & 2 & 3 & 4 & 5 & 6 \\
& & & & & & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. VPI
3. VCI
4. Administrative weight
5. Aggregation token
6. UBR Best effort separate band

\section*{4. To display PNNI's longest match table:}

\section*{Format}

HOSTNAME> DISPLAY pnni longestmatch
Displays the flooded reachable addresses in the longest match sequence.

Output
\begin{tabular}{|ll|}
\hline Length & Reachable address \\
O: xxx & 1
\end{tabular}

\section*{Output Explanation}
1. Transferable length
2. Reachable address

\section*{5. To display PNNI routing type:}

\section*{Format}

HOSTNAME> DISPLAY pnni method
Displays the PNNI routing type that has been set by the SET pnni method command and is currently managed by the system.

\section*{Output}
```

Routing method : xxxxxxxx
1

```

\section*{Output Explanation}
1. Routing method (HOPBYHOP or SOURCE)
- Hopbyhop: IISP
- Source: PNNI 1.0

\section*{6. To display PNNI node information:}

\section*{Format}

HOSTNAME> DISPLAY pnni nodal
Displays the PNNI node information that has been set with the SET pnni nodal command and is currently managed by the system.

Output
```

Level indicator : xx 1
Restricted transit bit : xxx 2
Restricted branching bit : xxx 3

```

```

Leadership priority : xx 5
LGN ID : xxxxxxxxxxxxxxxxxxxxxxxxxx 6
Peer group ID : xxxxxxxxxxxxxxxxxxxx 7

```

\section*{Output Explanation}
1. Set level indicator
2. Trunk circuit restriction

ON: Disables SVC setups through this switch.
OFF: Allows SVC setups through this switch.
3. P to MP branch point judgement flag

ON: Own node is not used as branch point
OFF: Own node is used as branch point
4. ATM address corresponding to level
5. Priority of becoming peer group leader ("0" cannot be set as PGL)
6. Logical node ID corresponding to level
7. Peer group ID

\section*{7. To display PNNI reachable node:}

Format
HOSTNAME> DISPLAY pnni node
Displays the PNNI logical node recognized by each physical node if a table for source routing has been prepared in the PNNI routing unit.

\section*{Output}
\begin{tabular}{|c|c|}
\hline Destination node ID & Administrative weight \\
\hline  & 1 \\
\hline  & 1000 \\
\hline : & : \\
\hline : & : \\
\hline 1 & 2 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. PNNI logical node ID
2. Minimum cost to logical node

\section*{DISPLAY profile} (General Command)

\section*{Function}

This command is used to display the PVC profile information.

\section*{Format}

HOSTNAME> DISPLAY profile \{P1\}

\section*{Format Explanation}

P1 : Profile name

NOTE
If a profile name is specified, only the data related to this profile name is displayed. If not, all data is displayed.

\section*{Output}

If the profile name is defaulted:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Profile name & Traffic type & PCR & SCR & MBS & EPD \\
\hline ********* & ******* & *** & *** & *** & *** \\
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Profile name
2. Traffic type (CBR, ABR, VBR_RT, VBR_NRT, UBR)
3. Peak Cell Rate (PCR) (cell/s) ("-" for "not used")
4. Sustainable Cell Rate (SCR) (cell/s) ("-" for "not used")
5. Maximum Burst Size (MBS) (cell) ("-" for "not used")
6. Early Packet Discard (EPD) flag (on or off)

If the profile name is specified:
```

Profile name:
********** 1
Traffic type: ******** 2
Peak cell rate [cell/s]: ******* 3
Sustainable cell rate [cell/s]: ******* 4
Maximum burst size [cell]: ******* 5
EPD: *** 6

```

DISPLAY pve
(General Command)

\section*{Function}

This command is used to display established PVCs for the given port.

\section*{Format}

HOSTNAME> DISPLAY PvC P1 \{P2\} \{P3\}
NOTE If only the parameter "P1" is entered, all the PVC connections established on that line will be displayed. If "P1" and "P2" are entered, all PVCs on line "P1" with a VPI of "P2" will be displayed. If all three parameters are entered, only information on that one specific connection will be shown.

\section*{Format Explanation}

P1 : Line number ( \(00 \sim 33\) )
P2: VPI (0~4095) (optional)
P3 : VCI (0~16383) (optional)

\section*{Example}
```

HOSTNAME> display pvc 20
Line: 020
Bandwidth Available (Forward/Backward/Line rate): 348207/348207/353207 cell/s
Tunneling bandwidth available : 0/0/0 cell/s
Display/Existing connection
Uni-direction: 0/0 Bi-direction: 1/1
Multipoint: 0/0 Gateway: 2/2
Line VPI/VCI Line VPI/VCI Traffic Connection F-profile B-profile
020 0/5 - - / - - llolllll
020 1/100 021 2/200 CBR Bi-direction test test

```

\section*{Output}

When VCI is not specified:
```

Line :xxx 1
Bandwidth available (Forward/Backward/Line rate): xxx/xxx/xxx/ cell/s
2
Tunneling bandwidth available : xxx/xxx/xxx/ cell/s
3
Display/Existing connection
Uni-direction: xxxx/xxxx Bi-direction:xxxx/xxxx
Multipoint: xxxx/xxxx Gateway: xxxx/xxxx

| Line | VPI/VCI | Line | VPI/VCI | Traffic Connection | F-profile | B-profile | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| xxx | xxx/xxx | xxx | xxx/xxx | xxxxx | xxxxxxxxx | xxxxx | xxxxxx |

| 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. Band (Forward available/Backward available/Line rate) ("-" for "don't care")
3. Bandwidth for tunneling
4. Number of connection for each type
5. Ingress line number ( \(00 \sim 33\) )
6. Ingress VPI/VCI number
7. Egress line number (00~33)
8. Egress VPI/VCI number
9. Traffic type
10. Connection type
11. Forward profile
12. Backward profile

NOTE If no bandwidth is secured in tunneling, then nothing is displayed for the bandwidth secured in tunneling.

When all parameters are entered (uni-directional):
\begin{tabular}{|lllllll|}
\hline Connection type: & Uni-direction & & & \\
Traffic type: & xxxxxx & & & & \\
Line VPI/VCI & Direction & Line & VPI/VCI UPC & Shaper & Profile \\
xxx & xxx/xxx & \(->\) & xxx & xxx/xxx & xxx & xxxx \\
& & & & & & \\
& & & & & & \\
\hline
\end{tabular}

When all parameters are entered (bi-directional):


When all parameters are entered (multipoint):
```

Connection type: Multipoint
Traffic type: xxxxxx
Line VPI/VCI Direction Line VPI/VCI UPC Shaper Profile
xxx xxx/xxx -> leaf 0 xxx mxx/xxx xxx mxxx mxxxx

```

DISPLAY redundancy (General Command)

\section*{Function}

This command is used to display the redundancy status of the server card.

\section*{Format}

HOSTNAME> DISPLAY redundancy \(\{P 1\}\)

\section*{Format Explanation}

P1 : Slot number (0-3)

\section*{Example}


\section*{Output}

When slot number is omitted:
\begin{tabular}{|lllllll|}
\hline Slot & SoftType & Mode & Location & ACH cause & AlarmID & \\
& xx & xxxx & xxxxx/xxx & xxxxxx & xxxxxxx & xxxxxx \\
1 & 2 & \(3 / 4\) & 5 & 6 & 7 \\
& & & & & & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Slot number
2. Software type in server card ("LANE," "MPOA")
3. Server card configuration ("Single," "Duplex")
4. Server card operating status
5. Server card configuration location ("Local," "Remote")
6. Cause of Active Change (ACH)
7. Alarm ID or "-"

When slot number is specified:
\begin{tabular}{|lll|}
\hline Slot: & xx & 1 \\
SoftType: & xxxx & 2 \\
Mode: & xxxxx/xxx & 3 \\
Location: & xxxxx & 4 \\
Remote node ID: & xxxxxxxxxxxxx & 5 \\
Remote slot: & xx & 6 \\
ACH cause: & xxxxxxx & 7 \\
Alarm ID: & xxxxxx & 8 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Slot number
2. Software type in server card ("LANE," "NHRP")
3. Server card operating status (for example, "Single/ACT")
4. Server card configuration status ("Local," "Remote")
5. Remote side switch node ID (when local and duplex: "-")
6. Remote side slot number (when local and duplex: "-")
7. Cause of ACH ("Command," "Alarm," "Other," "-")
8. Alarm ID or "-"

\section*{DISPLAY route (General Command)}

\section*{Function}

This command is used to display the contents of the SVC static routing table. The contents of this table are set by executing the ROUTE add command. This routing table is only relevant for IISP (hop-by-hop) routing.

\section*{Format}
```

HOSTNAME> DISPLAY route {P1}

```

\section*{Format Explanation}

P1 : Line number (00~33)
NOTE If a line number is specified, only the data related to this line number is displayed. If not, all data is displayed for all lines.

\section*{Example}
```

HOSTNAME> display route

| Destination | Type | Line | VPI |
| :--- | ---: | ---: | ---: |
| $39.877503 \times x . x \times x \times x \times x \times x \times x . x x$ | $N S A P$ | $* 23$ | - |
| | 22 | - | |

```

\section*{Output}


\section*{Output Explanation}
1. Destination address (NSAP:40char, E.164:16char)
2. Destination address type (NSAP or E.164)
3. Line number (00~03)

NOTE An asterisk (*) denotes the primary port for routing. Should the primary port fail, the next port (if specified) will resume routing.
4. Tunneling VPI ("-" if not tunneling)

\section*{DISPLAY scope \\ (General Command)}

\section*{Function}

This command is used to display the mapping to scope layer.

\section*{Format}

HOSTNAME> DISPLAY scope

\section*{Output}
```

 1 2
 uni scope0 : PNNI HierarchyX Level XXX)
uni scope1 : PNNI HierarchyX Level XXX)
uni scope2 : PNNI HierarchyX Level XXX)
uni scope3 : PNNI HierarchyX Level XXX)
uni scope4 : PNNI HierarchyX Level XXX)
uni scope5 : PNNI HierarchyX Level XXX)
uni scope6 : PNNI HierarchyX Level XXX)
uni scope7 : PNNI HierarchyX Level XXX)
uni scope8 : PNNI HierarchyX Level XXX)
uni scope9 : PNNI HierarchyX Level XXX)
uni scope10 : PNNI HierarchyX Level XXX)
uni scope11 : PNNI HierarchyX Level XXX)
uni scope12 : PNNI HierarchyX Level XXX)
uni scope13 : PNNI HierarchyX Level XXX)
uni scope14 : PNNI HierarchyX Level XXX)
uni scope15 : PNNI HierarchyX Level XXX)

```

\section*{Output Explanation}
1. Hierarchy number (1-3)
2. Level indicator (0-104)

\section*{DISPLAY scroll \\ Function} (General Command)

This command is used to display the number of lines displayed by the MAT. The initial value is 24 lines. Number of lines can be changed by executing the SET scroll command.

\section*{Format}

HOSTNAME> DISPLAY scroll

\section*{Output}

If scroll line count is set correctly:
```

Scroll filter: ON
Number of line: **
1

```

If scroll line count is set to 0 :

Scroll filter: OFF

\section*{Output Explanation}
1. Number of lines displayed on the MAT screen.

DISPLAY server
(General Command)

\section*{Function}

This command is used to display TFTP server IP address, default router gateway IP address, and location name of boot file.

\section*{Format}

HOSTNAME> DISPLAY server
Example
```

display server
IP address: [1] 10.1.1.69
Default router IP address: [2] 0.0.0.0
Rboot file name: [3] /2.5G/ver6035/bootfile

```

\section*{Output Explanation}
1. IP address of TFTP server. This is for software downloaded from a TFTP server.
2. Router IP address, if the ATM 2.5 Gbps switch has to "hop" a router to find the TFTP server.
3. Name of the directory and file for download.

NOTE If no router is present, the IP address will read "0.0.0.0."

\section*{DISPLAY shaper \\ Function} (General Command)

This command is used to display shaping information.

\section*{Format}
(1) HOSTNAME> DISPLAY shaper \(\{P 1\}\{P 2\}\)

\section*{Format Explanation}

P1 : Line number (00~33)
P2 : Shaper number (1~8)
All shaper information will be shown unless a specific line \(\{\mathrm{P} 1\}\) and shaper number \(\{\mathrm{P} 2\}\) are entered.

\section*{Example}


\section*{Output}

In case of (1):
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{5}{|l|}{Configuration Active} \\
\hline Line & Shaper-number & & SCR & MBS & PCR & & MBS \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. Shaper number
3. PCR in the configuration data (cell/s)
4. SCR in the configuration data (cell/s) ("-" if SCR is not registered)
5. MBS in the configuration data (cell) ("-" if MBS is not registered)
6. PCR under operation (cell/s)
7. SCR under operation (cell/s) ("-" if SCR is not registered)
8. MBS under operation (cell) ("-" if MBS is not registered)

In case of (2):


\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. Shaper number
3. PCR in the configuration data (cell/s)
4. SCR in the configuration data (cell/s)
5. MBS in the configuration data (cell)
6. PCR under operation (cell/s)
7. SCR under operation (cell/s)
8. MBS under operation (cell)
9. PVC path using the specified shaper-number (VPI/VCI)
10. SoftPVP connection using the specified shaper-number (VPI/VCI)

\section*{DISPLAY signaling (General Command)}

\section*{Function}

This command is used to display signaling path information the system currently uses ( \(0 / 5\) unless tunneling). If a particular line number is not shown, signaling has not been set for that line.

\section*{Format}
```

HOSTNAME> DISPLAY signaling {P1}

```

\section*{Format Explanation}

P1 : Line number (00~33)
NOTE If a line number is specified, only the data related to this line number is displayed. If not, all data is displayed for all lines.

\section*{Example}
```

display sig
Line VPI/VCI
000 0/5
001 0/5
02 0/5

```

\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. VPI/VCI

\section*{DISPLAY softpvp Function}
(General
Command)
This command is used to display the soft PVPC/PVCC currently set.
Format
HOSTNAME> DISPLAY softpvp P1 \{P2\} \{P3\}

\section*{Format Explanation}

P1 : Line number (00~33)
P2 : Incoming VPI ( \(0 \sim 4095\) )
P3 : Incoming VCI (0, 32~16383)

\section*{Example}

When only a line number is specified:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Line: 030} & \multicolumn{6}{|c|}{1} \\
\hline & Local & \multicolumn{5}{|l|}{Remote} \\
\hline Endpoint & VPI/VCI & Line & VPI/VCI & Traf & icF-p & leB-p \\
\hline Calling & 1/100 & 31 & 1/100 & CBR & cbr & cbr \\
\hline 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. "Calling"/"Called"
3. Local VPI/VCI
4. Remote line number
5. VPI/VCI
6. Traffic type
7. Forward profile
8. Backward profile

When VPI is specified:


\section*{Output Explanation}
1. Line number (00~33)
2. Local VPI/VCI
3. Traffic type
4. "Calling"/"Called"
5. Number of retry
6. Status ("Established," "Retry," or "Suspended")
7. Direction
8. Remote line number
9. Remote VPI/VCI
10. UPC function mode
11. Shaper number
12. Profile name ("-" if it called.)
13. PCR (cell/s)
14. SCR (cell/s)
15. MBS (cell)
16. EPD flag (on or off)
17. Remote node ID

When VCI is specified:


\section*{Output Explanation}
1. Local line number
2. Local VPI/VCI
3. Remote line number
4. Remote VPI/VCI
5. Traffic type
6. Forward profile
7. Backward profile

\title{
DISPLAY sscop \\ (General \\ Command)
}

\section*{Function}

This command is used to display Service Specific Connection Orientation (SSCOP) parameters.

\section*{Format}

HOSTNAME> DISPLAY sscop

\section*{Example}
```

display sscop
Line VPI MaxCC TimerCC Keepalive NORESP POLL MaxPD MaxSTAT clr-buff
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

```


```

| 122 | 003 | 0 | 4 | 1 | 30 | 10 | 1 | 10 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. VPI
3. MaxCC

Maximum number of messages that can be sent without the SSCOP waiting for a reply.
4. TimerCC (sec)

Retransmission interval when no response message is received for connection setting, release, realignment, or restoration.
5. Timer_KEEPALIVE(sec)

Time that the connection can be maintained without any data transfer.
6. Timer_NORESPONSE (sec)

Time that the connection can be maintained without receiving a status request message.
7. Timer_POLL (sec)

Transmission interval of status request message.
8. MaxPD

Maximum number of data messages that are sent after the SSCOP sends a status notice message.
9. MaxSTAT

Maximum number of elements contained in a status notice message. (Elements refer to the combination of the beginning and end of unreceived data message number +1 .)
10. Clear-buffers

Asks the question, "must the transmission queue of the transmission buffer be cleared after the connection is released?" ( \(\mathbf{Y}\) or \(\mathbf{N}\) ).

\section*{DISPLAY status}
(General
Command)

\section*{Function}

This command is used to display the hardware status. When this command is entered, the system performs an installation check.

The system displays the status of all installed switch components, including power, fan units, and interface cards.

\section*{Format}

HOSTNAME> DISPLAY status

\section*{Example}
\begin{tabular}{|c|c|c|}
\hline Environment: & Xx & 1 \\
\hline Power0: & xxxxxxxxxxyxx & 2 \\
\hline Power1: & mxxxxxxxxxyxx & \\
\hline FANO: & xxxxxxxxxxyxx & 3 \\
\hline FAN1: & xxxxxxxxxxxxx & \\
\hline FAN2: & x \(x\) xxxxxxxxxx & \\
\hline CPU: & xxxxxxxxxx & 4 \\
\hline Switch: & xxxxxxxxxx & 5 \\
\hline Slot: & x & 6 \\
\hline Slot: & xxxxxxxxxxx & 7 \\
\hline Slot: & x \(x\) xxxxx & 8 \\
\hline Slot: & mxxxxxxxxxxxx & 9 \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Environment status (normal, failure)
2. Power Unit status (normal, failure)
3. Fan status (normal, failure)
4. CPU status (normal, failure, diagnostics, diagnosis status NG)
5. Switch status (initializing, normal, failure, diagnostics, diagnosis status NG)
6. Slot installation status ( \(0 \sim 3\) )
7. Buffer type (Buffer1, Buffer2, FR Buffer1, FR Buffer2, initializing, not installed)

If no line package is installed, the "Not installed" message is displayed. If a package was inserted in this line card slot in the past, the system still has the configuration data of that package and will display the package information (buffer and card type) before the "Not installed" message.

This information will not be displayed after the CLEAR config [slot] command is input to delete the retained configuration data.
8. Line type

OC-12c/STM4 (SMF-S) TypeA
OC-12c/STM4 (SMF-S) TypeB
OC-12c/STM4 (MMF)
OC-12c/STM4 (SMF-L)
OC-3c/STM1 (SMF-L)
OC-3c/STM1 (MMF)
OC-3c/STM1 (STF-S)
UTP-5
J2 (3M-6M)
Primary
100M-TAXI
DS3
E3
DS1
E1
CD-DS1
STS-3c/STM1 (COAXIAL)
FD-DS1
SERVER
SERVER 2
9. Line Board status ( \(0 \sim 3\) )

Normal
Initializing
Failure
Diagnostics
Diagnosis status NG
Configuration data is kept

DISPLAY svc
(General
Command)

\section*{Function}

This command is used to display SVC connections and associated information currently established on a given line.

\section*{Format}

HOSTNAME> DISPLAY svc P1 \{P2\} \{P3\}

\section*{Format Explanation}

P1: Line number (00~33)
P2: VPI (0~4095)
P3: VCI ( \(0,32 \sim 16383\) )

\section*{Example}
```

HOSTNAME>
HOSTNAME> display svc 10
Line: 010
Bandwidth Available (Forward/Backward/Line Rate): 353207/353207/353207 cell/s
Tunneling bandwidth available : 0/0/0 cell/s
Existing connections: 3

| | | Incoming | | Outgoing | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Traffic type | Connection type | Line | VPI/VCI | Line | VPI/VCI |
| UBR | P-to-M | 040 | $0 / 6072$ | 010 | $0 / 48$ |
| UBR | P-to-M | 040 | $0 / 6076$ | 010 | $0 / 50$ |
| UBR | P-to-P | 010 | $0 / 47$ | 040 | $0 / 3099$ |

```

\section*{Output}

All SVCs will be displayed for a given port (P1) unless a specific VPI \{P2 \(\}\) / VCI \(\{\mathrm{P} 3\}\) is given.
```

Line : ** 1
Bandwidth available (Forward/Backward/Line rate):*****/*****/*****cell/s 2
Tunneling bandwidth available:xxx/xxx/xxx cell/s 3
Existing connections:**** 4
IncomingOutgoing
Traffic type Connection TypeLineVPI/VCILineVPI/VCI
**** **** ***************/***
5 6 7 % 8 9 10

```

\section*{Output Explanation}
1. Line number ( \(00 \sim 33\) )
2. Bandwidth (forward/backward/specified line capacity)
3. Secured band in tunneling
4. Number of connections
5. Traffic type
6. Connection type
7. Incoming line number
8. Incoming VPI/VCI
9. Outgoing line number
10. Outgoing VPI/VCI

If no band is secured in tunneling, then nothing is displayed for the band secured in tunneling.

\section*{Example}

When VCI is specified:
```

display svc 10 0 51
Connection Type: P-to-P
Traffic Type: UBR
Traffic parameters information:
PCR SCR MBS
Direction CLP =0 CLP=0+1 CLP=0 CLP=0+1 CLP=0 CLP=0+1 Tagging

```

```

 <- - <llllllll
 Incoming information:

| Line | VPI/VCI | UPC | Shaper |
| :---: | :---: | :---: | :--- |
| 010 | $0 / 51$ | off | off |

Outgoing information:
Line VPI/VCI UPC Shaper
Calling information:
Line Call ref. Type Address
010 4SAP 39.877501000000000000000000.00A024B28F50.00
Called information:
Line Call ref. End ref. Type Address
002 36953 - NSAP 39.877501000000000000000000.000077875EA6.00

```

\section*{Output}


If the SVC being displayed is a point-to-multipoint SVC, the response shows only one of the leaves of the multipoint SVC, even if more leaves exist.

\section*{Output Explanation}
1. Connection type ("P-to-P," "P-to-M" : "(SoftPVP)," "(RCC)")
2. Traffic type
3. Direction of the connection
4. PCR (cell/sec) in case of CLP=0 or "-"
5. PCR (cell/sec) in case of CLP=0+1 or "-"
6. SCR (cell/sec) in case of CLP=0 or "-"
7. SCR (cell/sec) in case of CLP=0+1 or "-"
8. MBS (cell) in case of CLP=0 or "-"
9. MBS (cell) in case of CLP=0+1 or "-"
10. Tagging ("on," "off" or "-")
11. Incoming line number or "-"
12. Incoming VPI/VCI or "-"
13. Incoming UPC mode ("off," 1-5) or "-"
14. Incoming shaper ("off," 1-8) or "-"
15. Outgoing line number or "-"
16. Outgoing VPI/VCI or "-"
17. Outgoing UPC mode ("off," 1-5) or "-"
18. Outgoing shaper ("off," 1-8) or "-"
19. Calling line number or "-"
20. Calling call reference or "-"
21. Calling address type or "-"
22. Calling address or "-"
23. Called line number or "-"
24. Called call reference or "-"
25. Called end reference or "-"
26. Called address type or "-"
27. Called address or "-"

\section*{DISPLAY svcline}
(General
Command)

\section*{Function}

This command is used to display the current SVC signaling status of the line interfaces.

