The content of this customer NTP supports the SN08 (DMS) software release.

Bookmarks used in this NTP highlight the changes between the NA015 baseline and the current release. The bookmarks provided are color-coded to identify release-specific content changes. NTP volumes that do not contain bookmarks indicate that the NA015 baseline remains unchanged and is valid for the current release.

Bookmark Color Legend

Black: Applies to content for the NA015 baseline that is valid through the current release.

Red: Applies to new or modified content for NA017 that is valid through the current release.

Blue: Applies to new or modified content for NA018 (SN05 DMS) that is valid through the current release.

Green: Applies to new or modified content for SN06 (DMS) that is valid through the current release.

Purple: Applies to new or modified content for SN07 (DMS) that is valid through the current release.

Pink: Applies to new or modified content for SN08 (DMS) that is valid through the current release.

Attention!
Adobe® Acrobat® Reader™ 5.0 or higher is required to view bookmarks in color.
Publication History

March 2005
Standard release 17.07 for software release SN08 (DMS). No changes have been made for SN08 (DMS) features.

Volume 7
New procedure – Backplane replacement, “NTRX4002 in NTRX40AA” due to CR Q01166307.

March 2005
Standard release 17.06 for software release SN08 (DMS). This release is current for the SN08 (DMS) software release, although no changes have been made for SN08 (DMS) features.

Volume 3
Modified procedure – Replacing processor and memory cards in an XPM (step 26). This change corrects the re-direction from step 26, and is due to CR Q01047311.

December 2004
Standard release 17.05 for software release SN07 (DMS).

Volume 7
New procedure for CR Q00840334 – NTMX82 in a DTCO2

September 2004
Standard release 17.04 for software release SN07 (DMS). This release is current for the SN07 (DMS) software release, although no changes have been made for SN07 (DMS) features.

Volume 2
Modified procedure - Bus interface cards in an LCD
Modified procedure - NTBX71 in an LCME
Modified procedure - NT9X30 in an LPP LIS

Volume 3
Modified procedure - NT2X70 in an XPM

Volumes 5
All of the changes below are due to CR Q00855532:

Modified procedure - NT6X40 in an SMA
Modified procedure - NT6X40 in an SMA-MVI-20
Modified procedure - NT6X40 in an SMA2
March 2004
Standard release 17.03 for software release SN06 (DMS). Updates made for this release are shown below:

Volume 1
Modified card replacement procedure: Power converter cards in a SuperNode SE 16k ENET - Card NT9X30AB is Manufacture Discontinued and is replaced by new card NT9X30AC (Note - there is a bookmark for each changed reference).

Volume 2
No changes

Volume 3
Modified card replacement procedure: Power converter cards in trunk and service modules.

Volumes 4 - 7
No changes

September 2003
Standard release 17.02 for software release SN06 (DMS). Updates made for this release are shown below:

Volume 1
Modified card replacement procedure: Power converter cards in a Supernode SE CM/SLM.

Volume 2
Modified card replacement procedure: NT6X30 in LCE-type frames.

Volumes 3 - 7
No changes

June 2003
Preliminary release 17.01 for software release SN06 (DMS). Updates for this release are shown below:

Volume 1
No changes

Volume 2
No changes
Volume 3
Added new card replacement procedure: SPM NTLX99BA STM-1 for DMS Spectrum Peripheral Module.

Volumes 4 - 7
No changes
Contents

Card Replacement Procedures
Volume 2 of 7

NTP Summary Contents vii

1 Line concentrating module card replacement procedures 1-1
 Introduction 1-1
 Application 1-1
 Common procedures 1-1
 Action 1-1
 Recording card replacement activities 1-2
 LCM shelf layouts 1-3
 Bus interface cards in an LCD 1-13
 Control complex cards in LCM-type PMs 1-31
 Line cards in an LCE line drawer 1-39
 NT6X30 in LCE-type frames 1-47
 NTBX71 in an LCME 1-62
 Power cards in an LCE line drawer 1-73
 Power cards in LCM-type PMs 1-79

2 Line module card replacement procedures 2-1
 Introduction 2-1
 Application 2-1
 Common procedures 2-1
 Action 2-1
 Recording card replacement activities 2-2
 LM shelf layouts 2-3
 Control complex cards in a line module controller 2-9
 Interface and power converter cards in an LM line drawer 2-16
 Line cards in an LM line drawer 2-24
 NT2X05 in a line module controller 2-30
 NT2X70 in a line module controller 2-36

3 Link peripheral processor card replacement procedures 3-1
 Introduction 3-1
4 SuperNode SE LIS or ENI card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4-1</td>
</tr>
<tr>
<td>Application</td>
<td>4-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>Action</td>
<td>4-1</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>4-2</td>
</tr>
<tr>
<td>SuperNode SE link interface shelf layouts</td>
<td>4-3</td>
</tr>
<tr>
<td>Common fill cards in a SuperNode SE LIS or ENI shelf</td>
<td>4-6</td>
</tr>
<tr>
<td>EIU cards in a SuperNode SE LIS</td>
<td>4-13</td>
</tr>
<tr>
<td>FRIU cards in a SuperNode SE LIS</td>
<td>4-24</td>
</tr>
<tr>
<td>LIU7 cards in a SuperNode SE LIS or ENI shelf</td>
<td>4-38</td>
</tr>
<tr>
<td>NIU cards in a SuperNode SE LIS</td>
<td>4-49</td>
</tr>
<tr>
<td>NT9X30 in a SuperNode SE LIS</td>
<td>4-64</td>
</tr>
<tr>
<td>XLIU cards in a SuperNode SE LIS</td>
<td>4-91</td>
</tr>
</tbody>
</table>

5 MTM card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1X76 in an MTM</td>
<td>5-2</td>
</tr>
<tr>
<td>NT3X67 in an MTM</td>
<td>5-10</td>
</tr>
</tbody>
</table>

6 SuperNode message switch card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>6-1</td>
</tr>
<tr>
<td>Application</td>
<td>6-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>6-1</td>
</tr>
<tr>
<td>Action</td>
<td>6-2</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>6-2</td>
</tr>
<tr>
<td>SuperNode MS shelf layouts</td>
<td>6-3</td>
</tr>
<tr>
<td>Interface cards in a SuperNode MS</td>
<td>6-5</td>
</tr>
</tbody>
</table>
Manually busying LIM-to-MS SR128 links 6-26
Returning LIM-to-MS SR128 links to service 6-33
System cards in a SuperNode MS 6-39

7 SuperNode SE message switch card replacement procedures 7-1
 Introduction 7-1
 Application 7-1
 Common procedures 7-1
 Action 7-2
 Recording card replacement activities 7-2
 SuperNode SE message switch shelf layouts 7-3
 Interface paddle boards in a SuperNode SE MS 7-5
 System cards in a SuperNode SE MS 7-25

8 Message switch and buffer card replacement procedures 8-1
 Introduction 8-1
 Application 8-1
 Common procedures 8-1
 Action 8-1
 Recording card replacement activities 8-2
 MSB shelf layouts 8-3
 Control complex cards in an MSB 8-12
 NT2X70 in an MSB 8-20
 NT2X70 in an ST7G or STCM 8-35
 NT6X40 in an MSB 8-48
 NT6X68 in an MSB 8-55
 Processor and memory cards in an MSB 8-62
 Signaling terminal cards in an MSB 8-70

9 SuperNode network card replacement procedures 9-1
 Introduction 9-1
 Application 9-1
 Common procedures 9-1
 Action 9-2
 Recording card replacement activities 9-2
 Network shelf layouts 9-3
 Crosspoint and interface cards in a 64k or 128k ENET 9-15
 Power converter cards in JNET shelves 9-40
 System cards in a 64k or 128k ENET 9-49
 System, interface, and crosspoint cards in JNET shelves 9-72

10 Office alarm unit card replacement procedures 10-1
 Introduction 10-1
 Application 10-1
 Common procedures 10-1
 Action 10-1
 Recording card replacement activities 10-2
11 Remote line module card replacement procedures 11-1

 Introduction 11-1
 Application 11-1
 Common procedures 11-1
 Action 11-1
 Recording card replacement activities 11-2
 RLM shelf layouts 11-3
 Control complex cards in a remote line controller 11-9
 Line cards in an RLM line drawer 11-16
 NT2X05 in a remote line controller 11-22
 NT2X70 in a remote line controller 11-28
NTP Summary Contents

Card Replacement Procedures

Volume 1 of 7

About this document
- How to check the version and issue of this document Vol. 1, xxvii
- References in this document Vol. 1, xxvii
- What precautionary messages mean Vol. 1, xxviii
- How commands, parameters, and responses are represented Vol. 1, xxix
 - Input prompt (>) Vol. 1, xxix
 - Commands and fixed parameters Vol. 1, xxix
 - Variables Vol. 1, xxix
 - Responses Vol. 1, xxix

1 Breaker interface panel card replacement procedures

- Introduction Vol. 1, 1-1
 - Application Vol. 1, 1-1
 - Common procedures Vol. 1, 1-1
 - Action Vol. 1, 1-1
- Recording card replacement activities Vol. 1, 1-2
- Circuit breaker in a BIP Vol. 1, 1-3
- NTNY24 in a BIP Vol. 1, 1-7
- NTNY25 in a BIP Vol. 1, 1-11

2 SuperNode computing module card replacement procedures

- Introduction Vol. 1, 2-1
 - Application Vol. 1, 2-1
 - Common procedures Vol. 1, 2-1
 - Action Vol. 1, 2-2
- Recording card replacement activities Vol. 1, 2-2
- SuperNode CM shelf layouts Vol. 1, 2-3
- NT9X20 in a SuperNode CM Vol. 1, 2-5
- System cards in a SuperNode CM Vol. 1, 2-22
3 SuperNode SE computing module and system load module card replacement procedures Vol. 1, 3-1
 Introduction Vol. 1, 3-1
 Application Vol. 1, 3-1
 Common procedures Vol. 1, 3-1
 Action Vol. 1, 3-2
 Recording card replacement activities Vol. 1, 3-2
 SuperNode SE CM/SLM shelf layouts Vol. 1, 3-3
 NT9X44 in a SuperNode SE CM/SLM Vol. 1, 3-5
 NT9X46 in a SuperNode SE CM/SLM Vol. 1, 3-27
 NT9X62 in a SuperNode SE CM/SLM Vol. 1, 3-45
 Power converter cards in a SuperNode SE CM/SLM Vol. 1, 3-67
 Replace system cards in a SuperNode SE CM/SLM Vol. 1, 3-85

4 Digital carrier module card replacement procedures Vol. 1, 4-1
 Introduction Vol. 1, 4-1
 Application Vol. 1, 4-1
 Common procedures Vol. 1, 4-1
 Action Vol. 1, 4-1
 Recording card replacement activities Vol. 1, 4-2
 DCM shelf layouts Vol. 1, 4-3
 Control complex cards in a digital carrier module Vol. 1, 4-8
 NT2X35 in a digital carrier module Vol. 1, 4-13
 NT2X36 in a digital carrier module Vol. 1, 4-27
 NT3X65 in a digital echo suppressor Vol. 1, 4-37
 Power converter cards in a digital carrier module Vol. 1, 4-47

5 Enhanced link peripheral processor card replacement procedures Vol. 1, 5-1
 Introduction Vol. 1, 5-1
 Application Vol. 1, 5-1
 Common procedures Vol. 1, 5-1
 Action Vol. 1, 5-1
 Recording card replacement activities Vol. 1, 5-2
 ELPP shelf layouts Vol. 1, 5-3
 Common fill paddle boards in an ELPP LIS Vol. 1, 5-9
 HLIU cards in an ELPP LIS Vol. 1, 5-17
 HSLR cards in an ELPP LIS Vol. 1, 5-27
 NT9X13 in an ELPP LIM unit Vol. 1, 5-36
 System and power cards in an ELPP LIM unit Vol. 1, 5-48

6 SuperNode SE enhanced network card replacement procedures Vol. 1, 6-1
 Introduction Vol. 1, 6-1
 Application Vol. 1, 6-1
 Common procedures Vol. 1, 6-1
 Action Vol. 1, 6-2
7 File processor card replacement procedures Vol. 1, 7-1
- Introduction Vol. 1, 7-1
- Application Vol. 1, 7-1
- Common procedures Vol. 1, 7-1
- Action Vol. 1, 7-1
- Recording card replacement activities Vol. 1, 7-2
- SuperNode Multicomputing Base shelf layouts Vol. 1, 7-3
- NT9x89 in a storage device shelf in a file processor Vol. 1, 7-6
- NT9x90 in a storage device shelf in a file processor Vol. 1, 7-18
- NT9x91 in a storage device shelf in a file processor Vol. 1, 7-33
- System cards in a file processor Vol. 1, 7-43

8 Frame supervisory panel and modular supervisory panel card replacement procedures Vol. 1, 8-1
- Introduction Vol. 1, 8-1
- Application Vol. 1, 8-1
- Common procedures Vol. 1, 8-1
- Action Vol. 1, 8-1
- Recording card replacement activities Vol. 1, 8-2
- FSP cards in a 42-in. (106.7-cm) SuperNode cabinet Vol. 1, 8-3
- NT0x36 in a cabinetized input/output equipment frame Vol. 1, 8-8
- NT0x36 in a cabinetized trunk module equipment frame Vol. 1, 8-29
- NT0x36 in an input/output equipment frame Vol. 1, 8-53
- NT0x36 in an international cabinet auxiliary module Vol. 1, 8-74
- NT0x91 in a CPCE frame Vol. 1, 8-98
- NT0x91 in a digital carrier equipment frame Vol. 1, 8-112
- NT0x91 in a line module equipment frame Vol. 1, 8-123
- NT0x91 in an MS6E Vol. 1, 8-133
- NT0x91 in an MS7E, ST7E, or ST6E Vol. 1, 8-147
- NT0x91 in a network equipment frame Vol. 1, 8-159
- NT0x91 in a trunk module equipment frame Vol. 1, 8-172
- NT6X36 in LCE-type frames and CLCE Vol. 1, 8-192
- NTRX41 in MSP in streamline B cabinets Vol. 1, 8-197

9 Input/output device card replacement procedures Vol. 1, 9-1
- Introduction Vol. 1, 9-1
- Application Vol. 1, 9-1
- Common procedures Vol. 1, 9-1
- Action Vol. 1, 9-1
Card Replacement Procedures
Volume 2 of 7

1 Line concentrating module card replacement procedures Vol. 2, 1-1
 Introduction Vol. 2, 1-1
 Application Vol. 2, 1-1
 Common procedures Vol. 2, 1-1
 Action Vol. 2, 1-1
 Recording card replacement activities Vol. 2, 1-2
 LCM shelf layouts Vol. 2, 1-3
 Bus interface cards in an LCD Vol. 2, 1-13
 Control complex cards in LCM-type PMs Vol. 2, 1-31
 Line cards in an LCE line drawer Vol. 2, 1-39
 NT6X30 in LCE-type frames Vol. 2, 1-47
 NTBX71 in an LCME Vol. 2, 1-62
 Power cards in an LCE line drawer Vol. 2, 1-73
 Power cards in LCM-type PMs Vol. 2, 1-79

2 Line module card replacement procedures Vol. 2, 2-1
 Introduction Vol. 2, 2-1
 Application Vol. 2, 2-1
 Common procedures Vol. 2, 2-1
 Action Vol. 2, 2-1
 Recording card replacement activities Vol. 2, 2-2
 LM shelf layouts Vol. 2, 2-3
 Control complex cards in a line module controller Vol. 2, 2-9
 Interface and power converter cards in an LM line drawer Vol. 2, 2-16
 Line cards in an LM line drawer Vol. 2, 2-24
 NT2X05 in a line module controller Vol. 2, 2-30
 NT2X70 in a line module controller Vol. 2, 2-36
3 Link peripheral processor card replacement procedures

Introduction Vol. 2, 3-1
Application Vol. 2, 3-1
Common procedures Vol. 2, 3-1
Action Vol. 2, 3-1

Recording card replacement activities Vol. 2, 3-2
LPP shelf layouts Vol. 2, 3-3
APU cards in an LPP LIS Vol. 2, 3-9
Common fill paddle boards in an LPP LIS Vol. 2, 3-36
EIU cards in an LPP LIS Vol. 2, 3-47
LIU7 cards in an LPP LIS Vol. 2, 3-57
FRIU cards in an LPP LIS Vol. 2, 3-68
NIU processor and controller cards in an LPP LIS Vol. 2, 3-82
NT9X13 in an LPP LIM unit Vol. 2, 3-89
NT9X30 in an LPP LIS Vol. 2, 3-100
NT9X74 in an LPP LIS Vol. 2, 3-126
NTDX16 in an LPP LIS Vol. 2, 3-140
NTEX28 in an NIU in an LPP LIS Vol. 2, 3-145
System and power cards in an LPP LIM unit Vol. 2, 3-155
VPU cards in an LPP LIS Vol. 2, 3-168
XLIU cards in an LPP LIS Vol. 2, 3-177

4 SuperNode SE LIS or ENI card replacement procedures

Introduction Vol. 2, 4-1
Application Vol. 2, 4-1
Common procedures Vol. 2, 4-1
Action Vol. 2, 4-1

Recording card replacement activities Vol. 2, 4-2
SuperNode SE link interface shelf layouts Vol. 2, 4-3
Common fill cards in a SuperNode SE LIS or ENI shelf Vol. 2, 4-6
EIU cards in a SuperNode SE LIS Vol. 2, 4-13
FRIU cards in a SuperNode SE LIS Vol. 2, 4-24
LIU7 cards in a SuperNode SE LIS or ENI shelf Vol. 2, 4-38
NIU cards in a SuperNode SE LIS Vol. 2, 4-49
NT9X30 in a SuperNode SE LIS Vol. 2, 4-64
XLIU cards in a SuperNode SE LIS Vol. 2, 4-91

5 MTM card replacement procedures

NT1X76 in an MTM Vol. 2, 5-2
NT3X67 in an MTM Vol. 2, 5-10

6 SuperNode message switch card replacement procedures

Introduction Vol. 2, 6-1
Application Vol. 2, 6-1
Common procedures Vol. 2, 6-1
Action Vol. 2, 6-2
7 SuperNode SE message switch card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Vol. 2</td>
<td>7-1</td>
</tr>
<tr>
<td>Application</td>
<td>Vol. 2</td>
<td>7-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>Vol. 2</td>
<td>7-1</td>
</tr>
<tr>
<td>Action</td>
<td>Vol. 2</td>
<td>7-2</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>Vol. 2</td>
<td>7-2</td>
</tr>
<tr>
<td>SuperNode SE message switch shelf layouts</td>
<td>Vol. 2</td>
<td>7-3</td>
</tr>
<tr>
<td>Interface paddle boards in a SuperNode SE MS</td>
<td>Vol. 2</td>
<td>7-5</td>
</tr>
<tr>
<td>System cards in a SuperNode SE MS</td>
<td>Vol. 2</td>
<td>7-25</td>
</tr>
</tbody>
</table>

8 Message switch and buffer card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Vol. 2</td>
<td>8-1</td>
</tr>
<tr>
<td>Application</td>
<td>Vol. 2</td>
<td>8-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>Vol. 2</td>
<td>8-1</td>
</tr>
<tr>
<td>Action</td>
<td>Vol. 2</td>
<td>8-1</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>Vol. 2</td>
<td>8-2</td>
</tr>
<tr>
<td>MSB shelf layouts</td>
<td>Vol. 2</td>
<td>8-3</td>
</tr>
<tr>
<td>Control complex cards in an MSB</td>
<td>Vol. 2</td>
<td>8-12</td>
</tr>
<tr>
<td>NT2X70 in an MSB</td>
<td>Vol. 2</td>
<td>8-20</td>
</tr>
<tr>
<td>NT2X70 in an ST7G or STCM</td>
<td>Vol. 2</td>
<td>8-35</td>
</tr>
<tr>
<td>NT6X40 in an MSB</td>
<td>Vol. 2</td>
<td>8-48</td>
</tr>
<tr>
<td>NT6X68 in an MSB</td>
<td>Vol. 2</td>
<td>8-55</td>
</tr>
<tr>
<td>Processor and memory cards in an MSB</td>
<td>Vol. 2</td>
<td>8-62</td>
</tr>
<tr>
<td>Signaling terminal cards in an MSB</td>
<td>Vol. 2</td>
<td>8-70</td>
</tr>
</tbody>
</table>

9 SuperNode network card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Vol. 2</td>
<td>9-1</td>
</tr>
<tr>
<td>Application</td>
<td>Vol. 2</td>
<td>9-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>Vol. 2</td>
<td>9-1</td>
</tr>
<tr>
<td>Action</td>
<td>Vol. 2</td>
<td>9-2</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>Vol. 2</td>
<td>9-2</td>
</tr>
<tr>
<td>Network shelf layouts</td>
<td>Vol. 2</td>
<td>9-3</td>
</tr>
<tr>
<td>Crosspoint and interface cards in a 64k or 128k ENET</td>
<td>Vol. 2</td>
<td>9-15</td>
</tr>
<tr>
<td>Power converter cards in JNET shelves</td>
<td>Vol. 2</td>
<td>9-40</td>
</tr>
<tr>
<td>System cards in a 64k or 128k ENET</td>
<td>Vol. 2</td>
<td>9-49</td>
</tr>
<tr>
<td>System, interface, and crosspoint cards in JNET shelves</td>
<td>Vol. 2</td>
<td>9-72</td>
</tr>
</tbody>
</table>
10 Office alarm unit card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Volume 2, 10-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Vol. 2, 10-1</td>
</tr>
<tr>
<td>Application</td>
<td>Vol. 2, 10-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>Vol. 2, 10-1</td>
</tr>
<tr>
<td>Action</td>
<td>Vol. 2, 10-1</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>Vol. 2, 10-2</td>
</tr>
<tr>
<td>OAU shelf layouts</td>
<td>Vol. 2, 10-3</td>
</tr>
<tr>
<td>Control and circuit cards in the office alarm unit</td>
<td>Vol. 2, 10-7</td>
</tr>
<tr>
<td>Power converter cards in the office alarm unit</td>
<td>Vol. 2, 10-14</td>
</tr>
</tbody>
</table>

11 Remote line module card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Volume 2, 11-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Vol. 2, 11-1</td>
</tr>
<tr>
<td>Application</td>
<td>Vol. 2, 11-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>Vol. 2, 11-1</td>
</tr>
<tr>
<td>Action</td>
<td>Vol. 2, 11-1</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>Vol. 2, 11-2</td>
</tr>
<tr>
<td>RLM shelf layouts</td>
<td>Vol. 2, 11-3</td>
</tr>
<tr>
<td>Control complex cards in a remote line controller</td>
<td>Vol. 2, 11-9</td>
</tr>
<tr>
<td>Line cards in an RLM line drawer</td>
<td>Vol. 2, 11-16</td>
</tr>
<tr>
<td>NT2X05 in a remote line controller</td>
<td>Vol. 2, 11-22</td>
</tr>
<tr>
<td>NT2X70 in a remote line controller</td>
<td>Vol. 2, 11-28</td>
</tr>
</tbody>
</table>

Card Replacement Procedures

Volume 3 of 7

1 Remote oscillator shelf card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Volume 3, 1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Vol. 3, 1-1</td>
</tr>
<tr>
<td>Application</td>
<td>Vol. 3, 1-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>Vol. 3, 1-1</td>
</tr>
<tr>
<td>Action</td>
<td>Vol. 3, 1-1</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>Vol. 3, 1-2</td>
</tr>
<tr>
<td>Remote oscillator shelf layouts</td>
<td>Vol. 3, 1-3</td>
</tr>
<tr>
<td>NT1X78 in a remote oscillator shelf</td>
<td>Vol. 3, 1-5</td>
</tr>
<tr>
<td>NT3X16 in a remote oscillator shelf</td>
<td>Vol. 3, 1-14</td>
</tr>
</tbody>
</table>

2 Single shelf link peripheral processor card replacement procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Volume 3, 2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Vol. 3, 2-1</td>
</tr>
<tr>
<td>Application</td>
<td>Vol. 3, 2-1</td>
</tr>
<tr>
<td>Common procedures</td>
<td>Vol. 3, 2-1</td>
</tr>
<tr>
<td>Action</td>
<td>Vol. 3, 2-1</td>
</tr>
<tr>
<td>Recording card replacement activities</td>
<td>Vol. 3, 2-2</td>
</tr>
<tr>
<td>SSLPP shelf layouts</td>
<td>Vol. 3, 2-3</td>
</tr>
<tr>
<td>Common fill cards in an SSLPP</td>
<td>Vol. 3, 2-7</td>
</tr>
</tbody>
</table>
EIU cards in an SSLPP Vol. 3, 2-17
FRIU cards in an SSLPP Vol. 3, 2-29
LIU7 cards in an SSLPP Vol. 3, 2-44
NIU cards in an SSLPP Vol. 3, 2-57
Power converter cards in an SSLPP Vol. 3, 2-74
XLIU cards in an SSLPP Vol. 3, 2-105

3 SuperNode system load module card replacement procedures Vol. 3, 3-1
Introduction Vol. 3, 3-1
Application Vol. 3, 3-1
Common procedures Vol. 3, 3-1
Action Vol. 3, 3-2
Recording card replacement activities Vol. 3, 3-2
SuperNode SLM shelf layouts Vol. 3, 3-3
NT9X44 in a SuperNode SLM Vol. 3, 3-5
SPM NTLX60AA FIL with DSP RM DMS-Spectrum Peripheral Module Vol. 3, 3-26
SPM NTLX61AA SIM card DMS-Spectrum Peripheral Module Vol. 3, 3-37
SPM NTLX63AA CEM card DMS-Spectrum Peripheral Module Vol. 3, 3-45
SPM NTLX65BA DSP RM DMS-Spectrum Peripheral Module Vol. 3, 3-64
SPM NTLX71AA OC3 card DMS-Spectrum Peripheral Module Vol. 3, 3-78
SPM NTLX82AA CEM card DMS-Spectrum Peripheral Module Vol. 3, 3-118
System cards in a SuperNode SLM Vol. 3, 3-137

4 TOPS message switch card replacement procedures Vol. 3, 4-1
TMS shelf layouts Vol. 3, 4-2
NT2X70 in a TMS Vol. 3, 4-8
NT6X series in a TMS Vol. 3, 4-17
NT6X69 in a TMS Vol. 3, 4-19
NTBX01 in a TMS Vol. 3, 4-30
NTBX02 in a TMS Vol. 3, 4-37
NTMX77 in a TMS Vol. 3, 4-48

5 TOPS MP card replacement procedures Vol. 3, 5-1
NT2X70 in a TPC Vol. 3, 5-2
NTNX62 in a TPC Vol. 3, 5-7
NTNX63 in a TPC Vol. 3, 5-12
NTNX64 in a TPC Vol. 3, 5-17
NTNX65 in a TPC Vol. 3, 5-22
NTNX66 in a TPC Vol. 3, 5-27
NTNX68 in a TPC Vol. 3, 5-33
NTOM36 Keyboard Vol. 3, 5-40
NTOM90 in an MP Vol. 3, 5-45
6 Trunk module card replacement procedures
 Vol. 3, 6-1
 Introduction Vol. 3, 6-1
 Application Vol. 3, 6-1
 Common procedures Vol. 3, 6-1
 Action Vol. 3, 6-1
 Recording card replacement activities Vol. 3, 6-2
 TM shelf layouts Vol. 3, 6-3
 Control complex cards in trunk and service modules Vol. 3, 6-27
 Enhanced digital test unit or digital test unit cards in trunk and service modules Vol. 3, 6-37
 Metallic test unit cards in trunk and service modules Vol. 3, 6-44
 NT3X08AA in an MTM Vol. 3, 6-64
 Power converter cards in trunk and service modules Vol. 3, 6-69
 Single-card PMs in trunk and service modules Vol. 3, 6-84
 Trunk, maintenance, and service cards in trunk and service modules Vol. 3, 6-93

7 Universal Edge 9000 card replacement procedures
 Vol. 3, 7-1
 Introduction Vol. 3, 7-1
 Application Vol. 3, 7-1
 Common procedures Vol. 3, 7-1
 Action Vol. 3, 7-1
 Recording card replacement activities Vol. 3, 7-2
 UEN shelf layout Vol. 3, 7-3
 Control cards in a UEN shelf Vol. 3, 7-5
 Line cards in a UEN shelf Vol. 3, 7-14
 NTNP20 in a UEN shelf Vol. 3, 7-19

8 XPM card replacement procedures
 Vol. 3, 8-1
 Introduction Vol. 3, 8-1
 Application Vol. 3, 8-1
 Common procedures Vol. 3, 8-1
 Action Vol. 3, 8-1
 Recording card replacement activities Vol. 3, 8-2
 XPM shelf layouts Vol. 3, 8-3
 Back plane cards in an XPM Vol. 3, 8-19
 Control complex cards in an XPM Vol. 3, 8-31
 NT2X70 in an XPM Vol. 3, 8-42
 NT6X40 in an XPM Vol. 3, 8-59
 NT6X48 in LGC, PLGC, LTC, PLTC Vol. 3, 8-72
 NT6X48 in MSB7 Vol. 3, 8-82
 NT6X78 in an XPM Vol. 3, 8-90
 NT7X03 in an XPM Vol. 3, 8-97
 NT7X07AA in an LTCI Vol. 3, 8-106
 NTBX02 in an XPM Vol. 3, 8-115
Card Replacement Procedures

Volume 4 of 7

1 XPM card replacement procedures Vol. 4, 1-1
 NT0X10 in an IOPAC RMM Vol. 4, 1-2
 NT0X10 in an OPM RMM Vol. 4, 1-6
 NT0X10 in an RLCM-EDC RMM Vol. 4, 1-10
 NT0X10 in an RLCM RMM Vol. 4, 1-14
 NT0X10 in an RSC RMM Vol. 4, 1-18
 NT0X10 in an RSC-S (DS-1) Model A RMM Vol. 4, 1-25
 NT0X10 in an RSC-S (DS-1) Model B RMM Vol. 4, 1-31
 NT0X10 in an RSC-S (PCM-30) Model A RMM Vol. 4, 1-37
 NT0X10 in an RSC-S (PCM-30) Model B RMM Vol. 4, 1-43
<table>
<thead>
<tr>
<th>Model</th>
<th>Location</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT0X91</td>
<td>IOPAC FSP</td>
<td>Vol. 4</td>
<td>1-49</td>
</tr>
<tr>
<td>NT0X91</td>
<td>RLCM</td>
<td>Vol. 4</td>
<td>1-61</td>
</tr>
<tr>
<td>NT0X91</td>
<td>RSC</td>
<td>Vol. 4</td>
<td>1-74</td>
</tr>
<tr>
<td>NT0X91AA</td>
<td>OPM</td>
<td>Vol. 4</td>
<td>1-90</td>
</tr>
<tr>
<td>NT0X91AE</td>
<td>OPM</td>
<td>Vol. 4</td>
<td>1-96</td>
</tr>
<tr>
<td>NT0X91AE</td>
<td>RLCE</td>
<td>Vol. 4</td>
<td>1-105</td>
</tr>
<tr>
<td>NT2X06</td>
<td>IOPAC RMM</td>
<td>Vol. 4</td>
<td>1-114</td>
</tr>
<tr>
<td>NT2X06</td>
<td>OPM RMM</td>
<td>Vol. 4</td>
<td>1-121</td>
</tr>
<tr>
<td>NT2X06</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-129</td>
</tr>
<tr>
<td>NT2X06</td>
<td>RSC RMM</td>
<td>Vol. 4</td>
<td>1-136</td>
</tr>
<tr>
<td>NT2X06</td>
<td>RSC-S (DS-1) Model A RMM</td>
<td>Vol. 4</td>
<td>1-144</td>
</tr>
<tr>
<td>NT2X06</td>
<td>RSC-S (DS-1) Model B RMM</td>
<td>Vol. 4</td>
<td>1-153</td>
</tr>
<tr>
<td>NT2X06</td>
<td>RSC-S (PCM-30) Model A RMM</td>
<td>Vol. 4</td>
<td>1-162</td>
</tr>
<tr>
<td>NT2X09</td>
<td>OPM RMM</td>
<td>Vol. 4</td>
<td>1-171</td>
</tr>
<tr>
<td>NT2X09</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-178</td>
</tr>
<tr>
<td>NT2X09</td>
<td>RSC RMM</td>
<td>Vol. 4</td>
<td>1-186</td>
</tr>
<tr>
<td>NT2X09</td>
<td>RSC-S (DS-1) Model A RMM</td>
<td>Vol. 4</td>
<td>1-202</td>
</tr>
<tr>
<td>NT2X09</td>
<td>RSC-S (DS-1) Model B RMM</td>
<td>Vol. 4</td>
<td>1-211</td>
</tr>
<tr>
<td>NT2X09</td>
<td>RSC-S (PCM-30) Model A RMM</td>
<td>Vol. 4</td>
<td>1-220</td>
</tr>
<tr>
<td>NT2X10</td>
<td>OPM RMM</td>
<td>Vol. 4</td>
<td>1-229</td>
</tr>
<tr>
<td>NT2X10</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-233</td>
</tr>
<tr>
<td>NT2X10</td>
<td>RSC RMM</td>
<td>Vol. 4</td>
<td>1-237</td>
</tr>
<tr>
<td>NT2X10</td>
<td>RSC-S (DS-1) Model A RMM</td>
<td>Vol. 4</td>
<td>1-244</td>
</tr>
<tr>
<td>NT2X10</td>
<td>RSC-S (DS-1) Model B RMM</td>
<td>Vol. 4</td>
<td>1-251</td>
</tr>
<tr>
<td>NT2X10</td>
<td>RSC-S (PCM-30) Model A RMM</td>
<td>Vol. 4</td>
<td>1-258</td>
</tr>
<tr>
<td>NT2X11</td>
<td>OPM RMM</td>
<td>Vol. 4</td>
<td>1-255</td>
</tr>
<tr>
<td>NT2X11</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-270</td>
</tr>
<tr>
<td>NT2X11</td>
<td>RLCM-EDC RMM</td>
<td>Vol. 4</td>
<td>1-274</td>
</tr>
<tr>
<td>NT2X11</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-278</td>
</tr>
<tr>
<td>NT2X11</td>
<td>RSC RMM</td>
<td>Vol. 4</td>
<td>1-282</td>
</tr>
<tr>
<td>NT2X11</td>
<td>RSC-S (DS-1) Model A RMM</td>
<td>Vol. 4</td>
<td>1-289</td>
</tr>
<tr>
<td>NT2X11</td>
<td>RSC-S (DS-1) Model B RMM</td>
<td>Vol. 4</td>
<td>1-298</td>
</tr>
<tr>
<td>NT2X11</td>
<td>RSC-S (PCM-30) Model A RMM</td>
<td>Vol. 4</td>
<td>1-307</td>
</tr>
<tr>
<td>NT2X48</td>
<td>OPM RMM</td>
<td>Vol. 4</td>
<td>1-316</td>
</tr>
<tr>
<td>NT2X48</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-321</td>
</tr>
<tr>
<td>NT2X48</td>
<td>RSC RMM</td>
<td>Vol. 4</td>
<td>1-326</td>
</tr>
<tr>
<td>NT2X55</td>
<td>IOPAC RMM</td>
<td>Vol. 4</td>
<td>1-331</td>
</tr>
<tr>
<td>NT2X57</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-338</td>
</tr>
<tr>
<td>NT2X57</td>
<td>RSC RMM</td>
<td>Vol. 4</td>
<td>1-342</td>
</tr>
<tr>
<td>NT2X57</td>
<td>RLCM-EDC RMM</td>
<td>Vol. 4</td>
<td>1-346</td>
</tr>
<tr>
<td>NT2X57</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-350</td>
</tr>
<tr>
<td>NT2X57</td>
<td>RSC RMM</td>
<td>Vol. 4</td>
<td>1-355</td>
</tr>
<tr>
<td>NT2X57</td>
<td>RSC-S (DS-1) Model A RMM</td>
<td>Vol. 4</td>
<td>1-362</td>
</tr>
<tr>
<td>NT2X57</td>
<td>RSC-S (DS-1) Model B RMM</td>
<td>Vol. 4</td>
<td>1-369</td>
</tr>
<tr>
<td>NT2X57</td>
<td>RSC-S (PCM-30) Model A RMM</td>
<td>Vol. 4</td>
<td>1-376</td>
</tr>
<tr>
<td>NT2X59</td>
<td>OPM RMM</td>
<td>Vol. 4</td>
<td>1-383</td>
</tr>
<tr>
<td>NT2X59</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-387</td>
</tr>
<tr>
<td>NT2X59</td>
<td>RLCM-EDC RMM</td>
<td>Vol. 4</td>
<td>1-394</td>
</tr>
<tr>
<td>NT2X59</td>
<td>RLCM RMM</td>
<td>Vol. 4</td>
<td>1-401</td>
</tr>
<tr>
<td>NT2X59</td>
<td>RSC RMM</td>
<td>Vol. 4</td>
<td>1-406</td>
</tr>
</tbody>
</table>
NTP Summary Contents