\section*{Format}
```

 HOSTNAME> DISPLAY svcline {P1}
    ```

\section*{Format Explanation}

P1: Line number (00~33)

\section*{Example}
\begin{tabular}{ccll} 
HOSTNAME> display svcl & \\
Line & VPI & Configuration & Active \\
000 & 0 & Resume & Suspend \\
001 & 0 & Resume & Normal \\
002 & 0 & Resume & Normal \\
003 & 0 & Resume & Normal
\end{tabular}

\section*{Output}
\begin{tabular}{|cccc|}
\hline Line & VPI & Configuration & Active \\
\(\star *\) & \(\star * *\) & \begin{tabular}{c} 
\\
1
\end{tabular} & 2
\end{tabular}

\section*{Output Explanation}
1. Line number
2. VPI of the signaling channel
3. Signaling status in the configuration data

Suspend (SET svcline command)
Resume (SET svcline command)
4. Signaling status under operation

Suspend (disabled or not physically connected)
Resume (connected and operational)
Normal
NOTE SVC status becomes "Suspend" during line failure or "Admin Down," even if the configuration is set to "Resume."

\section*{DISPLAY t309trg Function}
(General
Command)
This command is used to display the timing when signaling line failure is recognized.

\section*{Format}
```

 HOSTNAME> DISPLAY t309trg
    ```

Output

Timing value: \(x x x x\)
1

\section*{Output Explanation}
1. Timer value ( \(1 \sim 511[\mathrm{sec}]\) or "-")

DISPLAY telnetlimit (General Command)

\section*{Function}

This command is used to display the time limit of Telnet.

\section*{Format}

HOSTNAME> DISPLAY telnetlimit

\section*{Example}
```

display tel
Telnet time-limit : 10[min]

```

\section*{Output}

If no time limit is set:
```

No Telnet time-limit.

```

If time limit is set:
\(\square\)

\section*{Output Explanation}
1. Telnet will automatically disconnect upon expiration of the given time limit after the last activity.

Setting the time limit to zero allows the Telnet session to stay open indefinitely.

DISPLAY time (General Command)

\section*{Function}

This command is used to display system date and time.

\section*{Format}

HOSTNAME> DISPLAY time

\section*{Example}
```

display time
97-12-10 11:39:54

```

\section*{Output}
```

YY-MM-DD hh:mm:ss
1 2

```

NOTE YY-MM-DD indicates the year (the last two digits of the year), month, and day of the month.
hh:mm:ss indicates the hour, minute, and second.

\section*{Example}
1. January 10, 1999 is displayed as: 99-01-10
2. \(2: 30 \mathrm{p} . \mathrm{m}\). and 15 seconds is displayed as: \(14: 30: 15\)

\section*{DISPLAY traffic}
(General Command)

\section*{Function}

This command is used to display traffic and performance information of each line, connection, and physical unit.

The command format differs depending on line, connection, or physical unit.

\section*{Format}
1. HOSTNAME> DISPLAY traffic line P1
2. HOSTNAME> DISPLAY traffic connection P1 P2 P3
3. HOSTNAME> DISPLAY traffic physical P1

\section*{Format Explanation}

P1 : Line Number (00~33)
P2 : VPI (0~4095)
P3 : VCI (0, 32~16383)

\section*{Output of Format 1:}
```

Line: xxx 1
Total of received cells: xxxxxmxxxx 2
Total of transmitted cells: xxmxxmxxxx 3
Total of misdelivered cells: xxxmxxmxxx 4
Total of threshold excess cells: xxxxxxxxxx 5
Total of UPC violated cells: xxxxxxxxxx 6

```

\section*{Output Explanation}
1. Line Number
2. Received cell count on each line
3. Transmitted cell count on each line
4. Transmission side undefined cell count on each line
5. Number of dropped cells due to an exceeded threshold on each line

Possible causes are an excess of lower priority threshold, an excess of maximum threshold, and an excess of EPD threshold.
6. Number of UPC violation cells of each line

In case of FR-DS1:
\begin{tabular}{|llll|}
\hline Line: & xx & Received & Transmitted 1 \\
Total of throughput frames: & xxxxxxxxxx & xxxxxxxxxx & 2 \\
Total of error frames: & xxxxxxxxxx & xxxxxxxxx & 3 \\
Total of congestion discard frames: & xxxxxxxxxx & xxxxxxxxxx & 4 \\
Total of LMI (Status) frames: & xxxxxxxxxx & xxxxxxxxxx & 5
\end{tabular}

\section*{Output Explanation}
1. Line Number
2. Received/Transmitted throughput frame count
3. Received/Transmitted error frame count
4. Received/Transmitted congestion discard frame count
5. Received/Transmitted LMI input frame count

This command is valid for Buffer 2 (except CE-J2/DS1/E1/DS3). If a command of that format is entered for any other buffer, an error message will be displayed.

Output of Format 2, in case of uni-direction:
```

Connection type: xxx Uni-direction
Line VPI/VCI Line VPI/VCI
xx xxxx/xxxx xx xxxx/xxxx
2 3 4 5
Number of received cells: xxxxxxxxxx 6
Number of transmitted cells: xxxxxxxxxx 7
Number of dropped received cells: xxxxxxxxxx 8

```

\section*{Output Explanation}
1. PVC/SVC
2. Point 1 Line Number
3. Point \(1 \mathrm{VPI} / \mathrm{VCI}\)
4. Point 2 Line Number
5. Point 2 VPI/VCI
6. Received cell count of Point 1
7. Transmitted cell count of Point 2
8. Number of received drop cells of Point 1

Possible causes are an excess of lower priority threshold, an excess of maximum threshold, a UPC violation, and an excess of EPD threshold.

When "traffic" is set in NMS, not "Number" but "Total" will be displayed. If the buffer of the specified line is FR-buffer, an error will occur.

Output of Format 2, in case of bi-direction:
```

Connection type : xxx Bi-direction
1
Line VPI/VCI Line VPI/VCI
xxx xxxx/xxxx xxx xxxx/xxxx
2 3 4 5
Number of received cells: xxxxxxxxxx 6
Number of transmitted cells: xxxxmxxxxx 7
Number of dropped received cells:xxxxxxxxxx 8

```

\section*{Output Explanation}

\section*{1. \(\mathrm{PVC} / \mathrm{SVC}\)}
2. Point 1 Line Number
3. Point \(1 \mathrm{VPI} / \mathrm{VCI}\)
4. Point 2 Line Number
5. Point 2 VPI/VCI
6. Received cell count of Point 1
7. Transmitted cell count of Point 2
8. Number of received drop cells of Point 1

Possible causes are an excess of lower priority threshold, an excess of maximum threshold, a UPC violation and an excess of EPD threshold.

When "traffic" is set in NMS, not "Number" but "Total" will be displayed. Bidirectional traffics are displayed on two lines for each direction. Therefore, the "Incoming" and "Outgoing" information sets are replaced by each other on the top and bottom lines.

Output of Format 2, in case of PVC Multicast / SVC P-to-MP:
```

Connection type : xxx Multipoint
Line VPI/VCI
xx xxxx/xxxx
2 3
Number of received cells:xxxxxxxxxx4
Number of dropped received cells:xxxxxxxxxx5
Line VPI/VCI Transmitted cells
Leaf 0 xx xxxx/xxxx xxxxxxxyxx
6 7 8

```

\section*{Output Explanation}

\section*{1. PVC/SVC}
2. Point 1 Line Number
3. Point 1 VPI/VCI
4. Received cell count of Point 1
5. Number of received drop cells of Point 1

Possible causes are an excess of lower priority threshold, an excess of maximum threshold, a UPC violation and an excess of EPD threshold.
6. Point 2 Line Number
7. Point 2 VPI/VCI
8. Transmitted cell count of Point 2

When "traffic" is set in NMS, not "Number" but "Total" will be displayed. If the buffer of the specified line is FR-buffer, an error will occur.

Output of Format 2, in case of PVC GWPAD-path:
```

Connection type : PVC Gateway
Line VPI/VCI
xx xxxx/xxxx
1 2
Number of received cells: xxxxxxxxxx 3
Number of transmitted cells: xxxxmxxxxx 4
Number of dropped received cells:xxxmxxxxxx 5

```

\section*{Output Explanation}
1. Point 1 Line Number
2. Point 1 VPI/VCI
3. Received cell count of Point 1
4. Transmitted cell count of Point 1
5. Number of received drop cells of Point 1

Possible causes are an excess of lower priority threshold, an excess of maximum threshold, a UPC violation and an excess of EPD threshold.

When "traffic" is set in NMS, not "Number" but "Total" will be displayed. If the buffer of the specified line is FR-buffer, an error will occur.

Output of Format 3, in case of OC3, OC12, J2, Primary and STS-3c/STM1 (COAXIAL):
\begin{tabular}{|lll|}
\hline Line : & xx & 1 \\
Receive cell count: & xxxxxxxxxx & 2 \\
Transmit cell count: & xxxxxxxxxx & 3 \\
HEC error cell count: & xxxxxxxxxx & 4 \\
Corrected HEC error cell count: & xxxxxxxxxx & 5 \\
Uncorrected HEC error cell count: & xxxxxxxxxx & 6 \\
B1 error count: & xxxxxxxxxx & 7 \\
B2 error count: & xxxxxxxxxx & 8 \\
B3 error count: & xxxxxxxxxx & 9 \\
Path FEBE count: & xxxxxxxxxx & 10 \\
Line FEBE count: & xxxxxxxxxx & 11 \\
& & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line Number
2. Received cell count
3. Transmitted cell count
4. HEC error cell count
5. Corrected HEC error cell count
6. Uncorrected HEC error cell count
7. B1 error cell count
8. B2 error cell count
9. B3 error cell count
10. Path FEBE (Far End Block Error) count
11. Line (Section) FEBE (Far End Block Error) count

NOTE Counters that cannot be displayed due to package type will be represented as "-".

Output of Format 3, in case of DS3:
\begin{tabular}{|lll}
\hline Line: & xx & 1 \\
Receive cell count: & xxxxxxxxxx & 2 \\
Transmit cell count: & xxxxxxxxxx & 3 \\
Idle/Unassigned cell count: & xxxxxxxxxx & 4 \\
Uncorrected HEC error cell count \(:\) xxxxxxxxxx & 5 \\
FEBE error count: & xxxxxxxxxx & 6 \\
B1 error count: & xxxxxxxxxx & 7 \\
Framing error count: & xxxxxxxxxx & 8 \\
FEBE event count: & xxxxxxxxxx & 9 \\
Path parity error count: & xxxxxxxxxx & 10 \\
Parity error count: & xxxxxxxxxx & 11 \\
SEZ detect count: & xxxxxxxxxx & 12 \\
F-bit or M-bit error count: & xxxxxxxxxx & 13 \\
Line code violation count: & xxxxxxxxxx & 14
\end{tabular}

\section*{Output Explanation}
1. Line Number
2. Received cell count
3. Transmitted cell count
4. Idle/Unassigned cell count
5. Uncorrected HEC error cell count
6. FEBE (Far End Block error) counts in PLCP mode
7. BIP (Bit Interleaved Parity) error counts in PLCP mode
8. Framing Pattern Octet error counts and Path Overhead Identification Octet error counts in PLCP mode
9. FEBE (Far End Block Error) count
10. C-bit parity error counts
11. P-bit parity error counts
12. Summed Excessive Zero detected count
13. F-bit/M-bit error count
14. Line Code Violation error count

Counters that cannot be displayed due to DS3 mode will be represented as "-".

Output of Format 3, in case of E3:
\begin{tabular}{|lll}
\hline Line : xx & & 1 \\
Receive cell count: & xxxxxxxxxx & 2 \\
Transmit cell count: & xxxxxxxxxx & 3 \\
Idle/Unassigned cell count: & xxxxxxxxxx & 4 \\
Uncorrected HEC error cell count : xxxxxxxxxx & 5 \\
FEBE error count: & xxxxxxxxxx & 6 \\
B1 error count: & xxxxxxxxxx & 7 \\
Framing error count: & xxxxxxxxxx & 8 \\
FEBE event count: & xxxxxxxxxx & 9 \\
BIP-8 error count: & xxxxxxxxxx & 10 \\
IEC error count: & xxxxxxxxxx & 11 \\
Framing pattern error count: & xxxxxxxxxx & 12 \\
Line code violation count: & xxxxxxxxxx & 13
\end{tabular}

\section*{Output Explanation}
1. Line Number
2. Received cell count
3. Transmitted cell count
4. Idle/Unassigned cell count
5. Uncorrected HEC error cell count
6. FEBE (Far End Block error) counts in PLCP mode
7. BIP (Bit Interleaved Parity) error counts in PLCP mode
8. Framing Pattern Octet error counts and Path Overhead Identification Octet error counts in PLCP mode
9. FEBE (Far End Block Error) count
10. Bit Interleaved Parity-8 error counts
11. Incoming error counts
12. Framing pattern error count
13. Line Code Violation error count

Counters that cannot be displayed due to E3 mode will be represented as "-".

Output of Format 3, in case of DS1:
\begin{tabular}{|lll|}
\hline Line : xx & 1 \\
Framing bit error count: & xxxxxxxxxx & 2 \\
CRC error count: & xxxxxxxxxx & 3 \\
Line code violation count: & xxxxxxxxxx & 4 \\
Uncorrected HEC error cell count : xxxxxxxxxx & 5 \\
B1 error count: & xxxxxxxxxx & 6 \\
Framing bit error count: & xxxxxxxxxx & 7 \\
PLCP FEBE error count: & xxxxxxxxxx & 8 \\
& & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line Number
2. Framing Bit error count
3. CRC error count
4. Line Code Violation error count
5. Uncorrected HEC error cell count
6. B1 error count
7. Framing error count
8. PLCP FEBE (Far End Block Error) count

Counters that cannot be displayed due to DS1 mode will be represented as "-".

Output of Format 3, in case of E1:
```

Line : xx 1
Uncorrected HEC error cell count:xxxxxxxxxx 2
PLCP FEBE error count: xxxxxxxxxx 3
B1 error count: xxxxxxxxxx 4
Framing error count: xxxxmxxxxx 5
FEBE event count: xxxmxxxxxx 6
Framing bit error count: xxxxxxxxxx 7
CRC error count: xxxxxxxxxx 8
Line code violation count: xxxxxxxxx 9

```

\section*{Output Explanation}
1. Line Number
2. Uncorrected HEC error cell count
3. PLCP FEBE (Far End Block Error) count
4. B1 error count
5. Framing error count
6. Framing Bit error count
7. FEBE (Far End Block Error) count
8. CRC error count
9. Line Code Violation error count

Counters that cannot be displayed due to E1 mode will be represented as "-".

Output of Format 3, in case of CE-DS1:
```

Line : xx 1
FEBE event count: xxxxxxxxxx 2
Path parity error count: xxxmxxxxxx 3
Parity error count: xxxxxxxxxx 4
Framing bit error count: xxxxxxxxxx 5
CRC error count: xxxxxxxxxx 6
Line code violation count: xxxxxxxxxx 7
Bit error count: xxxxxxxxxx 8

```

\section*{Output Explanation}
1. Line Number
2. FEBE (Far End Block Error) count
3. C-bit parity error counts
4. P-bit parity error counts
5. Framing Bit error count
6. CRC error count
7. Line Code Violation error count
8. Bit error count

NOTE Counters that cannot be displayed due to package type will be represented as "-".

Output of Format 3, in case of FR-DS1:
\begin{tabular}{|lll}
\hline Line : xx & & 1 \\
FEBE event count: & xxxxxxxxxx & 2 \\
Framing bit error count: & xxxxxxxxxx & 3 \\
CRC error count: & xxxxxxxxxx & 4 \\
Line code violation count: \(x\) xxxxxxxxx & 5
\end{tabular}

\section*{Output Explanation}
1. Line Number
2. FEBE counts (Far End Block error counts)
3. Framing Bit error counts
4. CRC error counts
5. LCV error counts (Line Code Violation error counts)

NOTE Counters that cannot be displayed due to package type will be represented as "-".

DISPLAY tunneling (General Command)

\section*{Function}

This command is used to display tunneling connection information.

\section*{Format}

HOSTNAME> DISPLAY tunneling

\section*{Example}
```

display tun
Line VPI Throughput UPC Shaper
000 1 1000 1 1

```

\section*{Output}
\begin{tabular}{|lrrrr|}
\hline Line & VPI & Throughput & UPC & Shaper \\
\(\star \star\) & \(\star \star \star\) & \(\star \star \star \star \star *\) & \(\star * *\) & \(\star * *\) \\
1 & 2 & 3 & 4 & 5 \\
& & & & \\
\hline
\end{tabular}

\section*{Output Explanation}
1. Line number
2. VPI
3. Tunneling bandwidth (cell/s)
4. Forward UPC function mode (off or 1)
5. Forward shaper number (off or 1-8)

\section*{DISPLAY version}
(General
Command)

\section*{Function}

This command is used to display the Software Version, boot program, and configuration data.

\section*{Format}

HOSTNAME> DISPLAY version

\section*{Example}
```

HOSTNAME\# display version
Software version: 6.0(3) , 32Mbytes
Boot program version: 3.01 4 Nov 97

```

\section*{ENABLE}
(General
Command)

\section*{Function}

This command is used to switch from General Command Mode to Privileged Command Mode.

Privileged Command Mode is a function to be used by the system manager. It is necessary to register a password in advance to use the ENABLE command to switch modes. If this command is executed when there is no password registered, you will be prompted to register a password.

\section*{Format}

\section*{HOSTNAME> ENABLE}

\section*{Example}
```

enable
Input new enable password:
Retype new enable password:
Do not push reset button until save finishes
\#\#\#\#\#\#\#
[OK]

Input new Telnet password:
Retype new Telnet password:
Do not push reset button until save finishes
\#\#\#\#\#\#\#
[OK]

```

\section*{Output}

If no password has been registered:
```

Input new enable password:

```
Retype new enable password:
[OK]

If a password has been registered:
```

Input enable password:

```

If no Telnet password has been registered:
```

Input new enable password:
Retype new enable password:
[OK]

```

NOTE Password is not displayed on the screen
Only alphanumeric characters may be used in the password. (Symbols such as + , \(=, \%\), and \& may not be used.)

Password characters are case-sensitive.
Do not forget the password once it is registered.
The password must contain no less than four and no more than eight characters. If the correct password is entered, the prompt will change from \(>\) to \# to indicate that a Privileged Command may be entered. Once you complete password in the Privileged Command Mode, be sure to use the EXIT command to return to the General Command Mode.

\section*{EXIT (General} Command)

\section*{Function}

The user can log out by entering this command in the General Mode during Telnet connection.

\section*{Format}

HOSTNAME> EXIT

\section*{Output}
none

\section*{EXIT (Privileged \\ Command)}

\section*{Function}

This command is used to switch from the Privileged Command Mode to General Command Mode.

The prompt will change from \# to >.

\section*{Format}

HOSTNAME\# EXIT

Output
```

HOSTNAME>

```

NOTE To prevent the set data of the ATM switch from being changed by unauthorized personnel, be sure to return to the General Command Mode after completing work in the Privileged Command Mode.

\section*{FAILUREDUMP \\ Function}
(Privileged Command)

This command is used to display the failure information. The failure information is the information for system administrators to use for software analysis.

\section*{Format}

\section*{HOSTNAME\# FAILUREDUMP P1 \{P2\}}

\section*{Format Explanation}

\section*{P1: Log Number (1~2)}

P2: Display Information (all)
If "Display Information" parameter is not specified, only the information collected by OS is displayed and the information collected by the application is not. If "all" is specified, the information collected by both OS and application is displayed. The information collected by application includes alarm log information.

\section*{Output}
```

\#

Failure dump

\#
LM version : x.x(x).x xxxx xxxx.xxx.x 1
ROM version : x.xx xx xxx xx 2
Fault occurred time : xx-xx-xx : xx : xx : xx 3
Exception name : xxxx 4
Fault kind : xxxxxxxx 5
TKN : xxxxxxxx 6
INT0: xxxXxXxx 7
INT1: xxxxxxxx
INT2: xxxxxxxx
INT3: xxxxxxxx
INT4: xxxxxxxx

VR4300 CPU Registers \#\#\#\#\# 8

```








```

hi=xxxxxxxx lo=xxxxxxxx

```


\section*{Output Explanation}
1. Software version
2. Boot program version)
3. Failure occurred time (yy-mm-dd : hh: mm : ss)
4. Exception cause (See below)
\begin{tabular}{|l|l|}
\hline Exception Cause & Type of Exception \\
\hline Int & Interrupt exception \\
\hline Mod & TLB modified exception \\
\hline TLBL & TLB invalid exception (load or fetch) \\
\hline TLBS & TLB invalid exception (store) \\
\hline AdEL & Address error exception (load or instruction fetch) \\
\hline AdES & Address error exception (store) \\
\hline IBE & Bus error exception (instruction fetch) \\
\hline DBE & Bus error exception (load or store data) \\
\hline Sys & System call exception \\
\hline BP & Breakpoint exception \\
\hline RI & Reserved instruction exception \\
\hline Cpu & Co-processor unusable exception \\
\hline Ov & Integer overflow exception \\
\hline Tr & Trap exception \\
\hline FPE & Floating-point exception \\
\hline WATCH & Watch exception \\
\hline WDT & WDT overflow \\
\hline
\end{tabular}
5. Exception occurrence mode \([-1\) (task runnning), -2 (Kernel running), -3 (nottask)]
6. Exception task token
7. Interruption control [cause of each interrupt (INT0 - INT 4), trigger, contents of mask]
8. VR4300 CPU registers
9. VR4300 CPO registers
10. Stack information indicated by CPU stack pointer (SP) register [Display size: 1024 (byte)]
11. RUN status task ID
12. RUN status task stack area base address
13. RUN status task stack information [Display size: 1024 (byte)]
14. Alarm log information [Display size: 69104 (byte)]

NOTE
If display information parameter is not specified, the 14th item is not displayed.
"xxxxxxxx" is displayed for the registers that are not collected.

FAILURELOG
(Privileged Command)

\section*{Function}

This command is used to display the failure log information.

\section*{Format}

HOSTNAME\# FAILURELOG

\section*{Output}
\begin{tabular}{|rll|}
\hline Log no & Occurred time & Exception name \\
x & \(\mathrm{xx}-\mathrm{x}-\mathrm{x}: \mathrm{x}: \mathrm{xx}: \mathrm{xx}\) & xxxx \\
x & \(\mathrm{xx}-\mathrm{x}-\mathrm{x}: \mathrm{xx}: \mathrm{xx}: \mathrm{xx}\) & xxxx \\
1 & 2 & 3 \\
\hline
\end{tabular}

\section*{Output Explanation}
\(1:\) Log number (1-2)
2 : Failure occurred time ( yy - mm - dd : hh : mm : ss, " \(\qquad\) - -" is displayed when failure information is not being logged.)