<table>
<thead>
<tr>
<th>Model Configuration</th>
<th>Volume</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X59 in an RSC-S (DS-1) Model A RMM</td>
<td>Vol. 4</td>
<td>1-413</td>
</tr>
<tr>
<td>NT2X59 in an RSC-S (DS-1) Model B RMM</td>
<td>Vol. 4</td>
<td>1-420</td>
</tr>
<tr>
<td>NT2X59 in an RSC-S (PCM-30) Model A RMM</td>
<td>Vol. 4</td>
<td>1-427</td>
</tr>
<tr>
<td>NT2X70 in an IOPAC HIE</td>
<td>Vol. 4</td>
<td>1-434</td>
</tr>
<tr>
<td>NT2X70 in an OPM HIE</td>
<td>Vol. 4</td>
<td>1-441</td>
</tr>
<tr>
<td>NT2X70 in an RLCM-EDC HIE</td>
<td>Vol. 4</td>
<td>1-455</td>
</tr>
<tr>
<td>NT2X70 in an RLCM HIE</td>
<td>Vol. 4</td>
<td>1-464</td>
</tr>
<tr>
<td>NT2X70 in an RSC</td>
<td>Vol. 4</td>
<td>1-478</td>
</tr>
<tr>
<td>NT2X70 in an SMA</td>
<td>Vol. 4</td>
<td>1-490</td>
</tr>
<tr>
<td>NT2X70 in an SMA-MVI-20</td>
<td>Vol. 4</td>
<td>1-498</td>
</tr>
<tr>
<td>NT2X70 in an SMS</td>
<td>Vol. 4</td>
<td>1-506</td>
</tr>
<tr>
<td>NT2X70 in an SMS-R</td>
<td>Vol. 4</td>
<td>1-517</td>
</tr>
<tr>
<td>NT2X70 in an SMU</td>
<td>Vol. 4</td>
<td>1-526</td>
</tr>
<tr>
<td>NT2X90 in an IOPAC RMM</td>
<td>Vol. 4</td>
<td>1-533</td>
</tr>
<tr>
<td>NT2X90 in an OPAC RMM</td>
<td>Vol. 4</td>
<td>1-538</td>
</tr>
<tr>
<td>NT2X90 in an OPM RMM</td>
<td>Vol. 4</td>
<td>1-543</td>
</tr>
<tr>
<td>NT2X90 in an RLCM-EDC RMM</td>
<td>Vol. 4</td>
<td>1-551</td>
</tr>
<tr>
<td>NT2X90 in an RLCM RMM</td>
<td>Vol. 4</td>
<td>1-557</td>
</tr>
<tr>
<td>NT2X90 in an RSC RMM</td>
<td>Vol. 4</td>
<td>1-562</td>
</tr>
<tr>
<td>NT2X90 in an RSC-S (DS-1) Model A RMM</td>
<td>Vol. 4</td>
<td>1-569</td>
</tr>
<tr>
<td>NT2X90 in an RSC-S (DS-1) Model B RMM</td>
<td>Vol. 4</td>
<td>1-576</td>
</tr>
<tr>
<td>NT3X04 in an RSC RMM</td>
<td>Vol. 4</td>
<td>1-583</td>
</tr>
<tr>
<td>NT3X09 in an IOPAC RMM</td>
<td>Vol. 4</td>
<td>1-590</td>
</tr>
<tr>
<td>NT3X09 in an OPAC RMM</td>
<td>Vol. 4</td>
<td>1-596</td>
</tr>
<tr>
<td>NT3X09 in an OPM RMM</td>
<td>Vol. 4</td>
<td>1-601</td>
</tr>
<tr>
<td>NT3X09 in an RLCM-EDC RMM</td>
<td>Vol. 4</td>
<td>1-607</td>
</tr>
<tr>
<td>NT3X09 in an RLCM RMM</td>
<td>Vol. 4</td>
<td>1-612</td>
</tr>
<tr>
<td>NT3X09 in an RSC RMM</td>
<td>Vol. 4</td>
<td>1-617</td>
</tr>
<tr>
<td>NT3X09 in an RSC-S (DS-1) Model A RMM</td>
<td>Vol. 4</td>
<td>1-624</td>
</tr>
<tr>
<td>NT3X09 in an RSC-S (DS-1) Model B RMM</td>
<td>Vol. 4</td>
<td>1-634</td>
</tr>
<tr>
<td>NT3X09 in an RSC-S (PCM-30) Model B RMM</td>
<td>Vol. 4</td>
<td>1-644</td>
</tr>
<tr>
<td>NT3X82 in an RSC RMM</td>
<td>Vol. 4</td>
<td>1-653</td>
</tr>
<tr>
<td>NT3X83 in an RSC RMM</td>
<td>Vol. 4</td>
<td>1-660</td>
</tr>
<tr>
<td>NT4X97 in an IOPAC RMM</td>
<td>Vol. 4</td>
<td>1-668</td>
</tr>
<tr>
<td>NT4X97 in an RSC-S (PCM-30) Model A RMM</td>
<td>Vol. 4</td>
<td>1-673</td>
</tr>
<tr>
<td>NT4X97 in an RSC-S (PCM-30) Model B RMM</td>
<td>Vol. 4</td>
<td>1-680</td>
</tr>
<tr>
<td>NT4X97 in an RSC-S (PCM-30) Model B RMM</td>
<td>Vol. 4</td>
<td>1-687</td>
</tr>
<tr>
<td>NT4X98 in an RSC-S (PCM-30) Model B RMM</td>
<td>Vol. 4</td>
<td>1-694</td>
</tr>
<tr>
<td>NT6X17 in an IOPAC ILCM</td>
<td>Vol. 4</td>
<td>1-703</td>
</tr>
<tr>
<td>NT6X17 in an OPM</td>
<td>Vol. 4</td>
<td>1-707</td>
</tr>
<tr>
<td>NT6X17 in an RLCM</td>
<td>Vol. 4</td>
<td>1-711</td>
</tr>
<tr>
<td>NT6X17 in an RLCM-L</td>
<td>Vol. 4</td>
<td>1-715</td>
</tr>
<tr>
<td>NT6X17 in an RSC-S (DS-1) Model A LCME</td>
<td>Vol. 4</td>
<td>1-723</td>
</tr>
<tr>
<td>NT6X17 in an RSC-S (DS-1) Model B LCME</td>
<td>Vol. 4</td>
<td>1-731</td>
</tr>
<tr>
<td>NT6X17 in an STAR or RLD</td>
<td>Vol. 4</td>
<td>1-739</td>
</tr>
<tr>
<td>NT6X17 in an IOPAC ILCM</td>
<td>Vol. 4</td>
<td>1-743</td>
</tr>
<tr>
<td>NT6X17 in an OPAF LCM</td>
<td>Vol. 4</td>
<td>1-747</td>
</tr>
<tr>
<td>NT6X18 in an OPM</td>
<td>Vol. 4</td>
<td>1-751</td>
</tr>
<tr>
<td>NT6X18 in an RLCM</td>
<td>Vol. 4</td>
<td>1-755</td>
</tr>
<tr>
<td>NT6X18 in an RSC LCM</td>
<td>Vol. 4</td>
<td>1-759</td>
</tr>
<tr>
<td>NT6X18 in an RSC-S (DS-1) Model A LCME</td>
<td>Vol. 4</td>
<td>1-767</td>
</tr>
</tbody>
</table>

297-8021-547 Standard 14.02 May 2001
<table>
<thead>
<tr>
<th>Card Replacement Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume 5 of 7</td>
</tr>
</tbody>
</table>

1 XPM card replacement procedures (continued) Vol. 5, 1-1

- NT6X40 in an SMA Vol. 5, 1-2
- NT6X40 in an SMA-MVI-20 Vol. 5, 1-14
- NT6X40 in an SMA2 Vol. 5, 1-26
- NT6X40 in an SMS Vol. 5, 1-38
- NT6X40 in an SMU Vol. 5, 1-51
NT6X41 in an SMA Vol. 5, 1-64
NT6X41 in an SMA-MVI-20 Vol. 5, 1-71
NT6X41 in an SMS Vol. 5, 1-78
NT6X41 in an SMS-R Vol. 5, 1-87
NT6X41 in an SMU Vol. 5, 1-95
NT6X42 in an SMA Vol. 5, 1-101
NT6X42 in an SMA-MVI-20 Vol. 5, 1-107
NT6X42 in an SMS Vol. 5, 1-114
NT6X42 in an SMS-R Vol. 5, 1-122
NT6X44 in an RSC Vol. 5, 1-130
NT6X44 in an SMA Vol. 5, 1-138
NT6X44 in an SMA-MVI-20 Vol. 5, 1-144
NT6X44 in an SMS Vol. 5, 1-150
NT6X44 in an SMS-R Vol. 5, 1-158
NT6X45 in an IOPAC HIE Vol. 5, 1-166
NT6X45 in an OPAC HIE Vol. 5, 1-172
NT6X45 in an OPM HIE Vol. 5, 1-178
NT6X45 in an RLCM HIE Vol. 5, 1-184
NT6X47 in an IOPAC HIE Vol. 5, 1-190
NT6X47 in an OPM HIE Vol. 5, 1-196
NT6X47 in an RLCM HIE Vol. 5, 1-202
NT6X48 in an RSC Vol. 5, 1-208
NT6X50 in an OPAC HIE Vol. 5, 1-216
NT6X50 in an OPM HIE Vol. 5, 1-223
NT6X50 in an RLCM-EDC HIE Vol. 5, 1-230
NT6X50 in an RLCM HIE Vol. 5, 1-237
NT6X50 in an RSC Vol. 5, 1-244
NT6X50 in an SMA Vol. 5, 1-259
NT6X50 in an SMA-MVI-20 Vol. 5, 1-275
NT6X51 in an IOPAC ILCM Vol. 5, 1-291
NT6X51 in an OPAC LCM Vol. 5, 1-298
NT6X51 in an OPM Vol. 5, 1-305
NT6X51 in an RLCM Vol. 5, 1-312
NT6X51 in an RLCM-EDC Vol. 5, 1-319
NT6X51 in an RSC-S (DS-1) Model A LCM Vol. 5, 1-324
NT6X51 in an RSC-S (DS-1) Model B LCME Vol. 5, 1-332
NT6X51 in an RSC-S (PCM-30) Model A LCM Vol. 5, 1-339
NT6X51 in an RSC-S (PCM-30) Model B LCME Vol. 5, 1-347
NT6X52 in an IOPAC ILCM Vol. 5, 1-355
NT6X52 in an OPAC LCM Vol. 5, 1-361
NT6X52 in an OPM Vol. 5, 1-367
NT6X52 in an RLCM Vol. 5, 1-373
NT6X52 in an RLCM-EDC Vol. 5, 1-379
NT6X52 in an RSC LCM Vol. 5, 1-384
NT6X52 in an RSC-S (DS-1) Model A LCME Vol. 5, 1-392
NT6X52 in an RSC-S (DS-1) Model B LCME Vol. 5, 1-401
NT6X52 in an RSC-S (PCM-30) Model A LCME Vol. 5, 1-410
NT6X53 in an IOPAC ILCM Vol. 5, 1-418
NT6X53 in an OPAC LCM Vol. 5, 1-425
NT6X53 in an OPM Vol. 5, 1-432
NT6X53 in an RLCM Vol. 5, 1-444
NT6X53 in an RLCM-EDC Vol. 5, 1-453
NT6X53 in an RSC LCM Vol. 5, 1-460
NT6X53 in an RSC-S (DS-1) Model A LCM(E) Vol. 5, 1-469
NT6X53 in an RSC-S (DS-1) Model B LCM(E) Vol. 5, 1-478
NT6X54 in a STAR Vol. 5, 1-487
NT6X54 in an IOPAC ILCM Vol. 5, 1-493
NT6X54 in an OPAC LCM Vol. 5, 1-500
NT6X54 in an OPM Vol. 5, 1-509
NT6X54 in an RLCM Vol. 5, 1-518
NT6X54 in an RLCM-EDC Vol. 5, 1-527
NT6X54 in an RSC Vol. 5, 1-533
NT6X54 in an RSC-S (DS-1) Model A LCM(E) Vol. 5, 1-542
NT6X54 in an RSC-S (DS-1) Model B LCM(E) Vol. 5, 1-549
NT6X60 in an IOPAC HIE Vol. 5, 1-565
NT6X60 in an OPAC HIE Vol. 5, 1-572
NT6X60 in an OPM HIE Vol. 5, 1-579
NT6X60 in an RLCM HIE Vol. 5, 1-587
NT6X69 in an RSC-M Vol. 5, 1-595
NT6X69 in an RSC RCC/RCC2 Vol. 5, 1-605
NT6X69 in an RSC-S (DS-1) Model A RCC2 Vol. 5, 1-613
NT6X69 in an RSC-S (DS-1) Model B RCC2 Vol. 5, 1-622
NT6X69 in an RSC-S (PCM-30) Model A RCO2 Vol. 5, 1-630
NT6X69 in an RSC-S (PCM-30) Model B RCO2 Vol. 5, 1-639
NT6X69 in an SMA Vol. 5, 1-648
NT6X69 in an SMA-MVI-20 Vol. 5, 1-654
NT6X69 in an SMS Vol. 5, 1-661
NT6X69 in an SMS-R Vol. 5, 1-670
NT6X69 in an SMU Vol. 5, 1-678
NT6X71 in an IOPAC ILCM Vol. 5, 1-684
NT6X71 in an OPM Vol. 5, 1-688
NT6X71 in an RLCM Vol. 5, 1-692
NT6X71 in an RSC LCM Vol. 5, 1-696
NT6X71 in an RSC-S (DS-1) Model A LCME Vol. 5, 1-705
NT6X71 in an RSC-S (DS-1) Model B LCME Vol. 5, 1-713
NT6X71 in a STAR or RLD Vol. 5, 1-721
NT6X72 in an RSC Vol. 5, 1-725
NT6X73 in an IOPAC HIE Vol. 5, 1-734
NT6X73 in an OPAC HIE Vol. 5, 1-738
NT6X73 in an OPM HIE Vol. 5, 1-742
NT6X73 in an RLCM-EDC HIE Vol. 5, 1-746
NT6X73 in an RLCM HIE Vol. 5, 1-751
NT6X74 in an IOPAC RMM Vol. 5, 1-755
NT6X74 in an OPM RMM Vol. 5, 1-761
NT6X74 in an RLCM-EDC RMM Vol. 5, 1-768
NT6X74 in an RLCM RMM Vol. 5, 1-775
NT6X74 in an RSC RMM Vol. 5, 1-782
NT6X74 in an RSC-S (DS-1) Model A RMM Vol. 5, 1-790
NT6X74 in an RSC-S (DS-1) Model B RMM Vol. 5, 1-799
NT6X74 in an RSC-S (PCM-30) Model A RMM Vol. 5, 1-808
NT6X75 in an IOPAC HIE Vol. 5, 1-817

DMS-100 Family NA100 Card Replacement Procedures Volume 2 of 7 LET0015 and up
Card Replacement Procedures

Volume 6 of 7

<table>
<thead>
<tr>
<th>Card Type</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X85 in an SMS</td>
<td>Vol. 6, 1-2</td>
</tr>
<tr>
<td>NT6X85 in an SMS-R</td>
<td>Vol. 6, 1-13</td>
</tr>
<tr>
<td>NT6X85 in an SMU</td>
<td>Vol. 6, 1-24</td>
</tr>
<tr>
<td>NT6X86 in an SMS</td>
<td>Vol. 6, 1-30</td>
</tr>
<tr>
<td>NT6X86 in an SMS-R</td>
<td>Vol. 6, 1-39</td>
</tr>
<tr>
<td>NT6X87 in an RSC LCME</td>
<td>Vol. 6, 1-48</td>
</tr>
<tr>
<td>NT6X87 in an RSC-S (DS-1) Model B LCME</td>
<td>Vol. 6, 1-56</td>
</tr>
<tr>
<td>NT6X92 in an RSC-M</td>
<td>Vol. 6, 1-64</td>
</tr>
<tr>
<td>NT6X92 in an RSC RCC/RCC2</td>
<td>Vol. 6, 1-71</td>
</tr>
<tr>
<td>NT6X92 in an RSC-S (DS-1) Model A RCC2</td>
<td>Vol. 6, 1-79</td>
</tr>
<tr>
<td>NT6X92 in an RSC-S (DS-1) Model B RCC2</td>
<td>Vol. 6, 1-87</td>
</tr>
<tr>
<td>NT6X92 in an RSC-S (PCM-30) Model A RCO2</td>
<td>Vol. 6, 1-95</td>
</tr>
<tr>
<td>NT6X92 in an RSC-S (PCM-30) Model B RCO2</td>
<td>Vol. 6, 1-104</td>
</tr>
<tr>
<td>NT6X92 in an SMA</td>
<td>Vol. 6, 1-112</td>
</tr>
<tr>
<td>NT6X92 in an SMA-MVI-20</td>
<td>Vol. 6, 1-118</td>
</tr>
<tr>
<td>NT6X92 in an SMA2</td>
<td>Vol. 6, 1-125</td>
</tr>
<tr>
<td>NT6X92 in an SMS</td>
<td>Vol. 6, 1-132</td>
</tr>
<tr>
<td>NT6X92 in an SMU</td>
<td>Vol. 6, 1-140</td>
</tr>
<tr>
<td>NT6X99 in an IOPAC ILCM</td>
<td>Vol. 6, 1-146</td>
</tr>
<tr>
<td>NT6X99 in an OPAC LCM</td>
<td>Vol. 6, 1-150</td>
</tr>
<tr>
<td>Card Type</td>
<td>Card Model</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>NT6X99</td>
<td>in an OPM</td>
</tr>
<tr>
<td>NT6X99</td>
<td>in an RLCM</td>
</tr>
<tr>
<td>NT6X99</td>
<td>in an RSC LCME</td>
</tr>
<tr>
<td>NT6X99</td>
<td>in an RSC-S (DS-1) Model A LCME</td>
</tr>
<tr>
<td>NT6X99</td>
<td>in an RSC-S (DS-1) Model B LCME</td>
</tr>
<tr>
<td>NT6X99</td>
<td>in a STAR or RLD</td>
</tr>
<tr>
<td>NT7X05</td>
<td>in an RSC RCC/RCC2</td>
</tr>
<tr>
<td>NT7X05</td>
<td>in an RSC-S (DS-1) Model A RCC2</td>
</tr>
<tr>
<td>NT7X05</td>
<td>in an RSC-S (DS-1) Model B RCC2</td>
</tr>
<tr>
<td>NT7X05</td>
<td>in an RSC-S (PCM-30) Model A RCO2</td>
</tr>
<tr>
<td>NT7X05</td>
<td>in an RSC-S (PCM-30) Model B RCO2</td>
</tr>
<tr>
<td>NT7X05</td>
<td>in an SMS</td>
</tr>
<tr>
<td>NT7X05</td>
<td>in an SMS-R</td>
</tr>
<tr>
<td>NT7X05</td>
<td>in an SMU</td>
</tr>
<tr>
<td>NT8X02</td>
<td>in an OPAC BCU</td>
</tr>
<tr>
<td>NT8X02</td>
<td>in an OPM BCU</td>
</tr>
<tr>
<td>NT8X18</td>
<td>in an SMS-R</td>
</tr>
<tr>
<td>NTAX74</td>
<td>in an RSC-S (DS-1) Model A RCC2</td>
</tr>
<tr>
<td>NTAX74</td>
<td>in an RSC-S (DS-1) Model B RCC2</td>
</tr>
<tr>
<td>NTAX74</td>
<td>in an RSC-S (PCM-30) Model A RCO2</td>
</tr>
<tr>
<td>NTAX74</td>
<td>in an RSC-S (PCM-30) Model B RCO2</td>
</tr>
<tr>
<td>NTAX74</td>
<td>in an SMA</td>
</tr>
<tr>
<td>NTAX74</td>
<td>in an SMA-MVI-20</td>
</tr>
<tr>
<td>NTAX74</td>
<td>in an SMA2</td>
</tr>
<tr>
<td>NTAX78</td>
<td>in an SMA</td>
</tr>
<tr>
<td>NTAX78</td>
<td>in an SMA-MVI-20</td>
</tr>
<tr>
<td>NTAX78</td>
<td>in an SMU</td>
</tr>
<tr>
<td>NTBX01</td>
<td>in an RSC RCC2</td>
</tr>
<tr>
<td>NTBX01</td>
<td>in an RSC-S (DS-1) Model A RCC2</td>
</tr>
<tr>
<td>NTBX01</td>
<td>in an RSC-S (DS-1) Model B RCC2</td>
</tr>
<tr>
<td>NTBX01</td>
<td>in an RSC-S (PCM-30) Model A RCO2</td>
</tr>
<tr>
<td>NTBX01</td>
<td>in an RSC-S (PCM-30) Model B RCO2</td>
</tr>
<tr>
<td>NTBX01</td>
<td>in an SMA</td>
</tr>
<tr>
<td>NTBX01</td>
<td>in an SMA-MVI-20</td>
</tr>
<tr>
<td>NTBX01</td>
<td>in an SMA2</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an SMU</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an RSC RCC2</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an RSC-S (DS-1) Model A RCC2</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an RSC-S (DS-1) Model B RCC2</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an RSC-S (PCM-30) Model A RCO2</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an RSC-S (PCM-30) Model B RCO2</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an SMA</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an SMA-MVI-20</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an SMA2</td>
</tr>
<tr>
<td>NTBX02</td>
<td>in an SMU</td>
</tr>
<tr>
<td>NTBX26</td>
<td>in an RSC LCME</td>
</tr>
<tr>
<td>NTBX26</td>
<td>in an RSC-S (DS-1) Model A LCME</td>
</tr>
<tr>
<td>NTBX26</td>
<td>in an RSC-S (DS-1) Model B LCME</td>
</tr>
<tr>
<td>NTBX27</td>
<td>in an RSC LCME</td>
</tr>
<tr>
<td>NTBX27</td>
<td>in an RSC-S (DS-1) Model A LCME</td>
</tr>
<tr>
<td>NTBX27</td>
<td>in an RSC-S (DS-1) Model B LCME</td>
</tr>
</tbody>
</table>
NTBX27 in a STAR or RLD Vol. 6, 1-586
NTBX34 in an RSC LCME Vol. 6, 1-593
NTBX34 in an RSC-S (DS-1) Model A LCME Vol. 6, 1-601
NTBX34 in an RSC-S (DS-1) Model B LCME Vol. 6, 1-611
NTBX34 in an RSC-S (PCM-30) Model A LCME Vol. 6, 1-621
NTBX35 in an RSC LCME Vol. 6, 1-630
NTBX35 in an RSC-S (DS-1) Model A LCME Vol. 6, 1-638
NTBX35 in an RSC-S (DS-1) Model B LCME Vol. 6, 1-648
NTBX35 in an RSC-S (PCM-30) Model A LCME Vol. 6, 1-658
NTBX36 in an RSC LCME Vol. 6, 1-667
NTBX36 in an RSC-S (DS-1) Model A LCME Vol. 6, 1-677
NTBX36 in an RSC-S (DS-1) Model B LCME Vol. 6, 1-687
NTBX72 in an RSC LCME Vol. 6, 1-697
NTBX72 in an RSC-S (DS-1) Model A LCME Vol. 6, 1-706
NTBX72 in an RSC-S (DS-1) Model B LCME Vol. 6, 1-715
NTBX72 in an RSC-S (PCM-30) Model A LCME Vol. 6, 1-724
NTEX17 in an RLCM Vol. 6, 1-733
NTEX17 in an RSC LCME Vol. 6, 1-743
NTEX17 in an RSC-S (DS-1) Model A LCME Vol. 6, 1-753
NTEX17 in an RSC-S (DS-1) Model B LCME Vol. 6, 1-763
NTEX17 in a STAR Vol. 6, 1-773
NTEX54 in an RLCM Vol. 6, 1-783
NTEX54 in an RSC LCME Vol. 6, 1-800
NTEX54 in an RSC-S (DS-1) Model A LCME Vol. 6, 1-817
NTEX54 in an RSC-S (DS-1) Model B LCME Vol. 6, 1-834
NTEX54 in a STAR Vol. 6, 1-851
NTMX45 in an IOPAC HIE Vol. 6, 1-868
NTMX45 in an OPAC HIE Vol. 6, 1-878
NTMX45 in an OPM HIE Vol. 6, 1-888
NTMX45 in an RLCM HIE Vol. 6, 1-898
NTMX71 in an RSC Vol. 6, 1-908
NTMX71 in an SMA Vol. 6, 1-916
NTMX71 in an SMA-MVI-20 Vol. 6, 1-924
NTMX71 in an SMS Vol. 6, 1-932
NTMX71 in an SMU Vol. 6, 1-940
NTMX72 in an RSC-M Vol. 6, 1-949
NTMX72 in an RSC RCC2 Vol. 6, 1-957
NTMX72 in an RSC-S (DS-1) Model A RCC2 Vol. 6, 1-966
NTMX72 in an RSC-S (DS-1) Model B RCC2 Vol. 6, 1-975
NTMX72 in an RSC-S (PCM-30) Model A RCO2 Vol. 6, 1-984
NTMX72 in an RSC-S (PCM-30) Model B RCO2 Vol. 6, 1-993
NTMX72 in an SMA2 Vol. 6, 1-1002

Card Replacement Procedures
Volume 7 of 7

1 XPM card replacement procedures (continued) Vol. 7, 1-1

NTMX73 in an RSC-M Vol. 7, 1-2
<table>
<thead>
<tr>
<th>Model Set</th>
<th>Volume</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMX73 in an RSC RCC2</td>
<td>Vol. 7</td>
<td>1-9</td>
</tr>
<tr>
<td>NTMX73 in an RSC-S (DS-1) Model A RCC2</td>
<td>Vol. 7</td>
<td>1-17</td>
</tr>
<tr>
<td>NTMX73 in an RSC-S (DS-1) Model B RCC2</td>
<td>Vol. 7</td>
<td>1-26</td>
</tr>
<tr>
<td>NTMX73 in an RSC-S (PCM-30) Model A RCO2</td>
<td>Vol. 7</td>
<td>1-36</td>
</tr>
<tr>
<td>NTMX73 in an RSC-S (PCM-30) Model B RCO2</td>
<td>Vol. 7</td>
<td>1-45</td>
</tr>
<tr>
<td>NTMX73 in an SMA2</td>
<td>Vol. 7</td>
<td>1-54</td>
</tr>
<tr>
<td>NTMX74 in an RSC-M</td>
<td>Vol. 7</td>
<td>1-60</td>
</tr>
<tr>
<td>NTMX74 in an RSC RCC2</td>
<td>Vol. 7</td>
<td>1-69</td>
</tr>
<tr>
<td>NTMX74 in an RSC-S (DS-1) Model A RCC2</td>
<td>Vol. 7</td>
<td>1-77</td>
</tr>
<tr>
<td>NTMX74 in an RSC-S (DS-1) Model B RCC2</td>
<td>Vol. 7</td>
<td>1-86</td>
</tr>
<tr>
<td>NTMX74 in an RSC-S (PCM-30) Model A RCO2</td>
<td>Vol. 7</td>
<td>1-95</td>
</tr>
<tr>
<td>NTMX74 in an RSC-S (PCM-30) Model B RCO2</td>
<td>Vol. 7</td>
<td>1-104</td>
</tr>
<tr>
<td>NTMX75 in an RSC-M</td>
<td>Vol. 7</td>
<td>1-113</td>
</tr>
<tr>
<td>NTMX75 in an RSC RCC2</td>
<td>Vol. 7</td>
<td>1-120</td>
</tr>
<tr>
<td>NTMX75 in an RSC-S (DS-1) Model A RCC2</td>
<td>Vol. 7</td>
<td>1-128</td>
</tr>
<tr>
<td>NTMX75 in an RSC-S (DS-1) Model B RCC2</td>
<td>Vol. 7</td>
<td>1-136</td>
</tr>
<tr>
<td>NTMX75 in an RSC-S (PCM-30) Model A RCO2</td>
<td>Vol. 7</td>
<td>1-144</td>
</tr>
<tr>
<td>NTMX75 in an RSC-S (PCM-30) Model B RCO2</td>
<td>Vol. 7</td>
<td>1-153</td>
</tr>
<tr>
<td>NTMX75 in an SMA2</td>
<td>Vol. 7</td>
<td>1-162</td>
</tr>
<tr>
<td>NTMX76 in an RSC-M</td>
<td>Vol. 7</td>
<td>1-168</td>
</tr>
<tr>
<td>NTMX76 in an RSC RCC2</td>
<td>Vol. 7</td>
<td>1-175</td>
</tr>
<tr>
<td>NTMX76 in an RSC-S (DS-1) Model A RCC2</td>
<td>Vol. 7</td>
<td>1-182</td>
</tr>
<tr>
<td>NTMX76 in an RSC-S (DS-1) Model B RCC2</td>
<td>Vol. 7</td>
<td>1-188</td>
</tr>
<tr>
<td>NTMX76 in an RSC-S (PCM-30) Model A RCO2</td>
<td>Vol. 7</td>
<td>1-195</td>
</tr>
<tr>
<td>NTMX76 in an RSC-S (PCM-30) Model B RCO2</td>
<td>Vol. 7</td>
<td>1-205</td>
</tr>
<tr>
<td>NTMX76 in an SMA2</td>
<td>Vol. 7</td>
<td>1-214</td>
</tr>
<tr>
<td>NTMX77 in an RSC</td>
<td>Vol. 7</td>
<td>1-221</td>
</tr>
<tr>
<td>NTMX77 in an RSC-M</td>
<td>Vol. 7</td>
<td>1-234</td>
</tr>
<tr>
<td>NTMX77 in an RSC-S (DS-1) Model A RCC2</td>
<td>Vol. 7</td>
<td>1-241</td>
</tr>
<tr>
<td>NTMX77 in an RSC-S (DS-1) Model B RCC2</td>
<td>Vol. 7</td>
<td>1-254</td>
</tr>
<tr>
<td>NTMX77 in an RSC-S (PCM-30) Model A RCO2</td>
<td>Vol. 7</td>
<td>1-267</td>
</tr>
<tr>
<td>NTMX77 in an RSC-S (PCM-30) Model B RCO2</td>
<td>Vol. 7</td>
<td>1-280</td>
</tr>
<tr>
<td>NTMX77 in an SMS</td>
<td>Vol. 7</td>
<td>1-293</td>
</tr>
<tr>
<td>NTMX77 in an SMS-R</td>
<td>Vol. 7</td>
<td>1-306</td>
</tr>
<tr>
<td>NTMX77 in an SMU</td>
<td>Vol. 7</td>
<td>1-318</td>
</tr>
<tr>
<td>NTMX79 in an RSC EXT</td>
<td>Vol. 7</td>
<td>1-333</td>
</tr>
<tr>
<td>NTMX79 in an RSC-M</td>
<td>Vol. 7</td>
<td>1-343</td>
</tr>
<tr>
<td>NTMX79 in an RSC-S (DS-1) Model A EXT</td>
<td>Vol. 7</td>
<td>1-349</td>
</tr>
<tr>
<td>NTMX79 in an RSC-S (DS-1) Model B EXT</td>
<td>Vol. 7</td>
<td>1-359</td>
</tr>
<tr>
<td>NTMX79 in an RSC-S (PCM-30) Model A EXT</td>
<td>Vol. 7</td>
<td>1-370</td>
</tr>
<tr>
<td>NTMX79 in an RSC-S (PCM-30) Model B EXT</td>
<td>Vol. 7</td>
<td>1-380</td>
</tr>
<tr>
<td>NTMX79 in an SMA2</td>
<td>Vol. 7</td>
<td>1-390</td>
</tr>
<tr>
<td>NTMX81 in an RSC RCC2</td>
<td>Vol. 7</td>
<td>1-397</td>
</tr>
<tr>
<td>NTMX81 in an RSC-S (DS-1) Model A RCC2</td>
<td>Vol. 7</td>
<td>1-409</td>
</tr>
<tr>
<td>NTMX81 in an RSC-S (DS-1) Model B RCC2</td>
<td>Vol. 7</td>
<td>1-421</td>
</tr>
<tr>
<td>NTMX81 in an SMA2</td>
<td>Vol. 7</td>
<td>1-435</td>
</tr>
<tr>
<td>NTMX81 in a STAR</td>
<td>Vol. 7</td>
<td>1-451</td>
</tr>
<tr>
<td>NTMX82 in an RSC-M</td>
<td>Vol. 7</td>
<td>1-465</td>
</tr>
<tr>
<td>NTMX82 in an RSC-S (PCM-30) Model A RCO2</td>
<td>Vol. 7</td>
<td>1-476</td>
</tr>
<tr>
<td>NTMX82 in an RSC-S (PCM-30) Model B RCO2</td>
<td>Vol. 7</td>
<td>1-486</td>
</tr>
<tr>
<td>NTMX87 in an RSC-M</td>
<td>Vol. 7</td>
<td>1-496</td>
</tr>
</tbody>
</table>
NTMX87 in an RSC RCC2 Vol. 7, 1-508
NTMX87 in an RSC-S (DS-1) Model A RCC2 Vol. 7, 1-528
NTMX87 in an RSC-S (DS-1) Model B RCC2 Vol. 7, 1-548
NTMX87 in an RSC-S (PCM-30) Model A RCO2 Vol. 7, 1-571
NTMX87 in an RSC-S (PCM-30) Model B RCO2 Vol. 7, 1-592
NTMX87 in an SMA2 Vol. 7, 1-613
NTRX41 in an IOPAC MSP Vol. 7, 1-630
NTRX41 in an OPAC MSP Vol. 7, 1-635
NTRX41 in an RSC-M/MSP Vol. 7, 1-640
NTRX41 in an RSC MSP Vol. 7, 1-645
NTRX41 in an RSC-S (DS-1) Model B MSP Vol. 7, 1-650
NTRX41 in an SMA2 MSP Vol. 7, 1-655
NTRX42 in an IOPAC MSP Vol. 7, 1-660
NTRX42 in an OPAC MSP Vol. 7, 1-677
NTRX42 in an RSC-M/MSP Vol. 7, 1-695
NTRX42 in an RSC MSP Vol. 7, 1-707
NTRX42 in an RSC-S (DS-1) Model B MSP Vol. 7, 1-726
NTRX42 in an RSC-S (PCM-30) Model B MSP Vol. 7, 1-746
NTRX42 in an SMA2 MSP Vol. 7, 1-766
NTRX43 in an IOPAC MSP Vol. 7, 1-778
NTRX43 in an OPAC MSP Vol. 7, 1-785
NTRX43 in an RSC-M/MSP Vol. 7, 1-792
NTRX43 in an RSC MSP Vol. 7, 1-800
NTRX43 in an RSC-S (DS-1) Model B MSP Vol. 7, 1-808
NTRX43 in an SMA2 MSP Vol. 7, 1-816
NTRX44 in an IOPAC MSP Vol. 7, 1-824
NTRX44 in an RSC-M/MSP Vol. 7, 1-836
NTRX44 in an RSC MSP Vol. 7, 1-848
NTRX44 in an RSC-S (DS-1) Model B MSP Vol. 7, 1-858
NTRX54 in an RSC-M/MSP Vol. 7, 1-868
NTRX54 in an RSC MSP Vol. 7, 1-875
NTRX54 in an RSC-S (DS-1) Model B MSP Vol. 7, 1-882
NTRX54 in an SMA2 MSP Vol. 7, 1-889
NTRX66 MSP Vol. 7, 1-896
NTTR46 in an RLD Vol. 7, 1-902
NTTR47 in an RLD Vol. 7, 1-908
NTTR60 in a STAR Vol. 7, 1-914
NTTR66 in an RLD Vol. 7, 1-921
NTTR67 in an RLD Vol. 7, 1-927
NTTR70 in an RLD Vol. 7, 1-934
NTTR71 in an RLD Vol. 7, 1-941
NTTR72 in an RLD Vol. 7, 1-946
NTTR73 in a STAR Vol. 7, 1-952
NTTR74 in a STAR Vol. 7, 1-956
NTTR75 in a STAR Vol. 7, 1-962
NTTR76 in a STAR Vol. 7, 1-970
NTTR77 in a STAR Vol. 7, 1-979
NTTR87 in a STAR Vol. 7, 1-986
1 Line concentrating module card replacement procedures

Introduction
This chapter contains card replacement procedures for the line concentrating module (LCM) and line concentrating equipment (LCE) frame. The first section in the chapter provides illustrations of LCM and LCE shelf layouts.

Card replacement procedures for the frame supervisory panel (FSP) and modular supervisory panel (MSP) are in the chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures”.

Each procedure contains the following sections:
- Application
- Common procedures
- Action

Application
This section identifies the LCM or LCE card(s) included in the replacement procedure.

Common procedures
This section lists common procedures for the LCM/LCE card replacement procedure. A common procedure is a series of steps that repeat in maintenance procedures. The removal and replacement of a card is an example of a common procedure. Common procedures are in the common procedures chapter in this NTP.

Do not use common procedures unless the step-action procedure directs you to go.

Action
This section contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Recording card replacement activities

When you replace a card, record the following information in office records:

- the serial number of the card you replaced
- the date you replaced the card
- the reason you replaced the card
LCM shelf layouts

Application

This procedure provides frame layouts for the following line concentrating equipment (LCE) frames:

- Line concentrating equipment (LCE) frame
- ISDN-line concentrating equipment (LCEI) frame

This procedure provides shelf and drawer layouts for the following shelves:

- Line concentrating module (LCM)
- LCM line drawer
- Enhanced LCM (LCME)
- LCME line drawer

Note 1: The frame and shelf layouts on the following pages are standard. The shelves in your office can have differences.

Note 2: The LCEI is another name for the enhanced LCE.

Note 3: The 1-Meg Modem Service has unique requirements for the capacity and fill of the LCM line drawer. Refer to the *1-Meg Modem Service Network Implementation Manual* (297-8063-200) for these guidelines.
LCM shelf layouts (continued)

Frame layout of the LCE frame

Legend:
- FSP: Frame supervisory panel
- LCA: Line concentrating array
- LCM: Line concentrating module
- RG: Ringing generator

Diagram showing LCM shelf layouts with labels for FSP, fuse panels, LCA units, and baffle.
Frame layout of the ISDN LCE frame

Legend:
- FSP: Frame supervisory panel
- LCAI: ISDN line concentrating array
- LG: Ringing generators
- LCME: Enhanced ISDN line concentrating module
LCM shelf layouts (continued)

Shelf layout of the LCM

![Diagram showing the shelf layout of the LCM with card positions and labels:]

- Line drawer
- NT6X52 LCM digroup control card
- NT6X51 LCM processor card
- NT6X53 Power converter card

Legend:
- Rear
- Front
Drawer layout of the LCM line drawer

Legend:
BIC Bus interface card

Note: Refer to the “Line cards for LCM and LCME line drawers” table for a list of line cards in this line drawer.
LCM shelf layouts (continued)

Drawer layout of the LCMI line drawer

![Drawer layout diagram]

Legend:
- BIC Bus interface card

Note: Refer to the “Line cards for LCM and LCME line drawers” table for a list of line cards in this line drawer.
Shelf layout of the LCME

<table>
<thead>
<tr>
<th>Cards</th>
<th>25F</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTBX72 Power converter card</td>
<td></td>
</tr>
<tr>
<td>NT6X53 Power converter card</td>
<td>23F</td>
</tr>
<tr>
<td>NTBX34 ISDN line module processor card</td>
<td>22F</td>
</tr>
<tr>
<td>NTBX35 ISDN LCM digroup control card</td>
<td>21F</td>
</tr>
<tr>
<td>NTBX35 ISDN LCM digroup control card</td>
<td>20F</td>
</tr>
<tr>
<td>Fuse panel</td>
<td>19F</td>
</tr>
</tbody>
</table>

- Line drawer
- Line drawer
- Line drawer
- Line drawer

DMS-100 Family NA100 Card Replacement Procedures Volume 2 of 7 LET0015 and up
LCM shelf layouts (continued)

Drawer layout of the LCME line drawer

<table>
<thead>
<tr>
<th>Front</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- BIC Bus interface card
- PUPS Point-of-use power supply

Note: Refer to the “Line cards for LCM and LCME line drawers” table for a list of line cards for this line drawer.

Line cards for LCM and LCME line drawers

<table>
<thead>
<tr>
<th>PEC</th>
<th>Card name</th>
<th>LCM</th>
<th>LCME</th>
<th>ILCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X17</td>
<td>AA Type A standard line card</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>AB Type A standard line card</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Line cards for LCM and LCME line drawers

<table>
<thead>
<tr>
<th>PEC</th>
<th>Card name</th>
<th>LCM</th>
<th>LCME</th>
<th>ILCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Type A standard line card</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AD</td>
<td>Type A standard line card</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BA</td>
<td>Type A world line card</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NT6X18</td>
<td>AA Type B line card</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NT6X18</td>
<td>AB Type B line card with +48 V</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NT6X18</td>
<td>BA Type B world line card</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NT6X19</td>
<td>AA Message waiting line card</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NT6X21</td>
<td>AA Type C standard line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>Type C standard line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>Type C standard line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>Type C line card (A-law)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NT6X33</td>
<td>AA Type A world line card</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NT6X71</td>
<td>AA Data line card (DLC) DMS-100/SL-100</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AB Data line card (DLC) DMS-100/SL-100</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA Single slot data line card (DLC) DMS-100/SL-100</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NT6X76</td>
<td>AA Asynchronous interface line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AD Asynchronous interface line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC Enhanced asynchronous interface line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NT6X93</td>
<td>AA Type A international line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Type A international line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Type A international line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>Type A international line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>Type A international line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>Type A international line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Line cards for LCM and LCME line drawers

<table>
<thead>
<tr>
<th>PEC</th>
<th>Card name</th>
<th>LCM</th>
<th>LCME</th>
<th>ILCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X94</td>
<td>International coin, PBX, SPM line card</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>International coin, PBX, SPM line card</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>International coin, PBX, SPM line card</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>International coin, PBX, SPM line card</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>International coin, PBX, SPM line card</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>International coin, PBX, SPM line card</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NT6X98</td>
<td>SCOPEDIAL line card</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NT6X99</td>
<td>IBERT datapath line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NTBX25</td>
<td>ISDN U-line card</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NTBX26</td>
<td>ISDN S/T interface line card</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NTBX27</td>
<td>2B1Q U-interface ISDN line card</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NTEX17</td>
<td>1-Meg Modem xDSL two-slot line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>1-Meg Modem xDSL two-slot line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>1-Meg Modem xDSL two-slot line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>1-Meg Modem xDSL two-slot line card</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Application

Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X54</td>
<td>AA</td>
<td>Bus interface card (BIC)</td>
<td>Line concentrating module (LCM)</td>
</tr>
<tr>
<td>NT6X54</td>
<td>AB</td>
<td>International bus interface card</td>
<td>International LCM (ILCM)</td>
</tr>
<tr>
<td>NT6X54</td>
<td>BA</td>
<td>International bus interface card</td>
<td>ILCM, LCM</td>
</tr>
<tr>
<td>NT6X54</td>
<td>CA</td>
<td>PCM-30 bus interface card</td>
<td>ILCM</td>
</tr>
<tr>
<td>NT6X54</td>
<td>DA</td>
<td>ISDN remote (ILDR) bus interface card</td>
<td>LCM</td>
</tr>
<tr>
<td>NTBX36</td>
<td>AA</td>
<td>Bus interface card</td>
<td>Enhanced LCM (LCME)</td>
</tr>
<tr>
<td>NTBX36</td>
<td>BA</td>
<td>ISDN LCM enhanced line drawer bus interface card</td>
<td>LCME</td>
</tr>
<tr>
<td>NTEX54</td>
<td>AA</td>
<td>Data enhanced bus interface card (DBIC)</td>
<td>Line concentrating module (LCM)</td>
</tr>
<tr>
<td>NTEX54</td>
<td>AB</td>
<td>Data enhanced bus interface card (DBIC)</td>
<td>Line concentrating module (LCM)</td>
</tr>
<tr>
<td>NTEX54</td>
<td>BA</td>
<td>Data enhanced bus interface card (DBIC)</td>
<td>Line concentrating module (LCM)</td>
</tr>
</tbody>
</table>

Refer to the Index, if you cannot identify one of the following features for the card that you want to replace;

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame
Bus interface cards
in an LCD (continued)

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing Bus interface cards in an LCD

1. Post the PM
2. Manually busy the logical drawer
3. Remove power from the drawer
4. Replace the card
5. Apply power to the drawer
6. Test the logical drawer
7. Return both logical drawers to service
8. End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Bus interface cards
in an LCD (continued)

Replacing Bus interface cards in an LCD

At your current location

1 Obtain a replacement card. Make sure that the replacement card and the
card that you remove have the same PEC and PEC suffix.

2 Note the PEC for the replacement card.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the PEC is NTEX54AA, NTEX54AB, or NTEX54BA</td>
<td>step 3</td>
</tr>
<tr>
<td>the PEC is not NTEX54AA, NTEX54AB, or NTEX54BA</td>
<td>step 7</td>
</tr>
</tbody>
</table>

3 Write down the 12-digit number stamped on the replacement card. This
number is the media access control (MAC) layer address used later in this
procedure.

At the xEMS workstation

4 Go to the submap of the LCM line drawer with the DBIC that you will replace.

5 Select the card.

6 To busy the card, select

 Maintenance -> DBIC -> ManB

 from the pop-up menu.

At the MAP terminal

7 To access the PM level of the MAP display, type

 >MAPCI;MTC;PM

 and press the Enter key.

 Example of a MAP display:
Bus interface cards
in an LCD (continued)

To post the LCM that contains the bus interface card (BIC) to be replaced, type

```>POST pm_type site frame_no pm_no```

and press the Enter key.

**where**

- **pm_type** is the type of PM (LCM, ILCM, LCME)
- **site** is the PM location (alphanumeric)
- **frame_no** is the equipment frame number (00 to 511)
- **pm_no** is the number of the PM (0 or 1) in the frame

**Example of a MAP display:**

```
PM SysB ManB OffL CBsy ISTb InSv
 0 0 2 0 1 71
```

8. To post the LCM that contains the bus interface card (BIC) to be replaced, type

```>POST pm_type site frame_no pm_no```

and press the Enter key.

where

- **pm_type** is the type of PM (LCM, ILCM, LCME)
- **site** is the PM location (alphanumeric)
- **frame_no** is the equipment frame number (00 to 511)
- **pm_no** is the number of the PM (0 or 1) in the frame

Record the numbers of the logical drawers that are associated with the BIC.

Note: Logical drawers configure in pairs for the physical drawer. The BIC services the physical drawer. Both logical drawers become manually busy during this card replacement procedure.

9. Check the state of the affected logical drawers.

 - If the state for one or both logical drawers is I, S, or . (dot)
 - step 11
 - Both logical drawers is M
 - step 14
 - To determine why the component is offline, consult operating company personnel. Continue as directed by operating company personnel.
Bus interface cards in an LCD (continued)

11. To manually busy the logical drawer, type

>BSY DRWR drwr_no

and press the Enter key.

where

 drwr_no

 is the logical drawer number (0 to 23)

Example of a MAP response:

LCM HOST 01 1 Drwr 0 will be taken out of service
Please confirm ("YES", "Y", "NO", or "N"):

12. To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response:

LCM HOST 01 1 Drwr 0 Bsy Passed

Note: For LCMEs, this action manually busies both logical drawers that are associated with the physical drawer.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you must busy the other logical drawer of the pair</td>
<td>step 13</td>
</tr>
<tr>
<td>both logical drawers are now M</td>
<td>step 14</td>
</tr>
</tbody>
</table>

13. Busy the other logical drawer of the pair.

>BSY DRWR drwr_no

and press the Enter key.

where

 drwr_no

 is the logical drawer number (0 to 23)

Example of a MAP response:

LCM HOST 01 1 Drwr 0 Bsy Passed
Bus interface cards in an LCD (continued)

At the shelf

14

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

DANGER
Potential equipment damage
Note the fuses that you remove from the fuse panel. If you do not insert fuses in the correct location on the fuse panel, equipment damage occurs.

The next action depends on the LCM version.

<table>
<thead>
<tr>
<th>If the LCM version</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ILCM or LCM</td>
<td>step 15</td>
</tr>
<tr>
<td>is LCME</td>
<td>step 16</td>
</tr>
</tbody>
</table>

15 Remove fuses for the LCM/ILCM line drawer. Refer to figure at the end of this procedure for fuse panel layout. See figure 2 for the ILCM fuse panel layout.

Note: Fuse markings do not always identify voltage. Make sure that you note the fuses and the location of the fuses in the fuse panel.

a Remove the -48V fuse for the line drawer that contains the BIC you replace. Refer to the figure of the fuse panel for fuse location.

b Remove the +15V fuse for the line drawer that contains the BIC you replace. Refer to the figure of the fuse panel for fuse location.

c Remove the +5V fuse for the line drawer that contains the BIC you replace. Refer to the figure of the fuse panel for fuse location.

Go to step 17.

16 Remove fuses for the LCME line drawer.

Note: Fuse markings do not always identify voltage. Make sure that you note the fuses and the location of the fuses in the fuse panel.

a Remove the -48 V Talk Battery fuse for the line drawer that contains the BIC you replace. Refer to the figure “LCME fuse panel” for fuse location.
Bus interface cards
in an LCD (continued)

b Remove the +15 V fuse for the line drawer that contains the BIC you replace. Refer to the figure “LCME fuse panel” for fuse location.

c Remove the -48 V Battery fuse for the line drawer that contains the BIC you replace. Refer to the figure “LCME fuse panel” for fuse location.

d Remove the -48 V Return fuse for the line drawer that contains the BIC you replace. Refer to the figure “LCME fuse panel” for fuse location.

17 Identify the drawer. Press the small thumb-latch button on the lower left edge of the drawer. Pull the drawer out. To secure the drawer in a steady horizontal position, tip the drawer until the catch rests on the line drawer track.

18 The next action depends on the line drawer version.

<table>
<thead>
<tr>
<th>If the line drawer version is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X05AA/BA/CA/DA</td>
<td>step 20</td>
</tr>
<tr>
<td>NTBX32BA</td>
<td>step 20</td>
</tr>
<tr>
<td>NT6X05EA</td>
<td>step 19</td>
</tr>
</tbody>
</table>
19 Remove the data cable from the RJ-45 connector on the DBIC. The RJ-45 connector is located at slot location 16 of the odd LSG (connector slot). Refer to figure at the end of this procedure for drawer and cable assembly layout.

20

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not hold the card by the levers only</td>
</tr>
<tr>
<td>If you hold a card by the locking levers only, the levers can break. Pull the card half way out of the slot. Carefully grasp the card from below for more support. Continue to remove the card from the drawer. Make sure that you do not touch any wires or internal parts on the card.</td>
</tr>
</tbody>
</table>

Open the locking levers on the face of the card.

21 Grasp the locking levers. Carefully pull the card toward you until the card clears the drawer.
Bus interface cards in an LCD (continued)

Place the card that you removed in an electrostatic discharge (ESD) protective container.

Make sure that the replacement card and the card that you remove have the same PEC and PEC suffix.

Close the locking levers on the replacement card. Align the card with the pin slots in the drawer. Carefully slide the card into the drawer.

Support the drawer with your left hand. Use your right hand to push on the upper and lower edges of the card. Make sure that the card sits completely in the drawer.
26 The next action depends on the line drawer version.

<table>
<thead>
<tr>
<th>If the line drawer version is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X05AA/BA/CA/DA</td>
<td>step 28</td>
</tr>
<tr>
<td>NTBX32BA</td>
<td>step 28</td>
</tr>
<tr>
<td>NT6X05EA</td>
<td>step 27</td>
</tr>
</tbody>
</table>

27 Replace the data cable RJ-45 connector that you removed in step 19. Refer to figure 4 at the end of this procedure for drawer and cable assembly layout.

28 Close the line drawer.

29 **DANGER**

Potential equipment damage

Note the fuses that you remove from the frame. If you do not insert fuses in the correct location on the fuse panel, equipment damage occurs.
Bus interface cards
in an LCD (continued)

The next action depends on the LCM version.

<table>
<thead>
<tr>
<th>If the LCM version</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ILCM or LCM</td>
<td>step 30</td>
</tr>
<tr>
<td>is LCME</td>
<td>step 31</td>
</tr>
</tbody>
</table>

30 Insert the fuses that you removed in step 15, as follows.

 Note: Fuses are coded for position. The colored square on the face of the fuse identifies the top edge.

 a Insert the +5V fuse again.
 b Insert the +15V fuse again.
 c Insert the -48V fuse again.

 Go to step 32.

31 Insert the fuses that you removed in step 16.

 Note: Fuses are coded for position. The colored square on the face of the fuse identifies the top edge.

 a Insert the -48V Battery Return fuse.
 b Insert the -48V Battery fuse.
 c Insert the +15V fuse.
 d Insert the -48V Talk Battery fuse.

32 The next action depends on the reason that you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 33</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 34</td>
</tr>
</tbody>
</table>

33 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

34 A maintenance flag (Mtce) can appear. This flag indicates that system-initiated maintenance tasks are in progress. To stop the system-initiated maintenance tasks, type

 >ABTK

 and press the Enter key.

35 To return the logical drawer to service, type

 >RTS DRWR drwr_no

 and press the Enter key.
where

\texttt{drwr_no}

is the logical drawer number (0 to 19)

Example of a MAP response:

OSvce Tests Initiated
LCM HOST 00 0 Drwr 0 Tst Passed
LCM HOST 00 0 Drwr 0 Rts Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed, and you must return the</td>
<td>step 36</td>
</tr>
<tr>
<td>other logical drawer to service</td>
<td></td>
</tr>
<tr>
<td>passed, and the other logical</td>
<td>step 37</td>
</tr>
<tr>
<td>drawer is in service</td>
<td></td>
</tr>
<tr>
<td>failed</td>
<td>Contact the next level of support.</td>
</tr>
</tbody>
</table>

36 Repeat step 35 for the other logical drawer in the pair.

37 Note the PEC for the card replaced.

If

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the PEC is NTEX54AA, NTEX54AB, or NTEX54BA</td>
</tr>
<tr>
<td>the PEC is not NTEX54AA, NTEX54AB, or NTEX54BA</td>
</tr>
</tbody>
</table>

38 Update table LCMDRINV.

\textbf{a} To open table LCMDRINV, type

\texttt{>TABLE LCMDRINV}

and press the Enter key.

\textbf{b} To position on the tuple for the LCM, type

\texttt{>POS site_name frame_no lcm_no}

and press the Enter key.

where

\texttt{site_name}

is the name of the site

\texttt{frame_no}

is the number of the frame
Bus interface cards
in an LCD (continued)

\(\text{lcm_no} \)

is the number of the LCM

c To begin changing the tuple, type

\(\text{>CHA} \)

and press the Enter key.
d To continue processing, type

\(\text{>Y} \)

and press the Enter key.
e Press the Enter key to scroll through the fields until you reach the field with the MAC address.
f Enter the new MAC address. Type

\(\text{>drwr_id\ card_pec\ drwr_pec\ mac_address} \)

and press the Enter key.

where

\(\text{drwr_id} \)

is the physical number of the drawer

\(\text{card_pec} \)

is NTEX54AA, NTEX54AB, or NTEX54BA

\(\text{drwr_pec} \)

is the PEC of the drawer

\(\text{mac_address} \)

is the MAC address of the new DBIC

g Press the Enter key to scroll through remaining fields.
h Confirm the change. Type

\(\text{>Y} \)

and press the Enter key.
i Exit the table. Type

\(\text{>QUIT} \)

and press the Enter key.

At the xEMS workstation

39 Go to the submap of the LCM line drawer with the new DBIC.
40 Select the card.
41 From the pop-up menu select Describe/Modify Object. The Object Description dialog box appears.
42 From the Object Description dialog box, select HSTP Application from the fields under Object Attributes.
43 Select View/Modify Object Attributes.
44 Enter the new MAC address in the MAC Address field.
Clock OK to close the Attributes dialog box.

Click OK to close the Object Description dialog box.

To return the card to service, select Maintenance -> DBIC -> Rts from the pop-up menu.

You have successfully completed this card replacement procedure.

LCM fuse panel

![Diagram of LCM fuse panel with fuse labels and numbers: 01, 05, 06, 10, 11, 15, RA, RB.](image-url)
Bus interface cards in an LCD (continued)

ILCM fuse panel

Fuse panel (magnified view)

Fuse panel (magnified view)
Bus interface cards in an LCD (continued)

LCME fuse panel

<table>
<thead>
<tr>
<th>Fuse location</th>
<th>Fuse location</th>
</tr>
</thead>
<tbody>
<tr>
<td>–48V BR drawer 1</td>
<td>–48V BR drawer 2</td>
</tr>
<tr>
<td>3A blue fuse</td>
<td>3A blue fuse</td>
</tr>
<tr>
<td>–48V BR drawer 3</td>
<td>–48V BR drawer 4</td>
</tr>
<tr>
<td>3A blue fuse</td>
<td>3A blue fuse</td>
</tr>
<tr>
<td>–48V B drawer 1</td>
<td>–48V B drawer 2</td>
</tr>
<tr>
<td>3A blue fuse</td>
<td>3A blue fuse</td>
</tr>
<tr>
<td>–48V B drawer 3</td>
<td>–48V B drawer 4</td>
</tr>
<tr>
<td>3A blue fuse</td>
<td>3A blue fuse</td>
</tr>
<tr>
<td>+15 V drawer 1</td>
<td>+15 V drawer 2</td>
</tr>
<tr>
<td>3A blue fuse</td>
<td>3A blue fuse</td>
</tr>
<tr>
<td>+15 V drawer 3</td>
<td>+15 V drawer 4</td>
</tr>
<tr>
<td>3A blue fuse</td>
<td>3A blue fuse</td>
</tr>
<tr>
<td>–48V Talk Batt drawer 1</td>
<td>–48V Talk Batt drawer 2</td>
</tr>
<tr>
<td>5A green fuse</td>
<td>5A green fuse</td>
</tr>
<tr>
<td>–48V Talk Batt drawer 3</td>
<td>–48V Talk Batt drawer 4</td>
</tr>
<tr>
<td>5A green fuse</td>
<td>5A green fuse</td>
</tr>
<tr>
<td>RING 0</td>
<td>Spare</td>
</tr>
<tr>
<td>1.33A white fuse</td>
<td>1.33A white fuse</td>
</tr>
</tbody>
</table>

Fuse color

- Use 3A blue fuses in F01 through F12.
- Use 5A green fuses in F13 through F16.
- Use 1.33A white fuses in F17 and F18.
Bus interface cards
in an LCD (end)

NT6X05AE line drawer with DBIC installed

Procedure history
SN07 (DMS)

Procedure corrected according to CR Q00886580.

Procedure history section added.
Control complex cards in LCM-type PMs

Application

Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X51</td>
<td>AA</td>
<td>LCM processor card</td>
<td>line concentrating module (LCM)</td>
</tr>
<tr>
<td>NT6X51</td>
<td>AB, AC</td>
<td>Extended LCM processor card</td>
<td>international LCM (ILCM), LCM</td>
</tr>
<tr>
<td>NT6X52</td>
<td>AA</td>
<td>LCM digroup control card</td>
<td>LCM</td>
</tr>
<tr>
<td>NT6X52</td>
<td>AB</td>
<td>International LCM digroup control card</td>
<td>ILCM</td>
</tr>
<tr>
<td>NTBX34</td>
<td>BA</td>
<td>ISDN LCME processor card</td>
<td>Enhanced LCM (LCME)</td>
</tr>
<tr>
<td>NTBX35</td>
<td>AA</td>
<td>ISDN LCME digroup control card</td>
<td>LCME</td>
</tr>
</tbody>
</table>

Refer to the Index, if you cannot identify one of the following features for the card that you want to replace:

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

- Replacing a card
- Loading a PM

Do not go to the common procedure unless the step-action procedure directs you to go.
Control complex cards
in LCM-type PMs (continued)

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Control complex cards in LCM-type PMs (continued)

Summary of replacing Control complex cards in LCM-type PMs

1. Post the PM
2. Busy the PM unit
3. Replace the card
4. Replacing a processor card?
 - Yes: Load the PM unit
 - No: Return the PM unit to service
5. End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing Control complex cards in LCM-type PMs

At your current location

1

WARNING
Loss of service
This procedure directs you to manually busy peripheral module (PM) units, which can cause service degradation. Perform this procedure if you need to restore out-of-service components. If you do not need to restore out-of-service components, perform this procedure during periods of low traffic.

Obtain a replacement card. Make sure the replacement card and the card to replace have the same PEC and PEC suffix.

At the MAP terminal

2 Access the PM level of the MAP display, type
 >MAPCI;MTC;PM
 and press the Enter key.
 Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>71</td>
</tr>
</tbody>
</table>

3 Post the LCM that contains the card to replace, type
 >POST pm_type site frame_no pm_no
 and press the Enter key.

 where

 pm_type
 is the PM type (ILCM, LCM, LCME)

 site
 is the PM location (host or remote)

 frame_no
 is the frame number (00 to 99)

 pm_no
 is the number of the PM (0 or 1) in the frame
Control complex cards in LCM-type PMs (continued)

Example of a MAP display:

```
LCM HOST 00 0 InSv Links OOS: Cside 0 Pside 0
Unit 0: InSv /RG:0
Unit 1: InSv /RG:1
           11 11 11 11 11  RG: Pref 0 InSv
Drwr: 01 23 45 67 89 01 23 45 67 89  Stby 1 InSv
        .. -- -- -- .. -- -- -- ..
```

4. Determine the state of the PM unit associated with the card to replace.

<table>
<thead>
<tr>
<th>If the state of the PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, CBsy, ISTb, or InSv</td>
<td>step 5</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 6</td>
</tr>
<tr>
<td>is Offl</td>
<td>step 21</td>
</tr>
</tbody>
</table>

5. Busy the PM unit, type

>BSY UNIT unit_no

and press the Enter key.

where

- `unit_no` is the PM unit number (0 or 1)

Example of a MAP display:

```
LCM HOST 00 0 ISTb Links OOS: Cside 0 Pside 0
Unit 0: ManB /RG: 0
Unit 1: InSv Takeover /RG: 0
            11 11 11 11 11  RG: Pref 0 InSv
Drwr: 01 23 45 67 89 01 23 45 67 89  Stby 1 InSv
      .. .. .. -- .. .. -- -- -- ..
bsy unit 0
LCM HOST 00 0 Unit 0 Bsy Passed
```

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 6</td>
</tr>
<tr>
<td>failed</td>
<td>step 22</td>
</tr>
</tbody>
</table>
The next action depends on the type of card to replace.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>The card to replace is a NT6X52AA in a NTMX89FA.</td>
<td>step 8</td>
</tr>
<tr>
<td>The card to replace is not a NT6X52AA in a NTMX89FA.</td>
<td>step 7</td>
</tr>
</tbody>
</table>

The next action depends on the card being replaced and the release of the NT6X53AA card.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>The card to replace is a NT6X52AA and the NT6X53AA in the same unit is release 50–58, 5C–5Z or AA–AU.</td>
<td>step 8</td>
</tr>
<tr>
<td>The card to replace is a NT6X52AA and the NT6X53AA in the same unit is not release 50–58, 5C–5Z or AA–AU.</td>
<td>step 11</td>
</tr>
</tbody>
</table>

If the card replaced is not a NT6X52AA.

Measure the +5VDC faceplate voltages on each of the two NT6X53AA power converter cards in the LCM. Determine if the NT6X53AA cards are within 200 millivolts of each other.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>The NT6X53AA +5VDC faceplate voltages are within 200 millivolts of each other.</td>
<td>step 10</td>
</tr>
<tr>
<td>The NT6X53AA +5VDC faceplate voltages are not within 200 millivolts of each other.</td>
<td>step 9</td>
</tr>
</tbody>
</table>

Using the procedure entitled "Power cards in LCM-types PMs" replace the NT6X53AA that has the lower +5VDC faceplate voltage and return to step 8.

Power down the NT6X53 Power Converter Card in the PM unit containing the NT6X52AA card being replaced.
At the shelf

11

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure “Replacing a card” in this document. Complete the procedure and return to this point.

Note: If the card being replaced has switches, make sure the switches on the replacement card have the same settings.

12

The next action depends on the card replaced and the cabinet assembly.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>The card replaced is a step 14 NT6X52AA in a NTMX89FA.</td>
<td>The card replaced is not a step 13 NT6X52AA in a NTMX89FA.</td>
</tr>
</tbody>
</table>

13

The next action depends on the card replaced and the release of the NT6X53AA card.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>The card replaced is a step 14 NT6X52AA and the NT6X53AA in the same unit is release 50–58, 5C–5Z or AA–AU.</td>
<td>The card replaced is a step 15 NT6X52AA and the NT6X53AA in the same unit is not release 50–58, 5C–5Z or AA–AU.</td>
</tr>
<tr>
<td>If the card replaced is not a step 15 NT6X52AA.</td>
<td></td>
</tr>
</tbody>
</table>
Control complex cards
in LCM-type PMs (continued)

14 Restore power to the NT6X53 Power Converter Card in the PM unit containing the NT6X52AA card replaced.

15 The next action depends on the reason this procedure was performed.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 16</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 17</td>
</tr>
</tbody>
</table>

16 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

17 Determine if the PM requires loading.

<table>
<thead>
<tr>
<th>If the card replaced is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a NT6X51 or a NTBX34</td>
<td>step 18</td>
</tr>
<tr>
<td>a NT6X52 or a NTBX35</td>
<td>step 20</td>
</tr>
</tbody>
</table>

At the MAP terminal

18 Load the PM, type

 >LOADPM UNIT unit_no

 and press the Enter key.

 where

 unit_no

 is the PM unit number (0 or 1)

Example of a MAP response:

 LCM HOST 00 0 Unit 0 LoadPM Passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 19</td>
</tr>
<tr>
<td>passed</td>
<td>step 20</td>
</tr>
</tbody>
</table>

19 To load the PM unit, perform the procedure “Loading a PM” in this document. Complete the procedure and return to this point.
Control complex cards in LCM-type PMs (end)

20 Return the PM to service, type

>RTS UNIT unit_no

and press the Enter key.

where

unit_no

is the PM unit number (0 or 1)

Example of a MAP response:
LCM HOST 00 0 Unit 0 OSvce Tests Initiated
LCM HOST 00 0 Unit 0 Tst Passed
LCM HOST 00 0 Unit 0 Rts Passed
LCM HOST 00 0 Unit 0 InSvc Tests Initiated
LCM HOST 00 0 Unit 0 Tst Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 22</td>
</tr>
<tr>
<td>passed</td>
<td>step 23</td>
</tr>
</tbody>
</table>

21 To determine why the component is offline, consult operating company personnel. Continue as directed by operating company personnel.

22 For additional help, contact the next level of support.

23 The procedure is complete.
Application

Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X17</td>
<td>AA, AB, AC, AD</td>
<td>Type A standard line card</td>
<td>Line concentrating module (LCM), Enhanced LCM (LCME), International LCM (ILCM)</td>
</tr>
<tr>
<td>NT6X17</td>
<td>BA</td>
<td>Type A world line card</td>
<td>ILCM, LCM, LCME</td>
</tr>
<tr>
<td>NT6X18</td>
<td>AA</td>
<td>Type B line card</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X18</td>
<td>AB</td>
<td>Type B line card with +48 V</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X18</td>
<td>BA</td>
<td>Type B world line card</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X19</td>
<td>AA</td>
<td>Message waiting line card</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X21</td>
<td>AA, AB, AC</td>
<td>Type C standard line card</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X21</td>
<td>BC</td>
<td>Type C line card (A-law)</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X33</td>
<td>AA</td>
<td>Type A world line card</td>
<td>ILCM, LCM, LCME</td>
</tr>
<tr>
<td>NT6X71</td>
<td>AA, AB</td>
<td>Data line card (DLC) DMS-100/SL-100</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X71</td>
<td>BA</td>
<td>Single slot data line card (DLC) DMS-100/SL-100</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X76</td>
<td>AA, AD</td>
<td>Asynchronous interface line card</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X76</td>
<td>AC</td>
<td>Enhanced asynchronous interface line card</td>
<td>LCM, LCME</td>
</tr>
<tr>
<td>NT6X93</td>
<td>AA, BA, CA, DA, EA, FA</td>
<td>Type A international line card</td>
<td>ILCM, LCM</td>
</tr>
</tbody>
</table>
Refer to the Index, if you cannot identify one of the following features for the card that you want to replace;

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to *Replacing a line card*.

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing Line cards in an LCE line drawer

- Post the line associated with the card
- Manually busy the line circuit
- Replace the card
- Diagnose the line circuit
- Return the line to service
- End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing Line cards in an LCE line drawer

At your current location

1 Obtain a replacement card. Make sure that the replacement card and the card that you remove have the same PEC and PEC suffix.

CAUTION
Loss of service
This procedure directs you to manually busy a minimum of one line. Removal of a line from service can cause the system to drop calls in progress. Perform this procedure only if you need to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.

Obtain a replacement card. Make sure that the replacement card and the card that you remove have the same PEC and PEC suffix.

<table>
<thead>
<tr>
<th>If the card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a NTEX17AA, NTEX17BA, NTEX17CA, or NTEX17DA</td>
<td>step 2</td>
</tr>
<tr>
<td>any other card</td>
<td>step 4</td>
</tr>
</tbody>
</table>

At the xEMS workstation

2 Go to the submap of the LCM line drawer with the xLC that you will replace.
3 To busy the card, select
 Maintenance : XLC -> MB
 and press the Enter key.

At the MAP terminal

4 To access the LTP level of the MAP display, type
 >MAPCI;MTC;LNS;LTP
 and press the Enter key.
 Example of a MAP display:
Line concentrating module card replacement procedures

Line cards in an LCE line drawer (continued)

POST DELQ BUSYQ PREFIX
LCC PTY RNGLEN.......DN STA F S LTA TE RESULT

Note: If you worked at the LTP level of the MAP display, a posted line can be present. A posted line does not interfere with this maintenance procedure.

5 To post the line that associates with the card you replace, type
>POST L site frame_no unit_no drawer_no slot_no
and press the Enter key.

where
site
is the PM location (alphanumeric)
frame_no
is the frame number (0 to 511)
unit_no
is the PM unit number (0 or 1)
drawer_no
is the logical drawer number (0 to 19)
slot_no
is the card slot number (0 to 31)

Example of a MAP display:

LCC PTY RNGLEN....... DN STA F S LTA TE RESULT
1FR HOST 01 0 01 01 621 1134 IDL

6 Determine the state of the posted line.

<table>
<thead>
<tr>
<th>If the state of the line</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is CPB, CPD</td>
<td>step 7</td>
</tr>
<tr>
<td>is CUT, HAZ, IDL, LO, PLO, SB</td>
<td>step 8</td>
</tr>
<tr>
<td>is MB</td>
<td>step 9</td>
</tr>
<tr>
<td>is NEQ</td>
<td>step 14</td>
</tr>
<tr>
<td>is DEL, DMB, INB, LMB</td>
<td>step 15</td>
</tr>
</tbody>
</table>

7 Wait until the line state changes. Go to step 6.

8 To manually busy the line circuit, type
>BSY
Line cards
in an LCE line drawer (continued)

and press the Enter key.

Example of a MAP display:

```
LCC PTY RNG .....LEN.......... DN STA F S LTA TE RESULT
1FR HOST 01 0 01 01 621 1134 MB
```

Note: Observe that the state that appears under the STA header changed to MB.

<table>
<thead>
<tr>
<th>If BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 9</td>
</tr>
<tr>
<td>failed</td>
<td>step 15</td>
</tr>
</tbody>
</table>

At the shelf

9

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle cards. The wrist-strap grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure *Replacing a line card* in this document. Complete the procedure and return to this point.

Note: If the card that you replace has switches, make sure that the switches on the replacement card have the same settings.

At the MAP terminal

10 To perform a diagnostic test on the line, type

```
>DIAG
```

and press the Enter key.

Example of a MAP response:
To return the line to service, type >RTS and press the Enter key.

11 To return the line to service, type >RTS and press the Enter key.

12 The next action depends on the reason that you perform this procedure.

13 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

14 To determine why the component is offline or not equipped, consult operating company personnel. Continue as directed by operating company personnel.

15 For additional help, contact the next level of support.

16 The next step depends on the PEC of the line card.

If the card is

- a NTEX17AA, NTEX17BA, NTEX17CA, or NTEX17DA
 Do step 17
- any other card
 Do step 19
Line cards in an LCE line drawer (end)

At the xEMS workstation

17 Go to the submap of the LCM line drawer with the xLC that you replaced
18 To return the card to service, select

 Maintenance : XLC -> IDL

 and press the Enter key.

19 The procedure is complete.
NT6X30 in LCE-type frames

Application

Use this procedure to replace an NT6X30 in the shelves or frames listed in the following table.

Refer to the Index if you cannot identify the following features for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing a NT6X30 in LCE-type frames

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.
Replacing a NT6X30 in LCE-type frames

At your current location

1 Obtain an approved replacement card.

At the MAP terminal

2 To access the PM level of the MAP display, type

 >MAPCI;MTC;PM

 and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

 3 To post a peripheral module (PM) in the frame that associates with the ringing
 generator (RG) that you replace, type

 >POST pm_type site frame_no pm_no

 and press the Enter key.

 where

 pm_type
 is the PM type (LCM, LCME, LCMI)

 site
 is the PM location (alphanumeric)

 frame_no
 is the frame number (00 to 511)

 pm_no
 is the number of the PM (0 or 1) in the frame

 Example of a MAP display:
NT6X30
in LCE-type frames (continued)

<table>
<thead>
<tr>
<th>LCM HOST 00 0 ISTb Links OOS: Cside 0 Pside 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 0: ISTb /RG:0</td>
</tr>
<tr>
<td>Unit 1: InSv /RG:0</td>
</tr>
<tr>
<td>Drwr: 01 23 45 67 89 01 23 45 67 89 Stby 1 InSv</td>
</tr>
<tr>
<td>11 11 11 11 11 RG: Pref 0 ISTb</td>
</tr>
</tbody>
</table>

Note: Two PMs can be present in the equipment frame. If two PMs are present in the frame, repeat steps 4 through 9 for both PMs.

4. Check the state of the PM units.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the PM or PM units are Offl or SysB</td>
<td>step 5</td>
</tr>
<tr>
<td>one unit is InSv or ISTb and the other unit is SysB</td>
<td>step 6</td>
</tr>
</tbody>
</table>

5. Check the state of the other PM in the frame.

<table>
<thead>
<tr>
<th>If the other PM</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is Offl or SysB</td>
<td>step 37</td>
</tr>
<tr>
<td>is InSv or ISTb</td>
<td>step 6</td>
</tr>
</tbody>
</table>

6. Record the numbers of the PM units that the defective RG services.
7 To switch RG activity for the PM unit assigned to the damaged RG, type

>SWRG UNIT unit_no

and press the Enter key.

where

unit_no

is the PM unit number (0 or 1)

Example of a MAP response:

LCM HOST 00 0 Unit 0 SWRG Passed

Note: Repeat this command for the other PM units that associate with the defective RG.

8 To manually-busy (ManB) the PM unit that associates with the defective RG, type

>BSY UNIT unit_no
and press the Enter key.

where

`unit_no`
is the PM unit number (0 or 1) that associates with the damaged RG

Example of a MAP response:

```
LCM HOST 00 0 Unit 0 Bsy Passed
```

Note: Repeat this command for the other PM in the frame.

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 9</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

9 The next action depends on the number of PMs in the equipment frame.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>one PM is present in the frame</td>
<td>step 11</td>
</tr>
<tr>
<td>two PMs are present in the frame, and you did not switch RG activity for both PMs</td>
<td>step 10</td>
</tr>
<tr>
<td>two PMs are present in the frame, and you switched RG activity for both PMs</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 Repeat steps 4 to 9 for the other PM in the equipment frame.

11 To post both PMs in the frame, and make sure that all units are now on the good RG type

```
>POST pm_type site frame_no pm_no site frame_no pm_no
```

and press the Enter key.

where

`pm_type`
is the PM type (LCM, LCME, LCMI) of the first PM

`sit`
is the PM location (alphanumeric) of the first PM

`frame_no`
is the frame number (00 to 511) of the first PM

`pm_no`
is the number of the first PM (0 or 1) in the frame,
site
 is the PM location (alphanumeric) of the second PM

frame_no
 is the frame number (00 to 511) of the second PM

pm_no
 is the number of the second PM (0 or 1) in the frame,

Example of command

>POST LCM HOST 00 0 HOST 00 1

Example of a MAP display:

```
LCM HOST 00 0 ISTb Links OOS: Cside 0 Pside 0
Unit 0: ISTb    /RG:1
Unit 1: InSv    /RG:1
  11 11 11 11 11 RG: Pref 0 ISTb
Drwr: 01 23 45 67 89 01 23 45 67 89 Stby 1 InSv
   .. .. .. .. .. .. .. .. .. ..
```

To examine the other PM in the frame, type

>NEXT

and press the Enter key.

Example of a MAP display:

```
LCM HOST 00 1 ISTb Links OOS: Cside 0 Pside 0
Unit 0: ISTb    /RG:1
Unit 1: InSv    /RG:1
  11 11 11 11 11 RG: Pref 0 ISTb
Drwr: 01 23 45 67 89 01 23 45 67 89 Stby 1 InSv
   .. .. .. .. .. .. .. .. .. ..
```

If both PMs

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are on the good RG</td>
</tr>
<tr>
<td>are not on the good RG</td>
</tr>
</tbody>
</table>

12 Repeat steps 4 to 9 for the other PM in the equipment frame.
At the shelf

13

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. A grounding point is on the frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

Put on a wrist strap.

14

DANGER

Risk of personal injury

Make sure that you switch off the correct circuit breaker on the FSP as the following steps describe. Do not proceed until you locate and switch off the correct circuit breaker for the RG you replace.

Switch off the circuit breaker on the FSP that powers the defective RG card you want to replace.

15

Locate the RG you want to replace.

Note: At the front of the equipment frame, RG 0 is on the left side of the frame, RG 1 is on the right side of the frame.
Open the locking levers on the face of the card.

DANGER
Do not hold the card by the levers only
If you hold a card by the locking levers only, the locking levers can break. Pull the card half way out of the shelf and carefully grasp the card from below for more support. Continue to remove the card from the shelf. Do not touch any wires or internal parts on the card.

Open the locking levers on the face of the card.
Grasp the locking levers and carefully pull the card toward you until the card protrudes halfway out of the shelf.
Grasp the card by the face plate with one hand and support the card from the bottom with the other hand. Carefully pull the card toward you until the card clears the shelf.

Place the removed card in an electrostatic discharge (ESD) protective container.

Set the DIP switch settings on the replacement card.

Note 1: Set the dip switches on the replacement card using the switch settings from the card being replaced.

Note 2: The layout/order of the dip switches on the two packs may be different. Ensure that the switch settings of the pack being replaced are transferred accurately to the correct switch on the replacement pack.

Note 3: If you replace an older version NT6X30 with a newer version, switch 8 on the replacement card must be in the ON position. Newer versions of the NT6X30 have suffixes BB, CA, DB, GB, HA, or JA. If you are not sure, contact the next level of support.

Open the locking levers on the replacement card. Align the card with the right slot in the shelf and carefully slide the card into the shelf.
22 Seat and lock the card, as follows:
 a Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Make sure that the card sits completely in the shelf.
 b Close the locking levers to secure the card.
23 Switch ON the circuit breaker that you switched to the OFF position on the FSP at step 13.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the circuit breaker remains switched</td>
<td>step 24</td>
</tr>
<tr>
<td>the LED light on the FSP turns off</td>
<td></td>
</tr>
<tr>
<td>the circuit breaker trips or the</td>
<td>step 37</td>
</tr>
<tr>
<td>LED light on the FSP does not turn off</td>
<td></td>
</tr>
</tbody>
</table>

24 Remove the wrist strap.

25 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a maintenance procedure directed you</td>
<td>step 26</td>
</tr>
<tr>
<td>to this procedure</td>
<td></td>
</tr>
<tr>
<td>a maintenance procedure did not direct</td>
<td>step 27</td>
</tr>
<tr>
<td>you to this procedure</td>
<td></td>
</tr>
</tbody>
</table>

26 Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

27 To post a PM in the frame, type

>POST pm_type site frame_no pm_no

and press the Enter key.

where

- **pm_type**
 - is the PM type (LCM, LCME, LCMI)
- **site**
 - is the PM location (alphanumeric)
- **frame_no**
 - is the frame number (00 to 511)
- **pm_no**
 - is the number of the PM (0 or 1) in the frame

28 Wait until system-initiated maintenance on the unit stops.

29 To return the ManB unit to service, type

>RTS UNIT unit_no

and press the Enter key.
where

unit_no
 is the number (0 or 1) of the PM unit

30 To switch RG activity to the new RG, type

>SWG UNIT unit_no
 and press the Enter key.

where

unit_no
 is the PM unit number (0 or 1)

Example of a MAP display:

| LCM HOST 00 0 InSv Links OOS: Cside 0 Pside 0 |
| Unit 0: InSv /RG:1 |
| Unit 1: InSv /RG:1 |
| Drwr: 01 23 45 67 89 11 11 11 11 11 11 11 11 | RG: Pref 0 InSv |
| | Stby 1 InSv |

If the SWRG command

passed, and you must switch RG activity for the other PM unit	step 31
passed, and RG activity is acceptable for both PM units	step 32
failed	step 36

31 Repeat step 30 for the other PM unit.

32 To test the new RG, type

>TST PM
 and press the Enter key.

Example of a MAP display:

| tst pm |
| LCM HOST 00 1 Unit 1 InSvce Tests Initiated |
| LCM HOST 00 1 Unit 0 InSvce Tests Initiated |
| LCM HOST 00 1 Unit 1 Tst Passed |
| LCM HOST 00 1 Unit 0 Tst Passed |

Note: Repeat this command for the other PM in the frame.