3 : Exception cause
\begin{tabular}{|l|l|}
\hline Exception Cause & Type of Exception \\
\hline Int & Interrupt exception \\
\hline Mod & TLB modified exception \\
\hline TLBL & TLB invalid exception (load or fetch) \\
\hline TLBS & TLB invalid exception (store) \\
\hline AdEL & Address error exception (load or instruction fetch) \\
\hline AdES & Address error exception (store) \\
\hline IBE & Bus error exception (instruction fetch) \\
\hline DBE & Bus error exception (load or store data) \\
\hline Sys & System call exception \\
\hline BP & Breakpoint exception \\
\hline RI & Reserved instruction exception \\
\hline Cpu & Coprocessor unusable exception \\
\hline Ov & Integer overflow exception \\
\hline Tr & Trap exception \\
\hline FPE & Floating-point exception \\
\hline WATCH & Watch exception \\
\hline WDT & WDT overflow \\
\hline
\end{tabular}

\section*{GENERATE ? (Privileged Command) \\ Function \\ Format \\ HOSTNAME\# GENERATE ? \\ Output}

This command is used to display the help message for the GENERATE command.
\begin{tabular}{|ll|}
\hline f4 & VP level \\
f5 & VC level \\
feac & FEAC Code generate for DS3 \\
\end{tabular}

\section*{GENERATE f4}
(Privileged Command)

\section*{Function}

This command is used to generate OAM cells (loopback cells) in the "f4" mode to perform loopback test.

An autonomous message indicating the result of the test is output to the MAT.

\section*{Format}

HOSTNAME\# GENERATE f4 P1 P2 P3 P4 P5 P6

\section*{Format Explanation}

P1 : Test base flow (0|seg (segment base) or 1|end (end-to-end base))
P2 : Node ID of the switch which returns loopback cell (up to 13-octet)
P3: Correlation tag (up to 4 hexadecimal octets)
P4: Loopback test count (1~16)
P5 : Line number (00~03)
P6 : VPI (0~4095)

\section*{Example}
```

gen f4 0 398 12345678 2 30 1
Generating OAM cells...

```

NOTE The loopback test can only start if the node ID for the switch is set with the SET local command.

\section*{GENERATE f5 (Privileged Command)}

\section*{Function}

This command is used to generate Operations, Administration, and Maintenance (OAM) cells (loopback cells) in the "f5" mode to perform loopback test.

An autonomous message indicating the result of the test is output to the MAT.

\section*{Format}

HOSTNAME\# GENERATE f5 P1 P2 P3 P4 P5 P6 P7

\section*{Format Explanation}

P1 : Test base flow (0|seg (segment base) or 1|end (end-to-end base))
P2 : Node ID of the switch which returns loopback cell(up to 13-octet)
P3: Correlation tag (up to 4 hexadecimal octets)
P4: Loopback test count (1~16)
P5 : Line number (00~33)
P6 : VPI (0~4095)
P7 : VCI (32~16383)

\section*{Example}
```

Privileged Command\# gen f5 0 39866501 87

```
654321230050

NOTE The loopback test can only start if the node ID of the switch is set with the SET local command.

\section*{GENERATE feac} (Privileged Command)

\section*{Function}

This command is used to transmit Feature Code (FEAC) at DS3 package in C-bit parity mode.

\section*{Format}

HOSTNAME\# GENERATE feac P1 P2

\section*{Format Explanation}

P1: Line number (00~33)
P2: Command condition
0 : Line loopback activated
1 : Line loopback deactivated
Example

HOSTNAME\# gen feac 000

NOTE FEAC code can only be transmitted when DS3 line is set to C-bit parity mode.

\section*{INSTALL config \\ (Privileged \\ Command)}

\section*{Function}

This command is used to download previously backed-up data from a TFTP server via the Ethernet port.

\section*{Format}

HOSTNAME\# INSTALL P1 P2 P3

\section*{Format Explanation}

P1 : Data type (system or config)
P2 : IP address (x.x.x.x (x=0~255))
P3 : Directory and file name

\section*{Setting Procedure}
1. Before installing configuration data, a previously backed-up file must be present. See BACKUP config command.
2. If a gateway is present between the TFTP server and the switch, set the IP routing information by executing the SET iproute command.
3. To install the data via ATM, set the ATM IP address of the switch by executing the SET local command. To install the data via Ethernet, set the switch Ethernet IP address by executing the SET ether command.
4. The switch will restart if the installation fails. Therefore, it is recommended that you save the data using the SAVE command.
5. Perform the installation by executing the INSTALL command.
6. Save the newly installed data by executing the SAVE command.

\section*{Example}
```

HOSTNAME\# install config 10.1.1.3 /2.5G/config/file1
Are you sure? [Y or N] y
</2.5G/config/file1>

```

\section*{Output}

In case of system install:
```

System files have been loaded.

```

In case of config install:
```

Configuration data have been loaded/written.

```

A file of up to 2 MB in size may be booted by system installation.
Specify a file prepared by the BACKUP command for the config installation.

If an installation error is detected, reset and return to the operation status, or reenter the installation command.

It is impossible to resume system installation after the write to flash memory fails. Therefore, when starting the system the next time, do so in the boot mode.

When booting the system from NMS via ATM line, set the NMS information with SET nms command in the applicable switch in advance.

When booting the system from a workstation via ATM/Ethernet, set the IP route by executing the SET iproute command in the applicable switch in advance.

The system will automatically reset after the installation is properly completed.

\section*{OPEN (General Command)}

\section*{Function}

This command is used to open access to a server card interface, for example, LANE server card, IP.

\section*{Format}

HOSTNAME> OPEN P1

\section*{Format Explanation}

P1: Slot number (0-3)

\section*{Output}

If no password has been registered:
```

Input new password:
Retype new password:
[OK]

```

If a password has been registered:
```

Input password:
Card02\#

```

NOTE When this command is entered, all control is passed to the specified card. When the EXIT command is executed, control is returned to the active CPU.

PASSWD
(Privileged Command)

\section*{Function}

This command is used to change the password for switching to the Privileged Command Mode.

After entering the current password, enter the new password twice to complete the password change. The entered characters are not echoed back.

\section*{Format}

\section*{HOSTNAME\# PASSWD}

\section*{Output}

If a password is registered:
```

Input old password:
Input new enable password:
Retype new enable password:
[OK]

```

NOTE The password must contain no less than four and no more than eight characters. The password is case sensitive.

\section*{PVC ? (Privileged \\ Command)}

\section*{Function}

This command is used to display the help message for the Permanent Virtual Circuit (PVC) command.

\section*{Format}

HOSTNAME\# PVC ?
Output
\begin{tabular}{|ll|}
\hline add & \begin{tabular}{l} 
Add endpoint to existing uni-directional multipoint \\
PVC PVC
\end{tabular} \\
delete & \begin{tabular}{l} 
Delete PVC \\
establish \\
flush \\
remove
\end{tabular} \\
\begin{tabular}{l} 
Establish PVC \\
Delete all PVCs on a line interface \\
Remove endpoint from existing uni-directional multi-
\end{tabular} \\
\hline
\end{tabular}

\section*{PVC add \\ (Privileged Command)}

\section*{Function}

This command is used to add a PVC end point or "leaf" to an existing multipoint.
- Before entering this command, use the SHOW PVC (or PVC establish) command to verify a previously set multipoint route, to which a leaf may be added.
- Enter the same incoming side parameters (line number, VPI, VCI) that have been set as the incoming side parameters with the PVC establish command.
- The type of end point bit rate (traffic type and throughput) is the same as that set with PVC establish.

\section*{Reference Command}

DISPLAY pvc

\section*{Cancel Command}

PVC remove, PVC flush, SHOW pvc

\section*{Format}

HOSTNAME\# PVC add P1 P2 P3 P4 P5 P6

\section*{Format Explanation}

P1: Ingress line number (00~33)
P2: Ingress VPI number (0~4095)
P3: Ingress VCI number (0, 32~16383)
P4: Egress line number (00~33)
P5: Egress VPI number (0~4095)
P6: Egress VCI number (0, 32~16383)

\section*{Example}
```

HOSTNAME\# SET profile 1 cbr

```
HOSTNAME# SET profile 1 cbr
HOSTNAME# PVC establish 1 1 40 1 100 42 2 200 0 0 cbr
HOSTNAME# PVC establish 1 1 40 1 100 42 2 200 0 0 cbr
HOSTNAME# pvc add 40 1 100 43 2 200
```

HOSTNAME\# pvc add 40 1 100 43 2 200

```


\section*{PVC delete (Privileged Command)}

\section*{Function}

This command is used to delete a previously established PVC (not a leaf).
If the connection is a multipoint, execute only after removing all leafs with the PVC remove command (described later in this chapter).

\section*{Format}

HOSTNAME\# PVC delete P1 P2 P3 P4 P5 P6 P7

\section*{Format Explanation}

P1 : Connection type ( 0 (bi-directional), 1 (multipoint) or 2 (uni-directional))
P2 : Ingress line number (00~33)
P3 : Ingress VPI (0~4095)
P4 : Ingress VCI (0, 32~16383)
P5 : Egress line number (00~33)
P6 : Egress VPI (0~4095)
P7 : Egress VCI (0, 32~16383)

\section*{Example}
```

HOSTNAME\# PVC delete 0 10 1 100 20 2 200

```

\section*{Output}

In case of uni-directional:
```

***Connection has been deleted.
Connection type : Uni-direction
Traffic type : ****
Line VPI/VCI Direction Line VPI/VCI UPC Shaper Profile
** ***/*** -> ** ***/*** **********

```

In case of bi-directional:
```

***Connection has been deleted.
Connection type : Bi-direction
Traffic type : ****
Line VPI/VCI Direction Line VPI/VCI UPC Shaper Profile
** ***/*** -> ** ***/*** *** *** *****
<- ** ***/*** **********

```

In case of multipoint:
```

***Connection has been deleted.
Connection type : Multipoint
Traffic type : ****
Line VPI/VCI Direction Line VPI/VCI UPC Shaper Profile
** ***/*** -> leaf 0 ** ***/*** *** ********

```

\section*{PVC establish \\ (Privileged Command)}

\section*{Function}

This command is used to establish a permanent connection. The PVC will become effective immediately upon being set.

\section*{Reference Command}

DISPLAY PVC

\section*{Cancel Command}

PVC delete, PVC flush, SHOW pvc

\section*{Setting Procedure}
1. Use the SET profile command to set the profile of the traffic type used in PVC.
2. If you wish to use the shaper function, set the shaper by executing the SET shaper command (shaper cannot be used in Buffer 1).
3. Use the DISPLAY interface command to check the effective bit length of VPI/VCI. (An error will result if a VPI/VCI in excess of this bit length is specified.)
4. Establish a PVC by executing the PVC establish command. (An error will result if there is insufficient remaining band.)

To route only on the Virtual Path Identifier (VPI), set the VCI to 0.

\section*{Format}

HOSTNAME\# PVC establish P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 \{P12~14\}

\section*{Format Explanation}

P1 : Connection type (0 (bi-directional), 1 (multipoint) or 2 (uni-directional))
P2 : Traffic type ( 0 (abr), 1 (cbr), 2 (nrt-vbr), 3 (rt-vbr) or 4 (ubr))
P3 : Ingress line number (00~33)
P4 : Ingress VPI number (0~4095)
P5 : Ingress VCI number ( \(0,32 \sim 16383\) )
P6 : Egress line number (00~33)
P7 : Egress VPI number (0~4095)
P8 : Egress VCI number ( \(0,32 \sim 16383\) )
P9 : (Ingress » Egress) UPC mode (off(0) or 1~5)

P10: (Ingress » Egress) shaper number (off(0) or 1~8)
P11 : Forward (Ingress » Egress) profile name
P12 : (Egress » Ingress) UPC mode (off(0) or 1~5)
P13 : (Egress » Ingress) shaper number (off(0) or 1~8)
P14 : Backward (Egress » Ingress) profile name

The shaper number must be fixed to " 1 " to use the Shaper function for the multipoint connection.

If a shaper number is specified and no rate has been set by the set shaper command, the process terminates abnormally.

The profile name must have been previously registered by executing the set profile command.

\section*{Example}

HOSTNAME \(>\) PVC establish 0110110020220000 cbr 0 ocbr

\section*{Output}

In case of uni-directional:
```

Connection has been established.
Connection type : Uni-direction
Traffic type : ****
Line VPI/VCI Direction Line VPI/VCI UPC Shaper Profile
** ***/*** -> ** ***/*** *** *******

```

In case of bi-directional:
```

Connection has been established.
Connection type : Bi-direction
Traffic type : ****
Line VPI/VCI Direction Line VPI/VCI UPC Shaper Profile
** ***/*** -> ** ***/*** *** *** *****
<- ** ***/*** *** **** *****

```

In case of multipoint:


\section*{PVC flush}
(Privileged Command)

\section*{Function}

This command is used to delete all the PVCs of each line.
The command also deletes any leaf applied with a multipoint.

\section*{Format}

HOSTNAME\# PVC flush P1

\section*{Format Explanation}

P1 : Line number (00~33)

\section*{Example}
```

HOSTNAME\# PVC flush 01

```

\section*{Output}

If \(\mathbf{Y}\) is entered in response to the confirmation message:
```

Are you sure [Y or N] ? Y
All connections on the line interface have been deleted.

```

If anything other than \(\mathbf{Y}\) is entered in response to the confirmation message:
```

Are you sure [Y or N] ? Y

```

\section*{PVC remove \\ (Privileged \\ Command)}

\section*{Function}

This command is used to delete a PVC endpoint or leaf from a multipoint path.
This command deletes one endpoint at a time. The incoming side setting specified by this command must be the same as the incoming setting of the existing path.
The sequence of deletion may be different from the sequence in which the endpoints were set.

\section*{Format}

HOSTNAME\# PVC remove P1 P2 P3 P4 P5 P6

\section*{Format Explanation}

P1: Ingress line number (00~33)
P2: Ingress VPI number (0~4095)
P3: Ingress VCI number ( \(0,32 \sim 16383\) )
P4: Egress line number (00~33)
P5: Egress VPI number (0~4095)
P6: Egress VCI number (0, 32~16383)

\section*{Example}

HOSTNAME\# PVC remove \(40110042 \quad 2200\)

\section*{Output}
***Connection endpoint has been removed.
Connection type : Multipoint
Traffic type : ****
Line VPI/VCI Direction Line VPI/VCI UPC Shaper Profile

    -> leaf 1** ***/*** - *** -
    \(->\quad\) leaf 2** \(* * * / * * * \quad\) *** -

RESET ?
(Privileged Command)

\section*{Function}

This command is used to display the help message for the RESET command.

\section*{Format}
```

 HOSTNAME# RESET ?
    ```

\section*{Output}
```

slot
Slot reset
switch
Switch reset

```

\section*{RESET slot (Privileged Command)}

\section*{Function}

This command is used to restart (reset) the line card.

\section*{Format}

HOSTNAME\# RESET slot P1

\section*{Format Explanation}

P1 : Slot number (0-3)

\section*{Example}

\section*{HOSTNAME\# reset slot 3}

\section*{Output}

If \(\mathbf{Y}\) is entered in response to the confirmation message:
```

Are you sure [Y or N] ? Y
Slot 3 has been reset.
1

```

If anything other than \(\mathbf{Y}\) is entered in response to the confirmation message:
```

Are you sure [Y or N] ? n
Slot reset is not executed.

```

\section*{Output Explanation}
1. Slot number

RESET switch
(Privileged Command)

\section*{Function}

This command is used to restart (reset) the entire switch, including the line cards.

\section*{Format}

HOSTNAME\# RESET switch \{P1\}

\section*{Format Explanation}

P1: Switch or slot

\section*{Output}

If \(\mathbf{Y}\) is entered in response to the confirmation message:
```

HOSTNAME\# reset switch
Are you sure [Y or N] ? Y
The system is coming up now.
If you want to enter boot program, push [ESC] key immediately.
If the [ESC] key is detected within 3 seconds, boot program is
loaded.
Otherwise, online program will be loaded from the flash memory.

```

If anything other than \(\mathbf{Y}\) is entered in response to the confirmation message:
```

```
Are you sure [Y or N] ? n
```

```
Are you sure [Y or N] ? n
System reset is not executed.
```

```
System reset is not executed.
```

```

\section*{ROUTE ? (Privileged Command)}

\section*{Function}

This command is used to display the help message for the ROUTE command.

\section*{Format}

HOSTNAME\# ROUTE ?

Output
\begin{tabular}{|ll|}
\hline add & Add route to static SVC routing table \\
delete & Delete route from SVC static routing table \\
flush & Delete all entries from SVC static routing table \\
resume & Resume primary route
\end{tabular}

\section*{ROUTE add (Privileged Command)}

\section*{NOTE}

\section*{Function}

This command is used to set an entry in the SVC static routing table. A static route is entered to associate an ATM address (usually another switch) with a specific port.

The routing table has a maximum of 128 entries.

One address may be set to route to multiple ports, yet only one is active at any given time. Should the active port fail, routing resumes on the next specified line.

\section*{Reference Command}

\section*{DISPLAY route}

\section*{Cancel Command}
```

ROUTE delete, ROUTE flush

```

\section*{Format}

HOSTNAME\# ROUTE add P1 P2 P3 \{P4~P16\}

\section*{Format Explanation}

P1 : Address Type (NSAP or E.164)
P2 : Destination Address
When P1 is NSAP, up to 40 characters ( \(0 \sim 9, \mathrm{~A} \sim \mathrm{~F}, \mathrm{X}\) )
When P1 is E. 164, up to 16 characters ( \(0 \sim 9, \mathrm{X}\) )
P3: 1st Choice line (00~33)
P4: 1st TunnelingVPI (-, 0~4095)
P5 : 2nd Choice line (00~33)
P6 : 2nd TunnelingVPI (-, 0~4095) (- for no tunneling)
P7 : 3rd Choice line (00~33)
P8: 3rd TunnelingVPI (-, 0~4095)
P9 : 4th Choice line (00~33)
P10 : 4th TunnelingVPI (-, 0~4095)
P11 : 5th Choice line (00~33)
P12 : 5th TunnelingVPI (-, 0~4095)
P13 : 6th Choice line (00~33)
P14 : 6th TunnelingVPI (-, 0~4095)
P15 : 7th Choice line (00~33)
P16 : 7th TunnelingVPI (-, 0~4095)

NOTE Enter "-" to default VPI.
Example

HOSTNAME\# route add nsap 3910000

\section*{Output}

SVC route has been added.

\section*{ROUTE delete} (Privileged Command)

\section*{Function}

This command is used to delete the specified entry from the SVC static routing table.

\section*{Format}

HOSTNAME\# ROUTE delete P1 P2

\section*{Format Explanation}

P1 : Address Type (NSAP or E.164)
P2 : Destination Address
When P1 is NSAP, up to 40 characters ( \(0 \sim 9, \mathrm{~A} \sim \mathrm{~F}, \mathrm{X}\) )
When P1 is E. 164, up to 16 characters ( \(0 \sim 9, X\) )

\section*{Example}
```

HOSTNAME\# route del nsap 39100

```

\section*{Output}
```

SVC route has been deleted.

```

\section*{ROUTE flush (Privileged Command)}

\section*{Function}

This command is used to delete all entries of the SVC routing table.

\section*{Format}

HOSTNAME\# ROUTE flush

\section*{Output}

If \(\mathbf{Y}\) is entered in response to the confirmation message:
```

HOSTNAME\# route flush
Are you sure [Y or N] ? Y
SVC routing table has been flushed.

```

If anything other than \(\mathbf{Y}\) is entered in response to the confirmation message:
```

Are you sure [Y or N] ? n

```

ROUTE resume
(Privileged Command)

\section*{Function}

This command is used to return the primary port of the static routing table to the initial status. If more than one port was specified for a given address with ROUTE add command, and the initial port is not active, this resume command will return routing to the first port specified that is active.

\section*{Format}

HOSTNAME\# ROUTE resume P1 P2

\section*{Format Explanation}

P1 : Address Type (NSAP or E.164)
P2 : Destination address
When P1 is NSAP, 40 characters max ( \(0 \sim 9, \mathrm{~A} \sim \mathrm{~F}, \mathrm{X}\) )
When P1 is E.164, 16 characters max ( \(0 \sim 9, \mathrm{X}\) )

\section*{Example}
```

HOSTNAME\# route resume nsap 39100

```

\section*{Output}
```

SVC route priority has been initialized.

```

\section*{SAVE (Privileged}

Command)

\section*{Function}

This command is used to save the configuration data to active and standby sides. Configuration data that is not saved with this command will be lost when the power is turned off, or when RESET is executed.

\section*{Format}
hostname SAVE
Format Explanation
Output
```

HOSTNAME\# save
Do not push reset button until save finishes.
\#\#\#\#\#\#\#\#\#
[OK]

```

\section*{Output Explanation}

Process result (OK/No Good (NG))

\section*{SET ? (Privileged \\ Command)}

\section*{Function}

This command is used to display the help message for the SET command.

\section*{Format}

HOSTNAME\# SET ?

\section*{Output}
```

HOSTNAME\# set ?
atmsig Q.2931 parameters
boot Boot parameters
calledsoftpvp Called softpvp check flag
cdvt CDVT configuration
cevc Circuit emulation configuration
clock Clock mode
configserver Configuration server information
ether IP address of ethernet interface
iisp Crankback information
ilmi ILMI connection
interface Line interface parameters
iproute IP route information
linestatus Administrative status
local
loopback Line interface status
looptime Looptime switch
mib MIB information
nms NMS information
oamcon OAM connecting point
oamend OAM endpoint
pnni PNNI information
profile PCR,SCR,MBS,EPD configuration
prompt Prompt information
scope Scope information
scroll Scroll lines
server Server IP address
shaper Shaping rate
signaling Signaling connection
sscop SSCOP parameters
svcline SVC line status of line interface
t309trg T309 when interface failure has occurred
telnetlimit Telnet session timeout
time System time
tunneling Tunneling information

```

\section*{SET atmsig \\ (Privileged \\ Command)}

\section*{Function}

This command is used to set Q .2931 signaling parameters.
Before the parameters may be changed, the system lines must be "suspended" by executing the SET svcline command. The parameter modification is valid after the line is reset to "resume."

\section*{Reference Command}
```

DISPLAY atmsig

```

\section*{Format}
```

HOSTNAME\# SET atmsig P1 {P2}

```

\section*{Format Explanation}

P1: Line number (00~33)
P2: VPI (0~4095) (0 is default)
Subsequent parameters can be set interactively.

\section*{Interactive Parameters}
```