33 To align RG activity to the preferred RG, type

>SWG UNIT unit_no
 and press the Enter key.

where

unit_no
 is the number (0 or 1) of the PM unit
Line concentrating module card replacement procedure

NT6X30

in LCE-type frames (end)

unit_no

is the PM unit number (0 or 1)

Example of a MAP display:

LCM HOST 00 0 InSv Links OOS: Cside 0 Pside 0
Unit 0: InSv /RG:0
Unit 1: InSv /RG:0
Drwr: 01 23 45 67 89 01 23 45 67 89
..
11 11 11 11 11 RG: Pref 0 InSv
11 11 11 11 11 Stby 1 InSv

34 The next action depends on the number of PMs present in the equipment frame.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>one PM is present in the frame</td>
<td>step 38</td>
</tr>
<tr>
<td>two PMs are present in the frame, and</td>
<td>step 35</td>
</tr>
<tr>
<td>you did not switch RG activity for both</td>
<td></td>
</tr>
<tr>
<td>PMs</td>
<td></td>
</tr>
<tr>
<td>two PMs are present in the frame, and</td>
<td>step 38</td>
</tr>
<tr>
<td>you switched RG activity for both PMs</td>
<td></td>
</tr>
</tbody>
</table>

35 Repeat steps 27 to 33 for the other PM in the equipment frame.

36 Consult operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

37 For additional help, contact the next level of support.

38 The procedure is complete.
Application

Use this procedure to replace a NTBX71 in an enhanced line concentrating module (LCME), as listed in the following table.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTBX71</td>
<td>AA</td>
<td>ISDN enhanced line drawer point-of-use power supply (PUPS) card</td>
<td>LCME</td>
</tr>
</tbody>
</table>

Refer to the “Index” if you cannot identify the following features for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The “Index” contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

There are no common procedures

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
NTBX71
in an LCME (continued)

Summary of replacing an NTBX71 in an LCME

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

Post LCME

Manually busy the logical drawer

Remove power from physical drawer

Replace card

Apply power to physical drawer

Test logical drawer

Return logical drawers to service

End
Replacing an NTBX71 in an LCME

At your current location

1. Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

At the MAP terminal

2. To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>71</td>
</tr>
</tbody>
</table>

3. To post the PM that contains the card you replace, type

>POST LCME site frame_no pm_no

and press the Enter key.

where

- **site** is the PM location (alphanumeric)
- **frame_no** is the frame number (00 to 99)
- **pm_no** is the number of the PM (0 or 1) in the frame

Example of a MAP display:

```
LCME HOST 55 0 InSv Links OOS: Cside 0 PSide 0
Unit0: InSv /RG: 0
Unit1: InSv /RG: 0
Drwr: 01 23 45 67 89 01 23 45 Stby 1 InSv
      . . . -- -- -- -- . .
```
4. Check the state of the logical drawers that associate with the PUPS card you replace.

<table>
<thead>
<tr>
<th>If the state of</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>one or both logical drawers is I, (dot), or S</td>
<td>step 5</td>
</tr>
<tr>
<td>both logical drawers is M</td>
<td>step 7</td>
</tr>
<tr>
<td>one or both logical drawers is O or -</td>
<td>step 24</td>
</tr>
</tbody>
</table>

5. To manually busy one of the logical drawers, type

```
>BSY DRWR drwr_no
```

and press the Enter key.

where

`drwr_no`

is the logical drawer number (0 to 15)

Example of a MAP response:

```
WARNING ... this action will affect both drwrs 0 and 1
LCME HOST 55 0 Drwr 0 will be taken out of service
Please confirm ("YES", "Y", "NO", or "N"): yes
LCME HOST 55 0 Drwr 0 Bsy Passed
```

6. To confirm the command, type

```
>YES
```

and press the Enter key.

Example of a MAP display:

```
LCME HOST 55 0 InSv Links OOS: Cside 0 PSide 0
Unit0: InSv /RG: 0
Unit1: InSv /RG: 0
11 11 11 RG: Pref 0 InSv
Drwr: 01 23 45 67 89 01 23 45 Stby 1 InSv
MM .. -- -- -- -- .. ..

yes
LCME HOST 55 0 Drwr 0 Bsy Passed
```

Note: Both logical drawers that associate with the physical drawer are made manually busy through this action.
At the shelf

7

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. A grounding point is on the frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

DANGER

Potential equipment damage

Note fuses that you remove from the fuse panel. If you do not insert fuses again in the correct location, equipment damage results.

Remove fuses for the line drawer.

Note: Fuse markings do not always identify voltage. Make sure that you note fuses and the location of the fuses in the fuse panel.

a Remove the -48 V Talk Battery fuse for the line drawer that contains the BIC you replace. Refer to the figure, (LCME fuse panel) for fuse location.

b Remove the +15 V fuse for the line drawer that contains the BIC you replace. Refer to the figure, (LCME fuse panel) for fuse location.

c Remove the -48 V Battery fuse for the line drawer that contains the BIC you replace. Refer to the figure, (LCME fuse panel) for fuse location.

d Remove the -48 V Return fuse for the line drawer that contains the BIC you replace. Refer to the figure, (LCME fuse panel) for fuse location.

8 Locate the drawer that contains the card.

9 Locate the drawer. Press in the small thumb-latch button on the lower left edge of the drawer and pull the drawer out. To secure the drawer in a steady horizontal position, tip the drawer until the catch rests on the line drawer track.
Note: Use the insertion/removal tools to change a point-of-use power supply (PUPS) card in a line drawer. The insertion/removal tools are the small circuit pack puller (A9975), and the double slot line card insertion/removal tool (A8795).

10 Place double slot line card removal/insertion tool A8795 over the PUPS card and the cards in the line card slots. The line card slots are located next to the PUPS card. Refer to the figure “Removing the PUPS card” for the removal of the PUPS card.

11 Grasp the top of the line drawer with the left hand. Place your left thumb on the handle of the insertion/removal tool and your fingers on the rear of the line drawer. For line drawers 6/7 and 14/15, apply slight pressure with your left hand. Use your left hand to push the drawer away to clear the fuses in the next circuit pack position. Refer to the figure “Removing the PUPS card” for the removal of the PUPS card.

12 Grasp the PUPS card with the circuit pack puller A9975 in the center of the card. At the same time, apply pressure to the insertion/removal tool. To remove the card, pull the card straight out from the line drawer slot. Refer to the figure “Removing the PUPS card” for the removal of the PUPS card.

13 Place the removed card in an electrostatic discharge (ESD) protective container.
14 Make sure that the replacement card and the card you removed have the same PEC and PEC suffix.
 Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

15 To insert the replacement card in the slot, use the insertion/removal tool A8795 and puller A9975. Seat the card completely in the slot.

16 Unlatch the catch from the line drawer track and slide the drawer back into place. Refer to the figure "Removing the PUPS card" for the removal of the PUPS card.

17

DANGER

Potential equipment damage

Note fuses that you remove from the frame. If you do not insert the fuses again in the correct location on the fuse panel, equipment damage results.

Insert the fuses that you removed in step 7.

Note: Fuses are coded for position. The colored square on the face of the fuse identifies the top edge.

-- Insert the -48V Battery Return fuse.
-- Insert the -48V Battery fuse.
-- Insert the +15V fuse.
-- Insert the -48V Talk Battery fuse.

18 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a maintenance procedure directed you to this procedure</td>
<td>step 19</td>
</tr>
<tr>
<td>a maintenance procedure did not direct you to this procedure</td>
<td>step 20</td>
</tr>
</tbody>
</table>

19 Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

20 A maintenance flag (Mtce) can appear. This flag indicates that system-initiated maintenance tasks are in progress. Wait until the flag disappears before you proceed to the next step.

21 To perform a diagnostic test on the first logical drawer of the pair, type

```
>TST DRWR drwr_no
```
NTBX71
in an LCME (continued)

and press the Enter key.

where

\[\text{drwr_no} \]

is the logical drawer number (0 to 15)

Example of a MAP response:

```
OSvce Tests Initiated
LCME HOST 55 1 Drwr 0 Tst Passed
LCME HOST 55 1 Drwr 0 Rts Passed
```

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 22</td>
</tr>
<tr>
<td>failed</td>
<td>step 25</td>
</tr>
</tbody>
</table>

22 To perform a diagnostic test on the second logical drawer of the pair, type

```
>TST DRWR drwr\_no
```

and press the Enter key.

where

\[\text{drwr_no} \]

is the logical drawer number (0 to 15)

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 23</td>
</tr>
<tr>
<td>failed</td>
<td>step 25</td>
</tr>
</tbody>
</table>

23 To return the logical drawer to service, type

```
>RTS DRWR drwr\_no
```

and press the Enter key.

where

\[\text{drwr_no} \]

is the logical drawer number (0 to 15)

Note: The RTS command returns both logical drawers to service.

Example of a MAP response:
WARNING ... this action will affect both drwrs 0 and 1
OSvce Tests Initiated
LCME HOST 55 0 Drwr 0 Tst Passed
LCME HOST 55 0 Drwr 0 Rts Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 26</td>
</tr>
<tr>
<td>failed</td>
<td>step 25</td>
</tr>
</tbody>
</table>

24 Consult operating company personnel to determine why the component is offline or not provided. Continue as directed by operating company personnel.

25 For additional help, contact the next level of support.

26 The procedure is complete.
LCME fuse panel

Fuse color

Use 3A blue fuses in F01 through F12.
Use 5A green fuses in F13 through F16.
Use 1.33A white fuses in F17 and F18.
Removing the PUPS card

Procedure history
SN07 (DMS)
Procedure corrected according to CR Q00886580.
NTBX71
in an LCME (end)

Procedure history section added.
Application

Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X20</td>
<td>AA</td>
<td>Message waiting converter card</td>
<td>line concentrating module (LCM)</td>
</tr>
<tr>
<td>NT6X23</td>
<td>AA</td>
<td>Line drawer power converter +48 V card</td>
<td>LCM</td>
</tr>
<tr>
<td>NT6X95</td>
<td>AA, AB</td>
<td>Metering tone generator card</td>
<td>enhanced LCM (LCME)</td>
</tr>
</tbody>
</table>

Refer to the “Index” if you cannot identify the following features for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to Replacing a line card.

Do not proceed to the common procedure unless the step-action procedure directs you.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Power cards
in an LCE line drawer (continued)

Summary of replacing Power cards in an LCE line drawer

- Post lines that associate with the power card

 Manually busy all posted lines

 Replace card

 Diagnose lines associated with the power card

 Return lines to service

 End

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.
Replacing Power cards in an LCE line drawer

At your current location

1

Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

At the shelf

2

Identify the slot location for each line circuit card that associates with the line drawer power card you replace. Use the following table to identify the cards to look for in the physical line drawer.

<table>
<thead>
<tr>
<th>If the power card</th>
<th>DoLook for these line circuit cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>is NT6X20</td>
<td>NT6X19AA, Type E standard line card</td>
</tr>
<tr>
<td>is NT6X23</td>
<td>NT6X18AB, Type B world line card</td>
</tr>
<tr>
<td>is NT6X95</td>
<td>NT6X94AA, Type B line card</td>
</tr>
</tbody>
</table>

At the MAP terminal

3

To access the LTP level of the MAP display, type

>MAPCI;MTC;LNS;LTP

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>POST</th>
<th>DELQ</th>
<th>BUSYQ</th>
<th>PREFIX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If you did past work at the LTP level of the MAP display, a line can already be posted. A posted line does not interfere with this maintenance procedure.

4

To post the line for the circuit card that associates with the power card you replace, type

>POST L site frame_no unit_no drawer_no slot_no
Power cards
in an LCE line drawer (continued)

and press the Enter key.

\[\text{where}\]

- **site**
 - is the PM location (alphanumeric)

- **frame_no**
 - is the frame number (0 to 511)

- **unit_no**
 - is the PM unit number (0 or 1)

- **drawer_no**
 - is the logical drawer number (0 to 19)

- **slot_no**
 - is the card slot number (0 to 31)

Example of a MAP display:

\begin{verbatim}
LCC PTY RNGLEN......... DN STA F S LTA TE RESULT
1FR HOST 00 00 02 621 1134 IDL
\end{verbatim}

\textbf{5} Determine the state of the posted line.

<table>
<thead>
<tr>
<th>If the state of the line</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is CPB, CPD</td>
<td>step 6</td>
</tr>
<tr>
<td>is CUT, HAZ, IDL, LO, PLO, SB</td>
<td>step 7</td>
</tr>
<tr>
<td>is MB</td>
<td>step 8</td>
</tr>
<tr>
<td>is NEQ</td>
<td>step 16</td>
</tr>
<tr>
<td>is DEL, DMB, INB, LMB</td>
<td>step 17</td>
</tr>
</tbody>
</table>

\textbf{6} Wait until the line state changes. Go to step 5.

\textbf{7} To manually-busy the line circuit, type

\texttt{>BSY}

and press the Enter key.

Example of a MAP display:

\begin{verbatim}
LCC PTY RNGLEN......... DN STA F S LTA TE RESULT
1FR HOST 00 00 02 621 1134 MB
\end{verbatim}

Note: Observe that the state shown under the STA header changed to **MB**.

<table>
<thead>
<tr>
<th>If BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 8</td>
</tr>
<tr>
<td>failed</td>
<td>step 17</td>
</tr>
</tbody>
</table>
8 Repeat steps 4 to 7 for all circuit cards supported by the power card you replace.

At the shelf
9

8

WARNING

Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the power card, use the procedure Replacing a line card in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

10 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a maintenance procedure directed you to this procedure</td>
<td>step 11</td>
</tr>
<tr>
<td>a maintenance procedure did not direct you to this procedure</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11 Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal
12 To post the line for the circuit card that associates with the power card you replaced, type

>POST L site frame_no unit_no drawer_no slot_no

and press the Enter key.

where

- site is the PM location (alphanumeric)
- frame_no is the frame number (0 to 511)
- unit_no is the PM unit number (0 or 1)
Power cards
in an LCE line drawer (end)

drawer_no
is the logical drawer number (0 to 19)

slot_no
is the card slot number (0 to 31)

Example of a MAP display:

<table>
<thead>
<tr>
<th>LCC</th>
<th>PTY</th>
<th>RNG</th>
<th>......LEN.........</th>
<th>DN</th>
<th>STA</th>
<th>F</th>
<th>S</th>
<th>LTA</th>
<th>TE</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1FR</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

13 To perform a diagnostic test on the line, type
>DIAG
and press the Enter key.

Example of a MAP display:

ECOME004AH ***+LINE100 DEC17 10:04:26 0200 PASS LN_DIAG
LEN HOST 00 0 00 02 621 1134 IDL
DIAGNOSTIC RESULT Card Diagnostic OK
ACTION REQUIRED None
CARD TYPE 6X17AA

If the DIAG command Do
| passed | step 14 |
| failed | step 17 |

14 To return the line to service, type
>RTS
and press the Enter key.

If RTS command Do
| passed | step 18 |
| failed | step 17 |

15 Repeat steps 12 to 14 for all line circuit cards that the power card you replaced supports.

16 Consult operating company personnel to determine why the component is offline or unequipped. Continue as directed by office personnel.

17 For additional help, contact the next level of support.

18 The procedure is complete.
Power cards in LCM-type PMs

Application

Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X53</td>
<td>AA (see note)</td>
<td>Power converter 5 V/15 V card</td>
<td>line concentrating module (LCM)</td>
</tr>
<tr>
<td>NT6X53</td>
<td>BA</td>
<td>ISDN power converter 5.25 V/15 V card</td>
<td>enhanced LCM (LCME)</td>
</tr>
<tr>
<td>NT6X53</td>
<td>CA</td>
<td>ISDN LCME power converter +5 V/+15 V card</td>
<td>LCME</td>
</tr>
<tr>
<td>NT6X53</td>
<td>EA</td>
<td>ISDN LCME power converter +5V/-15 V card</td>
<td>LCME</td>
</tr>
<tr>
<td>NT8X99</td>
<td>AB</td>
<td>Power converter card</td>
<td>LCM</td>
</tr>
<tr>
<td>NTBX72</td>
<td>AA</td>
<td>ISDN LCME battery and ringing router card</td>
<td>LCME</td>
</tr>
</tbody>
</table>

Note: Additional steps for NT6X53AA card replacement appear in the NT6X53AA Power Down and Replacement section and the Pre-Check Voltage Measurements section. Two steps are annotated in the Action section. If you do not perform the procedures, a power failure can occur.

Refer to the “Index” if you cannot identify the following features for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The “Index“ contains a list of the cards, shelves, and frames documented in this card replacement book.

NT6X53AA power down and replacement

The NT6X53AA power converters in LCM-type units share the +5VDC and +15VDC loads through diodes in the output of the converters. The LCM-type
units include LCM, RLDM, OPM, and OPAC. In order for the converters to share the load evenly, the output voltages of the converters must match closely. Age can decrease the ability of a single NT6X53AA to maintain minimum voltage levels. This condition can occur even if both converters are in the regulated specifications.

In LCM-type redundant configurations, the NT6X53AA in the mate unit can compensate for the loss of ability to maintain voltage. Under normal operation of the LCM, the loss of ability to maintain voltage is not a problem. Complete failure of a NT6X53AA or manual maintenance actions that remove power from a converter is a risk to LCM redundancy. Failures or manual maintenance actions like this require special procedures, because of the reasons that follow.

The higher voltage converter can assume most of the load for both LCM units. This condition occurs if the NT6X53AA output voltages in each unit do not match closely. If the converter that supplies most of the load trips or powers down, the other converter assumes the load. This second converter can assume the load slowly, which can cause a temporary drop in the output voltage. This condition can result in both units of the LCM dropping SysB.

As a precaution, you can use the faceplate test jacks on the NT6X53AA to obtain the status of the power sharing. Compare the test jack voltages of the two power converters.

Check the faceplate readings. If the two LCM power converters have a difference of more than 0.20V (200 millivolts-DC), replace one of the converters. Replace the converter with the lower test jack value. Replace the converter with another converter to obtain a near match of the output of the converters. A near match is a difference of less than or equal to 0.20V.

Pre-Check voltage measurements (NT6X53AA)

Perform the following voltage pre-check before you replace an NT6X53AA card:
Obtain a digital voltmeter with an accuracy of 0.01 volts.

2 Set the digital voltmeter to measure DC voltage. Set the range to measure to 0.01 volts. Measure and record the voltage between the +5V and the common faceplate test jacks of both LCM-type module NT6X53AA power converters. Perform this procedure on the converters that you will perform maintenance on.

3 If the difference between the voltage of the power converters +5V to common is more than 0.20V (200 millivolts), replace the NT6X53AA of the unit with the lower faceplate reading. To replace the NT6X53AA, use the procedure in the section Post-Check Analysis NT6X53AA Change Out Procedure. If the voltage difference is less than 0.20V, proceed with the maintenance procedure that sent you to this procedure.

4 After you replace the NT6X53AA with the lower faceplate reading, repeat the Pre-Check Voltage Measurements steps. If the two NT6X53AA power converters are not within 0.20V (200 millivolts), proceed with the maintenance procedure that directed you here. If the readings are higher than 0.20V (200 millivolts), contact the next level of support.

Common procedures

This procedure refers to the following common procedures:

- Replacing a card
- Loading a PM

Do not proceed to the common procedure unless the step-action procedure directs you.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Power cards in LCM-type PMs (continued)

Summary of replacing Power cards in LCM-type PMs

For NT6X53AA, perform voltage measurements in pre-check
Post the PM

Manually-busy PM unit

Remove power from PM unit

Replace card

Apply power to PM unit
For NT6X53AA, repeat voltage measurements in pre-check

Load PM unit

RTS PM unit

End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing power cards in LCM-type PMs

At your current location

1 Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

At the MAP terminal

2 To access the PM level of the MAP display, type
   ```
   >MAPCI;MTC;PM
   ```
 and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>71</td>
</tr>
</tbody>
</table>

3 To post the PM that contains the card you replace, type
   ```
   >POST pm_type site frame_no pm_no
   ```
 and press the Enter key.

 where
 - **pm_type** is the PM type (LCM, LCME)
 - **site** is the PM location (host or remote)
 - **frame_no** is the frame number (00 to 99)
 - **pm_no** is the number of the PM (0 or 1) in the frame

 Example of a MAP display:
Power cards
in LCM-type PMs (continued)

DANGER
Risk of service interruption
When you replace an NT6X53AA card, do not proceed if the mate unit is not InSv or ISTb state. The mate unit is the unit you are not working on. Contact the next level of support.

4

Determine the state of the PM unit that contains the power converter you replace.

<table>
<thead>
<tr>
<th>If the state of the PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv, ISTb, SysB, or CBsy</td>
<td>step 5</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 6</td>
</tr>
<tr>
<td>is Off1</td>
<td>step 15</td>
</tr>
</tbody>
</table>

5

To manually-busy the PM unit that associates with the card you replace, type

>`BSY UNIT unit_no`

and press the Enter key.

where

`unit_no`

is the PM unit number (0 or 1)

Example of a MAP display:
Power cards in LCM-type PMs (continued)

If the BSY command Do

<table>
<thead>
<tr>
<th>passed</th>
<th>step 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 16</td>
</tr>
</tbody>
</table>

At the shelf

6

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

DANGER

Risk of personal injury

Handle the power converter card carefully to avoid electrical shock. Make sure the power is not connected to the power converters.

At the FSP or MSP, switch off the circuit breaker that associates with the power converter for the unit of the PM you are working on. (Switch off only one power converter, not both converters.) The red diode on the faceplate of the power converter will be lit to indicate that power is off.

Note: Different FSPs and MSPs have different circuit breaker designs. If necessary, consult office records or operating company personnel for the location of the correct circuit breakers.
7

DANGER

Risk of personal injury

Do not proceed if the red diode is not lit on the face plate of the power converter you are replacing.

If you replace an NT6X53AA card, unseat and remove the 6X53AA power converter that you powered down in step 6. Replace the 6X53AA with a spare.

To replace the card, use the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

Note 1: Make sure that the handle of the POWER switch on the replacement power converter is in the ON position.

Note 2: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

8

At the FSP or MSP, switch on the circuit breakers that you turned off in step 6.

<table>
<thead>
<tr>
<th>If the circuit breaker</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>trips or the red diode on the power converter face plate is lit</td>
<td>step 16</td>
</tr>
<tr>
<td>does not trip and the red diode on the power converter face plate is not lit</td>
<td>step 9</td>
</tr>
</tbody>
</table>

9

The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you replace an NT6X53AA card directed you to this procedure</td>
<td>step 10</td>
</tr>
<tr>
<td>a maintenance procedure did not direct you to this procedure</td>
<td>step 12</td>
</tr>
</tbody>
</table>

10

Perform pre-check voltage measurements again. Follow the steps in the Pre-Check Voltage Measurement section. Perform step 12.

11

Return to the maintenance procedure that directed you to this procedure and continue as directed.
At the MAP terminal

12 To load the PM, type

>LOADPM UNIT unit_no

and press the Enter key.

where

unit_no

is the PM unit number (0 or 1)

Example of a MAP response:

LCM HOST 00 0 Unit 0 LoadPM Passed

If the LOADPM command Do

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 14</td>
</tr>
<tr>
<td>failed</td>
<td>step 13</td>
</tr>
<tr>
<td>failed a second time</td>
<td>step 15</td>
</tr>
</tbody>
</table>

13 To load the PM unit, use the procedure Loading a PM in this document. Complete the procedure and return to this point.

14 To return the PM unit to service, type

>RTS UNIT unit_no

and press the Enter key.

where

unit_no

is the PM unit number (0 or 1)

Example of a MAP response:

LCM HOST 00 0 Unit 0 OSvce Tests Initiated
LCM HOST 00 0 Unit 0 Tst Passed
LCM HOST 00 0 Unit 0 Rts Passed
LCM HOST 00 0 Unit 0 InSvce Tests Initiated
LCM HOST 00 0 Unit 0 Tst Passed

If the RTS command Do

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 17</td>
</tr>
<tr>
<td>failed</td>
<td>step 16</td>
</tr>
</tbody>
</table>

15 Consult operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.
Power cards
in LCM-type PMs (end)

16 For additional help, contact the next level of support.
17 The procedure is complete.
2 Line module card replacement procedures

Introduction
This chapter contains card replacement procedures for the line module (LM). The first section in the chapter provides layouts of LM shelves.

Card replacement procedures for the frame supervisory panel (FSP) and modular supervisory panel (MSP) are in the chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures”.

Each procedure contains the following sections:
• Application
• Common procedures
• Action

Application
This section identifies the LM card(s) covered by the replacement procedure.

Common procedures
This section lists common procedures for the LM card replacement procedure. A common procedure is a series of steps you repeat in maintenance procedures. The procedure for the removal and replacement of a card is an example of a common procedure. Common procedures are in the common procedures chapter in this NTP.

Do not go to the common procedures unless the step-action procedure directs you to go.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Recording card replacement activities

When you replace a card, record the following information in office records:

- the serial number of the card you replace
- the date you replace the card
- the reason you replace the card
Application

This procedure provides a frame layout diagram for the line module equipment (LME) frame. The LME frame contains line drawers and the line module controller (LMC). The procedure provides shelf diagrams for the following:

- LMC
- line drawer shelf
- line drawer layout

Note: The frame and shelf layouts on the following pages are standard. The layout of the shelves in your office can differ from the standard layout.
Line module card replacement procedures

LM shelf layouts (continued)

Legend:
- **FSP**: Frame supervisory panel
- **LMC**: Line module controller

![Diagram of Line module equipment frame (double bay)](image)

- **Left bay – 0**
- **Right bay – 1**
Line module controller

<table>
<thead>
<tr>
<th>Cards</th>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70 Power converter card</td>
<td></td>
</tr>
<tr>
<td>NT2X21 Terminal address I/F and tone card</td>
<td></td>
</tr>
<tr>
<td>NT2X36 LM network interface card</td>
<td></td>
</tr>
<tr>
<td>NT2X23 Receiver multiplexer card</td>
<td></td>
</tr>
<tr>
<td>NT2X22 Connect memory and multiplexer card</td>
<td></td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>NT3X34 LM PP message processor card</td>
<td></td>
</tr>
<tr>
<td>NT3X33 LM CC message processor card</td>
<td></td>
</tr>
<tr>
<td>NT2X26 LM master processor card</td>
<td></td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>NT2X25 Signaling processor interface card</td>
<td></td>
</tr>
<tr>
<td>NT2X24 Signaling processor card</td>
<td></td>
</tr>
<tr>
<td>NT2X27 Ringing generator interface card</td>
<td></td>
</tr>
<tr>
<td>NT2X05 Ringing generator card</td>
<td></td>
</tr>
<tr>
<td>NT2X05 Ringing generator card</td>
<td></td>
</tr>
</tbody>
</table>

Rear
LM shelf layouts (continued)

Line drawer shelf

Cards

Line drawer

Line drawer

Line drawer

Line drawer

Line drawer

Rear

Front
Line module card replacement procedures 2-7

LM shelf layouts (continued)

Line drawer layout (plastic)

Legend:
LC Line card
LDI Line drawer interface

Note: Card position 31 is optionally assignable to a +48V power converter card instead of a line circuit.
LM shelf layouts (end)

Line drawer layout (metal)

Legend:

- **LC** Line card

Note: Card position 32 is optionally assignable to a +48V power converter card instead of a line circuit.
Control complex cards in a line module controller

Application

Use this procedure to replace the following cards in a line module controller (LMC).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X21</td>
<td>AA, AC</td>
<td>Terminal address interface and tone generator card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X22</td>
<td>AA</td>
<td>Connection memory and transmit MUX card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X23</td>
<td>AA</td>
<td>Receive MUX card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X24</td>
<td>AB</td>
<td>Signaling processor card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X25</td>
<td>AA</td>
<td>Signaling processor interface card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X26</td>
<td>AA</td>
<td>Main processor card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AA</td>
<td>Ringing generator interface - 20Hz Bell system card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AB</td>
<td>Ringing generator interface decimonic multifrequency ringing card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AC</td>
<td>Ringing generator interface harmonic multifrequency ringing card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AD</td>
<td>Ringing generator interface syndromonic 16KHz multifrequency ringing card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AE</td>
<td>Ringing generator interface SYNC multifrequency ringing card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AF</td>
<td>Ringing generator interface 20Hz 105V coded ringing card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X33</td>
<td>AB</td>
<td>Control card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X34</td>
<td>AA</td>
<td>Peripheral processor message processor card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X36</td>
<td>AA</td>
<td>Network interface card</td>
<td>LMC</td>
</tr>
</tbody>
</table>
Control complex cards in a line module controller (continued)

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

- How to Replacing a card
- How to Loading a PM

Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Control complex cards in a line module controller (continued)

Summary of Replacing Control complex cards in a line module controller

- Post LM
- Verify that mate LM is in service
- Manually busy LM
- Replace card
- Load LM
- Return LM to service
- End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Control complex cards
in a line module controller (continued)

Replacing Control complex cards in a line module controller

At the MAP terminal

1

CAUTION
Potential loss of service
This procedure manually buses a minimum of one LMC which can cause service degradation. Perform this procedure only if you need to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.

Obtain a replacement card. Make sure that the replacement card and the card you remove have the same PEC and PEC suffix.

2
To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>71</td>
</tr>
</tbody>
</table>

3
To post the LM, type

>POST LM site frame_no unit_no

and press the Enter key.

where

- site
 is the PM location (alphanumeric)

- frame_no
 is the frame number (0 to 511)

- unit_no
 is the PM unit number (0 or 1)

Example of a MAP display:
Control complex cards
in a line module controller (continued)

4 Determine the state of the LM.

<table>
<thead>
<tr>
<th>If the state of the LM</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv or ISTb</td>
<td>step 5</td>
</tr>
<tr>
<td>is SysB or Cbsy</td>
<td>step 8</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 9</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 15</td>
</tr>
</tbody>
</table>

5 To post the mate LM, type

>POST LM site frame_no unit_no

and press the Enter key.

where

- **site** is the PM location (alphanumeric)
- **frame_no** is the frame number (0 to 511)
- **unit_no** is the PM unit number (0 or 1)

6 Determine the state of the mate LM and the ringing generators (RG) of the mate LM.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the state of the mate LM is InSv or ISTb and both RGs are InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>the mate LM and RG states are other than listed here</td>
<td>step 16</td>
</tr>
</tbody>
</table>

7 To post the LM on which you want to replace a card, type

>POST LM site frame_no unit_no

and press the Enter key.

where

- **site** is the PM location (alphanumeric)
Control complex cards
in a line module controller (continued)

frame_no
is the frame number (0 to 511)

unit_no
is the PM unit number (0 or 1)

8 To manually busy the LM, type
>BSY
and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>LM</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LM HOST 01 0 ManB.
RGen : 0 Standby 1 InSvb

At the shelf

9

WARNING

Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: If the card you will replace has switches, make sure that the switches on the replacement card have the same settings.

10 The next action depends on the reason that you perform this procedure.

<table>
<thead>
<tr>
<th>If you were</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed to this procedure from a maintenance procedure</td>
<td>step 11</td>
</tr>
<tr>
<td>not directed to this procedure from a maintenance procedure</td>
<td>step 12</td>
</tr>
</tbody>
</table>
11 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

12 To load the LM, type

\texttt{\textgreater LOADPM}

and press the Enter key.

\textit{Example of a MAP response:}

\texttt{LM HOST 01 0 LoadPM PASSED}

13 To load the PM unit, perform the procedure \textit{Loading a PM} in this document. Complete the procedure and return to this point.

14 To return the LM to service, type

\texttt{\textgreater RTS}

and press the Enter key.

\textit{Example of a MAP response:}

\texttt{rts OK. InSvce Tests Initiated OK.}

15 To determine why the component is offline, contact operating company personnel. Continue as directed by operating company personnel.

16 Do not manually busy the LM. If you manually busy the LM, a loss of calls in progress occurs. To determine how to proceed, contact operating company personnel or the next level of support. Continue as directed by operating company personnel or the next level of support.

17 For additional help, contact the next level of support.

18 The procedure is complete.
Interface and power converter cards in an LM line drawer

Application

Use this procedure to replace the following cards in the line module (LM) line drawer.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X02</td>
<td>AA</td>
<td>Line drawer interface card</td>
<td>LM line drawer</td>
</tr>
<tr>
<td>NT2X03</td>
<td>AA</td>
<td>+48V line drawer power converter card</td>
<td>LM line drawer</td>
</tr>
<tr>
<td>NT2X16</td>
<td>AB</td>
<td>Line drawer input/output bus interface card</td>
<td>LM line drawer</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to Replacing a line card.

Do not proceed to the common procedure unless the step-action procedure directs you there.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing Interface and power converter cards in an LM line drawer

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

1. Post line drawer
2. Manually busy all line circuits
3. Remove power from drawer
4. Replace card
5. Apply power to drawer
6. Return line circuits to service
7. Post the line drawer
8. Test the line drawer
9. End
Replacing Interface and power converter cards in an LM line drawer

At the MAP terminal

1 Obtain a replacement card. Make sure the replacement card and the card you replace have the same PEC and PEC suffix.

2 To access the LTP level of the MAP display, type

`>MAPCI;MTC;LNS;LTP`

and press the Enter key.

Example of a MAP display:

```
POST   DELQ     BUSYQ     PREFIX
LCC   PTY
      RNG   PTY LEN          DN   STA  F  S  LTA  TE  RESULT
```

3 To post the line drawer that associates with the card, type

`>POST L site frame_no unit_no drawer_no`

and press the Enter key.

where

- **site** is the PM location (alphanumeric)
- **frame_no** is the frame number (0 to 511)
- **unit_no** is the PM unit number (0 or 1)
- **drawer_no** is the logical drawer number (0 to 19)

Example of a MAP display:

```
CAUTION
Loss of service
This procedure manually busies a minimum of one line. If you remove a line from service, a loss of calls in progress occurs. Perform this procedure only if you need to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.
```
Interface and power converter cards in an LM line drawer (continued)

4 To manually busy all circuits in the line drawer, type

>BSY ALL PROMPT

and press the Enter key.

Example of a MAP response:

- Number of fully data filled lines in posted set: 30
- Number of call processing lines in posted set: 0

Do you still wish to busy all?
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If call processing lines are posted</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 19</td>
<td></td>
</tr>
<tr>
<td>step 5</td>
<td></td>
</tr>
</tbody>
</table>

5 To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response:

Number of fully data filled lines in posted set: 30
Number of lines Busied: 30

Note: Wait for all circuits to go busy.
Interface and power converter cards in an LM line drawer (continued)

At the frame

6

DANGER
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) while handling circuit cards. This protects the cards against damage caused by static electricity.

CAUTION
Service interruption
Do not power down the NT2X05 card.

Determine the product engineering code of the FSP.

<table>
<thead>
<tr>
<th>If the PEC is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT0X29AA</td>
<td>step 7</td>
</tr>
<tr>
<td>NT0X29AB</td>
<td>step 8</td>
</tr>
</tbody>
</table>

7

Remove the talk battery and 24V fuses for the drawers busied in step 4. The talk battery and 24V fuses for the different line drawer combinations are shown below.

<table>
<thead>
<tr>
<th>Drawers</th>
<th>Talk battery fuse</th>
<th>24V fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>00/01</td>
<td>f14</td>
<td>f04</td>
</tr>
<tr>
<td>02/03</td>
<td>f16</td>
<td>f06</td>
</tr>
<tr>
<td>04/05</td>
<td>f18</td>
<td>f08</td>
</tr>
<tr>
<td>06/07</td>
<td>f20</td>
<td>f10</td>
</tr>
<tr>
<td>08/09</td>
<td>f22</td>
<td>f12</td>
</tr>
<tr>
<td>10/11</td>
<td>f15</td>
<td>f05</td>
</tr>
<tr>
<td>12/13</td>
<td>f17</td>
<td>f07</td>
</tr>
<tr>
<td>14/15</td>
<td>f19</td>
<td>f09</td>
</tr>
</tbody>
</table>
Interface and power converter cards in an LM line drawer (continued)

<table>
<thead>
<tr>
<th>Drawers</th>
<th>Talk battery fuse</th>
<th>24V fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/17</td>
<td>f21</td>
<td>f11</td>
</tr>
<tr>
<td>18/19</td>
<td>f23</td>
<td>f13</td>
</tr>
</tbody>
</table>

Go to step 8.

At the shelf

8

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure Replacing a line card in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

Remove the NT2X02 card and use the procedure Replacing a card in this document.

9
Insert the replacement card and use the procedure Replacing a card in this document.

10 Install the removed fuses from step 6 or 7.

11 The next action depends on the reason that you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 12</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 13</td>
</tr>
</tbody>
</table>

12 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.
Interface and power converter cards in an LM line drawer (continued)

At the MAP terminal

13 To return the line to service, type

```
>RTS ALL
```

and press the Enter key.

Example of a MAP display:

```
POST 30 DELQ BUSYQ PREFIX
LCC PTY RNG ......LEN............ DN STA F S LTA TE RESULT
IBN HOST 01 0 00 01 722 3211 IDL
```

<table>
<thead>
<tr>
<th>If RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 23</td>
</tr>
<tr>
<td>failed</td>
<td>step 18</td>
</tr>
</tbody>
</table>

14 To access the PM level of the MAP display, type

```
>PM
```

and pressing the Enter key.

15 To post the line drawer busied in step 4, type

```
>POST LM site frame pair
```

and pressing the Enter key.

where

- **site** is the PM location (host or remote)
- **frame** is the frame number (00 to 99)
- **pair** is the frame pair number (0 to 1)

16 To test the line drawers returned to service in step 13, type

```
>TST DRWR drawer
```

and pressing the Enter key.

drawer

is the line drawer containing the NT2X02 you replaced

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 23</td>
</tr>
<tr>
<td>failed</td>
<td>step 18</td>
</tr>
</tbody>
</table>
Interface and power converter cards in an LM line drawer (end)

17 The next action depends on your reason for performing this procedure.

<table>
<thead>
<tr>
<th>If you were</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed to this procedure from a maintenance procedure</td>
<td>step 21</td>
</tr>
<tr>
<td>directed to this procedure from a Common procedure</td>
<td>step 22</td>
</tr>
</tbody>
</table>

18 Perform the procedure MAP commands for PM-level card replacement in an OAU or LM shelf in this document. When you have completed the procedure, return to step 23.

19 Make sure that you do not manually busy lines in the call processing busy state. Contact other operating company personnel or the next level of support. Continue as directed by operating company personnel or the next level of support.

20 For additional help, contact the next level of support.

21 Return to the maintenance procedure that sent you to this procedure and continue as directed.

22 Return to the procedure in "Common procedures" that sent you here and continue as directed.

23 The procedure is complete.
Line cards in an LM line drawer

Application

Use this procedure to replace the following cards in the line module (LM) line drawer.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X20</td>
<td>AA</td>
<td>Ring multiplexer card</td>
<td>LM line drawer</td>
</tr>
<tr>
<td>NT6X17</td>
<td>AA, AB, AC, AD</td>
<td>Type-A standard line card</td>
<td>LM line drawer</td>
</tr>
<tr>
<td>NT6X17</td>
<td>BA</td>
<td>Type-A world line card</td>
<td>LM line drawer</td>
</tr>
<tr>
<td>NT6X18</td>
<td>AA</td>
<td>Type-B line card</td>
<td>LM line drawer</td>
</tr>
<tr>
<td>NT6X18</td>
<td>AB</td>
<td>Type-B line card with +48 V</td>
<td>LM line drawer</td>
</tr>
<tr>
<td>NT6X18</td>
<td>BA</td>
<td>Type B world line card</td>
<td>LM line drawer</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to Replacing a line card.

Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing Line cards in an LM line drawer

1. Post line that associates with card
2. Manually busy line circuit
3. Replace card
4. Diagnose line circuit
5. Return line to service
6. End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Line cards in an LM line drawer (continued)

Replacing Line cards in an LM line drawer

At the MAP terminal

1. Obtain a replacement card. Make sure that the replacement card and the card you remove have the same PEC and PEC suffix.

2. To access the LTP level of the MAP display, type

 `>MAPCI;MTC;LNS;LTP`

 and press the Enter key.

 Example of a MAP display:

 POST DELQ BUSYQ PREFIX
 LCC PTY RNG LEN............ DN STA F S LTA TE RESULT

3. To post the line that associates with the card you will replace, type

 `>POST L site frame_no unit_no drawer_no slot_no`

 and press the Enter key.

 where

 - **site** is the PM location (alphanumeric)
 - **frame_no** is the frame number (0 to 511)
 - **unit_no** is the PM unit number (0 or 1)
 - **drawer_no** is the logical drawer number (0 to 19)
 - **slot_no** is the card slot number (0 to 31)

 Example of a MAP display:

 POST DELQ BUSYQ PREFIX
 LCC PTY RNG LEN............ DN STA F S LTA TE RESULT

WARNING
Loss of service
This procedure manually busies a minimum of one line. If you remove a line from service, a loss of calls in progress occurs. Perform this procedure only if you need to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.
Line module card replacement procedures

Line cards
in an LM line drawer (continued)

4. Determine the state of the posted line.

<table>
<thead>
<tr>
<th>If the state of the line</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is CPB, CPD</td>
<td>step 5</td>
</tr>
<tr>
<td>is CUT, HAZ, IDL, LO, PLO, SB</td>
<td>step 6</td>
</tr>
<tr>
<td>is MB</td>
<td>step 7</td>
</tr>
<tr>
<td>is NEQ</td>
<td>step 12</td>
</tr>
<tr>
<td>is DEL, DMB, INB, LMB</td>
<td>step 13</td>
</tr>
</tbody>
</table>

5. Wait until the line state changes. Go to step 4.

6. To manually busy the line circuit, type

 >BSY

 and press the Enter key.

 Example of a MAP display:

 POST 30 DELQ BUSYQ PREFIX
 LCC PTY RNGLEN.......... DN STA F S LTA TE RESULT
 IBN HOST 01 0 00 01 722 3211 MB

 Note: When the BSY command is successful, the line status reads MB.

<table>
<thead>
<tr>
<th>If BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>failed</td>
<td>step 13</td>
</tr>
</tbody>
</table>
Line cards
in an LM line drawer (continued)

At the shelf

7

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

Perform the procedure Replacing a line card in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

8 The next action depends on the reason that you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 9</td>
</tr>
<tr>
<td>did not direct to this procedure</td>
<td>step 10</td>
</tr>
</tbody>
</table>

9 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

10 To perform a diagnostic test on the line, type

>`DIAG

and press the Enter key.

Example of a MAP response:

```
COMRUS031BL ***+LINE100 DEC01 17:25:31 8800 PASS LN_DIAG
LEN HOST 01 0 00 02 DN 7223212
DIAGNOSTIC RESULT Card Diagnostic OK
ACTION REQUIRED None
CARD TYPE 2X17AB
```

<table>
<thead>
<tr>
<th>If the DIAG command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 11</td>
</tr>
<tr>
<td>failed</td>
<td>step 13</td>
</tr>
</tbody>
</table>
Line cards in an LM line drawer (end)

11 To return the line to service, type
 \texttt{>RTS}
 and press the Enter key.

 \textit{Example of a MAP display:}

 \begin{verbatim}
 POST 30 DELQ BUSYQ PREFIX
 LCC PTY RNGLEN....... DN STA F S LTA TE RESULT
 IBN HOST 01 0001 722 3211 IDL
 \end{verbatim}

 If RTS command \hspace{1cm} Do
 \begin{tabular}{ll}
 passed & step 14 \\
 failed & step 13 \\
 \end{tabular}

12 To determine why the component is unequipped, contact operating company personnel. Continue as directed by operating company personnel.

13 For additional help, contact the next level of support.

14 The procedure is complete.
NT2X05 in a line module controller

Application

Use this procedure to replace an NT2X05 in a line module controller (LMC).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X05</td>
<td>AA, AB</td>
<td>Line module converter +24V card</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X05</td>
<td>AC</td>
<td>Line power pack card with improved grounding</td>
<td>LMC</td>
</tr>
<tr>
<td>NT2X05</td>
<td>CA</td>
<td>Line power pack card with closing ringing feature</td>
<td>LMC</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify one of the following features for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Note: The NT2X05 is a ringing generator (RG).

Common procedures

This procedure refers to *Replacing a card.*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing an NT2X05 in a line module controller

1. Post the LM
2. Manually busy the RGI
3. Replace the card
4. Return the RGI to service
5. End

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.
NT2X05 in a line module controller (continued)

Replacing an NT2X05 in a line module controller

At the MAP terminal

1

Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

2 To access the PM level of the MAP display, type

>MAPC;MTC;PM

and press the Enter key.

Example of a MAP display:

```
SysB  ManB  OffL  CBsy  ISTb  InSv
PM    3      0      0      0      0    71
```

CAUTION
Potential loss of service
This procedure directs you to manually busy a RG in an LMC. If you manually busy an RG, you remove RG redundancy from the bay. Perform this procedure only if you need to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.

3 To post the LM, type

>POST LM site frame_no unit_no

and press the Enter key.

where

site
is the PM location (alphanumeric)

frame_no
is the frame number (0 to 511)

unit_no
is the PM unit number (0 or 1)

Example of a MAP display:

```
SysB  ManB  OffL  CBsy  ISTb  InSv
PM    3      0      0      0      1    71
LM    0      0      0      0      1    6

LM HOST 00 0 InSv
RGen : 0 InSv 1 InSv
```
4 Determine the state of the RGs.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>either RG is Standby</td>
<td>step 13</td>
</tr>
<tr>
<td>the RG you want to replace is InSv</td>
<td>step 5</td>
</tr>
<tr>
<td>the RG you want to replace is InSv</td>
<td>step 13</td>
</tr>
<tr>
<td>the RG you want to replace is ManB</td>
<td>step 7</td>
</tr>
<tr>
<td>the RG you want to replace is SysB</td>
<td>step 5</td>
</tr>
</tbody>
</table>

5 To manually busy the RG, type

>`BSY _RGI_ _rgi_no_`

and press the Enter key.

where

`_rgi_no_` is the number (0 or 1) of the ringing generator interface (RGI)

_Eample of a MAP response:

WARNING:CALLS IN RINGING STATE USING THIS RGI WILL BE LOST
DO YOU WANT TO CONTINUE ?
Please confirm ("YES", "Y", "NO", or "N"):

6 To confirm the command, type

>`YES`

and press the Enter key.

_Eample of a MAP response:

OK
At the shelf

7

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist-strap protects the cards against static electricity damage.

Pull down and set the handle of the RG POWER switch to the OFF position.

8

To replace the card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

Note 1: Make sure that the handle of the POWER switch on the replacement power converter is in the OFF position.

Note 2: Determine if the card you will replace has switches. Make sure the switches on the replacement card and the card you will replace have the same settings.

9

Power up the RG as follows:

a. Pull up and set the handle of the POWER switch to the ON position.

b. Press and hold the RESET button on the ringing generator.

c. Pull up and set the handle of the converter circuit breaker on the FSP or MSP until the handle clicks into place.

d. Release the RESET button.

10

The next action depends on why you perform the procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 11</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11

Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

12

To return the RGI to service, type

`>RTS RGI rgi_no`

and press the Enter key.

where
NT2X05
in a line module controller (end)

rgi_no
is the number (0 or 1) of the RGI

Example of a MAP response:

OK.

13 If you manually busy the RG, you disable all RGs in the LM bay. To determine how to proceed, Contact operating company personnel responsible for your next level of support. Continue as directed by the operating company personnel.

14 For additional help, contact the next level of support.

15 The procedure is complete.
NT2X70
in a line module controller

Application
Use this procedure to replace the following cards in a line module controller (LMC).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70</td>
<td>AA, AB, AC, AD</td>
<td>Power converter card</td>
<td>LMC</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify one of the following features for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures
This procedure contains the following common procedures:

- Replacing a card
- Loading a PM

Do not go to the common procedure unless the step-action procedure directs you to go.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing an NT2X70 in a line module controller

- Post the LM
- Verify the state of the mate LM
- Manually busy the LM
- Turn off the shelf
- Replace the card
- Turn on the shelf
- Load the LM
- Return the LM to service

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing an NT2X70 in a line module controller

At the MAP terminal

1

WARNING
Potential loss of service

This procedure directs you to manually busy a minimum of one LMC. If you manually busy an LMC, service degradation can occur. Perform this procedure only if you need to restore out-of-service components. Unless it is urgent, perform the procedure during periods of low traffic only.

Obtain a replacement card. Make sure that the replacement card and the card you remove have the same PEC and PEC suffix.

2

To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a MAP display:

3

To post the LM, type

>POST LM site frame_no unit_no

and press the Enter key.

where

- **site** is the PM location (alphanumeric)
- **frame_no** is the frame number (0 to 511)
- **unit_no** is the PM unit number (0 or 1)

Example of a MAP display:
4 Determine the state of the LM.

<table>
<thead>
<tr>
<th>If the state of the LM</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv or ISTb</td>
<td>step 5</td>
</tr>
<tr>
<td>is SysB or CBsy</td>
<td>step 8</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 9</td>
</tr>
<tr>
<td>is Offl</td>
<td>step 18</td>
</tr>
</tbody>
</table>

5 To post the mate LM, type

>`POST LM site frame_no unit_no`

and press the Enter key.

where

- **site** is the PM location (alphanumeric)
- **frame_no** is the frame number (0 to 511)
- **unit_no** is the PM unit number (0 or 1)

6 Determine the state of the mate LM and the ringing generators (RG) of the mate LM.

<table>
<thead>
<tr>
<th>If the state of the mate LM</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv or ISTb and both RGs are InSv and the state of the RG are other than listed here</td>
<td>step 7 step 19</td>
</tr>
</tbody>
</table>

7 To post the LM on which you want to replace a card, type

>`POST LM site frame_no unit_no`

and press the Enter key.

where

- **site** is the PM location (alphanumeric)
frame_no
 is the frame number (0 to 511)

unit_no
 is the PM unit number (0 or 1)

8 To manually busy the LM, type
 >BSY
 and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LM</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LM HOST 01 0 ManB
RGen : 0 Standby 1 InSv
bsy
OK.

At the shelf

9

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

Pull down and set the handle of the power converter POWER switch to the OFF position.

10 To replace a card, perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

 Note 1: Make sure the handle of the POWER switch on the replacement power converter is in the OFF position.

 Note 2: Determine if the card you will replace has switches. Make sure the switches on the replacement card and the card you will replace have the same settings.

11 The next action depends on the power converter version and the type of supervisory panel.

12 Power up the converter as follows:
 a Pull up and set the handle of the POWER switch to the ON position.
 b Press and hold the RESET button on the power converter.
c Pull up and set the handle of the converter circuit breaker on the FSP or MSP until the handle clicks into place.

d Release the RESET button.

13 The next action depends on why you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 14</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 15</td>
</tr>
</tbody>
</table>

14 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

15 To load the LM, type

   ```plaintext
   >LOADPM
   ```

 and press the Enter key.

 Example of a MAP response:

   ```plaintext
   LM HOST 01 0 LoadPM PASSED
   ```

16 To load the PM unit perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

17 To return the LM to service, type

   ```plaintext
   >RTS
   ```

 and press the Enter key.

 Example of a MAP response:

   ```plaintext
   rts
   OK.
   InSvce Tests Initiated
   OK.
   ```

18 To determine why the component is offline, consult operating company personnel. Continue as directed by operating company personnel.

19 Do not manually busy the LMC. If you manually busy the LCM, a loss of calls in progress occurs. To proceed, contact the operating company personnel responsible for the next level of support. Continue as directed by the operating company personnel.

20 For additional help, contact the next level of support.

21 The procedure is complete.
3 Link peripheral processor card replacement procedures

Introduction
This chapter contains card replacement procedures for the link peripheral processor (LPP). The first section in the chapter provides diagrams that show LPP shelf designs.

Card replacement procedures for the frame supervisory panel (FSP) and modular supervisory panel (MSP) appear in the chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures”.

Each procedure contains the following sections:
• Application
• Common procedures
• Action

Application
This section identifies the LPP cards that this procedure covers.

Common procedures
This section lists common procedures that you use during the LPP card replacement procedure. A common procedure is a series of steps that repeat in maintenance procedures. An example of a common procedure is the removal and replacement of a card. Common procedures appear in the common procedures chapter in this NTP.

Do not go to common procedures unless the step-action procedure directs you to go.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Recording card replacement activities

Record the following information in office records when you replace a card.

- the serial number of the card you replaced
- the date you replaced the card
- the reason you replaced the card
LPP shelf layouts

Application

This section shows frame layouts for the link peripheral processor (LPP), as follows:

- link interface module (LIM), that shows LMS units 0 and 1
- link interface module (LIM), that shows LMS units 0 and 1 (fiber LPP)
- link interface shelf (LIS), that shows common card fill
- LIS application specific units (ASU), that includes the following:
 - network interface unit (NIU)
 - application processor units (APU)
 - ethernet interface unit (EIU)
 - CCS7 link interface unit (LIU7)
 - X.25/X.75 interface units (XLIU)
 - frame relay interface units (FRIU)
 - voice processor units (VPU)

Note: The diagrams that follow show standard frame and shelf layouts. The shelf in your office can have minor differences.
LPP shelf layouts (continued)

Figure Link peripheral processor

Legend:
- FSP Frame supervisory panel
- LIM Link interface module
- LIS Link interface shelf

Cooling unit

LIM

LIS 1

LIS 2

LIS 3

FSP
LPP shelf layouts (continued)

Figure Link interface module, that shows LMS 0 and LMS 1

<table>
<thead>
<tr>
<th>Paddle boards</th>
<th>Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>32R NT9X19</td>
<td>Filler faceplate, NT9X30</td>
</tr>
<tr>
<td>31R NT9X79</td>
<td>F-bus extension PB, NT9X49</td>
</tr>
<tr>
<td>30R NT9X23</td>
<td>DS30 4-port PB, NT9X73</td>
</tr>
<tr>
<td>29R NT9X23</td>
<td>DS30 4-port PB, NT9X17</td>
</tr>
<tr>
<td>28R NT9X19</td>
<td>Filler faceplate, NT9X17</td>
</tr>
<tr>
<td>27R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
<tr>
<td>26R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
<tr>
<td>25R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
<tr>
<td>24R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
<tr>
<td>23R NT9X19</td>
<td>Filler faceplate, NT9X14</td>
</tr>
<tr>
<td>22R NT9X26</td>
<td>RTIF PB, NT9X13</td>
</tr>
<tr>
<td>21R NT9X19</td>
<td>Filler faceplate, NT9X13</td>
</tr>
<tr>
<td>20R NT9X19</td>
<td>Filler faceplate, NT9X15</td>
</tr>
<tr>
<td>19R NT9X19</td>
<td>Filler faceplate, NT9X15</td>
</tr>
<tr>
<td>18R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
<tr>
<td>17R NT9X26</td>
<td>RTIF PB, NT9X19</td>
</tr>
<tr>
<td>16R NT9X19</td>
<td>Filler faceplate, NT9X14</td>
</tr>
<tr>
<td>15R NT9X19</td>
<td>Filler faceplate, NT9X15</td>
</tr>
<tr>
<td>14R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
<tr>
<td>13R NT9X19</td>
<td>Filler faceplate, NT9X12</td>
</tr>
<tr>
<td>12R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
<tr>
<td>11R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
<tr>
<td>10R NT9X23</td>
<td>DS30 4-port PB, NT9X17</td>
</tr>
<tr>
<td>09R NT9X23</td>
<td>DS30 4-port PB, NT9X17</td>
</tr>
<tr>
<td>08R NT9X97</td>
<td>F-bus extension PB, NT9X73</td>
</tr>
<tr>
<td>07R NT9X19</td>
<td>Filler faceplate, NT9X19</td>
</tr>
</tbody>
</table>

Legend:
- **Rear**
- **Front**

DMS-100 Family NA100 Card Replacement Procedures Volume 2 of 7 LET0015 and up
LPP shelf layouts (continued)

Figure Link interface module, showing LMS 0 and LMS 1 (fiber LPP)

<table>
<thead>
<tr>
<th>Paddle boards</th>
<th>Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NT9X30 Power converter card (+5V)</td>
</tr>
<tr>
<td></td>
<td>NT9X31 Power converter card (−5V)</td>
</tr>
<tr>
<td>32R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>31R</td>
<td>NT9X79 F-bus extension PB</td>
</tr>
<tr>
<td>30R</td>
<td>NT9X62 DS512 4-port PB</td>
</tr>
<tr>
<td>29R</td>
<td>NT9X62 DS512 4-port PB</td>
</tr>
<tr>
<td>28R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>27R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>26R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>25R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>24R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>23R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>22R</td>
<td>NT9X26 RTIF PB</td>
</tr>
<tr>
<td>21R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>20R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>19R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>18R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>17R</td>
<td>NT9X26 RTIF PB</td>
</tr>
<tr>
<td>16R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>15R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>14R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>13R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>12R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>11R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>10R</td>
<td>NT9X62 DS512 4-port PB</td>
</tr>
<tr>
<td>09R</td>
<td>NT9X62 DS512 4-port PB</td>
</tr>
<tr>
<td>08R</td>
<td>NT9X79 F-bus extension PB</td>
</tr>
<tr>
<td>07R</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td></td>
<td>NT9X49 P-bus terminator card</td>
</tr>
<tr>
<td></td>
<td>NT9X53 Clock card</td>
</tr>
<tr>
<td></td>
<td>NT9X17 4-port interface card</td>
</tr>
<tr>
<td></td>
<td>NT9X17 4-port interface card</td>
</tr>
<tr>
<td></td>
<td>NT9X17 4-port interface card</td>
</tr>
<tr>
<td></td>
<td>NT9X15 Mapper card</td>
</tr>
<tr>
<td></td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td></td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td></td>
<td>NT9X49 P-bus terminator card</td>
</tr>
<tr>
<td></td>
<td>NT9X30 Power converter card (+5V)</td>
</tr>
<tr>
<td></td>
<td>NT9X31 Power converter card (−5V)</td>
</tr>
</tbody>
</table>

Legend:
- **Front:** Shown on the right.
- **Rear:** Shown on the left.
Figure Link interface shelf, that shows common fill ASUs

<table>
<thead>
<tr>
<th>Paddle boards</th>
<th>Cards</th>
<th>Card Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>32R NT9X79 F-bus extender PB</td>
<td>NT9X30 Power converter card</td>
<td>36F</td>
</tr>
<tr>
<td>31R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
<td>33F</td>
</tr>
<tr>
<td>30R NTEX20 F-bus terminator PB</td>
<td>NT9X74 F-bus repeater card</td>
<td>32F</td>
</tr>
<tr>
<td>29R NT9X19 Filler faceplate</td>
<td></td>
<td>30F</td>
</tr>
<tr>
<td>28R NT9X19 Filler faceplate</td>
<td></td>
<td>29F</td>
</tr>
<tr>
<td>27R NT9X19 Filler faceplate</td>
<td></td>
<td>28F</td>
</tr>
<tr>
<td>26R NT9X19 Filler faceplate</td>
<td></td>
<td>27F</td>
</tr>
<tr>
<td>25R NT9X19 Filler faceplate</td>
<td></td>
<td>26F</td>
</tr>
<tr>
<td>24R NT9X19 Filler faceplate</td>
<td></td>
<td>25F</td>
</tr>
<tr>
<td>23R NT9X19 Filler faceplate</td>
<td></td>
<td>24F</td>
</tr>
<tr>
<td>22R NT9X19 Filler faceplate</td>
<td></td>
<td>23F</td>
</tr>
<tr>
<td>21R NT9X19 Filler faceplate</td>
<td></td>
<td>22F</td>
</tr>
<tr>
<td>20R NT9X19 Filler faceplate</td>
<td></td>
<td>21F</td>
</tr>
<tr>
<td>19R NT9X19 Filler faceplate</td>
<td></td>
<td>20F</td>
</tr>
<tr>
<td>18R NT9X19 Filler faceplate</td>
<td></td>
<td>19F</td>
</tr>
<tr>
<td>17R NT9X19 Filler faceplate</td>
<td></td>
<td>18F</td>
</tr>
<tr>
<td>16R NT9X19 Filler faceplate</td>
<td></td>
<td>17F</td>
</tr>
<tr>
<td>15R NT9X19 Filler faceplate</td>
<td></td>
<td>16F</td>
</tr>
<tr>
<td>14R NT9X19 Filler faceplate</td>
<td></td>
<td>15F</td>
</tr>
<tr>
<td>13R NT9X19 Filler faceplate</td>
<td></td>
<td>14F</td>
</tr>
<tr>
<td>12R NT9X19 Filler faceplate</td>
<td></td>
<td>13F</td>
</tr>
<tr>
<td>11R NT9X19 Filler faceplate</td>
<td></td>
<td>12F</td>
</tr>
<tr>
<td>10R NT9X19 Filler faceplate</td>
<td></td>
<td>11F</td>
</tr>
<tr>
<td>09R NTEX20 F-bus terminator PB</td>
<td></td>
<td>10F</td>
</tr>
<tr>
<td>08R NT9X79 F-bus extender PB</td>
<td>NT9X74 F-bus repeater card</td>
<td>08F</td>
</tr>
<tr>
<td>07R NT9X19 Filler faceplate</td>
<td>NT9X30 Power converter card</td>
<td>07F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04F</td>
</tr>
<tr>
<td></td>
<td>NT9X19 Filler faceplate</td>
<td>01F</td>
</tr>
</tbody>
</table>

Note: Slots for ASUs have gray outlines.
LPP shelf layouts (end)

Figure Link interface shelf, that shows ASU location

<table>
<thead>
<tr>
<th>Rear paddle boards</th>
<th>The following are ASUs that can fill these slots.</th>
<th>Front cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X76</td>
<td>C-bus interface PB</td>
<td>NT9X76</td>
</tr>
<tr>
<td>LIU7 (channelized)</td>
<td></td>
<td>NT9X76</td>
</tr>
<tr>
<td>NT9X77 or NT9X78</td>
<td>C-bus access interface PB</td>
<td>NT9X76</td>
</tr>
<tr>
<td>LIU7 (non-channelized)</td>
<td></td>
<td>NT9X76</td>
</tr>
<tr>
<td>XLIU</td>
<td></td>
<td>NT9X76</td>
</tr>
<tr>
<td>NTEX30</td>
<td>T1 access PB</td>
<td>NT9X76</td>
</tr>
<tr>
<td>FRIIU</td>
<td></td>
<td>NT9X76</td>
</tr>
<tr>
<td>NTEX28</td>
<td>NIU link interface PB</td>
<td>NT9X76</td>
</tr>
<tr>
<td>NIU</td>
<td></td>
<td>NT9X76</td>
</tr>
<tr>
<td>NT9X19</td>
<td>Filler faceplate</td>
<td>NT9X76</td>
</tr>
<tr>
<td>APU</td>
<td></td>
<td>NT9X76</td>
</tr>
<tr>
<td>NTMX99</td>
<td>C-bus I/F 412 channels PB</td>
<td>NT9X76</td>
</tr>
<tr>
<td>VPU</td>
<td></td>
<td>NT9X76</td>
</tr>
<tr>
<td>NT9X85</td>
<td>Ethernet AUI PB</td>
<td>NT9X76</td>
</tr>
<tr>
<td>EIU</td>
<td></td>
<td>NT9X76</td>
</tr>
</tbody>
</table>
Application

Use this procedure to replace the following cards in an application processor unit (APU) in a link peripheral processor (LPP) link interface shelf (LIS).

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card you want to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X14</td>
<td>DB</td>
<td>24-byte memory card</td>
<td>APU in an LPP LIS</td>
</tr>
<tr>
<td>NTEX22</td>
<td>BB</td>
<td>Integrated processor and F-bus interface card</td>
<td>APU in an LPP LIS</td>
</tr>
</tbody>
</table>

Note 1: Some documentation refers to a link interface module (LIM) unit as a local message switch (LMS). LIM unit 0 corresponds to LMS 0; LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit indicates an LMS.

Note 2: The term LIM also refers to the LPP, when it indicates the entire LPP cabinet. This reference parallels how the LISs in the LPP closely associate with the LIM. MAP displays and data schema tables also refer to the LPP as a LIM.

Common procedures

This procedure contains the following common procedures:

- Verifying load compatibility of SuperNode cards
- Deactivating CCS7 links
- Activating CCS7 links
- Replacing a card
- Loading a PM
- Unseating cards in equipment shelves
- Reseating cards in equipment shelves

Do not go to the common procedure unless the step-action procedure directs you to go.
APU cards
in an LPP LIS (continued)

Action

This procedure contains a summary flowchart and a list of specific steps. Use the flowchart as an overview of the procedure. Follow the specific steps to perform the procedure.
Summary of Replacing APU cards in a LPP LIS

Manually busy APU

Are you replacing NT9X14?

Manually busy all ASUs on shelf side

Manually busy the F-bus

Turn off shelf side

Replace card

Turn on shelf side

Return the F-bus to service

Load and return ASUs to service

End

Y

N

Manually busy the F-bus taps

Load and return VPU to service

This flowchart summarizes the procedure.

Use the instructions in the procedure that follow this flowchart to perform the procedure.
How to Replace APU cards in an LPP LIS

At you current location

1

WARNING

Loss of service

When you remove an APU from service, you reduce service capacity.

Obtain a replacement card. Make sure that the replacement card and the card you remove have the same PEC and PEC suffix.

2

Make sure that the replacement card is compatible with the software load. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

At the MAP terminal

3

To access the PM level of the MAP display, type

```
>MAPCI;MTC;PM
```

and press the Enter key.

Example of a MAP display:

```
PM                  11       0      11       4      16      38
```

```
SysB    ManB    OffL    CBsy    ISTb    InSv
     11       0      11       4      16      38
```

4

To post the APU that contains the card you want to replace, type

```
>POST  APU  apu_no
```

and press the Enter key.

where

```
apu_no
```

is the number of the APU (0 to 511)

Example of a MAP display:

```
PM                  11       0      11       4      16      38
```
To display information about the APU, type

> QUERYPM

and press the Enter key.

Example of a MAP response:

```
<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>APU</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>38</td>
</tr>
</tbody>
</table>

APU 1 InSv Rsvd
```

5. To display information about the APU, type

> QUERYPM

and press the Enter key.

Example of a MAP response:

```
PM type: APU  PM No.: 1    Status: ISTb
LIM: 0 Shelf: 1 Slot: 14   APU FTA: 424B 1000
Default Load: ULC02AO
Running Load: ULC02AO
LMS States : InSv InSv
Auditing : Yes Yes
Msg Channels: Acc Acc
TAP 3 : . .
SysB    ManB    OffL    CBsy    ISTb    InSv
PM                 11       0      11       4      16      38
APU                 3       0       0       0       0       4
APU 1 InSv Rsvd
```

6. Record the number of the link interface module (LIM) and the taps that associate with the APU.

Note: The LIM number follows the word LIM on the second line of the display. In the example, the LIM number is 0. The tap number follows the word TAP on the last line of the display. In the example, the TAP number is 3.

7. Determine the state of the APU that contains the card you want to replace.

<table>
<thead>
<tr>
<th>If the state of the APU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, SysB (NA), ISTb, step 8</td>
<td></td>
</tr>
<tr>
<td>or InSv</td>
<td></td>
</tr>
<tr>
<td>is ManB or ManB (NA)</td>
<td>step 10</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 94</td>
</tr>
</tbody>
</table>

8. To manually busy the APU that contains the card you want to replace, type

> BSY FORCE

and press the Enter key.

Example of a MAP response:

```
BSYing APU 1 may reduce ADAS capacity.
Please confirm ("YES", "Y", "NO", or "N"):
```

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the command passed</td>
<td>step 10</td>
</tr>
</tbody>
</table>
APU cards in an LPP LIS (continued)

<table>
<thead>
<tr>
<th>If you need to confirm the command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to confirm the command</td>
<td>step 9</td>
</tr>
<tr>
<td>To confirm the busy command, type</td>
<td></td>
</tr>
<tr>
<td>>YES</td>
<td></td>
</tr>
<tr>
<td>and press the Enter key.</td>
<td></td>
</tr>
</tbody>
</table>

Example of a MAP response:

```
APU 1 BSY Passed
```

The next action depends on the card you are replace.

Note: Procedures in your office may permit hot insertion techniques in some circumstances. Consult with operating company personnel or your next level of support and continue as directed.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace an NTEX22</td>
<td>step 72</td>
</tr>
<tr>
<td>replace an NT9X14, and you are permitted to do hot insertion</td>
<td>step 72</td>
</tr>
<tr>
<td>replace an NT9X14, and you are not permitted to do hot insertion</td>
<td>step 11</td>
</tr>
</tbody>
</table>

WARNING

Loss of service

This procedure removes from service all application specific units (ASU) for an entire shelf side. If you remove an ASU from service, you will degrade or stop service for several hours. After you replace the APU card, all ASUs on the shelf side require peripheral module (PM) reloads. Perform this procedure only if you need to return APU components to service. Unless it is urgent, perform this procedure during periods of low traffic only.
The next step depends on the information you have on the LIM and the ASUs on the side of the shelf that associates with the APU NT9X14 card that you replace.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>know the PM number and slot location of each ASU on the shelf side</td>
<td>step 18</td>
</tr>
<tr>
<td>do not know the PM number and slot location of each ASU on the shelf side</td>
<td>step 12</td>
</tr>
</tbody>
</table>

Note: ASUs include: network interface units (NIU), APUs, ethernet interface units (EIU), CCS7 link interface units (LIU7), and voice processor units (VPU). X.25/X.75 link interface units (XLIU) and frame relay interface units (FRIU) are also ASUs but are never provisioned in an LIS that supports APUs.

To access table NIUINV, type

```
>TABLE NIUINV;FORMAT PACK
```

and press the Enter key.

Example of a MAP response:

```
JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: NIUINV
<line length>: 76 columns can be output per line.
<pack mode>: Pack mode is ON.
<indent column>: Indented lines will begin in column 1.
<first column>: The first column of output is column 1.
```

To list the NIUs provisioned, type

```
>LIST ALL
```

and press the Enter key.

Example of a MAP response:
APU cards
in an LPP LIS (continued)

Note: The NIU number appears in column 1. The LIM number is in columns 2 and 3. The LIM shelf number is in column 4. In the example listing, NIU 1 (line 1 in the example) is in LIM 0 on shelf 1.

14 Record the number of the NIU that associates with the shelf in use.
15 To access table LIUINV, type
>TABLE LIUINV; FORMAT PACK
and press the Enter key.
16 To list all ASUs for the office, type
>LIST ALL
and press the Enter key.

Example of a MAP response:

If Do

a minimum of one ASU is on the LIM shelf side that associates with the APU

297-8021-547 Standard 14.02 May 2001
3-17

APU cards in an LPP LIS (continued)

If

Do

ASUs are not on the LIM shelf side that associates with the APU

Note: The ASU number is in columns 1 and 2. The LIM number is in columns 3 and 4. The LIM shelf number is in column 5 and the ASU slot location is in column 6. In the example listing, LIU7 101 (line 2) is in LIM 1, shelf 1, and slot 8. When you face the LPP, the ASU slot number corresponds to the far-left ASU slot.

17

Record the number and slot location for each ASU on the shelf side that associates with the APU.

18

ATTENTION

The following routines provide instructions to remove ASUs from service in this order: NIU, LIU7, APU, EIU, and VPU. The priority of services that the ASUs support can require you to remove ASUs from service in a different order. The configuration of the shelf side can require you to remove ASUs from service in a different order. Contact operating company personnel or the next level of support to verify service priorities.

The next action depends on whether NIUs are in the shelf you are working on.

If an NIU

Do

is in the shelf

step 19

is not in the shelf

step 30

19

WARNING

Potential loss of channelized access

This procedure removes an NIU unit from service, which eliminates NIU redundancy for the associated LIS. If the in-service NIU unit becomes out of service at any time during this maintenance procedure, this condition affects channelized access for all ASUs on the LIS.

To post the NIU, type

>POST NIU niu_no

and press the Enter key.
APU cards
in an LPP LIS (continued)

where

niu_no
is the number of the NIU (0 to 29)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

NIU 1: InSv
Unit 0: InAct InSv
Unit 1: Act InSv

20 Determine the state of the NIU unit that associates with the shelf side. To identify the NIU unit, refer to table “LIS and associated LIM components”.

<table>
<thead>
<tr>
<th>If the state of the NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), or ManB (NA), and active</td>
<td>step 21</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), or ISTb (NA), and inactive</td>
<td>step 24</td>
</tr>
<tr>
<td>is ManB or ManB (NA)</td>
<td>step 30</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 94</td>
</tr>
</tbody>
</table>

21 Determine the state of the mate NIU unit.

<table>
<thead>
<tr>
<th>If the state of the mate NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 23</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 22</td>
</tr>
</tbody>
</table>

22 The mate unit is not in service. If you switch activity, a loss of service occurs. Contact the next level of support and continue as directed.

23 To switch activity, type

>SWACT

and press the Enter key.

Example of a MAP response:

NIU 1 SwAct PM: Request has been submitted.
NIU 1 SwAct PM: Command completed. The node has switched activity.
To manually busy the NIU unit, type

```plaintext
>BSY INACTIVE
```

and press the Enter key.

Example 1 of a MAP response:

NIU 1 Busy Inactive Unit: Request has been submitted.
NIU 1 Busy Inactive Unit: Command completed. The Unit is manually busy.

Example 2 of MAP display:

Imaging is currently in progress on NIU x Unit Y. Busying the NIU will cause imaging on this NIU to be aborted. Do you wish to continue? Please conform ("YES", "Y", "NO" or "N").

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>as shown in example 2</td>
<td>step 25</td>
</tr>
<tr>
<td>anything else</td>
<td>step 30</td>
</tr>
</tbody>
</table>

Imaging is being performed on the NIU unit you are working on. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes, proceed with busy</td>
<td>step 26</td>
</tr>
<tr>
<td>no, abort busy</td>
<td>step 96</td>
</tr>
</tbody>
</table>

To confirm Busy, type

```plaintext
>YES
```

and press the Enter key.

Example of a MAP response:

Imaging will be aborted on NIU x, Unit y.

To access the DEVICES level of the MAP display, type

```plaintext
>DEVICES
```

and press the Enter key.

Example of a MAP display:
APU cards
in an LPP LIS (continued)

To manually busy all the links for the NIU you are working on, type

>BSYLNKS INACTIVE

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>45</td>
</tr>
</tbody>
</table>

NIU 1: ISTb
Unit 0: InAct ManB
Unit 1: Act InSv

Net Links
0 1 2 3 CBUS ports OOS
PB 0 2
PB 1

To access the CI level of the MAP display, type

>QUIT ALL

and press the Enter key.

The next step depends on if LIU7s are in the shelf side that associate with the APU.

If LIU7s
<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are on the shelf side step 31</td>
</tr>
<tr>
<td>are not on the shelf side step 37</td>
</tr>
</tbody>
</table>

Note: Paddle board 0 is associated with NIU unit 0; paddle board 1 is associated with NIU unit 1.
To post the LIU7, type

```plaintext
>POST LIU7 liu_no
```

and press the Enter key.

where

- **liu_no** is the number of the LIU7 (0 to 511)

*Example of a MAP display:

```
PM                   SysB  ManB  OffL  CBsy  ISTb  InSv
LIU7                 1      0     2     0     3     6
LIU7                208    InSv   Rsvd
```

31

WARNING

Loss of service

The following routine removes an LIU7 from service and temporarily interrupts messaging on the associated CCS7 link.

To deactivate the CCS7 link that associates with the LIU7, perform the procedure *Deactivating CCS7 links* in this document. Complete the procedure and return to this point.

33

Determine the state of the LIU7.

If the state of the LIU7

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, SysB (NA), step 34</td>
</tr>
<tr>
<td>is ISTb, or InSv</td>
</tr>
</tbody>
</table>
| is ManB or ManB (NA) | step 36
| is OffL | step 94

34

To manually busy the LIU7, type

```plaintext
>BSY FORCE
```

and press the Enter key.

If

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
</table>
| you need to confirm the command | step 35

DMS-100 Family NA100 Card Replacement Procedures Volume 2 of 7 LET0015 and up
APU cards
in an LPP LIS (continued)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the command passed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

35 To confirm the command, type

>YES

and press the Enter key.

36 Repeat steps 31 to 35 for all LIU7s on the shelf side.

37 The next step depends on if APUs, EIUs, or VPUs are on the shelf side that associates with the APU.

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has APUs, EIUs, or VPU</td>
<td>step 38</td>
</tr>
</tbody>
</table>

| does not have APUs, EIUs, or VPU | step 43 |

38

WARNING

Loss of service capacity

The following routine can remove an APU from service. Service capacity will reduces. The following routine can remove an EIU from service. The Ethernet address will be inaccessible to the LAN. If other EIUs that provide alternative addresses to the LAN are not present, you will isolate ASUs on the shelf. The following routine removes a VPU from service. As a result, service capacity reduces.

To post the APU, EIU, or VPU by type

>POST asu_type asu_no

and press the Enter key.

where

- **asu_type** is the ASU type (APU, EIU, VPU)
- **asu_no** is the number of the ASU (0 to 511 for APU and EIU, 0 to 179 for VPU)

Example of a MAP display:
APU cards
in an LPP LIS (continued)

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPU</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>14</td>
<td>63</td>
</tr>
<tr>
<td>VPU</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

VPU 1 InSv Resvd

39 Determine the state of the APUs, EIUs, or VPU.

If the state of the PM
Do

is SysB, SysB (NA), ISTb, or InSv
step 40

is ManB or ManB (NA)
step 42

is OffL
step 94

40 To manually busy the APUs, EIUs, or VPU, type

> BSY

and press the Enter key.

Example of a MAP response:

BSYing VPU 1 may reduce ADAS capacity.
Please confirm ("YES", "Y", "NO", or "N"):

If
Do

the command passed
step 42

you need to confirm the command
step 41

41 To confirm the busy command, type

> YES

and press the Enter key.

Example of a MAP response:

VPU 1 BSY Passed.

If the BSY command
Do

passed
step 42

failed
step 95

42 Repeat steps 38 to 41 for all APUs, EIUs, or VPU on the shelf side.
APU cards in an LPP LIS (continued)

43 To post the LIM, type

>POST LIM lim_no

and press the Enter key.

where

lim_no

is the number of the LIM you must post (0 to 16)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

LIM 0 InSv

Links_OOS Taps_OOS

Unit0: InSv . .
Unit1: InSv . .

44 To access the F-bus level of the MAP display, type

>FBUS

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>Tap: 0 4 8 12 16 20 24 28 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBus0: InSv</td>
</tr>
<tr>
<td>FBus1: InSv</td>
</tr>
</tbody>
</table>

FBus0: InSv ...
 ...
FBus1: InSv ...
 ...

45 To manually busy the F-bus that associates with the shelf side you replace, type

>BSY FBUS fbus_no

and press the Enter key.

where

fbus_no

is the number of an fbus (0 or 1)

Note: Refer to table “LIS and associated LIM components” to identify the F-bus associated with the card you must replace.
APU cards
in an LPP LIS (continued)

At the shelf

46

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. A wrist strap grounding point will be on the frame supervisory panel (FSP) or modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To power down the NT9X30 card for the shelf side, press down and release the power switch. The power switch is on the faceplate of the card. The CONVERTER OFF LED illuminates when the converter powers down.

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is lit</td>
<td>step 47</td>
</tr>
<tr>
<td>is not lit</td>
<td>step 93</td>
</tr>
</tbody>
</table>

47 To replace the card, perform the procedure Replacing a card in this document to replace the card. Complete the procedure and return to this point.

Note: If the card you must replace has switches, make sure that the switches on the replacement card have the same settings.

48 Lift and release the power switch on the faceplate of the card to power up the NT9X30 card.

Note: The CONVERTER OFF LED goes out when the power converter powers up.

At the MAP terminal

49 To return the F-bus to service, type

>`RTS FBUS 0 tap_no`

and press the Enter key.

where

`fbus_no`

is the number of a fbus (0 or 1)
If the shelf contains NIUs, do step 51 if it does not contain NIUs, do step 57.