HOSTNAME\# set atmsig 00 0
Interface (network|0 user|1)?
T301 (1-511,default=180)?
T303 (1-255,default=4)?
T308 (1-511,default=30)?
T309 (1-511,default=10)?
T310 (1-255,default=10)?
T313 (1-255, default=4)?
T316 (1-511,default=120)?
T317 (1-255,default=60)?
T322 (1-255,default=4)?
T397 (1-511,default=180)?
T398 (1-255,default=4)?
T399 (1-511,default=14)?
UNI version (UNI3.0|0 UNI3.1|1 UNI4.0|2,default=4.0)?

```

NOTE Value set before the modification is displayed as default value. (Default values shown are the initial values). Timing parameters should only be changed by knowledgeable administrators.

\section*{Output}
Q. 2931 parameters have been set.

SET boot (Privileged Command)

This command is used to set the BOOT mode of the ATM switch.
Refer to DISPLAY boot command for details of each mode.

\section*{Reference Command}

DISPLAY boot
Change Command
SET boot

\section*{Setting Procedures for Loading New Software}
1. Set the IP address of the switch by executing the SET ether command.
2. Set the IP address and boot file name of the server and router by executing the SET server command.
3. Save the settings of Step 1 and Step 2 by executing the SAVE command.
4. Set the mode by executing the SET boot command.
5. Enter the RESET switch command to boot the system.

\section*{Format}

HOSTNAME\# SET boot P1

\section*{Format Explanation}

P1: Booting mode
Flash
Flash_up
Flash_up_save
Initialize
Initialize_save
Network
Network_save

\section*{Output}
```

Boot mode has been set.

```

Following the next system reset, the specified boot location will be loaded.

\section*{Software Download Procedure}
1. Set Ethernet address of the ATM switch (SET ether).
2. Set TFTP server Ethernet address and directory/name of boot file (SET server).
3. Save configuration (SAVE; configuration will be lost if not saved).
4. Set boot mode (SET boot; either initialize or network).
5. Reset the switch (RESET switch).

The ATM switch will locate the TFTP server, then the boot file. The boot file has a listing that instructs the ATM switch where to find the software modules. If the boot attempt is unsuccessful, the ATM switch will reset itself and boot from flash.

\section*{Example and Output}
```

HOSTNAME\# set ether 208.205.40.15.255.255.255.0
Ethernet IP address has been set.
HOSTNAME\# set server 208.205.40.45.0.0.0.0 /2.5G/ver4_3/bootfile
Server configuration has been set.
HOSTNAME\# save
configuration saved
HOSTNAME\# set boot net
Boot mode has been set.
HOSTNAME\# reset switch
Are you sure [Y or N] ? n
System reset has been executed.

```

SET
calledsoftpvp (Privileged Command)

\section*{Function}

This command is used to switch the recognition standard of called SoftPVP.

\section*{Reference Command}
```

 DISPLAY calledsoftpvp
    ```

\section*{Change Command}
```

 SET calledsoftpvp
    ```

\section*{Format}

HOSTNAME\# SET calledsoftpvp P1
Format Explanation
P1 : " 0 " (disable) or " 1 " (enable) (default \(=\) " 0 ")

\section*{Output}
```

Called softpvp check flag has been set.

```

NOTE If P1 is set to "0" (disable), then the recognition of called SoftPVP is assured. However, the ATM switch will no longer recognize SoftPVP calls from Software Version 5.1 or earlier.

If P1 is set to " 1 " (enable), the ATM switch will recognize called SoftPVPs regardless of software version. However, their operation will not be assured.

SET cdvt (Privileged Command)

\section*{Function}

This command is used to set the Cell Delay Variation Tolerance (CDVT) value for each line or tunneling.

\section*{Reference Command}

DISPLAY cdvt

\section*{Format}

HOSTNAME\# SET cdvt P1 P2 P3 P4 P5 P6 P7 P8 P9

\section*{Format Explanation}

P1 : Port number (00~33)
P2: VPI
P3: CDVT value for CBR (1-12000 \(\mu \mathrm{s}\) )
P4: CDVT value for rt-VBR ( \(1-12000 \mu \mathrm{~s}\) )
P5: CDVT value for nrt-VBR (1-12000 \(\mu \mathrm{s}\) )
P6: CDVT value for UBR ( \(1-12000 \mu \mathrm{~s}\) )
P7: CDVT value for UPC-Mode \(2(1-12000 \mu \mathrm{~s})\)
P8: CDVT value for UPC-Mode \(3(1-12000 \mu \mathrm{~s})\)
P9: CDVT value for UPC-Mode \(4(1-12000 \mu \mathrm{~s})\)

NOTE Default CDVT value is \(1000 \mu \mathrm{~s}\).

\section*{Example}
```

HOSTNAME\# set cdvt ?
xy x:Slot number, y:Port number (0 <= x <= 3, 0 <= y <= 3)
HOSTNAME\# set cdvt 00 ?
0-4095 VPI

- Not applicable
HOSTNAME\# set cdvt 00 - ?
1-12000 CDVTp for CBR[us]
- default=2000
HOSTNAME\# set cdvt 00 - - ?
1-12000 CDVTp for rt-VBR[us]
- default=2000
HOSTNAME\# set cdvt 00 - - - ?
1-12000 CDVTp for nrt-VBR[us]
- default=2000
HOSTNAME\# set cdvt 00 - - - - ?
1-12000 CDVTp for UBR[us]
- default=2000
HOSTNAME\# set cdvt 00 - - - - - ?
1-12000 CDVTs for UPC-Mode2[us]
- default=2000
HOSTNAME\# set cdvt 00 - - - - - - ?
1-12000 CDVTs for UPC-mode3[us]
- default=2000
HOSTNAME\# set cdvt 00 - - - - - - - ?
1-12000 CDVTs for UPC-mode4[us]
- default=2000
HOSTNAME\# set cdvt 00 - - - - - - - - ?
<cr>

```

\section*{Output}
```

CDVT parameters have been set.

```

\section*{SET cevc (Privileged Command)}

\section*{Function}

This command is used to set circuit emulation (CE) information.

\section*{Reference Command}

DISPLAY cevc

\section*{Delete Command}

DELETE cevc

\section*{Setting Procedure}
1. Set the interface of a line by executing the SET interface command.
2. Set the interface of a VC by executing the SET cevc command.
3. If profile is to be used, then set the profile of traffic type CBR by executing the SET profile command. Here, set the PCR so it is larger than the PCR as can be seen by CE line VCI executing the DISPLAY cevc command.
4. Use the PVC establish command to set traffic type to CBR, VPI to 0 , and shaper to "off" (fixed). Set VCI to the value specified in Step 2, set connection type to a connection type other than "bi-directional" if "uni-directional" was specified in Step 2, and set the profile to "-" (default; other than P-to-MP) or to the profile specified in Step 3.

\section*{Format}

HOSTNAME\# SET cevc P1 P2 P3

\section*{Format Explanation}

P1 : Line number (00~33)
P2: VCI
CE-DS1/E1 Port0 : 256~287
CE-DS 1/E1 Port1 : 288~319
CE-DS 1/E1 Port2 : 320~351
CE-DS 1/E1 Port3 : 352~383
P3: Direction ("bi-directional," "up" (STM->ATM), "down" (ATM->STM))
Subsequent parameters can be set interactively.

The possible setting range of CDVT varies depending on the structured size and partial fill size.

A series of time slots can be set by using hyphens (for example, 1-32).
The same time slot may not be set to different VCs.
In case of "unstructured," VC is not fixed.

Overwrite is not possible with this command.

In case of bi-directional, the number of time slots must be the same for "up" and "down" sides.

In case of CE-DS1 structured (bi-directional):
```

up Timeslot (1-24)?
down Timeslot (1-24)?
up Partial Fill Size (0, xx-47) ?
down Partial Fill Size (0, xx-47)?
("xx"indicates "number of Timeslot"+1)
Condition data (0-255)?
CDVT (1-255)?

```

In case of CE-DS1 unstructured (bi-directional):
```

up Partial Fill Size (0, 33-47)?
down Partial Fill Size (0, 33-47)?
CDVT (1-255)?

```

In case of CE-DS1 structured (uni-directional):
```

Timeslot (1-24)?
Partial Fill Size (0, xx-47)?
("xx"indicates "number of Timeslot"+1)
Condition data (0-255)?
CDVT (1-255) ?

```

In case of CE-DS1 unstructured (uni-directional):
```

up Timeslot (2-16, 18-32) ?
down Timeslot (2-16, 18-32) ?
up Partial Fill Size (0, xx-47) ?
down Partial Fill Size (0, xx-47)?
("xx"indicates "number of Timeslot"+1)
Condition data (0-255)?
CDVT (1-255)?

```

CDVT is a setting only for the "down" side. When the uni-direction is "up," no CDVT is displayed. The unit of CDVT is \(125 \mu \mathrm{sec}\).

A series of time slots can be set by using hyphens (for example, 1-32).
The same time slot may not be set to different VCs.
In case of "unstructured," VC is not fixed.

Overwrite is not possible with this command.
In case of bi-directional, the number of time slots need not be the same for "up" and "down" sides.

In case of CE-E1 structured (bi-directional):
```

Partial Fill Size (0, 33-47)?
CDVT (1-255)?

```

In case of CE-E1 unstructured (bi-directional):
```

up Partial Fill Size (0, 33-47)?
down Partial Fill Size (0, 33-47) ?
CDVT (1-255)?

```

In case of CE-E1 structured (uni-directional):
```

Timeslot (2-16, 18-32)?
Partial Fill Size (0, xx-47)?
("xx"indicates "number of Timeslot"+1)
Condition data (0-255)?
CDVT (1-255)?

```

In case of CE-E1 unstructured (uni-directional):
```

Partial Fill Size (0, 33-47)?
CDVT (1-255)?

```

NOTE CDVT is a setting only for the "down" side. When the uni-direction is "up," no CDVT is displayed. The unit of CDVT is \(125 \mu \mathrm{sec}\) for "structured" and \(165.8 \mu \mathrm{sec}\) for "unstructured."

A series of time slots can be set by using hyphens (for example, 1-32).
The same time slot may not be set to different VCs.
In case of "unstructured," VC is not fixed.
Overwrite is not possible with this command.
In case of bi-directional, the number of time slots need not be the same for "up" and "down" sides.

\section*{Output}
```

Circuit Emulation connection has been set.

```

\section*{SET clock \\ (Privileged \\ Command)}

\section*{Function}

This command is used to set the clock source mode.
Master: When set to master, all the line cards synchronize transmitted data to the self-running Master clock generated by the ATM switch.

Slave: When set to slave, all the line cards synchronize transmitted data to the clock derived from the receive port specified by parameter P3.

\section*{Reference Command}

DISPLAY clock

\section*{Format}
```

HOSTNAME\# SET clock P1 {P2 P3} {P4} {P5}

```

\section*{Format Explanation}

P1: Clock mode
Master (default)
Slave
P2~5: Line number (00~13)

NOTE
When the clock mode is set to master, no other parameters may be set.
For slave mode, up to four clock source ports may be set. If the first port fails, the next port will be used for the slave port.

Example
```

HOSTNAME\# set clock sl 30 31 32 33
Clocking Mode:Slave
Slaveline Status

* 030 Good
0 3 1 ~ G o o d
032 Failure
0 3 3 ~ F a i l u r e ~

```

\section*{Output}

When set to master mode:
```

Clocking Mode: Master

```

If the slave system clock mode is selected:
```

Clocking Mode: Slave
Slave line Status
** **
1 2

```

\section*{Output Explanation}
1. Line number

The clock sampling line in slave clock mode currently being used is identified by an asterisk (*) at the left of the line number.
2. Line status (GOOD, Failure, AdminDown, Not installed, Not supported or Diagnostics)

NOTE If the installed line package is removed and a different type of line package is installed, the related lines will automatically be released from slave mode.

\section*{SET configserver (Privileged Command)}

\section*{Function}

This command is used to add an ATM address of a LAN emulation configuration server. This table may have four entries. An end-user may retrieve these addresses through ILMI and, in turn, use the address to locate the LECS.

\section*{Reference Command}

DISPLAY configserver

\section*{Cancel Command}

DELETE configserver

\section*{Format}

HOSTNAME\# SET configserver P1 P2

\section*{Format Explanation}

P1 : LECS address table index (0~3)
P2 : ATM address (max. 40 char (0~9, a~f, A~F))

\section*{Example}
```

HOSTNAME\# set configserver 0

```

\section*{Output}
```

Configuration server has been set.

```

SET dlci
(Privileged Command)

\section*{Function}

This command is used to change set data for each DLCI connection.

\section*{Setting Procedure}
1. Check the interworking type of the specified line by using the DISPLAY interface command.
2. Set the profile of the traffic type that is used for the connection by using the SET frprofile command. (Specify same interworking type as that of the line)
3. Use this command to set DLCI data.

\section*{Format}
hostname SET dlci P1 P2 p3

\section*{Format Explanation}

P1: Line Number (00~33)
P2: DLCI (16~991) (DLCI \(+16=\mathrm{VCI})\)
P3: Frame Relay Profile Name (up to 10 alphanumeric characters)

\section*{Output}

DLCI interface \(x x x\) has been set.
1

\section*{Output Explanation}
1. Line Number

Frame relay profile must be registered with SET frprofile in advance. The interworking type of the specified line has to be the same as that of the profile.

SET ether (Privileged Command)

\section*{Function}

This command is used to set the Ethernet IP address and subnet mask of the ATM switch PCMCIA Ethernet port LANcard (optional).

\section*{Reference Command}

DISPLAY ether, DISPLAY network

\section*{Format}

HOSTNAME\# SET ether P1 P2

\section*{Format Explanation}

P1 : Ethernet IP address (x.x.x.x ( \(x=0 \sim 255\) ))
P2 : Ethernet subnet mask (x.x.x.x (x=0~255))

\section*{Example}
```

HOSTNAME\# set ether 100.10.5.6 255.255.255.0

```

\section*{Output}
```

Ethernet IP address has been set.

```

The Ethernet port is used for "telnetting" into the ATM switch as a MAT, and for software downloads and configuration storing to/from a TFTP server.

\section*{SET froam} (Privileged Command)

\section*{Function}

This command is used to set the OAM endpoint of f 5 (VC level) between frame relay and ATM.

\section*{Format}
```

 HOSTNAME# DELETE froam P1 P2 P3 P4 P5 P6
    ```

\section*{Format Explanation}

P1: Line Number of Point 1 (00~33)
P2: VPI of Point 1 (0~4095)
P3: VCI of Point 1 (32~16383)
P4: Line Number of Point 2 (00~33)
P5: VPI of Point 2 ( \(0 \sim 4095\) )
P6: VCI of Point 2 (32~16383)

\section*{Output}
```

FROAM connection has been set.

```

The connection specified by this command must have been registered using the PVC establish command in advance. The connection cannot be established for the same line.

\section*{SET frprofile \\ (Privileged \\ Command)}

\section*{Function}

This command is used to set the profile for frame relay.

\section*{Format}

HOSTNAME\# SET frprofile P1

\section*{Format Explanation}

P1: Name of the profile for frame relay (up to 10 alphanumeric letters)

\section*{Interactive Parameters}

■ Interworking (network|0 service|1)?
■ CIR (1-1984[kbps])?
- DE to CLP mapping mode (Mode1|0 Mode2|1)?
- CLP value ( 0 or 1 )?
(Can be set only if "Mode2" had been selected for DE to CLP mapping mode)
- CLP to DE mapping mode (Mode1|0 Mode2|1)?
- DE value (0 or 1 )?
(Can be set only if "service" had been selected for interworking and "Mode2" for CLP to DE mapping mode)
- Protocol encapsulation mode (transparent|0 translation|1)?
(Can be set only if "service" had been selected for interworking)
- Congestion indication (forward) mode (Mode1|0 Mode2|1)?
(Can be set if service is selected for interworking)

\section*{Output}

FR profile data has been set.

SET iisp
(Privileged Command)

\section*{Function}

This command is used to set IISP mode.
Swaproute enables the operation of crankback. If a switch, while attempting to signal a connection down one path of a multi-directional network, rejects the connection, the signaling path will backtrack and attempt to branch down an alternate path, bypassing the blocked switch.

\section*{Reference Command}

DISPLAY iisp

\section*{Format}
(1) HOSTNAME\# SET iisp loopcheck P1 \{P2\}
(2) HOSTNAME\# SET iisp splithorizon P1 \{P2 P3\}
(3) HOSTNAME\# SET iisp swaproute P1 P2

\section*{Format Explanation (1)}

P1 : Action (on or off)
P2 : Hop count (1~64 (default=7))

\section*{Format Explanation (2)}

P1 : Action (on or off)
P2 : Line number (00~33)
P3 : VPI (0~4095)
NOTE If a line number is specified, VPI cannot be defaulted.

\section*{Format Explanation (3)}

P1 : Action (on or off)
P2 : Resume timer value (1~20 min. (default=10))

\section*{Example (1)}
```

Loop check *******

```

1

\section*{Example (2)}
```

Split Horizon ******

```

1

\section*{Example (3)}
```

Swapping ******
1

```

\section*{Output Explanation}
1. \(\quad\) enabled \(=\) on
disabled \(=\) off

\section*{SET ilmi (Privileged Command)}

\section*{Function}

This command is used to set the VPI/VCI path ( \(0 / 16\) ) for enabling ILMI (Interim Local Management Interface). This command also sets the time allowed for attempting address registry, the timer for performing a retry when registry fails, and the cycles at which the address registered for ILMI is checked.

\section*{ILMI and Functions}

Upon initial connection of end-user equipment, pertinent information is swapped between the two endpoints of the ILMI connects (PVCs on a line card port). This information will be useful for signaling, once ILMI registration is complete. Parameters such as valid VPI/VCI bits, UNI Version, maximum number of possible connections, LECs addresses, are discovered. Also, the switch adds to its route table an entry for the end user's address and associated port.
It is recommended that you learn the pertinent configuration data of a connected end user.

\section*{Reference Command}

DISPLAY ilmi

\section*{Cancel Command}

DELETE ilmi

\section*{Format}

HOSTNAME\# SET ilmi P1 \{P2\} \{P3\} \(\{P 4\}\{P 5\}\{P 6\}\{P 7\}\)

\section*{Format Explanation}

P1 : Connection / process (00~33)
P2 : Line number (00~33)
P3 : VPI (0~4095) (default=0)
P4 : VCI (0~16383) (default=16)
P5 : Timer value (1~511(s): default=10(s))
P6 : Times of retry (1~511: default=60)
P7 : Keepalive (1~511(s): default=60(s))
If P 1 is process, P 5 is:
0/off ILMI process flag off
1/on ILMI process flag on

\section*{Example}
```

HOSTNAME\# set ilmi ?
connection Control connection
process Process flag information
HOSTNAME\# set ilmi process ?
xy x:Slot number, y:Port number (0 <= x <= 3, 0 <= y <= 3)
HOSTNAME\# set ilmi process 00 ?
0-4095 VPI
HOSTNAME\# set ilmi process 00 0 ?
0|off ILMI process flag OFF
1|on ILMI process flag ON
HOSTNAME\# set ilmi process 00 0 1 ?
<cr>
HOSTNAME\# set ilmi connection ?
xy x:Slot number, y:Port number (0 <= x <= 3, 0 <= y <= 3)
HOSTNAME\# set ilmi connection 00 ?
0-4095 VPI
<cr> default=0
HOSTNAME\# set ilmi connection 00 0 ?
1-16383 VCI
<cr> default=16
HOSTNAME\# set ilmi connection 00 0 16 ?
1-511 Timeout[sec]
<cr> default=1[sec]
HOSTNAME\# set ilmi connection 00 0 16 1 ?
1-511 Times of retrial
<cr> default=4
HOSTNAME\# set ilmi connection 00 0 16 1 4 ?
1-511 Keepalive timer[sec]
<cr> default=5[sec]
HOSTNAME\# set ilmi connection 00 0 16 1 4 5 ?
<cr>

```

\section*{Output}

ILMI connection has been set.

SET interface (Privileged Command)

\section*{Function}

This command is used to register a line, provided a line card is installed and no connection is set in the specified line.

\section*{Format}

HOSTNAME\# SET interface P1

\section*{Format Explanation}

P1 : Line number (00~33)
Subsequent parameters can be set interactively.

\section*{Procedures for Setting the Line Interface}
1. Delete connections (PVC, Soft PVP), if any are established.
2. Suspend the line by executing the SET svcline command.
3. Delete signaling connections by executing the DELETE signaling command.
4. Delete ILMI connections by executing the DELETE ilmi connection command.
5. Delete PNNI connections by executing the DELETE pnni connection command.
6. Delete IP routing connections by executing the DELETE iproute command.
7. Enter the SET interface command.
8. Establish the connections by executing the SET ilmi connection command, SET signaling command, SET pnni connection command, and SET iproute command.
9. Resume the line by executing the SET svcline command.
10. If any connections were deleted in Step 1, then re-establish as necessary.

NOTE
Subsequent parameters can be set interactively.

\section*{Interactive Parameters for the Interfaces}

For OC-3c, OC-12c and STS-3c/STM1(COAXIAL):
```

Interface (pri_uni/0 pri_nni/1 pub_uni/2)?
Forum/ITU (forum/0 itu/1)?
IDLE Cell (unassigned/O idle/1)?
Valid VPI
Valid VCI
VPI filter mask range (0-12[bit], default=Valid VPI)?
VCI filter mask range (x-16[bit], default=Valid VCI)?

```

Valid VPI: (0-8)[bit] for UNI interface; (0-12[bit]) for NNI interface
Valid VCI: (0-14)[bit] for UNI interface; (0-14)[bit]) for NNI interface

\section*{For 100M-TAXI:}
```

Interface (pri_uni/0 pri_nni/1 pub_uni/2)?
IDLE Cell (unassigned/O idle/1)?
Valid VPI
Valid VCI
VPI filter mask range (0-12[bit], default=Valid VPI)?
VCI filter mask range (0-16[bit], default=Valid VCI)?

```

Valid VPI: (0-8)[bit] for UNI interface; (0-12[bit]) for NNI interface
Valid VCI: (0-14) [bit] for UNI interface; (0-14)[bit]) for NNI interface

\section*{For DS3:}
```

Interface (pri_uni/0 pri_nni/1 pub_uni/2)?
IDLE Cell (unassigned/O idle/1)?
Valid VPI
Valid VCI
VPI filter mask range (0-12[bit], default=Valid VPI)?
VCI filter mask range (0-16[bit], default=Valid VCI)?
Frame mode (cbit/0 m23/1)?
Cell mapping (plcp/0 direct/1)?
Scramble (off/0 on/1)?
LBO (hi/0 lo/1)?

```

NOTE
Valid VPI: (0-8)[bit] for UNI interface; (0-12[bit]) for NNI interface
Valid VCI: (0-14) [bit] for UNI interface; (0-14)[bit]) for NNI interface

\section*{For E3:}
```

Interface (pri_uni/0 pri_nni/1 pub_uni/2)?
IDLE Cell (unassigned/O idle/1)?
Valid VPI
Valid VCI
VPI filter mask range (0-12[bit], default=Valid VPI)?
VCI filter mask range (0-16[bit], default=Valid VCI)?
Frame mode (g832(g804)/0 g751/1)?
Cell mapping (plcp/0 direct/1)?
Scramble (off/0 on/1)?

```

NOTE Valid VPI: (0-8)[bit] for UNI interface; (0-12[bit]) for NNI interface
Valid VCI: (0-14)[bit] for UNI interface; (0-14)[bit]) for NNI interface

For DS1, E1:
```

Interface (pri_uni/O pri_nni/1 pub_uni/2)?
IDLE Cell (unassigned/O idle/1)?
Valid VPI
Valid VCI
VPI filter mask range (0-12[bit], default=Valid VPI)?
VCI filter mask range (0-16[bit], default=Valid VCI)?
Cell mapping (plcp/0 direct/1)?
Scramble (off/0 on/1)?