To post the NIU, type

```
>POST NIU niu_no
```

and press the Enter key.

Where

- **niu_no** is the number of the NIU (0 to 29)

To load the inactive NIU unit, type

```
>LOADPM INACTIVE
```

and press the Enter key.

Example of a MAP response:

NIU 1 Load Inactive Unit: Request has been submitted.
NIU 1 Load Unit 0: Command completed. The Unit contains the "NRS0 123BA" load.

If the LOADPM command passed, do step 54; if it failed, do step 53.

To load the PM unit perform the procedure Loading a PM in this document. Complete the procedure and return to this point.

To return to service the inactive NIU unit, type

```
>RTS INACTIVE
```
and press the Enter key.

Example of a MAP response:

NIU 1 RTS Inactive Unit: Request has been submitted.
NIU 1 RTS Inactive Unit: Command completed. The Unit is in service.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 57</td>
</tr>
<tr>
<td>failed</td>
<td>step 95</td>
</tr>
</tbody>
</table>

55 To access the DEVICES level of the MAP display, type

>`DEVICES`

and press the Enter key.

56 To return the links to service, type

>`RTSLNKS INACTIVE`

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>Net Links</th>
<th>CBUS ports OOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3</td>
<td>2</td>
</tr>
<tr>
<td>PB 0</td>
<td>. . . .</td>
</tr>
<tr>
<td>PB 1</td>
<td>. . . .</td>
</tr>
<tr>
<td>RTSLNKS</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>Command</td>
<td>completed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the RTSLNKS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 55</td>
</tr>
<tr>
<td>failed</td>
<td>step 95</td>
</tr>
</tbody>
</table>

57 Determine if the shelf side contains CCS7 link interface units (LIU7).

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>contains with LIU7s</td>
<td>step 58</td>
</tr>
<tr>
<td>does not contain with LIU7s</td>
<td>step 64</td>
</tr>
</tbody>
</table>

58 To post the LIU7, type

>`POST LIU7 liu_no`

and press the Enter key.

where
APU cards
in an LPP LIS (continued)

liu_no
is the number of the LIU7 (0 to 511)

59
To load the LIU7, type

>LOADPM

and press the Enter key.

Example of a MAP response:

LIU7 208 LOADPM Passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 61</td>
</tr>
<tr>
<td>failed</td>
<td>step 60</td>
</tr>
</tbody>
</table>

60
To load the PM perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

61
To return the LIU7 to service, type

>RTS

and press the Enter key.

Example of a MAP response:

LIU7 100 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 62</td>
</tr>
<tr>
<td>failed</td>
<td>step 95</td>
</tr>
</tbody>
</table>

62
To activate the CCS7 link associated with the LIU7 perform the procedure *Activating CCS7 links* in this document. Complete the procedure and return to this point.

63
Repeat steps 58 to 62 for all LIU7s on the shelf side you work on.

64
Determine if the shelf side contains APUs, EIUs, or VPUs.

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>contains APUs, EIUs, or VPUs</td>
<td>step 65</td>
</tr>
<tr>
<td>does not contain APUs, EIUs, or VPUs</td>
<td>step 70</td>
</tr>
</tbody>
</table>

65
To post the APUs, EIUs, or VPUs, type

>POST asu_type asu_no

and press the Enter key.
where

asu_type
 is the ASU type (APU, EIU, VPU)

asu_no
 is the number of the ASU (0 to 511 for APU and EIU, 0 to 179 for VPU)

66 To load the APU, EIU, or VPU, type
 >LOADPM
 and press the Enter key.

 APU 1 LOADPM Passed

If the LOADPM command Do

 passed step 68
 failed step 67

67 To load the PM perform the procedure Loading a PM in this document.
 Complete the procedure and return to this point.

68 To return to service the APU, EIU, or VPU to service, type
 >RTS
 and press the Enter key.

 APU 1 RTS Passed

If the RTS command Do

 passed step 70
 failed step 95

69 Repeat steps 65 to 68 for all APUs, EIUs, and VPUs on the shelf side.

70 Determine if another maintenance procedure directed you to this procedure.

If another maintenance procedure Do

 directed you to this procedure step 71
 did not direct you to this proce- step 97
dure

71 Return to the maintenance procedure that directed you to this procedure and
 continue as directed.

72 To post the LIM, type
 >POST LIM lim_no
and press the Enter key.

where

lim_no

is the number of the LIM that you recorded in step 6

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>Cbsy</th>
<th>ISTb</th>
<th>InsV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

LIM 0 InsV Links_OOS Taps_OOS

Unit0: InsV . .
Unit1: InsV . .

To access the F-bus level of the MAP display, type

>`FBUS`

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>Tap:</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBus0: InsV</td>
<td>....</td>
<td>----</td>
<td>---</td>
<td>.-</td>
<td>----</td>
<td>----</td>
<td>....</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>FBus1: InsV</td>
<td>....</td>
<td>----</td>
<td>---</td>
<td>.-</td>
<td>----</td>
<td>----</td>
<td>....</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

To manually busy the APU tap on F-bus 0, type

>`BSY FBUS 0 tap_no`

and press the Enter key.

where
tap_no

is the number of the APU tap that you recorded in step 6

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to confirm the command</td>
<td>step 75</td>
</tr>
<tr>
<td>you do not need to confirm the command</td>
<td>step 76</td>
</tr>
</tbody>
</table>

To confirm the command, type

>`YES`

and press the Enter key.

Example of a MAP response:
To manually busy the APU tap on F-bus 1, type

```
> BSY FBUS 1 tap_no
```

and press the Enter key.

where

- **tap_no** is the number of the APU tap that you recorded in step 6

Example of a MAP response:

```
Confirmed ...
LIM 0 FBus 0 Tap 3 Busy initiated.
LIM 0 FBus 0 Tap 3 Busy passed.
```

LIM 0 FBus 1 Tap 3 Busy requires confirmation because a SEVERE system OUTAGE may occur if the following node is isolated:

APU 1

Do you wish to proceed with this operation?

Please confirm ("YES", "Y", "NO", or "N"):

```
Confirmed ...
LIM 0 FBus 1 Tap 3 Busy initiated.
LIM 0 FBus 1 Tap 3 Busy passed.
```
At the shelf

78

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuits cards. A wrist strap grounding point will be on the frame supervisory panel (FSP) or modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

Determine the type of card you must replace.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>must replace NT9X14</td>
<td>step 79</td>
</tr>
<tr>
<td>must replace NTEX22</td>
<td>step 82</td>
</tr>
</tbody>
</table>

79 Unseat the NTEX22 card that associates with the APU. To unseat the card, perform the procedure Unseating cards in equipment shelves in this document. Complete the procedure and return to this point.

80 To replace the NT9X14 card, perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: If the card you must replace has switches, make sure that the switches on the replacement card have the same settings.

81 Reseat the NTEX22 card that associates with the APU. To reseat the card perform the procedure Reseating cards in equipment shelves in this document. Complete the procedure and return to this point.

Go to step 83.

82 To replace the card perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: If the card you must replace has switches, make sure that the switches on the replacement card have the same settings.

83 Determine if a maintenance procedure directed you to this procedure.

<table>
<thead>
<tr>
<th>If you were</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed here from a maintenance procedure</td>
<td>step 84</td>
</tr>
<tr>
<td>not directed here from a maintenance procedure</td>
<td>step 85</td>
</tr>
</tbody>
</table>

84 Return to the maintenance procedure that directed you to this procedure and continue as directed.
APU cards
in an LPP LIS (continued)

At the MAP terminal

85 To return to service the APU tap on F-bus 0, type

>RTS FBUS 0 tap_no

and press the Enter key.

where

tap_no

is the number of the APU tap that you recorded in step 6

Example of a MAP response:

LIM 0 FBus 0 Tap 3 Return to Service passed
 - local maintenance not accessible.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 86</td>
</tr>
<tr>
<td>failed</td>
<td>step 95</td>
</tr>
</tbody>
</table>

86 To return to service the APU tap on F-bus 1 to service, type

>RTS FBUS 1 tap_no

and press the Enter key.

where

tap_no

is the number of the APU tap that you recorded in step 6

Example of a MAP response:

LIM 0 FBus 1 Tap 3 Return to Service initiated.
LIM 0 FBus 1 Tap 3 Return to Service passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 87</td>
</tr>
<tr>
<td>failed</td>
<td>step 95</td>
</tr>
</tbody>
</table>

87 To quit from the F-bus level of the MAP display, type

>QUIT

and press the Enter key.

88 To post the APU, type

>POST APU apu_no

and press the Enter key.

where
APU cards
in an LPP LIS (continued)

`apu_no`
is the number of the APU (0 to 179)

89 To load the APU, type
>`LOADPM`
and press the Enter key.

APU 1 LOADPM Passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 91</td>
</tr>
<tr>
<td>failed</td>
<td>step 90</td>
</tr>
</tbody>
</table>

90 To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

91 To return to service the APU, type
>`RTS`
and press the Enter key.

APU 1 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 97</td>
</tr>
<tr>
<td>failed</td>
<td>step 95</td>
</tr>
</tbody>
</table>

92 You must clear all faults on the inactive NIU unit before you complete the activity switch, or loss of service can result. For direction on how to proceed, consult the next level of support and continue as directed.

93 It is not safe to proceed if you do not correctly power down the power converter. Consult operating company personnel or the next level of support on how to proceed without a spare XLIU. Continue as directed.

94 Consult operating company personnel to determine why the component is offline and continue as directed by operating company personnel.

95 For additional help, contact the next level of support.

96 To abort Busy, type
>`NO`
and press the Enter key. Busy request has been aborted, node imaging is continuing.

Example of a MAP response:

Aborted.
The procedure is complete.

LIS and associated LIM components

<table>
<thead>
<tr>
<th>LIM unit</th>
<th>Associated LIM hardware and F-buses</th>
</tr>
</thead>
</table>
| 0 (left side) | F-bus number: 0
Mate F-bus number: 1
Shelf side: slots 0 to 19
NIU unit number: unit 0
Location of NT9X13: slot 17F
Location of NT9X30: slot 4F |
| 1 (right side) | F-bus number: 1
Mate F-bus number: 0
Shelf side: slots 39 to 20
NIU unit number: unit 1
Location of NT9X13: slot 22F
Location of NT9X30: 36F |

Note: Some documentation refers to a LIM unit as an LMS. LIM unit 0 corresponds to LMS 0. LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM refers to an LMS. The term LIM can also refer to an entire LPP cabinet.
Common fill paddle boards
in an LPP LIS

Application

Use this procedure to replace the following cards in a link interface shelf (LIS) in a link peripheral processor (LPP).

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card you want to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X79</td>
<td>AA</td>
<td>F-bus extension paddle board</td>
<td>LIS in an LPP</td>
</tr>
<tr>
<td>NT9X79</td>
<td>BA</td>
<td>F-bus termination paddle board</td>
<td>LIS in an LPP</td>
</tr>
<tr>
<td>NTEX20</td>
<td>AA, BA</td>
<td>Intrashelf termination paddle board</td>
<td>LIS in an LPP</td>
</tr>
</tbody>
</table>

Note 1: Some documentation refers to a link interface module (LIM) unit as a local message switch (LMS). LIM unit 0 corresponds to LMS 0. LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit refers to an LMS.

Note 2: The system refers to an LPP as a link interface module (LIM) when it indicates the entire LPP. This reference system parallels how the LISs in the LPP associate with the LIM. MAP displays and data schema tables also refer to the LPP as a LIM.

Common procedures

This procedure refers to the following common procedures:

- Verifying load compatibility of SuperNode cards
- Replacing a card
- Loading a PM

Do not go to the common procedure unless the step-action procedure directs you to go.
Common fill paddle boards in an LPP LIS (continued)

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Common fill paddle boards
in an LPP LIS (continued)

Summary of Replacing Common fill paddle boards in an LPP LIS

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

1. Manually busy F-bus
2. Manually busy LIM unit
3. Replace card
4. Reset LIM unit
5. Load LIM unit
6. Return F-bus to service
7. End
Replacing Common fill paddle boards in an LPP LIS

At your current location

1 Obtain a replacement card. Make sure that the replacement card has the same PEC and PEC suffix as the card you must remove.

2 Make sure that the replacement card is compatible with the software load. To make sure the card is compatible, perform the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

At the MAP terminal

3 To access the PM level of the MAP display, type

```
>MAPCI;MTC;PM
```

and press the Enter key.

Example of a MAP display:

```
PM  SysB  ManB  OffL  CBsy  ISTb  InSv
0   0     0     28    0     0    18
```

4 To post the link interface module (LIM) associated with the cad, type

```
>POST LIM lim_no
```

and press the Enter key.

where

```
lim_no
```

is the number of the LIM (0 to 16)

Note: To identify the LIM unit associated with the card you replace, refer to table “Common fill paddle boards and associated LIM components”.

Example of a MAP display:

```
```
Common fill paddle boards
in an LPP LIS (continued)

5 Determine the state of the LIM.

 Note: The state of the LIM appears on the right of the LIM number on the MAP display.

<table>
<thead>
<tr>
<th>If the state of the LIM</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is Offl</td>
<td>step 26</td>
</tr>
<tr>
<td>is any other in-service or out-of-service state</td>
<td></td>
</tr>
</tbody>
</table>

6 Determine the state of the mate LIM unit. To identify the LIM unit that associates with the card you replace, refer to table “Common fill paddle boards and associated LIM components”.

 Note: The state of the LIM unit appears on the right of the LIM unit number on the MAP display.

<table>
<thead>
<tr>
<th>If the state of the mate LIM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>is any other state</td>
<td>step 24</td>
</tr>
</tbody>
</table>

7 To access the F-bus level of the MAP display, type

>FBUS

and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links_OOS Taps_OOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit0: InSv</td>
</tr>
<tr>
<td>Unit1: InSv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tap:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap: 0 4 8 12 16 20 24 28 32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FBu0: InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBu1: InSv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FBu0: InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBu1: InSv</td>
</tr>
</tbody>
</table>
Determine the states the F-bus and the F-bus taps for the mate LIM unit.

Note: The state of the F-buses appears on the right of the F-bus numbers on the MAP display. To identify the LIM and F-bus components that associate with the card in use, refer to table “Common fill paddle boards and associated LIM components”.

<table>
<thead>
<tr>
<th>If the state of the F-bus</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv and all F-bus taps are . (dot)</td>
<td>step 9</td>
</tr>
<tr>
<td>is not InSv and one or more F-bus taps are not . (dot)</td>
<td>step 25</td>
</tr>
</tbody>
</table>

9 To manually busy the F-bus associated with the card in use, type

```
>BSY FBUS fbus_no
```

and press the Enter key.

where

- **fbus_no**
 - is the number of the F-bus (0 or 1)

Note: To identify the F-bus components associated with the card you must replace, refer to table “Common fill paddle boards and associated LIM components”.

Example of a MAP response:

```
LIM 0 FBus 0 Busy requires confirmation because the following NIUs may be active on this bus...
NIU 0 unit 0
NIU 0 unit 1
Please confirm ("YES", "Y", "NO", or "N"):
```

<table>
<thead>
<tr>
<th>If the command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passes</td>
<td>step 11</td>
</tr>
</tbody>
</table>
Common fill paddle boards
in an LPP LIS (continued)

If the command	Do
needs confirmation | step 10

10 To confirm the command, type
>YES
and press the Enter key.

Example of a MAP response:

LIM 0 FBus 0 Busy initiated.
LIM 0 FBus 0 Busy passed.

11 To quit the F-bus level of the MAP display, type
>QUIT
and press the Enter key.

12 To manually busy the LIM unit that associates with the card you must replace, type
>BSY UNIT unit_no
and press the Enter key.

where

`unit_no`

is the number of the LIM unit (0 or 1)

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LIM 0 ISTb
Links_OOS Taps_OOS
Unit0: ManB 4 10
Unit1: ISTb 4 .

bsy unit 0
LIM 0 UNIT 0 Busy initiated.
LIM 0 UNIT 0 Busy passed.

If the response is	Do
Imaging is currently in progress | step 13
on LIM x UNIT y. Busy Action aborted. Use the force option if you wish to override the imaging of this unit.
If the response is

<table>
<thead>
<tr>
<th>Imaging is currently in progress on LIM x UNIT y and UNIT z. Busy Action aborted. Use the force option if you wish to override the imaging of this unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>anything else</td>
</tr>
</tbody>
</table>

13 Imaging is being performed on the LIM unit you are working on. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

14 Imaging is being performed on the LIM unit you are working on and the mate LIM unit. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

At the shelf

15

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. A grounding point will be on the frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card perform the procedure Replacing a card in this document. Completed the procedure and return to this point.

Note: If the card you must replace has switches, make sure that the switches on the replacement card have the same settings.

16 Determine if a maintenance procedure directed you to this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 17</td>
</tr>
<tr>
<td>did not directed you to this procedure</td>
<td>step 18</td>
</tr>
</tbody>
</table>

17 Return to the maintenance procedure that sent you to this procedure and continue as directed.
Common fill paddle boards
in an LPP LIS (continued)

At the MAP terminal

18 To reset the LIM unit that you manually busied in step 12, type

>`PMRESET UNIT unit_no

and press the Enter key.

where

unit_no

is the number of the LIM unit (0 or 1)

Example of a MAP response:

LIM 0 UNIT 0 Reset initiated.
LIM 0 UNIT 0 Reset passed.

If the PMRESET command Do

<table>
<thead>
<tr>
<th>passed</th>
<th>step 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 19</td>
</tr>
</tbody>
</table>

19 To load the LIM unit, type

>`LOADPM UNIT unit_no

and press the Enter key.

where

unit_no

is the number of the LIM unit (0 or 1)

Example of a MAP response:

LIM 0 UNIT 0 Load initiated.
LIM 0 UNIT 0 Load passed.

If the LOADPM command Do

<table>
<thead>
<tr>
<th>passed</th>
<th>step 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 20</td>
</tr>
</tbody>
</table>

20 To load the PM perform the procedure Loading a PM in this document. Completed the procedure and return to this point.

21 To return to service the LIM unit to service, type

>`RTS UNIT unit_no

and press the Enter key.

where

unit_no

is the number of the LIM unit (0 or 1)

Example of a MAP response:
Common fill paddle boards
in an LPP LIS (continued)

- **22** To access the F-bus level of the MAP display, type `>FBUS` and press the Enter key.

- **23** To return to service the F-bus, type `>RTS_FBUS_fbus_no` and press the Enter key.
 where
 - `fbus_no` is the number of F-bus (0 or 1)

 Example of a MAP response:

 LIM 0 FBus 0 Return to Service initiated.
 LIM 0 FBus 0 Return to Service passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 22</td>
</tr>
<tr>
<td>failed</td>
<td>step 27</td>
</tr>
</tbody>
</table>

- **24** If you continue this procedure you remove the entire LIM from service. When you remove the LIM from service, you isolate application specific units (ASU) on the link interface shelves (LIS). To determine if you can continue with this procedure, contact operating company personnel or the next level of support.

- **25** If you continue this procedure, you isolate a minimum of one application specific unit (ASU) on the link interface shelves (LIS). To determine if you can continue this procedure, contact operating company personnel or the next level of support.

- **26** Consult operating company personnel to determine why the component is offline. Continue as directed.

- **27** For additional help, contact the personnel responsible for the next level of support.

If the RTS command passed step 28
If the RTS command failed step 27

LIM 0 UNIT 0 Return to Service initiated.
LIM 0 UNIT 0 Return to Service passed.
Common fill paddle boards
in an LPP LIS (end)

28 The procedure is complete.

Common fill paddle boards and associated LIM components

<table>
<thead>
<tr>
<th>PEC</th>
<th>Slot</th>
<th>Associated LIM and F-buses</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X79</td>
<td>07R</td>
<td>LIM unit number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number: 1</td>
</tr>
<tr>
<td>NTEX20</td>
<td>30R</td>
<td>F-bus number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number: 1</td>
</tr>
<tr>
<td>NT9X79</td>
<td>32R</td>
<td>LIM unit number: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number: 0</td>
</tr>
<tr>
<td>NTEX20</td>
<td>08R</td>
<td>F-bus number: Mate 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-bus number: 0</td>
</tr>
</tbody>
</table>

Note: Some documentation refers to an LIM unit as an LMS. LIM unit 0 corresponds to LMS 0; LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit refers to an LMS. The term LIM also refers to the LPP and indicates the entire LPP cabinet.
EiU cards in an LPP LIS

Application

Use this procedure to replace the following cards in an ethernet interface unit (EIU) in a link peripheral processor (LPP) link interface shelf (LIS).

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf frame for the card in use, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement NTP.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffixes</th>
<th>Card name</th>
<th>Shelf/frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X76</td>
<td>AA, BA, CA</td>
<td>STP signaling terminal card</td>
<td>EIU in an LPP LIS</td>
</tr>
<tr>
<td>NT9X84</td>
<td>AA</td>
<td>Ethernet interface card</td>
<td>EIU in an LPP LIS</td>
</tr>
<tr>
<td>NT9X85</td>
<td>AA</td>
<td>Ethernet attachment unit interface paddle board</td>
<td>EIU in an LPP LIS</td>
</tr>
</tbody>
</table>

Note: Use this procedure to replace all cards in two-slot EIU.

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf frame for the card in use, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement NTP.

Common procedures

This procedure refers to the following common procedures:

- Verifying load compatibility of SuperNode cards
- Unseating cards in equipment shelves
- Replacing a card
- Loading a PM
- Reseating cards in equipment shelves

Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
EIU cards
in an LPP LIS (continued)

Summary of replacing EIU cards in an LPP LIS

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

Manually busy the EIU

Manually busy the F-bus taps for the EIU

Unseat other EIU cards as needed

Replace the card

Replace EIU cards as needed

Return F-bus taps to service

Load EIU

Return EIU to service

End
Replacing EIU cards in an LPP LIS

WARNING
Loss of Ethernet connection
This procedure removes an EIU from service, so the Ethernet address is not accessible. If other EIUs do not provide alternative addresses to the LAN, ASUs on the LIS are isolated. Perform this procedure only if you must to return the EIU to service. Unless it is urgent, perform this procedure during periods of low traffic only.

At your current location
1 Obtain a replacement card. Make sure that the replacement card and the card you remove has the same PEC and PEC suffix.
2 Use the procedure Verifying load compatibility of SuperNode cards in this document. Make sure the replacement card is compatible with the software load. Complete the procedure and return to this point.

At the MAP terminal
3 To access the PM level of the MAP display, type
>MAPCI;MTC;PM
and press the Enter key
Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>48</td>
</tr>
</tbody>
</table>

4 To post the EIU that contains the card you want to replace, type
>POST EIU eiu_no
and press the Enter key
where

 eiu_no
is the number of the EIU (0 to 511)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIU</td>
<td>0</td>
<td>InSv</td>
<td>Rsvd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EIU cards in an LPP LIS (continued)

5. Determine the state of the EIU.

<table>
<thead>
<tr>
<th>If the state of the EIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), or ManB (NA)</td>
<td>step 6</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 10</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 35</td>
</tr>
</tbody>
</table>

6. To manually busy the EIU, type

> BSY

and press the Enter key.

Example of a MAP response:

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bsy EIU 0 requires confirmation because the action may isolate the SuperNode from the nodes on the LAN. Please confirm ("YES", "Y", "NO", or "N"):</td>
<td>Step 9</td>
</tr>
<tr>
<td>Warning: EIU 0 is currently being imaged. The BSY command will be aborted unless the FORCE option is used.</td>
<td>step 7</td>
</tr>
</tbody>
</table>

7. To manually force bsy the EIU, type

> BSY FORCE

and press the Enter key.

Example of a MAP response:

WARNING: The EIU 0 is currently being imaged.

Do you wish to abort imaging to proceed with the BSY request?

Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If proceed with BSY FORCE request</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>proceed with BSY FORCE request</td>
<td>step 8</td>
</tr>
<tr>
<td>abort BSY FORCE request</td>
<td>step 37</td>
</tr>
</tbody>
</table>
8 To force bsy the EIU, type
 >YES
 and press the Enter key. Go to step 10
 Example of a MAP response:
 Imaging will be aborted on EIU 0.

9 To confirm the command, type
 >YES
 and press the Enter key
 Example of a MAP response:
 Confirmed...
 EIU 0 BSY Passed

10 To display information about the EIU, type
 >QUERYPM
 and press the Enter key
 Example of a MAP response:

 PM type: EIU PM No.: 0 Status: ManB
 LIM: 0 Shelf: 1 Slot: 24 EIU FTA: 424F 1000
 Default Load: LRS02AO
 Running Load: LRS02AO
 LMS States: InSv InSv
 Auditing?: Yes Yes
 Msg Channels: Acc Acc
 TAPs: . .

11 Record the LIM number associated with the EIU you are working on.
 Note: The LIM number follows the word LIM on the second line of the
 display. In the example, the LIM number is 1.

12 To post the LIM, type
 >POST LIM lim_no
 and press the Enter key
 where
 lim_no
 is the number of the LIM that you recorded in step 11
 Example of a MAP display:
EIU cards in an LPP LIS (continued)

13 To access the F-bus level of the MAP display, type

>FBUS

and press the Enter key

Example of a MAP display:

```
Tap:  0  4  8 12 16 20 24 28 32
FBus0: InSv   ..-- ---- .--- .--- --.. ---. .-----.- ----
FBus1: InSv   ..-- ---- .--- .--- --.. ---. .-----.- ----
FBUS:
```

14 To determine which tap numbers associate with the EIU, type

>TRNSL 0

and press the Enter key

Example of a MAP response:

```
LIM 0 FBus 0 Tap 0 is on  LIU7 1.
LIM 0 FBus 0 Tap 1 is on  LIU7 2.
LIM 0 FBus 0 Tap 2 is unequipped.
LIM 0 FBus 0 Tap 3 is unequipped.
LIM 0 FBus 0 Tap 4 is unequipped.
LIM 0 FBus 0 Tap 6 is unequipped.
LIM 0 FBus 0 Tap 7 is unequipped.
LIM 0 FBus 0 Tap 8 is on  EIU 0.

LIM 0 FBus 0 Tap 35 is unequipped.
```

15 Record the tap number for the EIU.

16 To manually busy the EIU tap on F-bus 0, type

>BSY FBUS 0 tap_no

and press the Enter key

where

```
tap_no
```

is the number of the EIU tap that you recorded in step 15

Example of a MAP response:
EIU cards
in an LPP LIS (continued)

To manually busy the EIU tap on F-bus 1, type

\texttt{>BSY FBUS 1 tap_no}

and press the Enter key

\textit{where}

\texttt{tap_no}

is the number of the EIU tap that you recorded in step 15

\textit{Example of a MAP response:}

LIM 0 FBus 0 Tap 8 Busy initiated.
LIM 0 FBus 0 Tap 8 Busy passed.

To confirm the command, type

\texttt{>YES}

and press the Enter key

\textit{Example of a MAP response:}

Confirmed ...
LIM 0 FBus 1 Tap 8 Busy initiated.
LIM 0 FBus 1 Tap 8 Busy passed.

\textbf{At the shelf}

Based on the card you want to replace, determine your next step.

\begin{tabular}{|l|l|}
\hline
\textbf{If you want to replace} & \textbf{Do} \\
\hline
the NTEX22 & step 20 \\
\hline
\end{tabular}

\textbf{WARNING}

\textbf{Static electricity damage}
Wear a wrist strap that connects to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.
EIU cards

in an LPP LIS (continued)

<table>
<thead>
<tr>
<th>If you want to replace</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an EIU card other than listed here</td>
<td>step 23</td>
</tr>
</tbody>
</table>

20 To unseat the NT9X84 for the EIU, use the procedure *Unseating cards in equipment shelves* in this document. Complete the procedure and return to this point.

21 Use the procedure *Replacing a card* in this document to replace the NTEX22 card in use. Complete the procedure and return to this point.

 Note: If the card you want to replace has switches, make sure that the switches on the replacement card have the same settings.

22 To reseat the NT9X84 for the EIU use the procedure *Reseating cards in equipment shelves* in this document. Complete the procedure and return to this point.

 Go to step 26.

23 To unseat the NTEX22 for the EIU use the procedure *Unseating cards in equipment shelves* in this document. Complete the procedure and return to this point.

24 To replace the card use the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

 Note: If the card you want to replace has switches, make sure that the switches on the replacement card have the same settings.

25 To reseat the NTEX22 for the EIU use the procedure *Reseating cards in equipment shelves* in this document. Complete the procedure and return to this point.

26 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 27</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 28</td>
</tr>
</tbody>
</table>

27 Return to the maintenance procedure that sent you to this procedure.

At the MAP terminal

28 To return the EIU tap on F-bus 0 to service, type

>RTS FBUS 0 tap_no

and press the Enter key

where

tap_no is the number of the EIU tap that you recorded in step 15

Example of a MAP response:
To return the EIU tap on F-bus 1 to service, type

\texttt{>RTS FBUS 1 tap_no}

and press the Enter key

where

\texttt{tap_no}

is the number of the EIU tap that you recorded in step 15

\textit{Example of a MAP response:}

\texttt{LIM 0 FBus 0 Tap 8 Return to Service passed - local maintenance not accessible.}

\texttt{LIM 0 FBus 1 Tap 8 Return to Service initiated.}

\texttt{LIM 0 FBus 1 Tap 8 Return to Service passed.}

To quit from the F-bus level of the MAP display, type

\texttt{>QUIT}

and press the Enter key

31

To post the EIU, type

\texttt{>POST EIU eiu_no}

and press the Enter key

where

\texttt{eiu_no}

is the number of the EIU (0 to 511)

32

To load the EIU, type

\texttt{>LOADPM}

and press the Enter key

\textit{Example of a MAP response:}
EIU cards
in an LPP LIS (end)

EIU 0 LOADPM passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 34</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

33 To load the PM use the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

34 To return the EIU to service, type

`>RTS`

and press the Enter key

Example of a MAP response:

EIU 0 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 38</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

35 Consult operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

36 For additional help, contact the next level of support.

37 Abort the BSY FORCE request by typing

`>NO`

and pressing the Enter key

Example of a MAP response:

BSY command aborted due to imaging in progress.

38 The procedure is complete.
LIU7 cards in an LPP LIS

Application

Use this procedure to replace the following cards in a CCS7 link interface unit (LIU7) in a link peripheral processor (LPP) link interface shelf (LIS).

If you cannot identify the product engineering code (PEC), suffix, or provisioned shelf or frame for the card you want to replace, refer to the “Index” for a list of the cards, shelves, and frames documented in this card replacement NTP.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X76</td>
<td>AA, BA, CA</td>
<td>STP signaling terminal card</td>
<td>LIU7 in an LPP LIS</td>
</tr>
<tr>
<td>NT9X77</td>
<td>AA, AB</td>
<td>DMS-100 V.35 interface paddle board</td>
<td>LIU7 in an LPP LIS</td>
</tr>
<tr>
<td>NT9X78</td>
<td>AA</td>
<td>DS-0A interface paddle board</td>
<td>LIU7 in an LPP LIS</td>
</tr>
<tr>
<td>NT9X78</td>
<td>BA, CA, DA</td>
<td>Enhanced DS-0A interface paddle board</td>
<td>LIU7 in an LPP LIS</td>
</tr>
<tr>
<td>NTEX22</td>
<td>BA, BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>LIU7 in an LPP LIS</td>
</tr>
<tr>
<td>NTEX26</td>
<td>AA</td>
<td>LIU channel-bus interface card</td>
<td>LIU7 in an LPP LIS</td>
</tr>
</tbody>
</table>

Common procedures

The following common procedures are referenced:

- **Verifying load compatibility of SuperNode cards**
- **Deactivating CCS7 links**
- **Unseating cards in equipment shelves**
- **Replacing a card**
- **Reseating cards in equipment shelves**
- **Loading a PM**
- **Activating CCS7 links**
LIU7 cards
in an LPP LIS (continued)

Do not go to the common procedure unless directed to do so in the step-action procedure.

Action

The following flowchart is only a summary of the procedure. To replace the card, use the instructions in the step-action procedure that follows the flowchart.
Summary of Replacing LIU7 cards in an LPP LIS

1. Deactivate any link for the LIU7
2. Manually busy the LIU7
3. Manually busy the F-bus taps for the LIU7
4. Unseat and reseat other LIU7 cards
5. Change the card you are working on
6. Return F-bus taps to service
7. Load and return the LIU7 to service
8. Reactivate any link for the LIU7

End
Replacing LIU7 cards in an LPP LIS

CAUTION

Loss of service

This procedure removes an LIU7 from service and temporarily interrupts messaging on the associated CCS7 link. Perform this procedure only if necessary to return the LIU7 to service. Otherwise, perform this procedure only during periods of low traffic.

At your current location

1. Obtain a replacement card. Ensure that the replacement card has the same PEC, including suffix, as the card being removed.
2. Ensure that the replacement card is compatible with the software load by using the procedure *Verifying load compatibility of SuperNode cards* in this document. When you have completed the procedure, return to this point.

At the MAP terminal

3. Access the PM level of the MAP display by typing

   ```
   >MAPCI;MTC;PM
   ```

 and pressing the Enter key.

 Example of a MAP display:

   ```
   SysB  ManB  OffL  CBsy  ISTb  InSv
   PM    1      0      2      0      3      6
   ```

4. Post the LIU7 that contains the card to be replaced by typing

   ```
   >POST LIU7 liu_no
   ```

 and pressing the Enter key.

 where

 liu_no

 is the number of the LIU7 (0 to 511)

 Example of a MAP display:

   ```
   LIU7  208  InSv   Rsvd
   ```
LIU7 cards in an LPP LIS (continued)

5. **Determine the state of the LIU7.**

<table>
<thead>
<tr>
<th>If the state of the LIU7 is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>SysB, SysB (NA), ISTb, or InSv</td>
<td>step 6</td>
</tr>
<tr>
<td>ManB or ManB (NA)</td>
<td>step 19</td>
</tr>
<tr>
<td>OffL</td>
<td>step 37</td>
</tr>
</tbody>
</table>

6. **Deactivate the CCS7 link (if there is one) associated with the LIU7 using the procedure Deactivating CCS7 links in this document. When you have completed the procedure, return to this point.**

7. **Manually force busy the LIU7 by typing**

   ```
   >BSY FORCE
   ```

 and pressing the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to confirm the command</td>
<td>step 10</td>
</tr>
<tr>
<td>the command passed</td>
<td>step 11</td>
</tr>
<tr>
<td>MAP response is WARNING: LIU7 208 is currently being imaged. Do you wish to abort imaging to proceed with the BSY request? Please confirm ("YES", "Y", "NO", or "N"):</td>
<td>step 8</td>
</tr>
</tbody>
</table>

8. **Determine if it is safe to continue with this procedure.**

<table>
<thead>
<tr>
<th>If it is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>proceed with BSY FORCE request</td>
<td>step 9</td>
</tr>
<tr>
<td>abort BSY FORCE request</td>
<td>step 39</td>
</tr>
</tbody>
</table>

9. **Force busy the LIU7 by typing**

   ```
   >YES
   ```

 and pressing the Enter key. Go to step 11

 Example of a MAP response:

 Imaging will be aborted on LIU7 208.

10. **Confirm the command by typing**

    ```
    >YES
    ```
and pressing the Enter key.

11 Display information about the LIU7 by typing

>`QUERYPM`

and pressing the Enter key.

Example of a MAP response:

```
PM type: LIU7   PM No.: 208   Status: InSv
LIM: 2   Shelf: 2   Slot: 8   LIU   FTA: 4247 1000
Default Load: LCC03BD
Running Load: LCC03BD
LMS   States : ISTb   ISTb
Auditing: Yes   Yes
Msg Channels: Acc   Acc
TAP 8: 
Reserved LIU7 forms part of CCS7 Linkset: SSP208_LS SLC: 0
LIU is not allocated
```

12 Record the number of the link interface module (LIM) and the taps that are associated with the LIU7 you are working on.

Note: The LIM number follows the word LIM on the second line of the display. In the example, the LIM number is 0. The tap number follows the word TAP on the line below Msg Channels. In the example, the TAP number is 8.

13 Post the LIM by typing

>`POST LIM lim_no`

and pressing the Enter key.

where

`lim_no`

is the number of the LIM you recorded in step 12

Example of a MAP display:

```
SysB   ManB   OffL   CBsy   ISTb   InSv
PM     1      0      2       0      3      6
LIM    0      0      0      0      1      0
LIM 2 ISTb
Links_OOS Taps_OOS
Unit0: ISTb  4
Unit1: InSv   
```

14 Access the F-bus level of the MAP display by typing

>`FBUS`

and pressing the Enter key.

Example of a MAP display:
Manually busy the LIU7 tap on F-bus 0 by typing

>`BSY FBUS 0 tap_no

and pressing the Enter key.

where

`tap_no`

is the number of the LIU7 tap recorded in step 12

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to confirm the command</td>
<td>step 16</td>
</tr>
<tr>
<td>you do not need to confirm the command</td>
<td>step 17</td>
</tr>
</tbody>
</table>

Confirm the command by typing

>`YES`

and pressing the Enter key.

Example of a MAP response:

Confirmed ...
LIM 2 FBus 0 Tap 8 Busy initiated.
LIM 2 FBus 0 Tap 8 Busy passed.

Manually busy the LIU7 tap on F-bus 1 by typing

>`BSY FBUS 1 tap_no`

and pressing the Enter key.

where

`tap_no`

is the number of the LIU7 tap recorded in step 12

Example of a MAP response:

LIM 2 FBus 1 Tap 8 Busy requires confirmation because a SEVERE system OUTAGE may occur if the following node is isolated:
LIU7 208
Do you wish to proceed with this operation?
Please confirm ("YES", "Y", "NO", or "N"):
LIU7 cards in an LPP LIS (continued)

18 Confirm the command by typing
 >>YES
 and pressing the Enter key.

 Example of a MAP response:

 Confirmed ...
 LIM 2 FBus 1 Tap 8 Busy initiated.
 LIM 2 FBus 1 Tap 8 Busy passed.

At the shelf

19

DANGER
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) while handling circuit cards. This protects the cards against damage caused by static electricity.

Determine your next step based on the card you are replacing.

<table>
<thead>
<tr>
<th>If you are replacing an</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X76</td>
<td>step 21</td>
</tr>
<tr>
<td>NTEX22</td>
<td>step 23</td>
</tr>
<tr>
<td>any back plane card</td>
<td>step 26</td>
</tr>
</tbody>
</table>

20 Go to step 27.

21 To begin changing an NT9X76 card in a 2-slot LIU7, unseat and reseat cards in the LIU7 using the following sub-steps. To unseat a card, use the procedure Unseating cards in equipment shelves in this document. To reseat a card, use the procedure Reseating cards in equipment shelves in this document.

 a Unseat the NT9X76 STP signaling terminal card.
 b Unseat the NTEX22 link general processor card.
 c Reseat the NTEX22 link general processor card.

22 Replace the NT9X76 card using the procedure Replacing a card in this document. When you have completed the procedure, return to this point.

 Note: If the card to be replaced has switches, ensure that the switches on the replacement card have the same settings.

 Go to step 27.
To begin changing an NTEX22 card, unseat the NT9X76 STP signaling terminal card using the procedure Unseating cards in equipment shelves in this document. When you have finished the procedure, return to this point.

Replace the NTEX22 card using the procedure Replacing a card in this document. When you have completed the procedure, return to this point.

Note: If the card to be replaced has switches, ensure that the switches on the replacement card have the same settings.

Reseat the NT9X76 STP signaling terminal card using the procedure Reseating cards in equipment shelves in this document. When you have finished the procedure, return to this point.

Go to step 27.

Replace the card using the procedure Replacing a card in this document. When you have completed the procedure, return to this point.

Note: If the card to be replaced has switches, ensure that the switches on the replacement card have the same settings.

The next action depends on your reason for performing this procedure.