```

NOTE Valid VPI: (0-8)[bit] for UNI interface; (0-12[bit]) for NNI interface Valid VCI: (0-14)[bit] for UNI interface; (0-14)[bit]) for NNI interface LBO for DS1: (0-110/0 110-220/1 220-330/2 330-440/3 440-550/4 550-660/5 660/6

\section*{For J2:}
```

Interface(pri_uni/0 pri_nni/1 pub_uni/2)?
Valid VPI
Valid VCI
VPI filter mask range(0-12[bit], default=Valid VPI)?
VCI filter mask range(0-16[bit], default=Valid VCI)?
Line rate(6M/0 4.5M/1 3M/2)?
Slot * is reset. Are you sure? [Y or N]

```

NOTE Valid VPI: (0-8)[bit] for UNI interface; (0-12[bit]) for NNI interface Valid VCI: (0-14)[bit] for UNI interface; (0-14)[bit]) for NNI interface

\section*{For Primary:}
```

Interface(pri_uni/0 pri_nni/1 pub_uni/2)?
TTC/ITU-T (ttc/0 itu_t/1)?
Valid VPI
Valid VCI
VPI filter mask range(0-12[bit], default=Valid VPI)?
VCI filter mask range(0-16[bit], default=Valid VCI)?
Line rate(1.5M/0 1.1M/1 768K/2 512K/3 384K/4 256K/5 192K/6)?

```

Valid VPI: (0-8)[bit] for UNI interface; (0-12[bit]) for NNI interface Valid VCI: \((0-14)\) [bit] for UNI interface; ( \(0-14\) )[bit]) for NNI interface

\section*{Changing a CE Line Interface}
1. Delete all connections (PVCs, Soft PVPs) from the line, if any.
2. Delete all cevc settings on the line by executing the DELETE cevc command.
3. Change the interface of a line by executing the SET interface command.
4. Set cevc and establish a connection as necessary.

\section*{Interactive Parameters for the CE Line Interfaces}

\section*{For CE-DS1:}
```

Service (Unstructured/0 structured/1)?
LBO (0-110/0 110-220/1 220-330/2 330-440/3 440-550/4 550-660/5 660/6)?

```

For structured service:
```

CAS mode (Basic/0 CAS/1?

```

\section*{For FR-DS1:}
```

Interface (uni/0 nni/1?
FR Forum/ITU_T/ANSI (fr_forum/0 itu_t/1 ansi/2)?
Interworking (network/0 service/1)?
LBO (0-110/0 110-220/2 220-330/2 330-440/3 440-550/4 550-660/5)?
Fractional type (unchannelized/0 fractional/1)?

```

\section*{For fractional:}
```

Fractional set (1-24)?

```

\section*{Output}
```

Line Interface xx has been registered.
1

```

\section*{Output Explanation}
1. Line Number

The range of ValidVCI settings varies depending on the bit count specified by ValidVPI.

\section*{Output}
```

Line Interface *** has been registered.
1

```

\section*{Output Explanation}
1. Line number

NOTE The permissible setting range of valid VCI differs depending on the bit count specified for valid VPI.

SET iproute (Privileged Command)

\section*{Function}

This command is used to set IP routing information. The parameters differ depending on the interface type.

\section*{Reference Command}

\section*{DISPLAY iproute}

\section*{Cancel Command}

DELETE iproute

\section*{Format}

HOSTNAME\# SET iproute ecO P2 P3 P4
HOSTNAME\# SET iproute atm0 P2 P3 P5 P6 P7

\section*{Format Explanation}

P1 : Interface type (atm0 or ec0)
P2 : Destination type (net or host)
P3 : Destination IP address (x.x.x.x ( \(x=0 \sim 255\) )) or default router
P4 : Router IP address (x.x.x.x ( \(\mathrm{x}=0 \sim 255\) )) (set only when ec0 is specified)
P5: Line number ( \(00 \sim 33\) ) (set only when atm0 is specified)
P6 : VPI ( \(0 \sim 4095\) ) (set only when atm0 is specified)
P7 : VCI ( \(0 \sim 16383\) ) (set only when atm0 is specified)

NOTE
Ec0 - Used to designate a route for Telnet, NMS, or software downloaded over Ethernet that must traverse a router.

ATM0- Used to designate a route for Telnet, NMS, or software downloaded over an ATM interface.

\section*{Example}
```

HOSTNAME\# set iproute ec0 net default 10.5.6.1

```

\section*{Output}
```

IP route information has been set.

```

\section*{SET linestatus \\ (Privileged \\ Command)}

\section*{Function}

This command is used to change the operating status of the line.
By specifying the down parameter, all operation for that port is disabled. The signaling/ilmi/pnni/line error operation on the specified line is stopped.

\section*{Reference Command}

DISPLAY line

\section*{Format}

HOSTNAME\# SET linestatus P1 P2

\section*{Format Explanation}

P1 : Line number (00~33)
P2 : Line status (down or up)

\section*{Output}

If the line is not clock sampling line:
```

Linestatus has been set

```

If the line is clock sampling line:
```

Linestatus has been set.
Clocking mode has been changed.(Slaveline:**)
1

```

If the line is maintenance PVC line:
```

Linestatus has been set.
Linestatus not registered.

```

If there is a maintenance PVC on the specified line and if P2 is "down":
```

This will disable atm0 iproute configuration.
Are you sure ? [Y or N]

```

If \(\mathbf{Y}\) is entered:

Line status has been set.

If \(\mathbf{N}\) is entered:
```

Line status not registered.

```

\section*{Output Explanation}
1. Line number

If the line for which "down" is specified is the only line that can be selected among the slave lines of the clock, the setting will result in a command error since the clock cannot be sampled.

\section*{SET local (Privileged Command)}

\section*{Function}

This command is used to set the host name, ATM interface IP address, IP mask, and ATM prefix information of the ATM switch.

\section*{Reference Command}

DISPLAY network

\section*{Change Command}

SET local

\section*{Format}

HOSTNAME\# SET local P1 P2 P3 P4

\section*{Format Explanation}

P1 : Host name (up to eight alphanumeric characters)
P2 : ATM IP Address (x.x.x.x ( \(\mathrm{x}=0 \sim 255\) ))
P3 : Mask value of ATM IP Address (x.x.x.x (x=0~255))
P4 : ATM prefix node ID (up to 26 hexadecimal alphanumeric characters). If less than 26 characters, the remaining spaces will automatically be padded with zeros.

\section*{Example}
```

HOSTNAME\# set local HOSTNAME 10.1.1.3 255.255.255.0 390102
HOSTNAME\# show net

```

\section*{Output}
```

Local configuration has been set.

```

The ATM IP address must be on a separate IP network from the Ethernet address.

\section*{SET loopback (Privileged Command)}

\section*{Function}

This command is used to set the loopback on the line interface.

\section*{Reference Command}

\section*{DISPLAY line}

\section*{Change Command}

SET loopback

\section*{Format}

HOSTNAME\# SET loopback P1 P2

\section*{Format Explanation}

P1 : Line number (00~33)
P2 : Line status (" normal," "local" or "remote")

NOTE
local and remote indicate loopback

\section*{Output}

If there is a maintenance PVC on the specified line and if P2 is "down":
```

This will disable atm0 iproute configuration.
Are you sure ? [Y or N]

```

If \(\mathbf{Y}\) is entered:

Line interface \(* * *\) has been set.

If \(\mathbf{N}\) is entered:
```

Line interface *** not registered.

```

If other than the above is entered:
```

Line interface *** has been set.
Line interface *** not registered.
1

```

\section*{Output Explanation}
1. Line number

NOTE If the specified line is 100M-TAXI, it cannot be set to "remote."

\section*{SET looptime (Privileged Command)}

\section*{Function}

This command is used to set the per port clock recovery. A port with looptime set to "on" will recover the receive port clock and synchronize the transmit clock to it. The transmit port "slaves" its clock to the clock recovered from the receive port. This has priority over "clock master or slave."

\section*{Reference Command}

DISPLAY looptime

\section*{Format}

HOSTNAME\# SET looptime P1 P2

\section*{Format Explanation}

P1 : Looptime (on (1) or off (0))
P2 : Line number (00~33)

\section*{Output}
```

Line interface ** has been set.

```
    1

\section*{Output Explanation}
1. Line number

No loop time may be set for 100M-TAXI.
- Loop time cannot be set while the switch and line are being diagnosed.
- Lines for which loop time has been set cannot be connected to each other.
- Only one line may be set for DS/E3 loop time.

\section*{SET mib (Privileged Command)}

\section*{Function}

This command is used to set the MIB syscontact and syslocation found in fields by the SHOW net command. This command merely sets two text strings for simple user information.

\section*{Reference Command}

\section*{DISPLAY network}

\section*{Format}

HOSTNAME\# SET mib P1 P2

\section*{Format Explanation}

P1: Manager (up to 32 alphanumeric characters)
P2 : Installation location (up to 32 alphanumeric characters)
Example
```

HOSTNAME\# set mib "NEC 1-800-832-6632" "Irving, Texas"

```

\section*{Output}
```

MIB information has been set.

```

\section*{NOTE}

You may enter the information for both parameters in one command line by using double quotes.

\section*{Example}
```

HOSTNAME\# set mib "Nortel Networks" Texas
HOSTNAME\# show net
syscontact: Nortel Networks
syslocation: Texas
.
.

```

SET nms
(Privileged
Command)

\section*{Function}

This command is used to set the NMS information. Up to four (4) NMSs can be set.

\section*{Reference Command} DISPLAY network

\section*{Cancel Command}

DELETE nms

\section*{Setting Procedure}
1. To set the information via ATM, set the ATM IP address of the switch by executing the SET local command. To set the information via Ethernet, set the Ethernet IP address by executing the SET ether command.
2. If the subnet is different, set the IP routing by executing the SET iproute command.
3. Register the NMS by executing the SET nms command.

\section*{Format}

HOSTNAME\# SET nms P1 P2 P3 P4
Format Explanation
P1 : NMS number (0~3)
P2 : IP Address (x.x.x.x (x=0~255))
P3 : Community name (up to 16 alphanumeric characters)
P4 : Access right (read-only (0) or read-write (1))

\section*{Output}
```

NMS information has been set.

```

SET oamcon (Privileged Command)

\section*{Function}

This command is used to set the connecting point of a connection for transferring an alarm by OAM cell (alarm cell).

\section*{Reference Command}

\section*{DISPLAY oamcon}

\section*{Cancel Command}

DELETE oamcon

\section*{Format}
(1) HOSTNAME\# SET oamcon f4 P1 P2 P3 P5 P6
(2) HOSTNAME\# SET oamcon f5 P1 P2 P3 P4 P5 P6 P7

NOTE In f 4 mode, it is not necessary to specify VCI value.

\section*{Format Explanation}

P1: Point type
(segcon or 0 if the switch is a connecting point in the Segment flow)
(endcon or 1 if the switch is a connecting point in the End-to-End flow)
P2 : Ingress line number (00~33)
P3 : Ingress VPI (0~4095)
P4 : Ingress VCI (32~16383) [Not required for f4.]
P5 : Egress line number (00~33)
P6 : Egress VPI (0~4095)
P7 : Egress VCI (32~16383) [Not required for f4.]

\section*{Example}
```

HOSTNAME\# set oamcon f5 1 23 3 35 51 2 33

```

\section*{Output}
```

OAM connecting point has been established.

```

NOTE Connections specified by this command must be previously registered by executing the PVC establish command.

SET oamend
(Privileged
Command)

\section*{Function}

This command is used to set the endpoint of a connection for transferring an alarm by OAM cell (alarm cell).

\section*{Reference Command}

DISPLAY oamend

\section*{Format}

HOSTNAME\# SET oamend P1 P2 P3 P4 \{P5\}

\section*{Format Explanation}

P1 : Mode (f4 (VP level) or f5 (VC level))
P2: Point type
(segend or 0 if the switch is an endpoint in the Segment flow)
(endend or 1 if the switch is an endpoint in the End-to-End flow)
NOTE When P1 is f5, specifying "endend" results in an error.
P3: Line number (00~33)
P4: VPI (0~4095)
P5: VCI (32~16383 (defaulted when the mode is f4))

\section*{Output}
```

OAM endpoint has been established.

```

NOTE
Connections specified by this command must be previously registered by executing the PVC establish command.

\section*{SET oamf5end} (Privileged Command)

\section*{Function}

This command is used to set an OAM endpoint at f 5 (VC level). The endpoint in f5 end-to-end mode supports the OAM loopback cell receiving process.

\section*{Format}

HOSTNAME\# SET oamf5end P1 P2 P3

\section*{Format Explanation}

P1: Line Number (00~33)
P2: VPI (0~4095)
P3: VCI (32~16383)

\section*{Output}

OAM f5end endpoint has been set.

\section*{SET pnni \\ (Privileged \\ Command)}

\section*{Function}

This command is used to enable PNNI connection.
This command sets a path to exchange the network topology, link status, and other network information between the switches. Using this information, the switch creates a dynamic routing table and refers to it during routing between the Private Network-to-Network Interfaces (P-NNIs).

If the "private NNI" interface type has been set by the SET interface command, the routing path \((0,18)\) is automatically set during system startup.

One or more PNNI paths can be set for a single physical line. However, only a single PNNI path can be set for a single VPI.

\section*{1. To set the reachable address of PNNI:}

\section*{Format}

HOSTNAME\# SET pnni address
PNNI>P1 P2 P3 P4 P5 P6 P7 \{P8\} \(\{P 9\}\)
This sets a reachable address for PNNI. Enter SET pnni address to enter the edit mode. While in the edit mode, the PNNI> prompt is displayed. Exit edit mode by entering a period (.) The reachable address information of PNNI can be displayed by entering the DISPLAY pnni address command. "Internal" addresses are set for end-user devices that do not support ILMI registration. "External" addresses are set for IISP attached switches.

\section*{Format Explanation}

P1 : Process type (either "Add" or "Change." All parameters other than length, reachable address, and address type may be changed.)
P2 : Address type ("Internal" or "Exterior")
P3: SCOPE ( \(0 \sim 104\) ) (limits the broadcast domain. \(0=\) no limit.)
P4 : Effective bit count of reachable address (0~160)
P5 : Reachable address (up to 40 characters 0~9, A~F, a~f)
P6 : Line number (00~33)
P7: VPI (0~4095
P8 : Content of transit network ID data (effective only when "Exterior" is specified for the address type) (0-127) <hexadecimal value>

P9 : Identifiers of the networks that will be passed through to reach the address.
These addresses, internal and external, will be broadcast, depending on "scope," to all nodes in the network.

\section*{Example}
```

HOSTNAME\# set pnni address
PNNI>
PNNI> add ext 0 12 490 02 0
PNNI>.
HOSTNAME\#

```

\section*{Output}

PNNI reachable address has been set.

\section*{2. To set the architectural variables of PNNI:}

\section*{Format}

HOSTNAME\# SET pnni architectural P1 P2 P3 P4 P5 P6 P7 P8

This sets the timer/value parameters of PNNI. Information on PNNI's architectural variable can be displayed by executing the DISPLAY pnni architectural command.

\section*{Format Explanation}

P1: Minimum transmission interval of Hello (1~120 second(s))
P2: Transmission interval of Hello (1~120 second(s))
P3: Transmission interval of database summary packet (5~120 second(s)) and communication interval of PTSE request packet

P4: Minimum transmission interval of PTSE (1~120 second(s))
P5: Communication and retransmission interval of PTSE (5~120 second(s))
(One-fifth of this time setting becomes the PTSE response delay time.)
P6: Ring down recognition time ( \(1 \sim 225\) second(s))
P7: Percentage at which average cell rate change is notified (1~99\%)
P8: Minimum value at which average cell rate change is notified (1~99\%)

\section*{Example}
```

HOSTNAME\# set pnni arch 1 15 15 1 15 120 50 3

```

\section*{Output}
```

PNNI architectural variables have been set.

```

\section*{3. To set the virtual path of PNNI:}

\section*{Format}

HOSTNAME\# SET pnni connection P1 \{P2\} \{P3\} \{P4\} \{P5\} \{P6\}
This sets the path of PNNI. Information on PNNI's connection can be displayed by executing the DISPLAY pnni connection command.

\section*{Format Explanation}

P1: Line number (00~33)
P2 : VPI (0~4095, default=0)
P3: VCI (1~16383, default=18)
P4 : Administrative weight ( \(0 \sim 50400\), default=5040)
Weight for cost calculation in link selection
P5 : Aggregation token ( \(0 \sim 225\), currently fixed to 0 )
Value that decides the number of logical link divisions between LGNs in the logical layer

P6 : UBR Best effort separate band (0~1412830)
Bandwidth secured for UBR

\section*{Example}
```

HOSTNAME\# set pnni conn 00

```

\section*{Output}
```

PNNI connection has been set.

```

\section*{4. To set the routing type of PNNI:}

\section*{Format}

HOSTNAME\# SET pnni method P1
This sets the routing type of PNNI. "Hop by hop" is performed by IISP's routing method and "source" is routed according to the DTL prepared by the routing unit of PNNI 1.0. Information on PNNI's routing type can be displayed by executing the DISPLAY pnni method command.

\section*{Format Explanation}

P1 : Routing type ("HOP BY HOP" or "SOURCE")

\section*{Example}
```

HOSTNAME\# set pnni conn 00

```

\section*{Output}
```

PNNI routing method has been set.

```

\section*{5. To set the node information of PNNI:}

\section*{Format}

HOSTNAME\# SET pnni nodal P1 P2
Because of the recursive nature of PNNI, each hierarchical level has a repeated set of parameters. The software currently limits PNNI to three (3) levels of hierarchy. After the initial command line is entered for number of levels and peer-group-leader (PGL) election participation, subroutine values will be requested. PGL and Logical Group Node (LGN) parameters are generally defaulted.

\section*{Format Explanation}

P1: Number of hierarchal levels (1~3)
P2 : Peer Group Leader (PGL) flag ("1" if able to participate in peer group leader election)

NOTE Subsequent parameters can be set interactively.
Subsequent parameters:
-Hierarchy (, 0 - 104)?
Level number:
-Restricted transit bit (on|1 off|0)?
Through switch SVC restriction. Restricted if "on," not restricted if "off."
-Restricted branching bit (on|1 off|0)?
Judgement flag to restrict whether to serve as a branching point upon P-to-MP. Restricted if "on," not restricted if "off."
```

-Leadership priority (0 - 255)?

```

Priority of becoming the PGL. Not selected as PGL if set to " 0 ." The higher the value, the greater the priority.
-Peer group ID (, up to 28 hexadecimal characters)?
ID of the PG to which every node must have to join. Automatically set when defaulted.
```

-LGN ID (, up to 44 hexadecimal characters)?

```

PNNI logical node ID. Automatically set when defaulted.

\section*{Example}
```

HOSTNAME\# set pnni nodal 1 1
Hierarchy 1
Level indicator (0-104)? 12
Restricted transit bit (0|off,1|on)? 0
Restricted branching bit (0|off,1|on)? 0
Leadership priority (1-255) ? 100
Peer group ID (up to 28 hexadecimal characters)?
LGN ID (up to 44 hexadecimal characters)?
PNNI node information have been set.
HOSTNAME\#

```

\section*{Output}
```

PNNI node information has been set.

```

SET profile (Privileged Command)

\section*{Function}

This command is used for setting the profile that is requested upon setting PVC and soft PVP. These parameters are for policing if enabled in PVC establish. command.

\section*{Reference Command}

DISPLAY profile

\section*{Cancel Command}

DELETE profile

\section*{Format}

HOSTNAME\# SET profile P1 P2

\section*{Format Explanation}

P1: Traffic type ( 0 (abr), 1(cbr), 2(nrt-vbr), 3(rt-vbr) or 4(ubr))
P2 : Profile name (up to ten alphanumeric characters)
Subsequent parameters can be set interactively.

\section*{Example}
```

HOSTNAME\# set profile 1 mycbr

```

\section*{Interactive Parameters}
```

PCR (1-1412830 [cells/s])?
Peak cell rate
SCR (1-1412830 [cells/s])?
Sustainable cell rate
MBS (1-1412830 [cells])?
Maximum burst size
EPD (off/0 on/1)?
EPD function flag

```

\section*{Output}
```

Profile data has been set.
Profile name :**********
Traffic type
Peak cell rate [cell/s]
Sustainable cell rate [cell/s]
Maximum burst size [cell]
EPD

```

SET prompt (Privileged Command)

\section*{Function}

This command is used to set the prompt type. This setting is not included in the configuration data; therefore the prompt type is returned to the default prompt type when the system is restarted.

\section*{Change Command}
```

SET prompt

```

\section*{Format}
```

HOSTNAME\# SET prompt P1

```

\section*{Format Explanation}

P1 : Prompt type ("host" or " 1 ," "time" or " 2 ," "all" or " 3 ")

\section*{Output}

This prompt appears when "host" or "1" is specified (host name prompt).
```

HOSTNAME\#

```

This prompt appears when "time" or " 2 " is specified (time prompt).
```

hh:mm:ss:\#..........

```

This prompt appears when "all" or " 3 " is specified (host name and time prompt).
```

HOSTNAME hh:mm:ss\#..........

```

SET scope (Privileged Command)

\section*{Function}

This command is used to change the scope mapped to each hierarchical level of PNNI

\section*{Reference Command}

DISPLAY scope

\section*{Change Command}

SET scope

\section*{Format}

HOSTNAME\# SET scope

\section*{Interactive Parameters}

Hierarchy1 : UNI scope ( \(\mathrm{xx} \sim \mathrm{xx}\) )?
Hierarchy2 : UNI scope ( \(\mathrm{xx} \sim \mathrm{xx}\) )?
Output

PNNI mode scope information has been set.

NOTE The scope must be mapped with the SET pnni nodal command in advance.

SET scroll (Privileged Command)

\section*{Function}

This command is used to set the number of lines displayed on the MAT screen. If the P1 parameter is set to zero, displayed lines will continue being displayed until completion.

\section*{Reference Command}

DISPLAY scroll
SHOW scroll

\section*{Format}

HOSTNAME\# SET scroll P1

\section*{Format Explanation}

P1 : Number of lines displayed on MAT (0~49)

\section*{Example}
```

HOSTNAME\# set scroll 40
Scroll filter: On

```

\section*{Output}
```

Scroll filter: ***
1

```

\section*{Output Explanation}
1. Scroll control (on or off)

SET server
(Privileged
Command)

\section*{Function}

This command is used to set TFTP server IP address, default router IP address and name of boot file. The TFTP server is used for system software download and system configuration backup.

\section*{Reference Command}

DISPLAY server

\section*{Format}

HOSTNAME\# SET server P1 \{P2 P3\}

\section*{Format Explanation}

P1 : Server IP address (x.x.x.x (x=0~255))
P2 : Default router IP address (x.x.x.x (x=0~255)) 0.0.0.0 if no router present
P3 : Boot file name (up to 127 characters) and directory

\section*{Example}
```

HOSTNAME\# set server 10.5.3.4 0.0.0.0 2.5G/bootfiles/boot.txt

```

NOTE If the boot command is set to network or initialize, and the switch is reset, it will attempt to connect to the TFTP server and load software located there. If the backup or install commands are used, the switch will attempt to store/retrieve configuration information.

\section*{Output}
```

Server configuration data has been set.

```

SET shaper
(Privileged Command)

\section*{Function}

This command is used to set a shaping rate.
Only PCR is set for CBR connections. PCR, SCR, and MBS are set for other traffic type connections.

\section*{Reference Command}

\section*{DISPLAY shaper}

\section*{Cancel Command}

DELETE shaper

\section*{Format}

HOSTNAME\# SET shaper P1 P2 P3 \{P4\} \{P5\}

\section*{Format Explanation}

P1 : Line number (ATM 2.5 Gbps switch)
P2 : Shaper number (1~8)
P3: PCR (cell/s) (1~1412830)
P4: SCR (cell/s) (1~1412830)
P5 : MBS (cell)

\section*{Output}
```

Shaping rate has been set.

```

NOTE For PCR and SCR the maximum range specified is for an OC-12 interface. For a OC-3 or UTP-5 interface, the maximum is actually 353207.

If the specified rate cannot be set due to the limited hardware capacity, an approximate value is selected and set automatically. A PCR or SCR exceeding the physical rate cannot be set. Also, the following requirement must be satisfied:
\[
\text { - } \mathrm{PCR}>=\mathrm{SCR} \& \mathrm{PCR}>=\mathrm{MBS}
\]

SET signaling
(Privileged
Command)

\section*{Function}

This command is used to set the signaling path \((0,5)\).

\section*{Reference Command \\ DISPLAY signaling}

\section*{Cancel Command}

DELETE signaling

\section*{Format}

HOSTNAME\# SET signaling P1 \{P2\} \{P3\}

\section*{Format Explanation}

P1 : Line number (00~33)
P2 : VPI (0~4095) (default=0)
P3: VCI (1~16383) (default=5)

Output
```

Signaling connection has been set.

```

Signaling will not be active if it has been suspended by the SET svcline command.

To set a signaling connection whose VPI is 1 or greater, it is necessary to set the tunneling with that VPI in advance.

Before changing the VCI with this command, suspend the operation by executing the SET svcline command, delete signaling connections by executing the DELETE signaling command, and reset the connection. Then resume the operation by executing the SET svcline command to validate the change.

SET sscop (Privileged Command)

\section*{Function}

This command is used to set the SSCOP parameters of ATM signaling for the signaling connection set with the SET signaling command. These values should rarely be changed unless the administrator is fully aware of values.

\section*{Reference Command}

DISPLAY sscop

\section*{Format}

HOSTNAME\# SET sscop P1 P2

\section*{Format Explanation}

P1: Line number (00~33)
P2: VPI (0~4095)
Subsequent parameters can be set interactively.

\section*{Setting Procedure}
1. Disable signaling by executing the SET svcline command.
2. Set the parameters by executing the SET sscop command.
3. The parameters become effective when the operation is resumed by executing the SET svcline command.

\section*{Interactive Parameters}
```

MaxCC (1-255, default=4) ?
TimerCC (1-255, default=1) ?
Timer Keepalive (1-255, default=30) ?
Timer NORESPONSE (1-255, default=10) ?
Timer POLL (1-255, default=1) ?
MaxPD (1-255, default=10) ?
MaxSTAT (1-255, default=4) ?
clear_buffers (Yes No, default=Yes) ?

```

\section*{NOTE}

The value set before modification is displayed as the default value. (Default values shown above are the initial values.)

\section*{Output}
```

SSCOP parameters have been set.

```

NOTE Before the parameters are set again by this command, the system lines must be suspended by executing the set svcline command. The parameter modification is valid after the line is reset to "resume."

SET svcline
(Privileged
Command)

\section*{Function}

This command is used to set the signaling status; suspended or resume.
When the suspend command is entered, the SVC of the related line is disconnected and all subsequent signaling messages are ignored. The SVC functions are resumed by setting the line to "resume."

\section*{Reference Command}

DISPLAY svcline

\section*{Format}

HOSTNAME\# SET svcline P1 P2 P3

\section*{Format Explanation}

P1: Line number (00~33)
P2: VPI ( 0 ~ 4095)
P3: SVC Status (suspend or resume)

NOTE
suspend : suspends signaling function
resume : resumes signaling function

\section*{Output}
```

SVC status of the line interface **: ***

```

\section*{Output Explanation}
1. Line number
2. SVC status

SET t309trg (Privileged Command)

\section*{Function}

This command is used to set the timing of recognizing signaling line fault separately from T309.

\section*{Reference Command}

\section*{DISPLAY t309trg}

\section*{Change Command}

SET t309trg

\section*{Setting Procedure}
1. If the line is active, suspend signaling of a line or VPI by executing the SET svcline command.
2. Set the parameters by executing this command.
3. The parameters become effective when the operation is resumed with the SET svcline command.

\section*{Format}

HOSTNAME\# SET t309trg \{P1\}

\section*{Format Explanation}

P1 : Time value (1~511[sec], T309 is used if defaulted)

\section*{Output}
```

Timing has been set.

```

NOTE Before the parameters are set again by this command, the system lines must be "suspended" with the SET svcline command. The parameter modification is valid after the line is set to "resume."

SET teInetlimit
(Privileged Command)

\section*{Function}

This command is used to set the time limit of a Telnet session.

\section*{Reference Command}

DISPLAY telnetlimit

\section*{Format}

HOSTNAME\# SET telnetlimit P1

\section*{Format Explanation}

P1: Time limit to forced disconnection of the session after the last input/output (0~32767 minutes).

\section*{NOTE Forced disconnection will be disabled if the time limit is set to 0 . \\ Output}
```

Telnet time-limit has been set.

```

\section*{SET time (Privileged Command)}

\section*{Function}

This command is used to set the system date and time.

\section*{Reference Command}

DISPLAY time

Format
HOSTNAME\# SET time P1 P2

\section*{Format Explanation}

P1: Date (YY-MM-DD)
Year: \(\quad 0-99\) (the last two digits of the year)
Month: 1-12
Day: 1-31
P2: Time (hh:mm:ss)
Hour: \(\quad 0-23\)
Minute: 0-59
Second: 0-59
NOTE Split the date with "-" and the time with ":"

\section*{Example}

HOSTNAME\# set time 97-08-18 15:45:22

\section*{Output}
```

System Timer has been set.
YY-MM-DD hh:mm:ss

```

NOTE YY-MM-DD indicates the year, month, and day of the month. hh:mm:ss indicates the hour, minute, and second.

\section*{Example}

January 10, 1999 is set as: 99-01-10
2:30pm and 15 seconds is set as: \(\quad\) 14:30:1514:30:15

\section*{SET tunneling (Privileged Command)}

\section*{Function}

This command is used to set tunneling connection information.

\section*{Reference Command}
```

DISPLAY tunneling

```

\section*{Setting Procedure}
1. Choose a VPI path for tunneling; then issue the set tunneling, signaling, ILMI and/or PNNI paths with the chosen VPI.
2. Enter the SET tunneling command.

Follow the steps below to set signaling and ILMI.
3. Establish tunneled signaling connection by executing the SET signaling command to the chosen tunneling VPI.
4. If necessary, change the UNI Version, using SET atmsig/sscop.
5. Set the ILMI tunneling connection by executing the SET ilmi connection command to the chosen tunneling VPI.
6. Resume the line (or VPI specification) using SET svcline command.
7. If using IISP, set the appropriate routes. For PNNI, use the SET PNNI connection command to establish the routing VP.

Format
HOSTNAME\# SET tunneling P1 P2 P3 P4 P5
Format Explanation
P1 : Line number (00~33)
P2 : VPI (0~4095)
P3: Tunneling bandwidth (cell/s) (1~1412830)
P4 : UPC function mode ( 0 (off) or 1)
P5 : Shaper number (off(0) or \(1 \sim 8\) )
NOTE Only the shaper number whose shaping rate has already been set with the SET shaper command can be specified.

The tunneling bandwidth displays a maximum rate of \(1,412,830\), which is an OC-12 rate. OC-3 or UTP-5 maximum rate is 353,207 .

Output
Tunneling information has been set.

SOFTPVP?
(Privileged
Command)
Function

\section*{Function}

This command is used to display the help message for the SOFTPVP command.

\section*{Format}
```

 HOSTNAME# SOFTPVP ?
    ```

\section*{Output}
```

HOSTNAME\# softpvp ?
delete Delete soft PVPC/PVCC
establish Establish soft PVPC/PVCC
setup Setup soft PVPC/PVCC
addparty Add endpoint to existing multipoint soft PVPC/PVCC
release Release soft PVPC/PVCC
dropparty Delete endpoint from existing multipoint soft PVPC/PVCC
flush Delete all soft PVPC/PVCC on a line interface

```

SOFTPVP
addparty
(Privileged Command)

\section*{Function}

This command is used to add endpoint to point-to-multipoint soft PVPC/PVCC.
Before entering this command:
- Enter the same incoming side (point 1) parameters that have been set as the incoming side parameters for the existing connection.
- Use the SOFTPVP setup command to ensure that the incoming side parameters (line number, VPI, VCI) are set to multipoint.

\section*{Format}

HOSTNAME\# SOFTPVP addparty P1 P2 P3 P4 \{P5\} \{P6\}

\section*{Format Explanation}

P1 : Local Terminal Line Number (000~073)
P2 : Local VPI (0~4095)
P3 : Local VCI (0 (for PVPC), 32~16383)
P4 : Destination ATM address ( \(0 \sim 9\), a~f, A~F, up to 40 digits)
P5 : Remote VPI (0-4095 can be defaulted)
P6 : Remote VCI (0 (for PVPC)~ 65535 can be defaulted unless P5 is entered).

\section*{Output}
```

Soft PVPC/PVCC endpoint has been added.

```

\section*{SOFTPVP delete} (Privileged Command)

\section*{Function}

This command is used to delete the soft PVPC/PVCC.

\section*{Format}
```

HOSTNAME\# SOFTPVP delete P1 P2 P3

```

\section*{Format Explanation}

P1 : Line number (00~33)
P2 : VPI (0~4095)
P3: VCI (0, 32~16383)

\section*{Example}
```

HOSTNAME\# SOFTPVP del 03 3 34

```

\section*{Output}
```

Soft PVPC/PVCC has been deleted.

```

SOFTPVP dropparty
(Privileged Command)

\section*{Function}

This command is used to delete endpoint to point-to-multipoint soft PVPC/PVCC.
Format
HOSTNAME\# SOFTPVP dropparty P1 P2 P3 P4
Format Explanation
P1 : Local Line Number. (00~33)
P2 : Local VPI (0~4095)
P3 : Local VCI (0 (for PVPC), 32~16383)
P4 : Destination ATM address (0~9, a~f, A~F, up to 40 digits)
Output

Soft PVPC/PVCC endpoint has been deleted.

SOFTPVP
establish
(Privileged Command)

\section*{Function}

This command is used to set permanent virtual path connections (PVPCs) or permanent virtual circuit connections (PVCCs) spread over a number of switches.
Unless the PVPCs/PVCCs are deleted using the SOFTPVP delete command described elsewhere in this chapter, the switch will try to reset the PVPCs/PVCCs up to the number of times specified by this command.
The data set with this command is stored (using the SAVE command) and retained after the power is turned off. When power is turned back on, the connection is automatically established.

Up to 128 soft PVPCs/PVCCs can be registered with this command.

\section*{Reference Command}
```

 DISPLAY softpvp
    ```

\section*{Cancel Command}
```

SOFTPVP delete

```

\section*{Setting Procedure}
1. Execute the SET local command to assign an ATM address to each border switch on the network.
2. Set dynamic routing table by executing the SET pnni connection command. In case of static routing, use the ROUTE add command to set the SVC static routing table.
3. Execute the SET atmsig command to set the relationship with the other port as "user network."
4. Execute this command to the other border switch.

\section*{Format}

HOSTNAME\# SOFTPVP establish P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

\section*{Format Explanation}

P1 : Traffic type (1(cbr), 2(nrt-vbr), 3(rt-vbr) or 4(ubr) default is UBR)
P2 : Local terminal line number (00~33)
P3 : Local VPI (0~4095)
P4 : Local VCI (0 (for PVPC), 32~16383)
P5 : Called party ATM Address (0~9, a~f, A~F, up to 26 digits)
P6 : Remote device (0(M5), 1(M7), 2(M5E))

The following parameters can be set in the setting range indicated if the remote device is an ATM 2.5 Gbps switch:

P7: Remote Line Number
P8 : Remote VPI (0~4095)
P9 : Remote VCI (0(for PVPC), 32~16383)
P10 : Local UPC mode (off(0) or 1~5)
P11 : Local shaper number (off(0) or 1~8)
P12 : Forward profile name
P13 : Remote UPC mode (off(0) or 1~5)
P14 : Remote shaper number (off(0) or 1~8)
P15: Backward profile name
P16 : Retry count ( \(0 \sim 15\), infinity) (default=2)

\section*{Output}
```

Soft PVPC/PVCC has been set.

```

NOTE If the ATM address has not been set with the SET local command, this command will display an error message and the Soft PVP setting will not be performed.

SOFTPVP flush (Privileged Command)

\section*{Function}

This command performs the same function as DELETE, except that all SOFTPVPs are removed on the specified port.

\section*{Format}

\section*{SOFTPVP flush P1}

\section*{Format Explanation}

P1: <slot port>

\section*{Example}
```

HOSTNAME\# SOFTPVP flush 23
Are you sure? [Y or N] Y
SOFTPVP has been flushed.
HOSTNAME\#

```

SOFTPVP release
(Privileged
Command)

\section*{Function}

This command is used to delete point-to-point soft PVPC/PVCC or all endpoints of point-to-multipoint soft PVPC/PVCC.

\section*{Format}

HOSTNAME\# SOFTPVP release P1 P2 P3
Format Explanation
P1 : Line Number (00~33)
P2 : VPI (0~4095)
P3: VCI (0, 32~16383)
P4 : Destination ATM address (0~9, a~f, A~F, up to 40 digits)
Output

Soft PVPC/PVCC has been released.

\section*{SOFTPVP setup \\ Function}
(Privileged Command) PVCC by PNNI.

This command is used to set point-to-point or point-to-multipoint soft PVPC/

\section*{Setting Procedure}
1. Execute the SET local command to assign an ATM address to each border switch on the network.
2. Set the path for dynamic routing table by executing the SET pnni connection command.
3. Set PNNI environment in the network.
4. Execute the SET atmsig command to set the relationship with the other port as "network-network."
5. Execute this command to the other border switch.

\section*{Format}

HOSTNAME\# SOFTPVP setup P1 P2 P3 P4 P5 P6 P7 P8 \{P9\} \{P10\} \{P11\}

\section*{Format Explanation}

P1 : Connection type ("ptop"(0), "ptom"(1))
P2 : Traffic type ("abr"(0), "cbr"(1), "nrt-vbr"(2), "rt-vbr"(3) or "ubr"(4) abr cannot be specified if P-to-MP)

P3: Local Line Number (00~33)
P4 : Local VPI (0~4095)
P5 : Local VCI (0 (for PVPC), 32~16383)
P6 : Destination ATM address (0~9, a~f, A~F, up to 40 digits)
P7 : Forward profile name (can be defaulted with "-" for CE and Frame Relay; however this cannot be defaulted in case of Multipoint.

P8 : Backward profile name ("-" if P-to-MP) (can be defaulted with "-" for CE and Frame Relay in case of P-to-P)

P9 : Retry count ( \(0 \sim 15\), infinity) (default=2)
P10 :Remote VPI (0~4095 can be defaulted)
P11 :Remote VCI (0 (for PVPC)~65535 can be defaulted unless P10 is entered)

\section*{Output}
```

Soft PVPC/PVCC has been set.

```

\section*{TELNETPASSWD \\ (Privileged \\ Command)}

\section*{Function}

This command is used to set the password for accessing Telnet.
After entering the current password, enter the new password twice to complete the password change. The entered characters are not echoed back.

\section*{Format}

HOSTNAME\# TELNETPASSWD

\section*{Output}

If a password is not registered:
```

Input new Telnet password:
Retype new Telnet password:
[OK]

```

If a password is registered:
```

Input old Telnet password:
Input new Telnet password:
Retype new Telnet password:
[OK]

```

The password must contain no less than four and no more than eight characters. Characters are case sensitive.

This page is for your notes.