<table>
<thead>
<tr>
<th>If you were directed to this procedure from another maintenance procedure</th>
<th>Do step 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>not directed to this procedure from another maintenance procedure</td>
<td>step 29</td>
</tr>
</tbody>
</table>

Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

Return the LIU7 tap on F-bus 0 to service by typing

\[\text{>RTS FBUS 0 tap_no}\]

and pressing the Enter key.

where

tap_no is the number of the LIU7 tap you recorded in step 12

Example of a MAP response:

LIM 1 FBus 0 Tap 8 Return to Service passed
- local maintenance not accessible.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 30</td>
</tr>
<tr>
<td>failed</td>
<td>step 38</td>
</tr>
</tbody>
</table>
LIU7 cards
in an LPP LIS (continued)

30 Return the LIU7 tap on F-bus 1 to service by typing
\>RTS FBUS 1 tap_no
and pressing the Enter key.
where
tap_no
is the number of the LIU7 tap you recorded in step 12

Example of a MAP response:

LIM 1 FBus 1 Tap 8 Return to Service initiated.
LIM 1 FBus 1 Tap 8 Return to Service passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 31</td>
</tr>
<tr>
<td>failed</td>
<td>step 38</td>
</tr>
</tbody>
</table>

31 Quit from the F-bus level of the MAP display by typing
\>QUIT
and pressing the Enter key.

32 Post the LIU7 you are working on by typing
\>POST LIU7 liu_no
and pressing the Enter key.
where
liu_no
is the number of the LIU7 (0 to 511)

33 Load the LIU7 by typing
\>LOADPM
and pressing the Enter key.

Example of a MAP response:

LIU7 208 LOADPM Passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 35</td>
</tr>
<tr>
<td>failed</td>
<td>step 34</td>
</tr>
</tbody>
</table>

34 Load the PM using the procedure Loading a PM in this document. When you have completed the procedure, return to this point.
35 Return the LIU7 to service by typing
>RTS
and pressing the Enter key.

Example of a MAP response:

LIU7 100 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 36</td>
</tr>
<tr>
<td>failed</td>
<td>step 38</td>
</tr>
</tbody>
</table>

36 Activate the CCS7 link (if there is one) associated with the LIU7 using the procedure *Activating CCS7 links* in this document. When you have completed the procedure, return to this point.

Go to step 40.

37 Consult office personnel to determine why the component is offline. Continue as directed by office personnel.

38 For further assistance, contact the personnel responsible for the next level of support.

39 Abort the BSY FORCE request by typing
>NO
and pressing the Enter key. BSY request has been aborted, node imaging is continuing.

40 You have completed this procedure.
FRIU cards in an LPP LIS

Application

Use this procedure to replace the following cards in a frame-relay interface unit (FRIU) in a link peripheral processor (LPP) link interface shelf (LIS).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX22</td>
<td>BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>FRIU in an LPP LIS</td>
</tr>
<tr>
<td>NTEX30</td>
<td>AA</td>
<td>T1 analog paddle board</td>
<td>FRIU in an LPP LIS</td>
</tr>
<tr>
<td>NTEX31</td>
<td>AA</td>
<td>Frame relay access processor card</td>
<td>FRIU in an LPP LIS</td>
</tr>
<tr>
<td>NTEX31</td>
<td>BA</td>
<td>Enhanced frame relay access processor card</td>
<td>FRIU in an LPP LIS</td>
</tr>
</tbody>
</table>

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card in use, refer to the Index. The Index provides a list of the cards, shelves, and frames in this card replacement NTP.

Common procedures

This procedure refers to the following common procedures:

- *Verifying load compatibility of SuperNode cards*
- *Replacing a card*
- *Loading a PM*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing FRIU cards in a LPP LIS

Manually busy channels

Manually busy carrier

Manually busy FRIU and F-bus taps

Replace card

Return F-bus taps to service

Load FRIU

Return FRIU to service

Return carrier and channels to service

End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing FRIU cards in an LPP LIS

At your current location

1 Obtain a replacement card. Make sure that the replacement card and the card you remove has the same PEC and PEC suffix.

2 Use the procedure Verifying load compatibility of SuperNode cards in this document. Make sure the replacement card is compatible with the software load. Complete the procedure and return to this point.

At the MAP terminal

3 To access the PM level of the MAP display, type

 >MAPCI;MTC;PM

 and press the Enter key.

 Example of a MAP display:

 PM 1 0 27 0 8 29

4 To post the FRIU that contains the NTEX22 card you want to replace, type

 >POST FRIU friu_no

 and press the Enter key.

 where

 friu_no

 is the number of the FRIU (0 to 500)

 Example of a MAP display:

 PM 1 0 27 0 8 29
 FRIU 1 0 19 0 6 28
 FRIU 8 InSv Rsvd

WARNING
Loss of service

This procedure removes an FRIU from service and temporarily interrupts traffic on the associated access or trunking DS-1 channels. Perform this procedure only if you must return the FRIU to service. Unless it is urgent, perform this procedure during periods of low traffic only.
FRIU cards
in an LPP LIS (continued)

5 Determine the state of the FRIU.

 Note: The state of the FRIU appears on the right of the FRIU number, as in the example MAP display in step 4.

<table>
<thead>
<tr>
<th>If the state of the FRIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, ISTb (NA), InSv, or ISTb</td>
<td>step 6</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 16</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 42</td>
</tr>
</tbody>
</table>

6 To access the CHAN level of the MAP display, type
 >CARR; CHAN
and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>8</td>
<td>29</td>
</tr>
</tbody>
</table>

FRIU 8 InSv Rsvd

CARRIER

InSv Alarm BER ES SES UAS

-8.3 0 0 0

CHANNEL 1

CHANNEL 1 (24 x DS0)

InSv

CHAN: 7

To manually busy all channels, type
 >BSY ALL
and press the Enter key.

8 To confirm the command, type
 >YES
and press the Enter key.

 Note: If all channels are out of service, the system does not request confirmation.

9 To access the CARR level of the MAP display, type
 >QUIT
and press the Enter key.

Example of a MAP display:
FRIU cards
in an LPP LIS (continued)

To manually busy the carrier, type

>BSY

and press the Enter key.

To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response:

Confirmed...
BSY passed.

Note: If the carrier is out of service, the system does not request confirmation.

To quit the CARR level, type

>QUIT

and press the Enter key.

To manually busy the FRIU, type

>BSY FORCE

and press the Enter key.

If MAP response is

Do

Billing data is stored in the step 16 FRIU. Uploading billing data successfully ...

FRIU 8 BSY Passed
FRIU cards
in an LPP LIS (continued)

14 Determine if you should proceed with the BYS and proceed as shown below.

If MAP response is

<table>
<thead>
<tr>
<th>If MAP response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING: FRIU 8 is currently being imaged. Do you wish to abort imaging to proceed with the busy request. Please confirm ("YES", "Y", "NO" or "N")</td>
<td>step 14</td>
</tr>
<tr>
<td>BUSY and abort imaging</td>
<td>step 15</td>
</tr>
<tr>
<td>abort BSY request</td>
<td>step 44</td>
</tr>
</tbody>
</table>

15 To continue with BSY FORCE the FRIU, type

>`BSY FORCE`

and press the Enter key.

Example of a MAP response:

Imaging will be aborted on FRIU 8.

16 To query the FRIU, type

>`QUERYPM`

and press the Enter key.

Example of a MAP response:

<table>
<thead>
<tr>
<th>FRIU FTA: 4251 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM: 0 Shelf: 1 Slot: 22</td>
</tr>
<tr>
<td>Default Load: F8X03AU</td>
</tr>
<tr>
<td>Running Load: F8X03AU</td>
</tr>
<tr>
<td>Carrier is currently ManB.</td>
</tr>
<tr>
<td>Carrier Alarm: ------.</td>
</tr>
<tr>
<td>LMS States: InSv InSv</td>
</tr>
<tr>
<td>Auditing?: Yes Yes</td>
</tr>
<tr>
<td>Msg Channels: Acc Acc</td>
</tr>
<tr>
<td>TAPs: . .</td>
</tr>
</tbody>
</table>

17 Record the number of the link interface module (LIM) associated with the FRIU.

Note: The LIM number appears on the right of the word LIM on the second line of the response. In the example in step 16, the LIM number is 0.

18 To post the LIM associated with the FRIU in use, type

>`POST LIM lim_no`

and press the Enter key.
FRIU cards
in an LPP LIS (continued)

where

\[\text{lim}_\text{no} \]

is the number of the LIM that you recorded in step 17

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>2</td>
<td>1</td>
<td>27</td>
<td>0</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LIM 0 InSv Links_OOS Taps_OOS
Unit0: InSv . . .
Unit1: InSv . . .

19 To access the F-bus level of the MAP display, type

>FBUS

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>1</td>
<td>27</td>
<td>0</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LIM 0 InSv Links_OOS Taps_OOS
Unit0: InSv . . .
Unit1: InSv . . .

Tap: 0 4 8 12 16 20 24 28 32
FBus0: InSvIIII ...I
FBus1: InSvIIII ...I

20 To determine which F-bus tap that associates with the FRIU, type

>TRNSL fbus_no

and press the Enter key.

where

\[\text{fbus}_\text{no} \]

is the number of one of the F-buses (0 or 1)

Note: The number of the F-bus tap associated with the FRIU appears in the third column of the MAP response.

Example of a MAP response:
To manually busy the FRIU tap on F-bus 0, type

```plaintext
>BSY FBUS 0 tap_no FORCE
```

and press the Enter key.

where

```plaintext
tap_no
```

is the number of the tap that you recorded in step 20

Note: The state of the tap changes to M when you issue this command.

Example of a MAP response:

```
LIM 0 FBus 0 Tap 6 is on FRIU 7.
LIM 0 FBus 0 Tap 7 is on FRIU 8.
LIM 0 FBus 0 Tap 8 is on FRIU 9.
LIM 0 FBus 0 Tap 9 is on FRIU 10.
LIM 0 FBus 0 Tap 10 is on FRIU 11.
LIM 0 FBus 0 Tap 11 is on FRIU 12.MORE...
```

To manually busy the FRIU tap on F-bus 1, type

```plaintext
>BSY FBUS 1 tap_no FORCE
```

and press the Enter key.

where

```plaintext
tap_no
```

is the number of the tap that you recorded in step 20

Example of a MAP response:

```
LIM 0 FBus 0 Tap 6 Busy initiated.
LIM 0 FBus 0 Tap 7 Busy passed.
```

To confirm the command, type

```plaintext
>YES
```

and press the Enter key.

Example of a MAP response:

```
Confirmed ...
LIM 0 FBus 1 Tap 7 Busy initiated.
LIM 0 FBus 1 Tap 7 Busy passed.
```
At the shelf

To replace the card use the procedure Replacing a card in this document to replace the card. Complete the procedure and return to this point.

Note: If the card you want to replace has switches, make sure the switches on the replacement card have the same settings.

The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 26</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 27</td>
</tr>
</tbody>
</table>

Return to the maintenance procedure that sent you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

To return the first tap to service for the FRIU, type

```
>RTS FBUS 0 tap_no
```

and press the Enter key.

Example of a MAP response:

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.
FRIU cards
in an LPP LIS (continued)

LIM 0 FBus 0 Tap 7 Return to Service passed
- local maintenance not accessible.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 29</td>
</tr>
<tr>
<td>failed, and you did not test the tap</td>
<td>step 28</td>
</tr>
<tr>
<td>failed, and you tested the tap</td>
<td>step 43</td>
</tr>
</tbody>
</table>

Note: Occasionally, you must perform a test to manually return the tap to service.

28 To test the F-bus tap, type

```
>TST  FBUS  0  tap_no
```

and press the Enter key.

where

```
tap_no
```

is the number of the FRIU tap that you recorded in step 20

Example of a MAP response:

```
LIM 1 FBus 0 Tap 0 Test initiated.
LIM 1 FBus 0 Tap 0 Test passed.
```

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 27</td>
</tr>
<tr>
<td>failed</td>
<td>step 43</td>
</tr>
</tbody>
</table>

29 To return the second tap to service for the FRIU, type

```
>RTS  FBUS  1  tap_no
```

and press the Enter key.

where

```
tap_no
```

is the number of the FRIU tap that you recorded in step 20

Example of a MAP response:

```
LIM 0 FBus 0 Tap 7 Return to Service passed
- local maintenance not accessible.
```
FRIU cards in an LPP LIS (continued)

To test the F-bus tap, type

> TST FBUS 1 tap_no

and press the Enter key.

where

- **tap_no** is the number of the FRIU tap that you recorded in step 20

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 29</td>
</tr>
<tr>
<td>failed</td>
<td>step 43</td>
</tr>
</tbody>
</table>

To quit from the F-bus level of the MAP display, type

> QUIT

and press the Enter key.

To post the FRIU, type

> POST FRIU friu_no

and press the Enter key.

where

- **friu_no** is the number of the FRIU (0 to 500)

To load the FRIU, type

> LOADPM

and press the Enter key.

Example of a MAP response:

LIM 0 FBUS 1 Tap 7 Return to Service initiated.
LIM 0 FBUS 1 Tap 7 Return to Service passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 31</td>
</tr>
<tr>
<td>failed, and you did not test the tap</td>
<td>step 30</td>
</tr>
<tr>
<td>failed, and you tested the tap</td>
<td>step 43</td>
</tr>
</tbody>
</table>

297-8021-547 Standard 14.02 May 2001
FRIU cards in an LPP LIS (continued)

FRIU 8 LOADPM Passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 35</td>
</tr>
<tr>
<td>failed</td>
<td>step 34</td>
</tr>
</tbody>
</table>

34 To load the PM use the procedure _Loading a PM_ in this document. Complete the procedure and return to this point.

35 To return the FRIU to service, type

>`RTS`

and press the Enter key.

Example of a MAP response:

FRIU 8 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 36</td>
</tr>
<tr>
<td>failed</td>
<td>step 43</td>
</tr>
</tbody>
</table>

36 To access the CARR level of the MAP display, type

>`CARR`

and press the Enter key.

37 To return the carrier to service, type

>`RTS`

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>FRIU 8 ISTb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARRIER</td>
<td>Mtce</td>
<td>/T1 proving</td>
<td>Alarm</td>
<td>BER</td>
<td>ES</td>
<td>SES</td>
</tr>
<tr>
<td>ManB</td>
<td></td>
<td></td>
<td></td>
<td>-8.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHANNEL 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTS passed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FRIU cards
in an LPP LIS (continued)

38 Wait until the Mtce flag on the right of the CARRIER header leaves the display. The carrier will go ISTb at this point.
39 Wait 1 min for the carrier to go in service.

If after 1 min the state of the carrier
is InSv step 40
is other than listed here step 43

40 To access the CHAN level of the MAP display, type
 >CHAN
 and press the Enter key.
41 To return the channels to service, type
 >RTS ALL
 and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>7</td>
<td>27</td>
</tr>
</tbody>
</table>

FRIU 8 ISTb Rsvd
CARRIER Mtce /T1 proving Alarm BER ES SES UAS
ManB -8.3 0 0 0

CHANNEL 1
C
rts
RTS passed.

If the RTS command Do
passed step 45
failed step 43

42 Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.
43 For additional help, contact the next level of support.
44 To abort the BSY FORCE, type
 >NO
 and press the Enter key

Example of a MAP response:
BSY command aborted due to imaging in progress.

45 The procedure is complete.
NIU processor and controller cards in an LPP LIS

Application

Use this procedure to replace the following cards in a network interface unit (NIU) in a link peripheral processor (LPP) link interface shelf (LIS).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffixes</th>
<th>Card name</th>
<th>Shelf/frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX22</td>
<td>BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>NIU in an LPP LIS</td>
</tr>
<tr>
<td>NTEX25</td>
<td>AA, BA</td>
<td>NIU channel bus controller card</td>
<td>NIU in an LPP LIS</td>
</tr>
</tbody>
</table>

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card you want to replace, refer to the Index. The Index has a list of the cards, shelves, and frames documented in this card replacement NTP.

Common procedures

This procedure refers to the following common procedures:

- Verifying load compatibility of SuperNode cards
- Replacing a card
- Loading a PM

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing NIU processor and controller cards in an LPP LIS

1. Post the NIU and make unit inactive
2. Manually busy the inactive unit
3. Manually busy all links for the inactive unit
4. Replace card
5. Load NIU
6. Return inactive unit to service
7. End

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to preform the procedure.
Replacing NIU processor and controller cards in an LPP LIS

At your current location

1. Obtain a replacement card. Make sure that the replacement card and the card you removed have the same PEC and PEC suffix.

2. Make sure the replacement card is compatible with the software load. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

At the MAP terminal

3. To access the PM level of the MAP display, type

```
>MAPCI;MTC;PM
```

and press the Enter key.

Example of a MAP display:

```
PM       SysB   ManB   OffL   CBsy   ISTb   InSv
0        0      0      1      0      2     48
```

4. To post the NIU that contains the card you want to replace, type

```
>POST NIU niu_no
```

and press the Enter key.

where

```
niu_no
```

is the number of the NIU (0 to 29)

Example of a MAP display:
NIU processor and controller cards in an LPP LIS (continued)

5 Determine the state of the NIU unit that contains the card you want to replace.

<table>
<thead>
<tr>
<th>If the state of the NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), and active</td>
<td>step 6</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), and inactive</td>
<td>step 9</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 12</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 18</td>
</tr>
</tbody>
</table>

6 Determine the state of the mate NIU unit.

<table>
<thead>
<tr>
<th>If the state of the mate NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 8</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 7</td>
</tr>
</tbody>
</table>

7 The mate unit is not in service. If you busy the unit on which you are working, loss of service will occur. Contact your next level of support.

8 To switch activity, type

>`SWACT`

and press the Enter key.

Example of a MAP response:

NIU 1 SwAct PM: Request has been submitted.
NIU 1 SwAct PM: Command completed.
The node has switched activity

<table>
<thead>
<tr>
<th>If the SWACT command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 9</td>
</tr>
<tr>
<td>failed</td>
<td>step 19</td>
</tr>
</tbody>
</table>
NIU processor and controller cards
in an LPP LIS (continued)

9. To manually busy the inactive NIU unit, type

>BSY INACTIVE

and press the Enter key.

Example of a MAP display:

```
PM  ManB  OffL  CBsy  ISTb  InSv
0    0    1    0     4     46
NIU 0    0    0    0     1     0

NIU 1: ISTb
Unit 0: InAct ManB
Unit 1: Act InSv
b sy inactive
NIU 1 Busy Inactive Unit:
Request has been submitted.
NIU 1 Busy Inactive Unit: Command completed.
The Unit is manually busy.
```

Example 2 of MAP display:

Imaging is currently in progress on NIU x Unit y.
Busying the NIU will cause imaging on this NIU to be aborted.
Do you wish to continue?
Please confirm ("YES", "Y", "NO" or "N").

If the response is	Do
as shown in example 2 | step 10
anything else | step 12

10. Imaging is being performed on the NIU unit you are working on. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

If the response is	Do
yes, proceed with busy | step 11
no, abort busy | step 20

11. To confirm Busy, type

>YES

and press the Enter key.

Example of a MAP response:

```
Imaging will be aborted on NIU x, Unit y.
```
NIU processor and controller cards
in an LPP LIS (continued)

At the shelf

12

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

To replace the card use the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

13

The next action depends on the reason you perform this procedure.

If a maintenance procedure Do

| directed you here | step 14 |
| did not direct you here | step 15 |

14

Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

15

To load the inactive NIU unit, type

>LOADPM INACTIVE

and press the Enter key.

Example 1

Examples of MAP responses:

NIU 1 Load Inactive Unit: Request has been submitted.
NIU 1 Load Unit 0: Command completed.
The Unit contains the "NRS0 123BA" load.

Example 2
NIU processor and controller cards in an LPP LIS (end)

Warning: Loadfile NRS09BA is meant for an EX22BB.
Warning: NIU 2 Unit 1 has been datafilled with an EX22CA.
Warning: Load/Processor mismatch.
Warning: Valid only for EX22 upgrades.
NIU 2 load Inactive Unit: Request has been submitted.
NIU 2 Load Unit 1: Command completed.
The Unit contains the "NRS09BA" load.

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 17</td>
</tr>
<tr>
<td>failed</td>
<td>step 16</td>
</tr>
</tbody>
</table>

16 To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

17 To return the inactive NIU unit to service, type

```
>RTS INACTIVE
```

and press the Enter key.

Example of a MAP response:

```
NIU 1 RTS Inactive Unit: Request has been submitted.
NIU 1 RTS Inactive Unit: Command completed.
The Unit is in service
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 21</td>
</tr>
<tr>
<td>failed</td>
<td>step 19</td>
</tr>
</tbody>
</table>

18 Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

19 For additional help, contact the next level of support.

20 To abort Busy, type

```
>NO
```

and press the Enter key. Busy request has been aborted, node imaging is continuing.

Example of a MAP response:

```
Aborted.
```

21 The procedure is complete.
NT9X13 in an LPP LIM unit

Application

Use this procedure to replace an NT9X13 in a link interface module (LIM) unit of a link peripheral processor (LPP).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffixes</th>
<th>Card name</th>
<th>Shelf/frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X13</td>
<td>DA, DB, DD, DE</td>
<td>CPU 20-MHz card</td>
<td>LIM unit of an LPP</td>
</tr>
</tbody>
</table>

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card you want to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

Note 1: Some documentation refers to a LIM unit as a local message switch (LMS). LIM unit 0 corresponds to LMS 0; LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit designates an LMS.

Note 2: Also, the LPP is referred to as a link interface module (LIM) where the entire LPP is indicated. This parallels how the LISs in the LPP are closely associated with the LIM. MAP displays and data schema tables refer to the LPP as a LIM.

Common procedures

The following common procedures are referenced:

- *Verifying load compatibility of SuperNode cards*
- *Unseating cards in equipment shelves*
- *Replacing a card*
- *Loading a PM*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

The following flowchart is only a summary of the procedure. To replace the card, use the instructions in the step-action procedure that follows the flowchart.
Replacing NT9X13 in an LPP LIM unit

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

Manually busy the F-bus

Manually busy the LIM unit

Turn off the shelf side

Replace the card

Turn on the shelf side

Load the LIM unit

Return the LIM unit to service

Return the F-bus to service

End
Replacing NT9X13 in an LPP LIM unit

At your current location

1. Obtain a replacement card. Make sure the replacement card and the card you replace have the same PEC and PEC suffix.

2. Make sure the replacement card is compatible with the software load. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

At the MAP terminal

3. To access the PM level of the MAP display, type
   ```
   >MAPCI;MTC;PM
   ```
 and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4. To post the LIM that contains the card you will replace, type
   ```
   >POST LIM lim_no
   ```
 and press the Enter key.

 where

   ```
   lim_no
   ```
 is the number of the LIM you want to post (0 to 16)

 Example of a MAP display:
5 Determine the state of the LIM.

 Note: The state of the LIM is on the right of the LIM number on the MAP display.

<table>
<thead>
<tr>
<th>If the state of the LIM is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offl</td>
<td>step 29</td>
</tr>
<tr>
<td>any other in-service or out-of-service state</td>
<td>step 6</td>
</tr>
</tbody>
</table>

6 Determine the state of the LIM units. To identify the LIM unit, the F-bus, and the mates that associate with the card you replace, refer to the table at the end of this document.

 Note: The state of the LIM units is on the right of the LIM unit number on the MAP display.

<table>
<thead>
<tr>
<th>If the state of the mate LIM unit is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>ISTb, and the state of the LIM unit associated with the card is InSv or ISTb</td>
<td>step 27</td>
</tr>
<tr>
<td>ISTb, and the LIM unit associated with the card is out of service</td>
<td>step 7</td>
</tr>
<tr>
<td>any out-of-service state, and the state of the LIM unit associated with the card is InSv or ISTb</td>
<td>step 27</td>
</tr>
<tr>
<td>any out-of-service state, and the LIM unit associated with the card you are replacing is out of service</td>
<td>step 7</td>
</tr>
</tbody>
</table>

7 To access the F-bus level of the MAP display, type

>FBUS

and press the Enter key.

Example of a MAP display:
Determine the states of the F-bus and the F-bus taps for the mate LIM unit.

Note: The state of the F-buses is on the right of the F-bus numbers on the MAP display. To identify the LIM unit that associates with the card you replace, refer to the table at the end of this document.

<table>
<thead>
<tr>
<th>If the states are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in-service (state of the F-bus is InSv and all F-bus taps are . (dot))</td>
<td>step 9</td>
</tr>
<tr>
<td>any other state (state of the F-bus is not InSv and one or more F-bus taps are not . (dot))</td>
<td>step 28</td>
</tr>
</tbody>
</table>

To manually busy the F-bus associated with the card you will replace, type

>BSY FBUS fbus_no

and press the Enter key.

where

fbus_no

is the number of the F-bus (0 or 1)

Note: To identify the LIM unit associated with the card you replace, refer to the table at the end of this document.
NT9X13
in an LPP LIM unit (continued)

Example of a MAP response:

LIM 0 FBus 0 Busy requires confirmation because the following NIUs may be active on this bus...
NIU 0 unit 0
NIU 0 unit 1
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the command passes</td>
<td>step 11</td>
</tr>
<tr>
<td>you must confirm the command</td>
<td>step 10</td>
</tr>
</tbody>
</table>

10 To confirm the command, type
 >YES
and press the Enter key.

Example of a MAP response:

LIM 0 FBus 0 Busy initiated.
LIM 0 FBus 0 Busy passed.

11 To quit the F-bus level of the MAP display, type
 >QUIT
and press the Enter key.

12 To manually busy the LIM unit associated with the card you will replace, type
 >BSY UNIT unit_no
and press the Enter key.

where

unit_no
is the number of the LIM unit (0 or 1)

Example of a MAP display:
in an LPP LIM unit (continued)

<table>
<thead>
<tr>
<th>PM</th>
<th>LIM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>lnSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

LIM 0 ISTb

Unit0: ManB 2 Links_OOS Taps_OOS
Unit1: ISTb 2

bsy unit 0
LIM 0 UNIT 0 Busy initiated.
LIM 0 UNIT 0 Busy passed.

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging is currently in progress on LIM x UNIT y. Busy Action aborted. Use the force option if you wish to override the imaging of this unit.</td>
<td>step 13</td>
</tr>
<tr>
<td>Imaging is currently in progress on LIM x UNIT y and UNIT z. Busy Action aborted. Use the force option if you wish to override the imaging of this unit.</td>
<td>step 14</td>
</tr>
<tr>
<td>Anything else</td>
<td>step 15</td>
</tr>
</tbody>
</table>

13 Imaging is being performed on the LIM unit you are working on. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

14 Imaging is being performed on the LIM unit you are working on and the mate LIM unit. Contact the next level of support to determine if it is safe to proceed. Continue as directed.
NT9X13
in an LPP LIM unit (continued)

At the shelf

15

WARNING

Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) while you handle circuit cards. The wrist strap protects the cards against static electricity damage.

Press down and release the power switch on the faceplate of the NT9X30 and NT9X31 (if present) power converters associated with the card you are replacing. To identify the power converter associated with the LIM unit you are working on, refer to the table at the end of this document.

Note: The CONVERTER OFF LED is lit when the NT9X30 power converter is powered down. If the NT9X31 power converter is present, ensure that it is powered down.

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>lit</td>
<td>step 18</td>
</tr>
<tr>
<td>not lit</td>
<td>step 16</td>
</tr>
</tbody>
</table>

16

WARNING

Possible loss of service
If you unseat the NT9X13 card, you bypass the safety interlock. Make sure the card you want to remove is in the manual-busy LIM unit.

To unseat the NT9X13, perform the procedure *Unseating cards in equipment shelves* in this document. Complete the procedure and return to this point.

17

Press down and release the power switch on the faceplate of the NT9X30 and NT9X31 (if present) power converters associated with the card you want to replace. To identify the power converter that associates with the LIM unit you are working on, refer to the table at the end of this document.

18

To replace the card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

Note: Determine if the card you will replace has switches. Make sure the switches on the replacement card and the card you will replace have the same settings.
Release the power switch on the faceplate of the NT9X30 and NT9X31 (if present) power converters associated with the card you replaced.

Note: The CONVERTER OFF LED is not lit when the NT9X30 power converter is powered up. If the NT9X31 power converter is present, make sure that it is powered up.

The next action depends on why you are performing this procedure.

<table>
<thead>
<tr>
<th>If another maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 21</td>
</tr>
<tr>
<td>did not direct you to this proc-</td>
<td></td>
</tr>
<tr>
<td>edure</td>
<td>step 22</td>
</tr>
</tbody>
</table>

Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

To load the LIM unit, type

```
>LOADPM UNIT unit_no
```

and press the Enter key.

where

- **unit_no** is the number of the LIM unit (0 or 1)

Example of a MAP response:

LIM 0 UNIT 0 Load initiated.
LIM 0 UNIT 0 Load passed.

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 24</td>
</tr>
<tr>
<td>failed</td>
<td>step 23</td>
</tr>
</tbody>
</table>

To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

To return the LIM unit to service, type

```
>RTS UNIT unit_no
```

and press the Enter key.

where

- **unit_no** is the number of the LIM unit (0 or 1)

Example of a MAP response:
NT9X13
in an LPP LIM unit (continued)

LIM 0 UNIT 0 Return to Service initiated.
LIM 0 UNIT 0 Return to Service passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 25</td>
</tr>
<tr>
<td>failed</td>
<td>step 30</td>
</tr>
</tbody>
</table>

25 To access the F-bus level of the MAP display, type
>FBUS
and press the Enter key.

26 To return the F-bus to service, type
>RTS FBUS fbus_no
and press the Enter key.

where

fbus_no
is the number of the F-bus you busied (0 or 1)

Example of a MAP response:

LIM 0 FBus 0 Return to Service initiated.
LIM 0 FBus 0 Return to Service passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 31</td>
</tr>
<tr>
<td>failed</td>
<td>step 30</td>
</tr>
</tbody>
</table>

27 If you continue with this procedure, you will remove both LIM units from service and isolate application specific units (ASU) on the link interface shelf (LIS). To determine if you must continue, contact operating company personnel or your next level of support. Continue as advised.

28 If you continue with this procedure, you will isolate a minimum of one ASU on the LIS. To determine if you must continue, contact operating company personnel or your next level of support. Continue as advised.

29 To determine why the component is offline, consult operating company personnel. Continue as directed by operating company personnel.

30 For additional help, contact the next level of support.
The procedure is complete.

NT9X13 card and associated LIM components

<table>
<thead>
<tr>
<th>PEC</th>
<th>Slot</th>
<th>Associated LIM hardware and F-buses</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X13</td>
<td>17F</td>
<td>LIM unit number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-bus number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location of NT9X30 powerconverter:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slot 0 1F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location of NT9X31 powerconverter:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slot 0 1F</td>
</tr>
<tr>
<td>NT9X13</td>
<td>22F</td>
<td>LIM unit number: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-bus number: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location of NT9X30 powerconverter:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slot 36F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location of NT9X31 powerconverter:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slot 33F</td>
</tr>
</tbody>
</table>

Note: Some documentation refers to a LIM unit as an LMS. The LIM unit 0 corresponds to LMS 0 and LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit indicates an LMS. The term LIM also refers to the LPP, when it indicates the entire LPP cabinet.
Link peripheral processor card replacement procedures
NT9X30 in an LPP LIS

Application

Use this procedure to replace an NT9X30 in a link interface shelf (LIS) of a link peripheral processor (LPP).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X30</td>
<td>AA</td>
<td>+5V 86-A power converter</td>
<td>LPP LIS</td>
</tr>
<tr>
<td>NT9X30</td>
<td>AC</td>
<td>Global +5V 86-A power converter</td>
<td>LPP LIS</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Note: This document refers to an entire LPP unit as a link interface module (LIM). The MAP displays and data schema tables also refer to the LPP as a LIM.

The following table contains details about the locations of NT9X30 and related cards. Refer also to the ELPP shelf layout diagram.

NT9X30 (in a LIS) and associated LIM components

<table>
<thead>
<tr>
<th>PEC</th>
<th>Slot</th>
<th>Component</th>
<th>LIM/F-bus number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X30</td>
<td>04F</td>
<td>LIM unit number</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-bus number</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shelf side</td>
<td>Slots 0 to 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NIU unit number</td>
<td>0</td>
</tr>
</tbody>
</table>
NT9X30 (in a LIS) and associated LIM components

<table>
<thead>
<tr>
<th>PEC</th>
<th>Slot</th>
<th>Component</th>
<th>LIM/F-bus number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Location of corresponding NT9X13 card</td>
<td>Slot 17F</td>
</tr>
<tr>
<td>NT9X30</td>
<td>36F</td>
<td>LIM unit number</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-bus number</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shelf side</td>
<td>Slots 20 to 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NIU unit number</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location of corresponding NT9X13 card</td>
<td>Slot 22F</td>
</tr>
</tbody>
</table>

Note: Some documentation refers to an LIM unit as an LMS. LIM unit 0 corresponds to LMS 0. LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit designates an LMS. The LIM also refers to the whole LPP cabinet.

Common procedures

This procedure refers to the following common procedures:

- Verifying load compatibility of SuperNode cards
- Deactivating CCS7 links and C7ROUTERS
- Moving an XSG to a spare XLIU
- Replacing a card
- Activating CCS7 links and C7ROUTERS

Do not proceed to the common procedure unless the step-action procedure directs you to do so.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing NT9X30 in an LPP LIS

- Manually busy all applications and application specific units (ASUs) on the side of the shelf associated with the NT9X30 you are changing
- Manually busy the F-bus associated with the NT9X30 you are changing
- Power down appropriate shelf side
- Replace card
- Power up shelf side
- Return F-bus to service
- Load and return ASUs to service
- End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing NT9X30 in an LPP LIS

At your current location
1

Obtain a replacement card. Make sure that the replacement card and the card you remove have the same product engineering code (PEC) and PEC suffix.

2 Perform the procedure Verifying load compatibility of SuperNode cards in this document. Make sure that the replacement card is compatible with the software load. Complete the procedure and return to this point.

3 From office records or operating company personnel, determine the location and the number of the LIS that contains the NT9X30 card.

At the MAP terminal
4 To access the PM level of the MAP display, type

>`MAPCI;MTC;PM`

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>38</td>
</tr>
</tbody>
</table>

5 The next step depends on the information you have on the LIM and the ASU on the side of the shelf that associates with the NT9X30 card you are replacing.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>know the PM number and slot location of each ASU on the same shelf side</td>
<td>step 12</td>
</tr>
</tbody>
</table>
NT9X30 in an LPP LIS (continued)

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>do not know the PM number and slot location</td>
<td>step 6</td>
</tr>
<tr>
<td>of each ASU on the same shelf side</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The NT9X30 in slot 4F powers slots 7 through 19. The NT9X30 in slot 36F powers slots 20 through 32.

Note 2: ASUs can include:
- network interface units (NIU)
- C7ROUTERS
- application processor units (APU)
- ethernet interface units (EIU)
- CCS7 link interface units (LIU7)
- X.25/X.75 interface units (XLIU)
- frame relay interface units (FRIU)
- voice processor units (VPU)

6 To access table NIUINV, type

```
>TABLE NIUINV;FORMAT PACK
```

and press the Enter key.

Example of a MAP response:

```
TABLE: NIUINV
<pack mode>: Pack mode is ON.
<line length>: 76 columns can be output per line.
<indent column>: Indented lines will begin in column 1.
<first column>: The first column of output is column 1.
```

7 To list the NIUs, type

```
>LIST ALL
```

and press the Enter key.

Example of a MAP response:
NT9X30

in an LPP LIS (continued)

Note: In the MAP response, the first column contains the NIU number. The third column contains the LIM number. The fourth column contains the LIM shelf number. In the previous example, NIU 0 is in LIM 0, shelf 1 and NIU 1 is in LIM 0, shelf 2.

If	Do
an NIU is present on the LIM shelf that associates with the NT9X30 card you are replacing | step 8
an NIU is not present on the LIM shelf that associates with the NT9X30 card you are replacing | step 9

8 Record the number of the NIU that associates with the shelf containing the NT9X30 you are replacing.
9 To access table LIUINV, type
   ```
   >TABLE LIUINV;FORMAT PACK
   ```
 and press the Enter key.
10 To list all LIM-based peripherals for the office, type
   ```
   >LIST ALL
   ```
 and press the Enter key.

Example of a MAP response:

TOP
LIUNAME	**LOCATION**	**LOAD**	**PROCINFO**	**CARDINFO**
E IU 200 LIM 2 1 9 ETC15BC NTEX22BA NT9X84AA NT9X85AA Y80075F00020
LIU7 101 LIM 1 1 8 LRS15BH NTEX22BB NT9X76AANT9X78BA $ 56000 ABI
LIU7 208 LIM 2 2 8 LCC03BF NT9X13CANT9X75AA NT9X76AA NT9X78AA FBUS
XLIU 132 LIM 3 3 22 XRX031BF NTEX22BB NTFX10AA NTFX09AA
FRIU 134 LIM 1 3 26 F8C031BG NTEX22BB NTEX31BA NT9X30AA FBUS UNCHAN
DS1 LLEQ 125 DEFAULT Y B82S
APU 135 LIM 1 3 28 ULX03AUNTEX22BB NT9X14DB SOSNIX

297-8021-547 Standard 17.04 September 2004
Note: In the MAP response for table LIUINV, the first two columns contain the ASU identifier. The fourth column contains the LIM number. The fifth column contains the LIM shelf number. The sixth column contains the ASU slot location. In the example, EIU 200 is in LIM 2, shelf 1, slot 9. The ASU slot number corresponds to the ASU slot on the left half of the shelf as you face the LPP.

Record the number and slot location for each ASU on the shelf side that associates with the NT9X30 you are replacing. The NT9X30 in slot 4F associates with ASUs in slots 7 to 19; the NT9X30 in slot 36F associates with ASUs in slots 20 to 32.

The next step depends on whether NIUs are present on the shelf.

If shelf Do

has NIUs step 13

does not have NIUs step 20

WARNING
Potential loss of channelized access
The following routine removes an NIU unit from service, which eliminates NIU redundancy for the associated LIS. If the in-service NIU goes out of service at any time during this maintenance procedure, it affects channelized access for all ASUs on both sides of the LIS.
To post the NIU, type

```
>POST NIU niu_no
```

and press the Enter key.

where

- **niu_no**
 - is the number of the NIU (0 to 29)

Example of a MAP display:

```
<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

NIU 1: InSv
Unit 0: InAct InSv
Unit 1: Act InSv

14 Determine the state of the NIU unit that associates with the shelf side. To identify the NIU unit, refer to the table at the start of this document.

<table>
<thead>
<tr>
<th>If the state of the NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), or ManB (NA), and active</td>
<td>step 15</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), or ISTb (NA), and inactive</td>
<td>step 17</td>
</tr>
<tr>
<td>is ManB or ManB (NA)</td>
<td>step 20</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 112</td>
</tr>
</tbody>
</table>

15 Determine the state of the mate NIU unit.

<table>
<thead>
<tr>
<th>If the state of the mate NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 16</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 109</td>
</tr>
</tbody>
</table>

16 To switch activity, type

```
>SWACT
```

and press the Enter key.

Example of a MAP response:

```
If the state of the NIU unit
Do

is ISTb, InSv, SysB, SysB (NA), ISTb (NA), or ManB (NA), and active
step 15

is ISTb, InSv, SysB, SysB (NA), or ISTb (NA), and inactive
step 17

is ManB or ManB (NA)
step 20

is OffL
step 112
```
NT9X30
in an LPP LIS (continued)

If the SWACT command passed failed

Do step 17 step 114

17 To manually busy the NIU unit, type

>BSY INACTIVE

and press the Enter key.

Example 1 of a MAP response:

NIU 1 SwAct PM: Request has been submitted.
NIU 1 SwAct PM: Command completed.
The node has switched activity

If the response is as shown in example 2 anything else

Do step 18 step 20

18 Imaging is currently in progress on NIU x Unit Y. Busying the NIU will cause imaging on this NIU to be aborted. Do you wish to continue? Please conform ("YES", "Y", "NO" or "N").