\section*{Error Messages}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Already assigned. & Based on the command entered, the port is already defined, in use or disabled. \\
\hline ***Already disabled. & Based on the command entered, the port is already defined, in use or disabled. \\
\hline ***Already enabled. & Based on the command entered, the port is already defined, in use or disabled. \\
\hline ***Already registered. & Based on the command entered, the port is already defined, in use or disabled. \\
\hline ***Already set. & A mode (single/duplex) is already set. \\
\hline ***Another card status error. & An error has occurred in the card of the other side or the card is not installed. Check the fault or installation condition. \\
\hline ***ATM routing information exceeds the limit. & ATM routing information exceeds the limit. Delete unnecessary information before repeating the entry. \\
\hline ***CAC overbooking factor still existent. & The CAC still exists. Delete the CAC before repeating the entry. \\
\hline ***Cannot drop the last leaf with SoftPVP dropparty. Try SoftPVP release. & SoftPVP dropparty command cannot be used to remove the last multicast endpoint. Execute the SoftPVP release command. \\
\hline ***Cannot remove the last leaf with PVC remove. Try PVC delete. & PVC remove command cannot be used to remove the last multicast end point. Execute the PVC delete command. \\
\hline ***Card I/F busy. & Due to high load on the card side, the 2.5 Gbps switch and the card cannot communicate. The load must be reduced. \\
\hline ***Card is not single mode. & Check with Reference command before repeating the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Card is remote duplex mode. & Check with Reference command before repeating the entry. \\
\hline ***CEVC data still existent. & The CEVC still exists. Delete unnecessary CEVC before repeating the entry. \\
\hline ***Changing admin status. & Administration status is being changed by another process. Repeat the entry later. \\
\hline ***Circuit emulation data is not registered. & Check with Reference Command before repeating the entry. \\
\hline ***Connection already exists. & The connection already exists. Repeat the entry. \\
\hline ***Connection(s) still existent. & The connection still exists. Delete the connection before repeating the entry. Check if the same address is already set. \\
\hline ***Diagnostics fault found. & Check the fault status with the DISPLAY alarm command, then remove the cause of the fault before repeating the entry. \\
\hline ***DLCI still existent. & Delete the DLCI before repeating the entry. \\
\hline ***Duplicate assignment. & Based on the command entered, the port is already defined, in use or disabled. \\
\hline ***Dynamic routing table registration failure. & Check the setting before repeating the entry. \\
\hline ***Flash memory status is busy. & Repeat the entry later. \\
\hline ***FR DLCI is not registered. & Set FR DLCI with the SET dlci command before repeating the entry. \\
\hline ***Gateway package is not installed. & Remove the cause of the fault and repeat the entry using the correct data. \\
\hline ***Hardware failure found. & Remove the cause of the fault and repeat the entry, \\
\hline ***Illegal access privilege. & A value other than " 0 " or " 1 " has been entered in the access privilege parameter. Repeat the entry using correct data. \\
\hline ***Illegal access range. & The access range parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal address type. & The address type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal administrative weight. & The administrative weight parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal aggregation token. & The aggregation token parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal ATM address. & The ATM address parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal available cell rate mT. & The available cell rate mT parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal available cell rate PM. & The available cell rate PM parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal base. & The test flow base parameter is in a format other than the specified format. Repeat the entry using correct data. \\
\hline ***Illegal boot mode. & The specified boot mode is undefined. Repeat the entry using correct data. \\
\hline ***Illegal call reference. & The call reference is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal CAS mode. & The CAS mode parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal CDVT value. & The CDVT value parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal cescondition. & The cescondition is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal CIR. & The CIR parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal clear-buffers. & A parameter other than \(\mathbf{Y}\) or \(\mathbf{N}\) has been entered as the clear-buffers parameter. Repeat the entry \\
\hline ***Illegal clock mode. & The specified clock mode is undefined. Repeat the entry using correct data. \\
\hline ***Illegal CLP to DE mapping mode. & The CLP to DE mapping mode (frame discard priority) parameter is in a format other than the specified format or exceeds the range. \\
\hline ***Illegal CLP value. & The CLP value parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal command. & The command name is undefined Repeat the entry using correct data. \\
\hline ***Illegal community name. & Escape sequence has been entered as the community name. Repeat the entry using correct data. \\
\hline ***Illegal congestion indication mode. & The congestion indication mode (forward congestion indication) parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal connection type. & The connection type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal correlation tag. & The correlation tag parameter is in a format other than the specified format or exceeds the range. Repeat the entry \\
\hline ***Illegal count. & The count parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal data. & The data type parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal data type. & The data type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal dataname. & The data name parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal date. & The date parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal DE to CLP mapping mode. & The DE to DLP mapping mode (cell loss priority) parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal DE value. & The specified DE value cannot be set. Repeat the entry. \\
\hline ***Illegal destination IP address. & The destination IP address parameter is in a format other than the specified format. Repeat the entry using correct data. \\
\hline ***Illegal destination type. & The destination type parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal direction. & The direction parameter is in a format other than the specified format or the specified direction cannot be set. Repeat the entry using correct data. \\
\hline ***Illegal DLCI. & The DLCI parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal DS rxmt interval. & The DS rxmt interval parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal EPD. & The EPD parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal failure dump information. & A value other than "all" has been entered in the failure dump information parameter. Repeat the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal failure log number. & A value other than "1" or "2" has been entered in the failure log number parameter. Repeat then entry. \\
\hline ***Illegal filename. & The filename parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal flag. & The flag parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal Forum/ITU. & A value other than " 0 " or " 1 " has been entered in the Forum/ ITU parameter. Repeat the entry using correct data. \\
\hline ***Illegal fractional type. & The fractional type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal Frame mode. & The frame mode parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal FR_Forum/ITU_T/ANSI. & The standard parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal hello interval. & The hello interval parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal hierarchy. & The hierarchy parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal hop count. & The hop count range for "SETUP loop" prevention is invalid. Repeat the entry in the range of 0 to 20. \\
\hline ***Illegal hostname. & Escape sequence has been entered as the host name. Repeat the entry using correct data. \\
\hline ***Illegal idle cell. & Cannot specify idle cell type. Repeat the entry using correct data. \\
\hline ***Illegal IISP mode. & The IISP mode parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal index. & The index parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal interface. & The interface parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal IP address. & The IP address parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal interworking type. & The interworking type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal keepalive value. & The keepalive parameter exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal LBO. & A value other than " 0 " or " 1 " has been entered in the LBO parameter. Repeat the entry using correct data. \\
\hline ***Illegal length. & The valid bit count exceeds the range. Repeat the entry. \\
\hline ***Illegal level. & The level exceeds the range. Repeat the entry. \\
\hline ***Illegal line. & The line parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal line rate. & The line rate parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal line speed. & The line speed parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal link down discover time. & The link down discover time exceeds the range. Repeat the entry. \\
\hline ***Illegal logical port number. & The logical port number exceeds the range. Repeat the entry. \\
\hline ***Illegal loopback condition. & The loopback condition parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal looptime mode. & The looptime mode parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal mask range. & The mask value exceeds the range. Repeat the entry. \\
\hline ***Illegal MaxCC. & The MaxCC parameter exceeds the range. Repeat the entry. \\
\hline ***Illegal MaxPD. & The MaxPD parameter exceeds the range. Repeat the entry. \\
\hline ***Illegal MaxSTAT. & The MaxSTAT parameter exceeds the range. Repeat the entry. \\
\hline ***Illegal MBS. & The MBS parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal memory type. & The memory type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal method. & The routing method parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal minimum hello interval. & The minimum hello interval parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal minimum PTSE interval. & The minimum PTSE interval parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal network interface. & The network interface parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal network interface. & The network interface parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal new line. & The new line parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal new scope. & The new scope parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal new VPI. & The new VPI parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal NMS number. & The NMS parameter exceeds the range. Repeat the entry. \\
\hline ***Illegal NMS number. & The NMS parameter exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal node ID. & The node ID parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal noresponse. & The noresponse parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal number of parameters. & Excess parameter has been entered or the number of parameters is insufficient. Repeat the entry. \\
\hline ***Illegal number of parameters. & Excess parameter has been entered or the number of parameters is insufficient. Repeat the entry using correct data. \\
\hline ***Illegal numbering ID. & The numbering ID parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal OAM mode. & The OAM mode parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal packet type. & The packet type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal parameter. & The parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal partial fill size. & The partial fill size parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal password. & The password is in a format other than the specified format. Repeat the entry using correct data. \\
\hline ***Illegal PCR. & The PCR parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal PLCP. & A value other than " 0 " or " 1 " has been entered in the PLCP parameter. Repeat the entry using correct data. \\
\hline ***Illegal point. & The point parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal pointer. & The pointer parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal poll. & The poll parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal priority. & The priority parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal profile. & The profile parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal prompt mode. & The prompt mode parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal protocol encapsulation mode. & The protocol encapsulation mode parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal PTSE ID. & The PTSE ID parameter is in a format other than the specified. format or exceeds the range. Repeat the entry. \\
\hline ***Illegal PTSE interval. & The PTSE interval parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal PTSE type. & The PTSE type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal reachable address. & The reachable address parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal remote node. & The remote node parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal retry number. & The retry number parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal router IP address. & The router IP address parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal scope. & The scope parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal SCR. & The SCR parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal scramble. & A value other than " 0 " or " 1 " has been entered in the scramble parameter. Repeat the entry using correct data. \\
\hline ***Illegal scroll number. & The specified scroll line count is out of range. Repeat the entry using correct data. \\
\hline ***Illegal service. & The service parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal shaper number. & The shaper number parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal side. & The side parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal slot. & The slot parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal status. & The specified "status" is undefined. Repeat the entry using correct data. \\
\hline ***Illegal sub-command. & The specified subcommand name is undefined. Repeat the entry using correct data. \\
\hline ***Illegal sub-netmask. & The sub-netmask value is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal sysContact. & The sysContact parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal sysLocation. & The sysLocation parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal T301 value. & A value outside the range has been entered as the parameter for T301. Repeat the entry. \\
\hline ***Illegal T303 value. & A value outside the range has been entered as the parameter for T303. Repeat the entry using correct data. \\
\hline ***Illegal T308 value. & A value outside the range has been entered as the parameter for T308. Repeat the entry using correct data. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal T309 value. & A value outside the range has been entered as the parameter for T309. Repeat the entry using correct data. \\
\hline ***Illegal T310 value. & A value outside the range has been entered as the parameter for T310. Repeat the entry using correct data. \\
\hline ***Illegal T313 value. & A value outside the range has been entered as the parameter for T313. Repeat the entry using correct data. \\
\hline ***Illegal T316 value. & A value outside the range has been entered as the parameter for T316. Repeat the entry using correct data. \\
\hline ***Illegal \({ }^{\text {T317 }}\) value. & A value outside the range has been entered as the parameter for T317. Repeat the entry using correct data. \\
\hline ***Illegal t322 value. & A value outside the range has been entered as the parameter for T322. Repeat the entry using correct data. \\
\hline ***Illegal T397 value. & A value outside the range has been entered as the parameter for T397. Repeat the entry. \\
\hline ***Illegal T398 value. & A value outside the range has been entered as the parameter for T398. Repeat the entry using correct data. \\
\hline ***Illegal 7399 value. & A value outside the range has been entered as the parameter for T399. Repeat the entry using correct data. \\
\hline ***Illegal throughput. & The throughput parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal time-out. & The time-out parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal time. & The time parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal timer. & A value outside the range has been entered as the parameter for timer. Repeat the entry using correct data. \\
\hline ***Illegal TimerCC. & A value outside the range has been entered as the parameter for TimerCC. Repeat the entry using correct data. \\
\hline ***Illegal timeslot. & The timeslot parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal traffic type. & The traffic type parameter is in a format other than the specified format or exceeds the range. Repeat the entry using correct data. \\
\hline ***Illegal transit network ID. & The transit network ID parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Illegal transit network ID data. & An incorrect ID was entered. Repeat the entry. \\
\hline ***Illegal TTC/ITU. & The specified standard is undefined. Repeat the entry. \\
\hline ***Illegal type. & The type parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal UNI version value. & The specified UNI Version is undefined. Repeat the entry using correct data. \\
\hline ***Illegal UPC mode. & The UPC mode parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal valid length for reachable address. & The valid length for reachable address parameter is in a format other than the specified format or exceeds the range. Repeat the entry. \\
\hline ***Illegal valid VCI bits. & The specified valid VCl bit count is out of range. Repeat the entry using correct data. \\
\hline ***Illegal valid VPI bits. & The specified valid VPI bit count is out of range. Repeat the entry using correct data. \\
\hline ***Illegal VCI. & The specified VCI value is out of range or cannot be used. Repeat the entry using correct data. \\
\hline ***Illegal VPI. & The specified VPI value is out of range or cannot be used. Repeat the entry using correct data. \\
\hline ***Inconsistent connection label. & Invalid connect information entered. Repeat the entry using correct data. \\
\hline ***Inconsistent number for timeslot & An incorrect timeslot was entered. Repeat the entry. \\
\hline ***Insufficient PCR of profile. & PCR value of profile is less than that set by the SET cevc command. Check the profile with DISPLAY profile command before repeating the entry. \\
\hline ***Interface configuration failed. & Specified interface could not be configured. Repeat the entry after remedying the error. \\
\hline ***Interface is not NNI. & Check the setting before repeating the entry. \\
\hline ***Interworking type is inconsistent with PR-profile. & Check the Reference command before repeating the entry. \\
\hline ***Invalid CDVT value. & The CDVT value is out of range. Repeat the entry using correct data. \\
\hline ***Invalid connection type. & Cannot set the specified connection type. Repeat the entry. \\
\hline ***Invalid directional (uni/bi) connection. & Cannot set the specified directional (uni/bi) connection. Repeat the entry. \\
\hline ***Invalid directional (uni/bi) connection. & Cannot set the specified directional (uni/bi) connection. Repeat the entry using correct data. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Invalid endpoint for VP level. & The specified VP level OAM point is invalid. Repeat the entry using correct data. \\
\hline ***Invalid IP routing information. & The specified IP routing information is invalid. Repeat the entry using correct data. \\
\hline ***Invalid line. & The specified line cannot be used. Check the line card installation status and error status. \\
\hline ***Invalid package. & Mounted package cannot be used. Check the package. \\
\hline ***Invalid remote node ID. & The specified remote node ID is invalid. Repeat the entry using correct data. \\
\hline ***Invalid shaper number. & The specified shaper number is invalid. Repeat the entry using correct data. \\
\hline ***Invalid slot. & The specified slot is invalid or no package is installed. Repeat the entry using correct data. \\
\hline ***Invalid standby. & The specified switch/CPU cannot be set to SBY or switch/ CPU is in single mode. Repeat the entry. \\
\hline ***Invalid traffic for the specified direction. & Cannot set the specified traffic for the specified direction. Check the traffic type before repeating the entry. \\
\hline ***Invalid UPC for the specified traffic. & Cannot set the specified UPC for the specified traffic. Check the UPC before repeating the entry. \\
\hline ***Invalid value. & The specified value is invalid. Repeat the entry. \\
\hline ***Invalid VPI. & The specified VPI is invalid. Repeat the entry using correct data. \\
\hline ***IP address is inconsistent with another interface. & Specified IP address is different from other interfaces. Check with Reference Command before repeating the entry. \\
\hline ***IP routing information exceeds the limit. & IP routing information exceeds the limit. Delete unnecessary information before repeating the entry. \\
\hline ***Leaf already set to another port. & Leaf is already set to another port (with CE-DS1, only one leaf may be set in a package). Repeat the entry. \\
\hline ***Leaf/Leaves still existent. & An endpoint exists at the specified address. Delete the end point with the PVC remove command before repeating the entry. \\
\hline ***Line is not installed. & Check the line card installation status. \\
\hline ***Line not suspended. & The specified line is not in "suspend" status. Suspend the line with the SET svcline command before repeating the entry. \\
\hline ***Line out of service. & The specified line has failed. Check the installation status and error status. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Line rate is less than shaping rate or tunneling throughput. & Shaping at the specified rate cannot be done. Specify different shaping rate. \\
\hline ***Line status failure found. & Remove the cause of the fault before repeating the entry. \\
\hline ***Line status is admindown. & Specified line is inactive. Entry cannot be accepted. Activate the line before repeating the entry. \\
\hline ***Line undergoing loopback test. & The specified line is undergoing loopback test. Repeat the entry after the test. \\
\hline ***Loading failed. & Software or office data loading failed. Check the device mounting and connection statuses before repeating the entry. \\
\hline ***Local IP address and server IP address are not saved yet. & Local IP address and server IP address have not been saved (are not yet valid). Use the SAVE command to validate the data. \\
\hline ***Looptime already set to another port. & Looptime is already set on another line of the same linecard (DS3/E3 only). Repeat the entry. \\
\hline ***Loss of 64K clock. & A 64 k clock interruption (DCS only) occurred. Eliminate the cause before repeating the entry. \\
\hline ***Loss of 8 K clock. & An 8 k clock interruption (DCS only) occurred. Eliminate the cause before repeating the entry. \\
\hline ***NMS information already exists. & Based on the command entered, the port is already defined, in use or disabled. \\
\hline ***No data registered. & CPU under load. Wait awhile before repeating the entry. \\
\hline ***No memory block available. & CPU under load. Wait awhile before repeating the entry. \\
\hline ***No route to server. & Server route is not set. Check the routing information before repeating the entry. \\
\hline ***No such connection. & Check the currently set connection. \\
\hline ***No such entry. & Check the currently set connection. \\
\hline ***No such FR-profile. & Check the currently set FR profile. \\
\hline ***No such ILMI connection. & Check with Reference command before repeating the entry. \\
\hline ***No such information. & Check with Reference command before repeating the entry. \\
\hline ***No such shaper registered. & Register shaper. \\
\hline ***Node ID is not registered. & Register node ID before repeating the entry. \\
\hline ***Non-volatile memory is in use [Failed]. & The command has been entered from another terminal. Repeat the entry later. \\
\hline ***Non-volatile memory is in use. & The command has been entered from another terminal. Wait awhile before repeating the entry. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Can not create task. & Cannot create task to display failure information. Wait a while before repeating the entry. \\
\hline ***Can not start task. & Cannot start task to display failure information. Wait a while before repeating the entry. \\
\hline ***Number of access times exceeds the limit \((100,000)\). & Replace the switch/CPU. \\
\hline ***Number of available connections for UPC exceeds the limit. & Delete unnecessary connection for UPC before repeating the entry. \\
\hline ***Number of available connections for UPC exceeds the limit. & Delete unnecessary connection for UPC before repeating the entry. \\
\hline ***Number of Connections exceeds the limit. & Delete unnecessary connection before repeating the entry. \\
\hline ***Number of ILMI connections exceeds the limit. & Delete unnecessary ILMI connection before repeating the entry. \\
\hline ***Number of PNNI connections exceeds the limit. & Delete unnecessary PNNI connection before repeating the entry. \\
\hline ***Number of reachable address exceeds the limit. & Delete unnecessary address before repeating the entry. \\
\hline ***Number of Signaling connections exceeds the limit. & Delete unnecessary signaling connection before repeating the entry. \\
\hline ***Number of Soft PVPC/PVCCs exceeds the limit. & Delete unnecessary soft PVPC/PVCC before repeating the entry. \\
\hline ***Number of timeslots exceeds the limit. & Delete unnecessary timeslot before repeating the entry. \\
\hline ***Number of vCs exceeds the limit. & Delete unnecessary VC before repeating the entry. \\
\hline ***OAM cell monitor is busy. & Repeat the entry later. \\
\hline ***OAM information exceeds the limit. & OAM information exceeds the limit. Delete unnecessary information before repeating the entry. \\
\hline ***OAMCON/OAMEND delete failure. & Deletion of OAM connecting point or endpoint failed. Check for any OAM cell being transmitted. \\
\hline ***Out of effective bits range. & Specified bit count exceeds the effective range. Check the effective range with the Help Command and Repeat the entry using correct data. \\
\hline ***Package initializing now. & Wait awhile before repeating the entry. \\
\hline ***PC-card access failed. & Access to PCMCIA card failed. Check the card installation condition before repeating the entry. \\
\hline ***PC-card access is busy. & PCMCIA card is being accessed. Repeat the entry later. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***PC-card is not installed. & PCMCIA card is not installed. Install the card before repeating the entry. \\
\hline ***PC-card status failure. & PCMCIA card has failed. Replace the card before repeating the entry. \\
\hline ***PC-card type mismatch. & PCMCIA card is not an ATA card. Check the installed card. \\
\hline ***PNNI connection still existent. & PNNI connection still exists. Delete PNNI connection before repeating the entry. \\
\hline ***PNNI node information is not registered. & Execute set PNNI nodal command. \\
\hline ***Profile information exceeds the limit. & Delete unnecessary profile information before repeating the entry. \\
\hline ***Signaling connection does not exist. & Repeat the entry using correct data. \\
\hline ***Specified line speed dose not execute shaping function. & Shaping cannot be performed at the specified rate. Specify a different shaping rate. \\
\hline ***Switch-Engine initializing now. & Repeat the entry later. \\
\hline ***Switch-Engine is single mode. & Check the mounting status. \\
\hline ***Synchronized failure. & Clock synchronization failed in changing slave to specified line. Check the line status before repeating the entry. \\
\hline ***The function is not supported by buffer on the package. & Check the buffer type. \\
\hline ***The function is not supported by the package. & This function is not supported by the current package. Check the mounted package. \\
\hline ***This card has no space. & There is not enough idle space on the card. Replace the card before repeating the entry. \\
\hline ***This card is write protected. & The card is write protected (the card is a master card). Check the card. \\
\hline ***Throughput exceeds the line rate. & Change the setting. \\
\hline ***Time out. & Tunneling information exceeds the limit. Delete unnecessary information before repeating the entry. \\
\hline ***Timeslot(s) already assigned. & Repeat the entry. \\
\hline ***Total of CIR exceeds the limit. & Delete unnecessary CIR information before repeating the entry. \\
\hline ***Traffic type is inconsistent with profile. & Check the profile with DISPLAY profile command before repeating the entry. \\
\hline ***Tunneling information exceeds the limit. & Repeat the entry using correct data. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command Error Message & Action \\
\hline ***Unchangeable slave line exists. & Specified line is a slave line and cannot switch to another line. Set another line as slave line before repeating the entry. \\
\hline ***Undergoing diagnostics test. & Repeat the entry after the diagnosis. \\
\hline ***Undergoing execution. & Wait awhile. \\
\hline ***Unknown error occurred. & Unknown error has occurred. Contact the system manager. \\
\hline ***Valid VPI + valid VCI exceeded the limit. & The specified VPI+VCI parameter exceeds the valid bit count. Repeat the entry using correct data. \\
\hline ***VC(s) already assigned. & Check the VC information before repeating the entry. \\
\hline ***VPI and/or VCI exceeded the limit of valid bit number. & The specified VPI and/or VCI parameter exceeds the limit. Repeat the entry using correct data. \\
\hline ***Writing failed [Tftp timeout]. & Data write failed. Check the mounting status of the package and flash card before repeating the entry. \\
\hline ***Wrong password. & The entered password does not match the registered password. Repeat the entry using correct data. \\
\hline
\end{tabular}

\section*{Glossary}

A

\section*{AAL}

ATM Adaptation Layer. A collection of standardized protocols that adapt user traffic to 48 -octet payloads that can be placed in a cell-formatted stream.

\section*{ABR}

Available Bit Rate: One of the ATM Forum-defined service layers. ABR supports variable bit rate data traffic with flow control, a minimum guaranteed data transmission rate, and specified performance parameters.

\section*{ACH}

Active Change: When an active CPU/switch module in a redundant chassis changes over to standby, and vice versa (when a standby module becomes active).

\section*{ACT}

Applied Computer Technologies: Software that integrates voice and database technologies. With ACT, the call and the caller's database record arrive at the telephone simultaneously.

\section*{AIS}

Alarm Indication Signal: One of the OAM function types used for fault management. An alarm sent upstream denoting a link failure.

\section*{ATM}

Asynchronous Transfer Mode: A high-bandwidth, low-delay, connection-oriented, packet-like transfer mode in which information is organized into cells, and recurrence of these cells is not necessarily periodic (and, therefore, asynchronous).

\section*{ATM Address}

Defined in the UNI Specification as three 20-byte formats, including country, area, and end-system identifiers.

\section*{ATM Forum}

A consortium that recommends and defines specifications for ATM standards and promotes industry cooperation in implementing ATM strategies.

\section*{ATM-NIC}

ATM Network Interface Card: Electronic circuitry-usually a card that fits into a PC's expansion slot-that works with the network software and computer operating system to transmit and receive messages on the network.

\section*{ATM Switch}

A generic term that usually refers to a hardware-based, self-routing, high-speed switching system rather than a switching element.

B

\section*{Bandwidth}

The width of a communications channel. Transmission capacity of a communications medium, measured in either bps or Hz .

\section*{BCl}

Broadcast Channel Identifier.

\section*{B-ISDN}

Broadband ISDN: A high-speed network standard that allows voice, data, and video to be delivered over the same network.

\section*{BISUP}

Broadband ISDN User's Part: A protocol that defines the signaling messages to control connections and services.

\section*{BRI}

Basic Rate Interface. An ISDN service specification, intended for carrying (compressed) video, voice, and data.

\section*{BUS}

Broadcast and Unknown Server: A server that handles data sent by an LE Client to the broadcast MAC address ('FFFFFFFFFFFF'), all multicast traffic, and initial unicast frames sent by a LAN Emulation Client.

C

\section*{CAC}

Connection Admission Control: Actions taken by the network during the call setup phase or call re-negotiation phase to determine whether a connection request should be accepted or rejected, or whether a re-allocation request can be accommodated.

\section*{CAS}

Channel Associated Signaling: A form of circuit state signaling in which the circuit state is indicated by one or more bits of signaling status sent repetitively and associated with that specific circuit.

\section*{CBR}

Constant Bit Rate: An ATM service category that supports a constant or guaranteed rate to transport services such as video or voice, as well as circuit emulation which requires rigorous timing control and performance parameters.

\section*{CDV}

Cell Delay Variation: A component of cell transfer delay, induced by buffering and cell scheduling. Peak-to-peak CDV is a QoS delay parameter associated with CBR and VBR services.

\section*{CDVT}

Cell Delay Variation Tolerance: The acceptable tolerance of the cell delay variation (jitter). Used in CBR traffic.

\section*{CE}

Circuit Emulation.

\section*{CEPT1}

Conference European des Administration des Postes et des Telecommunications 1. The European standard for digital transmission at the rate of 2.048 Mbps . Same as E-1.

\section*{CEVC}

Circuit Emulation Virtual Circuit: A virtual circuit used in circuit emulation.

\section*{CIR}

Committed Information Rate: The information rate that the network is committed to provide to the user, under any network conditions. (Used in frame relay.)

\section*{CLP}

Cell Loss Priority: A field in the ATM cell header that corresponds to the loss priority of a cell. Lower priority cells ( \(\mathrm{CLP}=1\) ) can be discarded in a congestion situation.

\section*{CLR}

Cell Loss Ratio: A QoS parameter defined as the ratio of lost cells to the total number of transmitted cells.

\section*{CPR}

Common Peer Group: The lowest level peer group in which a set of nodes is represented. A node is represented in a peer group either directly or through one of its ancestors.

\section*{CPU}

Central Processing Unit: The "brain" of the computer that manipulates data and processes instructions.

\section*{Crankback}

A mechanism for partially releasing a connection setup that has encountered a failure. This mechanism allows PNNI to perform alternate routing.

\section*{CTD}

Cell Transfer Delay: The elapsed time between a cell exit event and the corresponding cell entry event for a particular connection. The cell transfer delay between two measurement points is the sum of the total inter-ATM node transmission delay and the total ATM node-processing delay.

\section*{DA}

Destination Address: Information sent in a forward direction indicating the address of the called station or customer.

\section*{DLCI}

Data Link Connection Identifier: The address field in a frame relay header. The name given to the numeric identifier of a specific virtual circuit in a frame relay.

\section*{DRAM}

Dynamic Random Access Memory. The readable/writable memory used to store data.

\section*{DS}

Distributed Single Layer Test Method: An abstract test method in which the upper tester is located in the system under test, and the point of control and observation (PCO) is located at the upper service boundary of the Implementation Under Test (IUT) - for testing one protocol layer. Test events are specified in terms of the abstract service primitives (ASP) at the upper tester above the IUT, and ASPs and/ or protocol data units (PDU) at the lower tester PCO.

\section*{DS-1}

Digital Signal Level 1: North American digital hierarchy signaling standard for transmitting at 1.544 Mbps .

\section*{DS-3}

Digital Signal Level 3: North American digital hierarchy signaling standard for transmitting at 44.736 Mbps .

\section*{DTL}

Data Transit List: A list of nodes and optional link IDs that completely specify a path across a single PNNI peer group.

\section*{E}

\section*{E. 164}

A public network addressing standard that uses a maximum of 16 digits. ATM uses E. 164 addressing for public network addressing.

\section*{E-1}

Rate used by European CEPT carriers. Also known as CEPT1.

\section*{E-3}

Rate used by European CEPT carriers to transmit 16 CEPT1s.

\section*{Egress}

The exit point. Typically refers to information being sent out of, rather than into, a network communications port.

\section*{ELAN}

Emulated Local Area Network: A logical network initiated by using the mechanisms defined by LAN Emulation. This could include ATM and legacy attached end stations.

\section*{EPD}

Early Packet Discard: A procedure for discarding cells related to one user frame to minimize the impact of congestion. Also known as Partial Packet Discard (PPD) or Frame Discard (the official ATM term).

\section*{F}

\section*{FIFO}

First-in First-out: The way that most queues handle calls: the first call to come in is handled first.

G

\section*{GCRA}

Generic Cell Rate Algorithm: A specification for defining cell rate conformance in terms of certain traffic parameters for VBR virtual circuits. Its implementation is commonly known as the Leaky Bucket algorithm.

H

\section*{Hello Packet}

A type of PNNI Routing packet that is exchanged between neighboring logical nodes.

\section*{Hop-by-Hop Route}

A route that is created when each switch along the path uses its own routing knowledge to determine the next hop of the route, with the expectation that all switches will choose consistent hops and the call will reach the desired destination.

\section*{IETF}

Internet Engineering Task Force: A group that developed specifications for the interoperable implementation of IP.

\section*{IISP}

Interim Interswitch Signaling Protocol: A protocol that uses UNI-based signaling (i.e., UNI 3.0/3.1) and pre-fixed routing for switch-to-switch communication. A precursor to, but incompatible with, PNNI.

\section*{ILMI}

Interim Link Management Interface: An ATM Forum-defined interim specification for network management functions between an end user and a network, or between a public network and a private network

\section*{Ingress}

A means of entering. Typically refers to information being sent in to, rather than out of, a network communications port.

\section*{IP}

Internet Protocol: A connectionless protocol that operates at the network layer (layer 3) of the OSI model. This protocol works in conjunction with TCP and is usually identified as TCP/IP.

\section*{IPOA}
(Classical) IP Over ATM: IETF-defined protocols for developing IP-over-ATM networks (i.e., IP support for the QoS classes, ARP over SVC and PVC networks), so that common applications can be supported in an ATM environment. The main issues in the transport of IP over ATM are packet encapsulation and address resolution.

\section*{ITU Q. 2931}

The signaling standard for ATM to support Switched Virtual Connections. This is based on the signaling standard for ISDN.

\section*{L}

\section*{LAN}

Local Area Network: A short-distance, data communications network (typically within a building or campus) used to link computers and peripheral devices (such as printers).

\section*{LANE}

LAN Emulation: Services, functional groups, and protocols that provide for the emulation of LANS (using ATM as a backbone) to allow connectivity among LANand ATM-attached end stations.

\section*{LE}

LAN Emulation. Refer to LANE.

\section*{Leaf}

Endpoint of possibly several destination links of a Point-to-Multipoint connection. (The originating endpoint is the root.)

\section*{LE_ARP}

LAN Emulation Address Resolution Protocol: A message issued by an LE client to solicit the ATM address of another function.

\section*{LEC}

LAN Emulation Client: The entity in end systems that performs data forwarding, address resolution, and other control functions.

Local Exchange Carrier: A telephone company affiliate of a regional Bell operating company or an independent telephone company.

\section*{LECS}

LAN Emulation Configuration Server: This implements the policy-controlled assignment of individual LE clients to different emulated LANs by providing the LES ATM addresses.

\section*{LES}

LAN Emulation Server: This implements the control coordination function for the Emulated LAN. Examples are enabling a LEC to join an ELAN, and resolving MAC to ATM addresses.

\section*{LGN}

Logical Group Node: A single node that represents the lowest level peer groups in the higher level peer group.

\section*{Line Card}

A plug-in electronic Printed Circuit (PC) card that operates some aspect of a network communications device, such as a multi-port physical interface card for terminating communication cables.

\section*{LLC}

Logic Link Control: The upper sub-layer of the IEEE Layer 2 (OSI) protocol that complements the MAC protocol. IEEE standard 802.2 includes end-system addressing and error checking. LLC provides a common access control standard and governs the assembly of data packets and their exchange between data stations.

\section*{LOC}

Loss of Cell Delineation: A condition at the receiver, or a maintenance signal transmitted in the PHY overhead, which indicates that the receiving equipment has lost cell delineation. Used to monitor the performance of the PHY layer.

\section*{LOF}

Loss of Frame: A condition at the receiver, or a maintenance signal transmitted in the PHY overhead, which indicates that the receiving equipment has lost frame delineation. This is used to monitor the performance of the PHY layer.

\section*{Logical Group Node}

A logical node that represents a lower-level peer group as a single point for purposes of operating at one level of the PNNI routing hierarchy.

\section*{Logical Node}

An abstract representation of a peer group or a switching system as a single point.

\section*{Logical Node ID}

A string of bits that unambiguously identifies a logical node within a routing domain.

\section*{LOP}

Loss of Pointer: A condition at the receiver, or a maintenance signal transmitted in the PHY overhead, indicating that the receiving equipment has lost the pointer to the start of cell in the payload. This is used to monitor the performance of the PHY layer.

\section*{LOS}

Loss of Signal: A condition at the receiver, or a maintenance signal transmitted in the PHY overhead, which indicates that the receiving equipment has lost the received signal. This is used to monitor the performance of the PHY layer.

\section*{LPF}

Low Pass Filter: A technique for smoothing or averaging changes to the system clock in a MPEG-2 clock recovery circuit.

\section*{LSAP}

Link Service Access Point: Logical address of boundary between layer 3 and the LLC sub-layer 2.

\section*{MAC}

Media Access Control: IEEE specifications for the lower half of the data link layer (layer 2) that defines topology-dependent access control protocols for IEEE LAN specifications.

\section*{MAC Address}

The address for a device as it is identified at the Media Access Control layer in the network architecture.

\section*{MAT}

Maintenance and Administration Terminal: The command line interface for direct configuration of the communications equipment.

\section*{MBS}

Maximum Burst Size: In the signaling message, the Burst Tolerance (BT) is conveyed through the MBS, which is coded as a number of cells. The BT, together with the SCR and the GCRA, determines the MBS that may be transmitted at the peak rate and still be in conformance with the GCRA.

\section*{MCLR}

Maximum Cell Loss Ratio: The maximum ratio of the number of cells that do not make it across the link or node compared to the total number of cells arriving at the link or node.

\section*{MCR}

Minimum Cell Rate: An ABR service traffic descriptor, in cells per second. The rate at which the source is always allowed to send.

\section*{MIB}

Management Information Base: A directory of the logical names of all information resources that reside in a network and pertain to the network's management. A MIB includes the names of objects it contains and the type of information retained.

\section*{MIB Object}

A collection of attributes that can be used to configure, manage, or analyze an aspect of a network component.

\section*{MPOA}

Multi-Protocol Over ATM: IETF-defined specifications and procedures that enable Network Layer protocols to operate directly on top of ATM and provide end-to-end internetworking between hosts in an ATM and non-ATM environment.

\section*{MPOA Client}

Multi-Protocol Over ATM Client: A device that implements the client side of one or more of the MPOA protocols. An MPOA Client is either an Edge Device Functional Group (EDFG) or a Host Behavior Functional Group (HBFG).

\section*{MPOA Server}

Multi-Protocol Over ATM Server: A device that implements the server side of one or more of the MPOA protocols.

\section*{MPOA Service Area}

Multi-Protocol Over ATM Service Area: The collection of server functions and their clients. A collection of physical devices consisting of an MPOA server plus the set of clients served by that server.

\section*{MPOA Target}

Multi-Protocol Over ATM Target: A set of protocol address, path attributes (e.g., internetwork layer QoS, other information derivable from received packet) describing the intended destination and its path attributes that MPOA devices may use as lookup keys.

\section*{MTBF}

Mean Time Between Failures: The length of time a user may reasonably expect a device or system to work before an incapacitating fault occurs.

\section*{MTP}

Message Transfer Part: Level 1 through 3 protocols of the SS7 protocol stack. MTP 3 (level 3) is used to support BISUP.

\section*{Multicasting}

The transmit operation of a single PDU by a source interface where the PDU reaches a group of one or more destinations.

\section*{Multiplexing}

A function within a layer that interleaves information from multiple connections into one connection.

\section*{Multipoint Access}

User access in which more than one terminal equipment (TE) is supported by a single network termination.

\section*{Multipoint-to-Multipoint Connection}

A collection of associated ATM VC or VP links and their associated nodes.

\section*{MUX}

Multiplexer: Electronic equipment that allows two or more signals to pass over one communications circuit, such as a phone line, a microwave circuit, or a through-the-air TV signal. There are many multiplexing techniques to accommodate both analog and digital circuits.

NC
Network Connection
NG
No good: A command occasionally displayed on the MAT indicating a failure of a particular switch entity.

\section*{NIC}

Network Interface Card: The attachment that connects a device to a network. The NIC, usually a PC expansion board, executes the code needed by the connected device to share a cable or some other media with other stations.

\section*{N-ISDN}

Narrowband Integrated Services Digital Network: Services include basic rate interface (2B+D or BRI) and primary rate interface (23B+D or PRI). Supports narrowband speeds at/or below 1.5 Mbps .

\section*{NMS}

Network Management System: An entity that implements functions at the Network Management Layer. It may also include Element Management Layer functions. A Network Management System may manage one or more other Network Management Systems.

\section*{NMS Environment}

A set of NMSs that cooperate to manage one or more subnetworks.

\section*{NNI}

Network Node Interface: The standard interface between two network nodes (typically ATM switches) within the same network.

\section*{Node}

Synonymous with logical node.

\section*{NSAP}

Network Service Access Point: OSI generic standard for a network address consisting of 20 octets. ATM has specified E. 164 for public network addressing and the NSAP address structure for private network addresses.

0

\section*{OAM}

Operations, Administration, and Maintenance: A group of network management functions that provide network fault indication, performance information, and data and diagnosis functions.

\section*{OC}

Optical Carrier. Fiber-based network communication medium.

\section*{Octet}

A term for eight (8) bits that is sometimes used interchangeably with "byte."

\section*{OOF}

Out of Frame. Refer to LOF.

\section*{OSI}

Open Systems Interconnection: The OSI Reference Model (OSIRM) introduced by the ISO consists of seven (7) layers, each specifying the protocols and functions required for two nodes to communicate using the underlying network infrastructure and enable user-defined applications to access the network. The seven layers are Physical, Data Link, Network, Transport, Session, Presentation, and Application.

P

\section*{Packet}

Term for the OSIRM Layer 3 data transfer unit defined for packet switching networks. A packet is of variable or fixed size, and is passed from one network node to another. Successive packets can belong to the same message, but they have individual headers and trailers and may be routed independently through the network.

\section*{Packet Switch}

A device that routes and forwards structured messages (packets).

\section*{Packet Switching}

A data transmission method used in a network where user information is segmented and routed in discreet data envelopes called packets, each with its own appended control information for routing, sequencing, and error checking. Packet switched networks typically employ a full three-layer protocol stack (physical link, data link, network) in every node.

\section*{PCMCIA}

Personal Computer Memory Card International Association: Standardizes creditcard size packages for memory and input/output (modems, LAN cards etc.) for computers, laptops, palmtops, etc. There are three physical standard for PCMCIA cards-Type \(1,2,3\) and undefined standard called type 4 , which only Toshiba has at this moment.

\section*{PCR}

Peak Cell Rate: The cell rate (in cells per second) which the source may never exceed.

Program Clock Reference: A timestamp that is inserted by the MPEG-2 encoder into the Transport Stream to aid the decoder in the recovering and tracking the encoder clock.

\section*{PDU}

Protocol Data Unit. A term that describes the primitive passed across the different layers containing control and data information.

\section*{PG}

Peer Group: A set of logical nodes which are grouped for purposes of creating a routing hierarchy. PTSEs are exchanged among all members of the group.

\section*{PGL}

Peer Group Leader: A single real physical system which has been elected to perform some of the functions associated with a logical group node.

\section*{Physical Layer (PHY) Connection}

The physical transmission medium that links devices, over fiber or copper.

\section*{PLCP}

Physical Layer Convergence Protocol: The PLCP is defined by the IEEE 802.6. It is used for DS3 transmission of ATM. ATM cells are encapsulated in a 12 5microsecond frame defined by the PLCP which is defined inside the DS3 Mframe.

\section*{PNNI}

Private Network-Network Interface: A routing information protocol that enables extremely scalable, full function, dynamic multi-vendor ATM switches to be integrated in the same network.

\section*{PPD}

Partial Packet Discard: A procedure for discarding cells related to one user frame to minimize the impact of congestion.

\section*{PRI}

Primary Rate Interface: An ISDN specification that provides twenty-three 64-kbps B-channels and one 64-kbps D-channel, or thirty 64-kbps B-channels and one 64kbps D-channel.

\section*{Private ATM Address}

A 20-byte address used to identify an ATM connection termination point.

\section*{Protocol}

Rules and formats (semantic and syntactic) that determine the communication behavior of layer entities in the performance of the layer functions.

\section*{P-to-MP}

Point-to-Multipoint Connection: A single ingress VC/VP copied to multiple egress endpoints. Traffic only flows from the root to the endpoints.

\section*{P-to-P}

Point-to-Point Connection: A connection with only two endpoints.

\section*{PTSE}

PNNI Topology State Element: A collection of PNNI information that is flooded among all logical nodes within a peer group.

\section*{PTSP}

PNNI Topology State Packet: A type of PNNI Routing packet that is used for flooding PTSEs among logical nodes within a peer group.

\section*{PVC}

Permanent Virtual Circuit: This is a link with static route defined in advance, usually by manual setup.

\section*{PVCC}

Permanent Virtual Circuit Connection: A Virtual Circuit Connection (VCC) is an ATM connection where switching is performed on the VPI/VCI fields of each cell. A Permanent VCC is one which is provisioned through some network management function and left up indefinitely.

\section*{PVP}

Permanent Virtual Path: A grouped set of PVCs that exist between two crosspoints (e.g., switches). See also Soft PVP.

\section*{PVPC}

Permanent Virtual Path Connection: An ATM connection where switching is performed on the VPI field only of each cell. A Permanent VPC is one which is provisioned through some network management function and left up indefinitely.

Q

\section*{Q. 2931}

ITU-T recommendation to provide SVC specifications and standards. Used in signaling to set up and tear down virtual connections.

\section*{QoS}

Quality of Service: Performance of transmission over a given virtual connection (VC), as measured by several QoS parameters (Cell Loss Ratio, Cell Transfer Delay, Cell Delay Variation, etc.).

\section*{RCC}

Routing Control Channel: An SVC established between two PNNI leaders of a multi-level hierarchy, enabling the exchange of PTSEs.

\section*{RDI}

Remote Defect Indication: A link failure fault management indication (downstream).

\section*{Route Server}

A physical device that runs one or more network layer routing protocols, and uses a route query protocol to provide forwarding descriptions to clients.

\section*{Router}

A physical device that is capable of forwarding packets based on network layer information, using one or more network layer routing protocols.

\section*{Routing}

A network management function responsible for forwarding packets from their source to their destination, using look-up routing tables and routing protocols (such as EGP, OSPF, and RIP).

\section*{RS-232C}

A set of standards specifying various electrical and mechanical characteristics for interfaces between computers, terminals, and modems. The standard applies to both synchronous and asynchronous binary data transmission.

\section*{S}

\section*{SAP}

Service Access Point: Software interface between the layers in the OSI model through which layers can communicate with each other by passing over PDUs. SAPs are identified as OSI addresses.

\section*{SCCP}

Signaling Connection and Control Part: A SS7 protocol that provides additional functions to the Message Transfer Part (MTP). It typically supports Transaction Capabilities Application Part (TCAP).

\section*{SCP}

Service Control Point: A computer and database system that executes service logic programs to provide customer services through a switching system. Messages are exchanged with the SSP through the SS7 network.

\section*{SCR}

Sustainable Cell Rate: An ATM traffic parameter (in cells per second) that characterizes a bursty source and specifies the average rate at which cells can be sent over a virtual connection.

\section*{SDT}

Structured Data Transfer: An AAL1 data transfer mode in which data is structured into blocks, which are then segmented into cells for transfer.

\section*{SNMP}

Simple Network Management Protocol: The IETF standard management protocol for TCP/IP networks.

\section*{Soft PVC}

Soft Permanent Virtual Connection: A PVC-type connection where SVCs' services are used for virtual circuit establishment and automatic re-routing within the network.

\section*{SONET}

Synchronous Optical Network: An ANSI standard for transmitting information over optical fiber. This standard is used or accepted in the United States and Canada and is a variation of the SDH International standard.

\section*{Source Route}

As used in this document, a hierarchically complete source route. The course of connecting a pending network call request is determined by the initial switch.

\section*{Source Traffic}

A set of traffic parameters belonging to the ATM Traffic Descriptor used during the connection set-up to capture the intrinsic traffic characteristics of the connection requested by the source.

\section*{SPE}

SONET Synchronous Payload Envelope. The SONET frame format is divided into two main areas: Synchronous Payload Envelope (SPE) and Transport Overhead \((\mathrm{TOH})\). The SPE contains the information being transported by the frame.

\section*{SR}

Source Routing: A bridged method whereby the source at a data exchange determines the route that subsequent frames will use.

\section*{SRT}

Source Routing Transparent: An IETF Bridging Standard combining Transparent Bridging and Source Route Bridging.

\section*{SSCOP}

Service Specific Connection Oriented Protocol: An adaptation layer protocol defined in ITU-T Specification: Q. 2110.

\section*{STM}

Synchronous Transfer Module: A basic building block used for a synchronous multiplexing hierarchy defined by the CCITT/ITU-T.

\section*{STM-1}

Synchronous Transport Module 1: SDH standard for transmission over OC-3 optical fiber at 155.52 Mbps .

\section*{STM-n}

Synchronous Transport Module-n: SDH standard for transmission over optical fiber at n times the basic STM-1 rate.

\section*{STS-1}

Synchronous Transport Signal 1: SONET standard for transmission over OC-1 optical fiber at 51.84 Mbps .

\section*{STS-n}

Synchronous Transport Signal-n: SONET signaling standard for transmission over optical fiber at n times the basic STS-1 signal.

\section*{STS-nc}

Synchronous Transport Signal "n" concatenated: SONET standards for transmission over OC-n optical fiber by multiplexing "n" STS-1 frames.

\section*{Sublayer}

A logical sub-division of a layer.

\section*{Subnetwork (subnet)}

In general, a collection of managed entities grouped together from a connectivity perspective, according to their ability to transport ATM cells. For MPOA, more specific terms are Internetwork Address Sub-Group, Direct Set, Host Apparent Address Sub-Group, and One Hop Set.

\section*{subNMS}

Subnetwork Management System: A Network Management System that is managing one or more subnetworks and that is managed by one or more Network Management Systems.

\section*{Summary Address}

An address prefix that tells a node how to summarize reachability information.

\section*{SVC}

Switched Virtual Circuit: A connection established via signaling. The user defines the endpoints when the call is initiated.

\section*{SVCC}

Switched Virtual Circuit Connection: A Switched VCC is one which is established and taken down dynamically through control signaling.

\section*{SVPC}

Switched Virtual Path Connection: A Switched Virtual Path Connection is one which is established and taken down dynamically through control signaling. A Virtual Path Connection (VPC) is an ATM connection where switching is performed on the VPI field only of each cell.

\section*{Switched Connection}

A connection established via signaling.

\section*{Switching System}

One or more systems that act together and appear as a single switch for the purposes of PNNI routing.

\section*{T}

\section*{TAXI}

Transparent Asynchronous Transmitter/Receiver Interface: An interface that provides connectivity over multimode fiber links at a speed of 100 Mbps .

\section*{TCAP}

Transaction Capabilities Applications Part: A connectionless SS7 protocol for the exchange of information outside the context of a call or connection. It typically runs over SCCP and MTP 3.

\section*{TE}

Terminal Equipment: One of the two ends (at the protocol level) of an ISDN connection (typically a PBX or a computer). An endpoint.

\section*{Telnet}

A virtual terminal protocol that allows for remote host access.

\section*{T1E1}

An ANSI standards sub-committee dealing with network interfaces.

\section*{T1M1}

An ANSI standards sub-committee dealing with inter-network Operations, Administration and Maintenance.

\section*{T1Q1}

An ANSI standards sub-committee dealing with performance.

\section*{T1S1}

An ANSI standards sub-committee dealing with services, architecture and signaling.

\section*{T1X1}

An ANSI standards sub-committee dealing with digital hierarchy and synchronization.

\section*{TCAP}

Transaction Capabilities Application Part.

\section*{TCP}

Transmission Control Protocol: A standardized transport protocol developed for interconnecting end systems over IP-based networks.

\section*{TDM}

Time Division Multiplexing: A method in which a transmission facility is multiplexed among a number of channels by allocating the facility to the channels on the basis of time slots.

\section*{TFTP Server}

Trivial File Transfer Protocol: A simplified version of FTP that transfers files but does not provide password protection or user-directory capability. It is associated with the TCP/IP family of protocols.

\section*{UBR}

Unspecified Bit Rate: An ATM service category that does not specify traffic-related service guarantees. Specifically, UBR does not include per-connection negotiated bandwidth. No numerical commitments are made regarding cell loss ratio or cell transfer delay.

\section*{UNI}

User-Network Interface: An interface point between ATM end users and a private ATM switch, or between a private ATM switch and the public carrier ATM network. Defined by physical and protocol specifications, UNI is the standard adopted by the ATM Forum to define connections between users (or end stations) and a local switch.

\section*{UPC}

Usage Parameter Control: Actions taken by the network to monitor and control traffic that could affect the QoS of established connections.

\section*{VBR}

Variable Bit Rate: An ATM Forum-defined service category which supports variable bit rate data traffic with average and peak traffic parameters.

\section*{VBR-NRT}

Variable Bit Rate-Non-Real Time: One of the two VBR service types for transmitting traffic where timing information is not critical. VBR-NRT is delaytolerant and, therefore, well-suited for bursty traffic such as data communications.

\section*{VBR-RT}

Variable Bit Rate—Real Time: One of the two VBR service types for transmitting traffic that depends on timing (between source and destination) and control information. VBR—RT is suitable for carrying delay-sensitive traffic such as packetized (compressed) video and audio.

\section*{VC}

Virtual Channel: One of several logical connections defined within one virtual path.
Virtual Circuit: A connection between a source and a destination, where a fixed route is chosen for the entire session and bandwidth is dynamically allocated to the user.
Virtual Connection: A connection between a source and a destination, where packets are forwarded along the same path and bandwidth is not permanently allocated until it is used.

\section*{VCC}

Virtual Circuit Connection: A concatenation of VCLs. An ATM connection where switching is performed on the VPI/VCI fields of each cell.

\section*{VCCI}

VCC Identifier.

\section*{VCl}

Virtual Channel Identifier: A unique numerical tag as defined by a 16-bit field in the ATM cell header that identifies a virtual channel, over which the cell is to travel.

\section*{VCL}

Virtual Channel Link: A means of transporting ATM cells between the point where a VCI value is assigned and the point where that value is translated or removed.

\section*{VP}

Virtual Path: A logical connection between two ATM devices (CPEs, switches). A virtual path consists of a set of virtual channels.

\section*{VPC}

Virtual Path Connection: A concatenation of VPLs. Switching cells within an ATM switch for a given VPC is based on the VPI value indicated on the cell header.

\section*{VPI}

Virtual Path Identifier: A value in the cell header that identifies the virtual path to which the cell belongs. The field is eight (8) bits in cells traversing the UNI circuit and 12 bits in cells traversing network circuits.

\section*{VPL}

Virtual Path Link: A means of unidirectional transport of ATM cells between the point where a VPI value is assigned and the point where that value is translated or removed.

\section*{WAN}

Wide Area Network: A network that spans a large geographic area and typically includes public telephone circuits.

\section*{XATOM}

Expandable ATM Output Modular Switch.```