If the response is yes, proceed with busy no, abort busy

Do step 19 step 113

19 To confirm Busy, type

>YES

and press the Enter key.

Example of a MAP response:
NT9X30 in an LPP LIS (continued)

Imaging will be aborted on NIU x, Unit y.

20 Determine whether C7ROUTERS are on the shelf side that associates with the NT9X30 you are replacing. The office must have either no C7ROUTERS configured, or more than one C7ROUTER. If the office has only one C7ROUTER configured and it is on the same shelf side as the NT9X30 you are replacing, contact the next level of support. If all of the C7ROUTERS are on the same shelf side, contact the next level of support. Removing C7ROUTERS from service can cause outages to occur.

21 To access table C7ROUTER, type

```
>TABLE C7ROUTER;FORMAT PACK
```

and press the Enter key.

22 To list all C7ROUTERS for the office, type

```
>LIST ALL
```

and press the Enter key.

Example of a MAP response:

```
TOP
RTRNUM RESOURCE
----------
1 LIU7 1
2 LIU7 7
BOTTOM
```

<table>
<thead>
<tr>
<th>If C7ROUTERS</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are provisioned in table C7ROUTER</td>
<td>step 23</td>
</tr>
<tr>
<td>are not provisioned in table C7ROUTER</td>
<td>step 30</td>
</tr>
</tbody>
</table>

23 Identify the LIU7 number assigned to the C7ROUTER. The number in column 3 in table C7ROUTER indicates the LIU7 number assigned to the router. Compare this number to the entry in table LIUINV you listed in step 10. Determine whether any of the C7ROUTERS are on the same side of the shelf as the NT9X30 you are replacing.

<table>
<thead>
<tr>
<th>If C7ROUTERS</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are on the same side of the shelf as the NT9X30</td>
<td>step 24</td>
</tr>
<tr>
<td>are not on the same side of the shelf as the NT9X30</td>
<td>step 30</td>
</tr>
</tbody>
</table>
To access the C7ROUTER level and post the router instance, type
>`MAP;MTC;CCS;CCS7;C7ROUTER;POST router_number`
and press the Enter key.

where

`router_number`

is the router number (instance) of the LIU7 in table C7ROUTER (field RTRNUM)

25 To busy the router instance for the LIU7, type
>`BSY`
and press the Enter key.
The router changes state from InSv to MANB.

26 To access the PM level of the MAP display, type
>`PM`
and press the Enter key.

27 To post the LIU7, type
>`POST LIU7 liu_no`
and press the Enter key.

where

`liu_no`

is the number of the LIU7 (0 to 511)

Example of a MAP display:
To busy the LIU7, type

>BSY

and press the Enter key.

29 Repeat steps 24 to 28 for all C7ROUTERS on the same shelf side as the NT9X30 you are replacing.

30 Determine whether CCS7 LIU7s associated with signaling links are on the shelf side that associates with the NT9X30.

<table>
<thead>
<tr>
<th>If the shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has LIU7s</td>
<td>step 31</td>
</tr>
<tr>
<td>does not have LIU7s</td>
<td>step 46</td>
</tr>
</tbody>
</table>

To post the LIU7, type

>POST LIU7 liu_no

and press the Enter key.

where

liu_no is the number of the LIU7 (0 to 511)
Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIU7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIU7 208 InSv Rsvd

32 To deactivate the CCS7 link that associates with the LIU7, perform the procedure Deactivating CCS7 links in this document. Complete the procedure and return to this point.

33 Determine the state of the LIU7.

<table>
<thead>
<tr>
<th>If the state of the LIU7</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, SysB (NA), ISTb, or InSv</td>
<td>step 34</td>
</tr>
<tr>
<td>is ManB or ManB (NA)</td>
<td>step 37</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 112</td>
</tr>
</tbody>
</table>

34 To manually busy the LIU7, type

>BSY FORCE

and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to confirm the command</td>
<td>step 36</td>
</tr>
<tr>
<td>the command passed</td>
<td>step 38</td>
</tr>
</tbody>
</table>

Warning: LIU7 27 is currently being imaged. Do you want to abort imaging to proceed with the BSY request? Please confirm ("YES", "Y", "NO" or "N"):

35 Contact the next level of support to determine if it is safe to continue this procedure.

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>proceed with BSY FORCE request</td>
<td>step 36</td>
</tr>
<tr>
<td>abort BSY FORCE request</td>
<td>step 113</td>
</tr>
</tbody>
</table>

36 To confirm the command, type

>YES

and press the Enter key.

37 Repeat steps 27 to 36 for all LIU7s on the shelf side.
NT9X30
in an LPP LIS (continued)

38 Determine whether XLIUs are on the shelf side that associates with the
NT9X30.

<table>
<thead>
<tr>
<th>If the shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has XLIUs</td>
<td>step 39</td>
</tr>
<tr>
<td>does not have XLIUs</td>
<td>step 46</td>
</tr>
</tbody>
</table>

39

CAUTION
Loss of packet handler service
The following routine removes an XLIU from service and
interrupts traffic on associated X.25/X.75 channels.

To post the XLIU, type

>POST XLIU xliu_no

and press the Enter key.

where

xliu_no is the number of the XLIU (0 to 511)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLIU</td>
<td>0</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>XLIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

XLIU 27 InSv Rsvd

40 Determine the state of the XLIU.

Note: The state of the XLIU appears on the right side of the XLIU number.
This state appears in the example MAP display in step 39.

<table>
<thead>
<tr>
<th>If the state of the XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, ISTb (NA), ManB, ISTb, or InSv</td>
<td>step 41</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 112</td>
</tr>
</tbody>
</table>
Determine whether the XLIU is a spare.

Note: The code “Spre” on the right side of the service condition identifies a spare XLIU. This code appears in the display in step 39. The code “Rsvd” identifies an XLIU with an assigned X.25/X.75 service group (XSG).

<table>
<thead>
<tr>
<th>If the XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is a spare, and the state is ManB</td>
<td>step 45</td>
</tr>
<tr>
<td>is a spare, and the state is other than listed here</td>
<td>step 44</td>
</tr>
<tr>
<td>is not a spare</td>
<td>step 42</td>
</tr>
</tbody>
</table>

Determine from office records or from operating company personnel the number of a spare XLIU.

Note: The spare XLIU must be on the same shelf as the out-of-service XLIU.

<table>
<thead>
<tr>
<th>If a spare XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is available</td>
<td>step 43</td>
</tr>
<tr>
<td>is not available and the reserved XLIU is out of service</td>
<td>step 44</td>
</tr>
<tr>
<td>is not available and the reserved XLIU is in service</td>
<td>step 110</td>
</tr>
</tbody>
</table>

Perform the procedure *Moving an XSG to a spare XLIU* in this document. Move the XSG from the reserved XLIU to the spare XLIU. Complete the procedure and return to this point.

Note: The XLIU for which you change cards is now the spare. In the following steps, the spare refers to this XLIU.

Go to step 46.

To manually busy the XLIU, type

`>BSY`

and press the Enter key.

Example of a MAP response

```
XLIU 27 BSY Passed
```
CAUTION

Loss of frame relay service
The following routine removes an FRIU from service and temporarily interrupts traffic on the associated access or trunking DS-1 channels.

To post the FRIU, type

>POST FRIU friu_no

and press the Enter key.

where

friu_no
is the number of the FRIU (0 to 500)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>FRIU 8</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>FRIU 8</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>FRIU</td>
<td></td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>6</td>
<td>28</td>
</tr>
</tbody>
</table>

47

48

Determine the state of the FRIU.

Note: The state of the FRIU appears on the right side of the FRIU number.
This state appears in the example MAP display in step 47.

<table>
<thead>
<tr>
<th>If the state of the FRIU is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>SysB, ISTb (NA), InSv, or ISTb</td>
<td>step 49</td>
</tr>
<tr>
<td>ManB</td>
<td>step 63</td>
</tr>
<tr>
<td>OffL</td>
<td>step 112</td>
</tr>
</tbody>
</table>

49

To access the CHAN level of the MAP display, type

>CARR;CHAN

and press the Enter key.

Example of a MAP display:
Determine if the FRIU has channelized access.

Note: A non-channelized FRIU has one channel assigned. A channelized FRIU has 4 or 24 channels assigned.

<table>
<thead>
<tr>
<th>If the FRIU is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-channelized</td>
<td>step 51</td>
</tr>
<tr>
<td>channelized</td>
<td>step 53</td>
</tr>
</tbody>
</table>

To manually busy the channel, type >BSY and press the Enter key.

To confirm the command, type >YES and press the Enter key.

Note: If the channel is out of service, the system does not request confirmation. Go to step 56.

To manually busy all channels, type >BSY ALL and press the Enter key.

To manually busy all channels, type >BSY ALL and pressing the Enter key.

To confirm the command, type >YES
and press the Enter key.

Note: If all channels are out of service, the system does not request confirmation.

56
To access the CARR level of the MAP display, type

>QUIT

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>6</td>
<td>28</td>
</tr>
</tbody>
</table>

FRIU 8 InSv Rsvd

CHANNEL 1

57
To manually busy the carrier, type

>BSY

and press the Enter key.

Example of a MAP response:

Busying this carrier will affect 1 channels.
Please confirm ("YES", "Y", "NO", or "N"):

58
To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response:

Confirmed...BSY passed.

Note: If the carrier is out of service, the system does not request confirmation.

59
To quit the CARR level, type

>QUIT

and press the Enter key.

60
To manually busy the FRIU, type

>BSY FORCE
and press the Enter key.

<table>
<thead>
<tr>
<th>If MAP response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billing data is stored in the FRIU. Uploading billing</td>
<td>step 63</td>
</tr>
<tr>
<td>data. Uploaded FRS Billing data successfully</td>
<td></td>
</tr>
<tr>
<td>...FRIU 8 BSY Passed</td>
<td></td>
</tr>
</tbody>
</table>

WARNING: FRIU 8 is currently being imaged. Do you wish to abort imaging to proceed with the busy request. Please confirm ("YES", "Y", "NO" or "N")

<table>
<thead>
<tr>
<th>If you want to proceed with</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSY and abort imaging</td>
<td>step 62</td>
</tr>
<tr>
<td>abort BSY request</td>
<td>step 113</td>
</tr>
</tbody>
</table>

61 Determine if you should proceed with the BSY and proceed as shown below.

<table>
<thead>
<tr>
<th>If the shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has APUs, EIUs, or VPU</td>
<td>step 65</td>
</tr>
<tr>
<td>does not have APUs, EIUs, or VPU</td>
<td>step 70</td>
</tr>
</tbody>
</table>

62 Continue with BSY FORCE by typing >BSY FORCE
and pressing the Enter key.

Example of a MAP response:

Imaging will be aborted on FRIU 8.

63 Repeat steps 47 to 60 for all FRIUs on the shelf side.

64 Determine whether APUs, EIUs, or VPU are on the shelf side that associates with the NT9X30 in use.
NT9X30
in an LPP LIS (continued)

To post the APU, EIU, or VPU, type

>POST asu_type asu_no

and press the Enter key.

where

asu_type
 is the ASU type (APU, EIU, VPU)

asu_no
 is the number of the ASU (0 to 511 for APU and EIU; 0 to 179 for VPU)

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>14</td>
<td>63</td>
</tr>
<tr>
<td>VPU</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

VPU 1 InSv Rsvd

Determine the state of the APUs, EIUs, or VPU.

If the state of the PM is Do

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>step 67</th>
</tr>
</thead>
<tbody>
<tr>
<td>SysB, SysB (NA), ISTb, or InSv</td>
<td>step 67</td>
<td></td>
</tr>
<tr>
<td>ManB or ManB (NA)</td>
<td>step 69</td>
<td></td>
</tr>
<tr>
<td>Off1</td>
<td>step 112</td>
<td></td>
</tr>
</tbody>
</table>

To manually busy the APUs, EIUs, or VPU, type

>BSY

and press the Enter key.

Example of a MAP response:
BSYing VPU 1 may reduce ADAS capacity. Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the command passed</td>
<td>step 69</td>
</tr>
<tr>
<td>you need to confirm the command</td>
<td>step 68</td>
</tr>
</tbody>
</table>

68 To confirm the busy command, type
>YES
and press the Enter key.

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 69</td>
</tr>
<tr>
<td>failed</td>
<td>step 114</td>
</tr>
</tbody>
</table>

69 Repeat steps 65 to 68 for all APUs, EIUs, or VPU on the shelf side.

70 To post the LIM, type
>POST LIM lim_no
and press the Enter key.

where

lim_no
is the number of the LIM to post (0 to 16)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

LIM 0 InSv

Links_OOS Taps_OOS

Unit0: InSv . .
Unit1: InSv . .

71 To access the F-bus level of the MAP display, type
>FBUS
and press the Enter key.

Example of a MAP display:
To manually busy the F-bus that associates with the power converter you replace, type

>BSY FBUS fbus_no

and press the Enter key.

where

fbus_no

is the number of a F-bus (0 or 1)

Note: Refer to the table at the start of this document to identify the F-bus that associates with the card you replace.

At the shelf

To power down the NT9X30 card, press and release the power switch on the faceplate of the card. The CONVERTER OFF LED lights when the converter powers down.

If the CONVERTER OFF LED Do

is lit step 74

is not lit step 111

To replace the card, perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: Determine if the card you will replace has switches. Make sure the switches on the replacement card have the same settings.
To power up the NT9X30 card, lift and release the POWER switch on the faceplate of the card. The CONVERTER OFF LED will go out when the converter powers up.

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is not lit</td>
<td>step 76</td>
</tr>
<tr>
<td>is lit</td>
<td>step 111</td>
</tr>
</tbody>
</table>

At the MAP terminal

To return the F-bus to service, type

```
>RTS  FBUS  0  tap_no
```

and press the Enter key.

where

- `fbus_no` is the number of a fbus (0 or 1)

ATTENTION

The following routines provide instructions to return ASUs to service in this order: NIU, LIU7, FRIU, XLIU, APU, EIU, and VPU.

The priority of services that the ASUs support can require you to return ASUs to service in a different order. The configuration of the shelf side can require you to return ASUs to service in a different order. Contact operating company personnel or the next level of support to verify service priorities.

Determine whether NIUs are present on the shelf.

<table>
<thead>
<tr>
<th>If the shelf</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has NIUs</td>
<td>step 78</td>
</tr>
<tr>
<td>does not have NIUs</td>
<td>step 82</td>
</tr>
</tbody>
</table>

To post the NIU, type

```
>POST  NIU  niu_no
```

and press the Enter key.

where

- `niu_no` is the number of the NIU (0 to 29)

To load the inactive NIU unit, type

```
>LOADPM  INACTIVE
```
and press the Enter key.

Example of a MAP response:

```
NIU 1 Load Inactive Unit: Request has been submitted.
NIU1 Load Unit 0: Command completed.
The Unit contains the "NRS0 12 3BA" load.
```

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 81</td>
</tr>
<tr>
<td>failed</td>
<td>step 80</td>
</tr>
</tbody>
</table>

80 To load the PM, perform the procedure *How to load a PM* in this document. Complete the procedure and return to this point.

81 To return the inactive NIU unit to service, type

```
>RTS INACTIVE
```

and press the Enter key.

Example of a MAP response:

```
NIU 1 RTS Inactive Unit: Request has been submitted.
NIU 1 RTS Inactive Unit: Command completed.
The Unit is in service
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 82</td>
</tr>
<tr>
<td>failed</td>
<td>step 114</td>
</tr>
</tbody>
</table>

82 Determine if CCS7 link interface units (LIU7) are in the shelf side that associates with the NT9X30.

<table>
<thead>
<tr>
<th>If the shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has LIU7s</td>
<td>step 83</td>
</tr>
<tr>
<td>does not have LIU7s</td>
<td>step 89</td>
</tr>
</tbody>
</table>

83 To post the LIU7, type

```
>POST LIU7 liu_no
```

and press the Enter key.

where

```
liu_no
```

is the number of the LIU7 (0 to 511)
To load the LIU7, type
>LOADPM
and press the Enter key.

Example of a MAP response:

LIU7 208 LOADPM Passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 86</td>
</tr>
<tr>
<td>failed</td>
<td>step 85</td>
</tr>
</tbody>
</table>

To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

To return the LIU7 to service, type
>RTS
and press the Enter key.

Example of a MAP response:

LIU7 100 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 87</td>
</tr>
<tr>
<td>failed</td>
<td>step 114</td>
</tr>
</tbody>
</table>

To activate the CCS7 link that associates with the LIU7, perform the procedure *Activating CCS7 links* in this document. Complete the procedure and return to this point.

Repeat steps 83 to 87 for all LIU7s on the shelf side.

Determine if FRIUs are in the shelf side that associates with the NT9X30.

<table>
<thead>
<tr>
<th>If the shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has FRIU</td>
<td>step 90</td>
</tr>
<tr>
<td>does not have FRIU</td>
<td>step 101</td>
</tr>
</tbody>
</table>

To post the FRIU, type
>POST FRIU friu_no
and press the Enter key.

where
NT9X30
in an LPP LIS (continued)

\[friu_no \]

is the number of the FRIU (0 to 500)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 91 | To load the FRIU type
 >LOADPM
 and press the Enter key.
 Example of a MAP response:
 FRIU 8 LOADPM Passed |

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 93</td>
</tr>
<tr>
<td>failed</td>
<td>step 92</td>
</tr>
</tbody>
</table>

| 92 | To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point. |

| 93 | To return the FRIU to service, type
 >RTS
 and press the Enter key.
 Example of a MAP response:
 FRIU 8 RTS Passed |

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 94</td>
</tr>
<tr>
<td>failed</td>
<td>step 114</td>
</tr>
</tbody>
</table>

| 94 | To access the CARR level of the MAP display, type
 >CARR
 and press the Enter key. |

| 95 | To return the carrier to service, type
 >RTS
 and press the Enter key.
 Example of a MAP response:
 RTS passed |

| 96 | Wait until the Mtce flag on the right side of the CARRIER header is removed from the display. The carrier will go ISTb at this point. |
97 Wait 1 min for the carrier to go in service.

If after 1 min the state of the carrier

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv</td>
</tr>
<tr>
<td>is other than listed here</td>
</tr>
</tbody>
</table>

98 To access the CHAN level of the MAP display, type

>CHAN

and press the Enter key.

99 To return the carrier to service, type

>RTS

and press the Enter key.

Example of a MAP response:

RTS passed.

100 Repeat steps 90 to 99 for all FRIUs on the shelf side in use.

101 Determine if XLIUs, APUs, EIUs, or VPUs are in the shelf side that associates with the NT9X30.

If the shelf side

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has XLIUs, APUs, EIUs, or VPUs</td>
</tr>
<tr>
<td>does not have XLIUs, APUs, EIUs, or VPUs</td>
</tr>
</tbody>
</table>

102 To post the XLIU, APUs, EIUs, or VPUs, type

>POST asu_type asu_no

and press the Enter key.

where

- `asu_type` is the ASU type (XLIU, APU, EIU, VPU)
- `asu_no` is the number of the ASU (0 to 511 for XLIU, APU, and EIU; 0 to 179 for VPU)

103 To load the XLIU, APU, EIU, or VPU, type

>LOADPM

and press the Enter key.

Example of a MAP response:
NT9X30
in an LPP LIS (continued)

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 105</td>
</tr>
<tr>
<td>failed</td>
<td>step 104</td>
</tr>
</tbody>
</table>

104 To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

105 To return the XLIU, APU, EIU, or VPU to service, type >RTS and press the Enter key.

Example of a MAP response:

APU 1 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 106</td>
</tr>
<tr>
<td>failed</td>
<td>step 114</td>
</tr>
</tbody>
</table>

106 Repeat steps 102 to 105 for all XLIU, APUs, EIUs, and VPUs on the shelf side.

107 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 108</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 115</td>
</tr>
</tbody>
</table>

108 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

109 You must clear all faults on the inactive NIU unit before you complete the activity switch, or loss of service occurs. For direction on how to proceed, contact the next level of support.

110 You must move the XSG to a spare XLIU before you manually busy an XLIU with an XSG assigned to it. If you do not perform this procedure, service degrades for a long period of time. Contact operating company personnel or the next level of support on how to proceed without a spare XLIU. Continue as directed by operating company personnel or the next level of support.

111 Power down the power converter before you proceed. Contact operating company personnel or the next level of support on how to proceed.
NT9X30
in an LPP LIS (end)

112 Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

113 Abort the BSY FORCE request by typing

>NO

and pressing the Enter key

Example of a MAP response:

Aborted.

114 For additional help, contact the next level of support.

115 The procedure is complete.

Procedure history

SN07 (DMS)

Procedure corrected according to CR Q00819400.

Procedure history section added.
1-30 Link peripheral processor card replacement procedures
NT9X74 in an LPP LIS

Application

Use this procedure to replace an NT9X74 card in a link interface shelf (LIS) in a link peripheral processor (LPP).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X74</td>
<td>AA, BA, CA, DA</td>
<td>F-bus repeater card</td>
<td>LIS in an LPP</td>
</tr>
</tbody>
</table>

Note 1: Some documentation refers to the link interface module (LIM) unit as a local message switch (LMS). LIM unit 0 corresponds to LMS 0. LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit designates an LMS.

Note 2: This document refers to the whole LPP as a link interface module (LIM). This parallels how the link interface shelf (LIS) in the LPP associates with the LIM. The MAP displays and data schema tables also refer to the LPP as a LIM.

Refer to the “Index” if you cannot identify the following for the card you want to replace:

- the product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The “Index” contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures.

- Verifying load compatibility of SuperNode cards
- Replacing a card
- Loading a PM

Do not go to the common procedure unless the step-action procedure directs you to go.
Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing an NT9X74 in an LPP LIS

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

Manually busy F-bus

Manually busy LIM unit

Are you replacing an NT9X74AA?

Y: Activate FFREEZE for mate F-bus

N: Replace card

Reset, load, and return LIM unit to service

Return F-bus to service

Are you replacing an NT9X74AA?

Y: Deactivate FFREEZE for mate F-bus

N: End
Replacing an NT9X74 in an LPP LIS

At your current location
1

Obtain a replacement card. Make sure that the replacement card and the
card you remove have the same PEC and PEC suffix.

2
Perform the procedure Verifying load compatibility of SuperNode cards in this
document. Make sure the replacement card is compatible with the software
load. Complete the procedure and return to this point.

At the MAP terminal
3
To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

4
To post the link interface module (LIM) that associate with the card you
replace, type

>POST LIM lim_no

and press the Enter key.

where

lim_no
is the number of the LIM (0 to 16)

Note: Refer to table “NT9X74 (in an LIS) and associated LIM
components” to identify the LIM unit that associates with the card you
replace.

Example of a MAP display:
5. Determine the state of the LIM.

 Note: The state of the LIM appears on the right side of the LIM number on the MAP display.

<table>
<thead>
<tr>
<th>If the state of the LIM</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is Offl</td>
<td>step 34</td>
</tr>
<tr>
<td>is any other in-service or out-of-service state</td>
<td></td>
</tr>
</tbody>
</table>

6. Determine the state of the mate LIM unit. Refer to table “NT9X74 (in an LIS) and associated LIM components” to identify the LIM unit that associates with the card you replace.

 Note: The state of the LIM units appears on the right side of the LIM unit number on the MAP display.

<table>
<thead>
<tr>
<th>If the state of the mate LIM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 32</td>
</tr>
</tbody>
</table>

7. To access the F-bus level of the MAP display, type

 >FBUS

 and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIM</th>
<th>Offl</th>
<th>Links_OOS</th>
<th>Taps_OOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit0: InSv</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Unit1: InSv</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tap:</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBus0: InSv</td>
<td>.-.-</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>FBus1: InS</td>
<td>.-.-</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>
8 Determine the state of the F-bus and the F-bus taps for the mate LIM unit.

Note: The state of the F-buses appears on the right side of the F-bus numbers on the MAP display. To identify the LIM and F-bus components that associate with the card you replace, refer to table “NT9X74 (in an LIS) and associate LIM components”.

<table>
<thead>
<tr>
<th>If the states</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are in-service (state of the F-bus</td>
<td>step 9</td>
</tr>
<tr>
<td>is InSv and all F-bus taps are dot</td>
<td></td>
</tr>
<tr>
<td>(.)</td>
<td></td>
</tr>
<tr>
<td>are other than listed here (state</td>
<td>step 33</td>
</tr>
<tr>
<td>of the F-bus is not InSv and one</td>
<td></td>
</tr>
<tr>
<td>or more F-bus taps are not dot</td>
<td>(.)</td>
</tr>
<tr>
<td>(.)</td>
<td></td>
</tr>
</tbody>
</table>

9

WARNING

Potential loss of service

Make sure that the mate LIM unit, the mate F-bus, and the F-bus taps on the mate are in service. Complete this action before you manually busy the LIM unit and F-bus that associates with the card you replace. Do not manually busy the F-bus and the LIM unit while the mates are out of service. This can isolate nodes on the link interface shelves (LIS).

To manually busy the F-bus that associates with the card you replace, type

>`BSY FBUS fbus_no`

and press the Enter key.

where

`fbus_no`

is the number of the F-bus (0 or 1)

Note: To identify the F-bus components that associate with the card you replace, refer to table “NT9X74 (in an LIS) and associate LIM components”.

Example of a MAP response:
To confirm the command, type
>YES
and press the Enter key.

Example of a MAP response:

LIM 0 FBus 0 Busy initiated.
LIM 0 FBus 0 Busy passed.

To quit the F-bus level of the MAP display, type
>QUIT
and press the Enter key.

To manually busy the LIM unit that associates with the card you replace, type
>BSY UNIT unit_no
and press the Enter key.

where

unit_no

is the number of the LIM unit (0 or 1)

Example of a MAP display:
NT9X74 in an LPP LIS (continued)

If the response is Do

13 Imaging is currently in progress on LIM x UNIT y. Busy Action aborted. Use the force option if you wish to override the imaging of this unit.

14 Imaging is currently in progress on LIM x UNIT y and UNIT z. Busy Action aborted. Use the force option if you wish to override the imaging of this unit.

15 Imaging is being performed on the LIM unit you are working on. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

 Imaging is being performed on the LIM unit you are working on and the mate LIM unit. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

CAUTION
Possible loss of service
If you replace an NT9X74AA card, remote login to the mate LIM unit. Use the FFREEZE command to keep the mate in service. If you do not keep the mate in service, you can cause the mate unit to go system busy.
NT9X74 in an LPP LIS (continued)

WARNING
Possible loss of service
If you replace an NT9X74AA card, remote login to the mate LIM unit. Use the FFREEZE command to keep the mate in service. If you do not keep the mate in service, you can cause the mate unit to go system busy.

Determine the suffix of the NT9X74 card you will replace.

<table>
<thead>
<tr>
<th>If the suffix of the NT9X74 card</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is AA</td>
<td>step 16</td>
</tr>
<tr>
<td>is BA, CA, or DA</td>
<td>step 19</td>
</tr>
</tbody>
</table>

To access the mate LIM unit, type

>REMLOGIN LIM lim_no unit_no

and press the Enter key.

where

- **lim_no** is the number of the LIM (0 to 16)
- **unit_no** is the number of the mate LIM unit (0 or 1)

Example of a MAP response:

Remote Login complete
IPL *** lpx02ao --- SER. III LOAD ***
LIM0U0>

<table>
<thead>
<tr>
<th>If the REMLOGIN command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 17</td>
</tr>
<tr>
<td>failed</td>
<td>step 35</td>
</tr>
</tbody>
</table>
To keep the F-bus of the mate LIM unit in service, type

>`FFREEZE START`

and press the Enter key.

Example of a MAP response:

FFREEZE active. FBus will not go SysB for 3 hours
LIM0U0>

Note: The system prints logs if the log printer for the remote unit is on.

To close the remote CI session on the mate LIM unit, type

>`REMLOGOUT`

and press the Enter key.

Example of a MAP response:

Logged out of node LIM0U0.
NT9X74
in an LPP LIS (continued)

At the shelf

19

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: Determine if the card you will replace has switches. Make sure that the switches on the replacement card have the same settings.

20

The next action depends on the reason you perform this procedure.

If maintenance procedure Do

directed you to this procedure	step 21
did not direct you to this	step 22
procedure	

21

Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

22

To reset the LIM unit that you manually busied in step 12, type

>PMRESET UNIT unit_no

and press the Enter key.

where

unit_no
is the number of the LIM unit (0 or 1)

Example of a MAP response:

LIM 0 UNIT 0 Reset initiated.
LIM 0 UNIT 0 Reset passed.

If the PMRESET command Do

| passed | step 25 |
| failed | step 23 |
To load the LIM unit, type

```
>LOADPM UNIT unit_no
```

and press the Enter key.

where

- **unit_no**
 - is the number of the LIM unit (0 or 1)

Example of a MAP response:

```
LIM 0 UNIT 0 Load initiated.
LIM 0 UNIT 0 Load passed.
```

If the LOADPM command
<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
</tr>
<tr>
<td>failed</td>
</tr>
</tbody>
</table>

To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

To return the LIM unit to service, type

```
>RTS UNIT unit_no
```

and press the Enter key.

where

- **unit_no**
 - is the number of the LIM unit (0 or 1)

Example of a MAP response:

```
LIM 0 UNIT 0 Return to Service initiated.
LIM 0 UNIT 0 Return to Service passed.
```

If the RTS command
<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
</tr>
<tr>
<td>failed</td>
</tr>
</tbody>
</table>

To access the F-bus level of the MAP display, type

```
>FBUS
```

and press the Enter key.

To return the F-bus to service, type

```
>RTS FBUS fbus_no
```

where
NT9X74
in an LPP LIS (continued)

- **fbus_no**
 - is the number of F-bus (0 or 1)

Example of a MAP response:

```
LIM 0 FBus 0 Return to Service initiated.
LIM 0 FBus 0 Return to Service passed.
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 28</td>
</tr>
<tr>
<td>failed</td>
<td>step 35</td>
</tr>
</tbody>
</table>

28
Determine the suffix of the replaced NT9X74 card.

<table>
<thead>
<tr>
<th>If the suffix of the NT9X74 card</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is AA</td>
<td>step 29</td>
</tr>
<tr>
<td>is BA, CA, or DA</td>
<td>step 36</td>
</tr>
</tbody>
</table>

29
To access the mate LIM unit, type

```
>REMLOGIN  LIM  lim_no  unit_no
```
and press the Enter key.

where

- **lim_no**
 - is the number of the LIM (0 to 16)
- **unit_no**
 - is the number of the mate LIM unit (0 or 1)

<table>
<thead>
<tr>
<th>If the REMLOGIN command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 30</td>
</tr>
<tr>
<td>failed</td>
<td>step 35</td>
</tr>
</tbody>
</table>

30
To deactivate the FFREEZE command, type

```
>FFREEZE  STOP
```
and press the Enter key.

Example of a MAP response:

```
FFREEZE now deactivated.
LIM0U0>
```

31
To cancel the remote CI session on the mate LIM unit, type

```
>REMLOGOUT
```
and press the Enter key.
Logged out of node LIM0U0.

Go to step 36.

32 If you continue with this procedure, you will remove the whole LIM from service. You will isolate application specific units (ASU) on the link interface shelves (LIS). Contact the next level of support to determine if you must continue. Continue as directed by the next level of support.

33 If you continue with this procedure, you can isolate one or more application specific units (ASU) on the link interface shelves (LIS). Contact the next level of support to determine if you must continue this procedure. Continue as directed by the next level of support.

34 Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

35 For additional help, contact the next level of support.

36 The procedure is complete.

NT9X74 (in an LIS) and associated LIM components

<table>
<thead>
<tr>
<th>PEC</th>
<th>Slot</th>
<th>LIM and F-bus associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X74</td>
<td>07F</td>
<td>LIM unit number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-bus number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number: 1</td>
</tr>
<tr>
<td>NT9X74</td>
<td>32F</td>
<td>LIM unit number: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-bus number: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number: 0</td>
</tr>
</tbody>
</table>

Note: Some documentation refers to a LIM unit as an LMS. LIM unit 0 corresponds to LMS 0. LIM unit 1 corresponds to LMS 1. The term LIM in MAP commands, responses, and displays designates an LMS. The term LIM is also refers to the LPP and the whole LPP cabinet.
NTDX16 in an LPP LIS

Application

Use this procedure to replace an NTDX16 card in link interface shelf (LIS) of a link peripheral processor (LPP).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTDX16</td>
<td>AA</td>
<td>+/-5V 86A power converter</td>
<td>in an LPP LIS</td>
</tr>
</tbody>
</table>

Refer to the “Index” if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The “Index” contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

- Verifying load compatibility of SuperNode cards
- Replacing a card

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of NTDX16 in an LPP LIS

- Determine which DX16 failed
- Manually busy F-bus
- Replace card
- Return F-bus to service
- Passed?
 - Y: End
 - N: Contact next level of support

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
NTDX16 in an LPP LIS

At your current location
1. Obtain a replacement card. Make sure that the replacement card and the card you remove have the same product engineering code (PEC) and PEC suffix.

2. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Make sure the replacement card is compatible with the software load. Complete the procedure and return to this point.

3. Determine the location and the number of the link interface module (LIM) that contains the NTDX16 card. Refer to office records or operating company personnel.

At the MAP terminal
4. To access the PM level of the MAP display, type

>`MAPCI;MTC;PM`

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>38</td>
</tr>
</tbody>
</table>

5. To post the LIM, type

>`POST LIM lim_no`

and press the Enter key.

where

`lim_no`

is the number of the LIM you will post (0 to 16)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIM</th>
<th>0</th>
<th>InSv</th>
<th>Links_OOS</th>
<th>Taps_OOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit0</td>
<td>InSv</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Unit1</td>
<td>InSv</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

6. To access the F-bus level of the MAP display, type

>`FBUS`
and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>Tap: 0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBus0: InSv</td>
<td>...-</td>
<td>----</td>
<td>----</td>
<td>.-.-</td>
<td>----</td>
<td>----</td>
<td>...-</td>
<td>-..-</td>
</tr>
<tr>
<td>FBus1: InSv</td>
<td>...-</td>
<td>----</td>
<td>----</td>
<td>.-.-</td>
<td>----</td>
<td>----</td>
<td>...-</td>
<td>-..-</td>
</tr>
</tbody>
</table>

7 To manually busy the F-bus that associates with the power converter you replace, type

>`BSY FBUS fbus_no`

and press the Enter key.

where

fbus_no

is the number of an F-bus (0 or 1)

At the LPP

8

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure *How to replace a card* in this document. Complete the procedure and return to this point.

At the MAP

9 To return the F-bus to service, type

>`RTS FBUS fbus_no`

and press the Enter key.

where

fbus_no

is the number of a F-bus (0 or 1)

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 10</td>
</tr>
<tr>
<td>failed</td>
<td>step 12</td>
</tr>
</tbody>
</table>
The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 11</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 13</td>
</tr>
</tbody>
</table>

Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

For additional help, contact the next level of support.

The procedure is complete.
Application

Use this procedure to replace an NTEX28 in a network interface unit (NIU) in a link peripheral processor (LPP) link interface shelf (LIS). The following table identifies this card.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffixes</th>
<th>Card name</th>
<th>Shelf/frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX28</td>
<td>AA</td>
<td>NIU DS30 link interface paddle board</td>
<td>NIU in an LPP LIS</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement NTP.

Common procedures

This procedure refers to the following common procedures.

- Verifying load compatibility of SuperNode cards
- Replacing a card
- Loading a PM

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing NTEX28 in an NIU in an LPP LIS

- Post NIU and make unit inactive
- Manually busy the inactive unit
- Manually busy all links for inactive unit
- Replace card
- Return all links to service
- Load unit
- Return unit to service
- End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
NTEX28 in an NIU in an LPP LIS

At your current location

1

Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

2

Perform the procedure Verifying load compatibility of SuperNode cards in this document. Make sure the replacement card is compatible with the software load. Complete the procedure and return to this point.

At the MAP terminal

3

To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key

Example of a MAP display:

WARNING
Service degradation
If you remove an NIU unit from service, you will eliminate NIU redundancy for the associated LIS. If the in-service NIU unit goes out of service during this maintenance procedure, it affects channelized access for all ASUs on the LIS. Perform this procedure when you need to return the NIU to service. Unless it is urgent, perform this procedure during periods of low traffic only.

WARNING
Loss of packet handler service
When you remove the NTEX28 paddle board, a loss of service on associated X.25/X.75 link interface units (XLIU) can occur. The loss of service can last up to 15 min longer than the time period the NTEX28 is out of service. Perform this procedure when you need to return the NIU to service. Unless it is urgent, perform the procedure during periods of low traffic only.
4 To post the NIU that contains the NTEX28 card you replace, type

>POST NIU niu_no

and press the Enter key

where

niu_no is the number of the NIU (0 to 29)

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NIU 1: InSv
Unit 0: InAct InSv
Unit 1: Act InSv

5 Determine the state of the NIU unit that contains the NTEX28 card you want to replace.

If the state of the NIU unit Do

<table>
<thead>
<tr>
<th>If the state of the NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), or ManB (NA), and active</td>
<td>step 6</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), or ManB (NA), and inactive</td>
<td>step 9</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 12</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 21</td>
</tr>
</tbody>
</table>

6 Determine the state of the mate NIU unit.

If the state of the mate NIU unit Do

<table>
<thead>
<tr>
<th>If the state of the mate NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 8</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 7</td>
</tr>
</tbody>
</table>

7 The mate unit is not in service. Switching activity will cause a loss of service. Contact the next level of support. Continue as directed by the next level of support.
8 To switch activity, type
 \texttt{>SWACT}
 and press the Enter key.

 \textit{Example of a MAP response:}

 NIU 1 SwAct PM: Request has been submitted.
 NIU 1 SwAct PM: Command completed.
 The node has switched activity

 \begin{tabular}{|c|c|c|c|c|c|c|c|}
 \hline
 If the SWACT command & Do
 \hline
 passed & step 9
 failed & step 22
 \hline
 \end{tabular}

9 To manually busy the inactive NIU unit, type
 \texttt{>BSY INACTIVE}
 and press the Enter key.

 \textit{Example of a MAP display:}

 \begin{verbatim}
 NIU 1: ISTb
 Unit 0: InAct ManB
 Unit 1: Act InSv
 BSY INACTIVE
 NIU 1 Busy Inactive Unit: Request has been submitted.
 NIU 1 Busy Inactive Unit: Command completed.
 The Unit is manually busy.
 \end{verbatim}

 \textit{Example 2 of MAP display:}

 Imaging is currently in progress on NIU x Unit Y.
 Busying the NIU will cause imaging on this NIU to be aborted.
 Do you wish to continue?
 Please conform ("YES", "Y", "NO" or "N").

 \begin{tabular}{|c|c|c|c|c|c|c|c|}
 \hline
 If the response is & Do
 \hline
 as shown in example 2 & step 10
 anything else & step 12
 \hline
 \end{tabular}
NTEX28
in an NIU in an LPP LIS (continued)

10 Imaging is being performed on the NIU unit you are working on. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes, proceed with busy</td>
<td>step 11</td>
</tr>
<tr>
<td>no, abort busy</td>
<td>step 23</td>
</tr>
</tbody>
</table>

11 To confirm Busy, type

>YES

and press the Enter key.

Example of a MAP response:

Imaging will be aborted on NIU x, Unit y.

12 To access the DEVICES level of the MAP display, type

>DEVICES

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

NIU 1: ISTb
Unit 0: InAct ManB
Unit 1: Act InSv

Net Links
0 1 2 3 | CBUS ports OOS
PB 0 | 2
PB 1 |

13 To manually busy all the links for the NIU, type

>BSYLNKS INACTIVE

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>Net Links</th>
<th>CBUS ports OOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3</td>
<td>2</td>
</tr>
<tr>
<td>PB 0</td>
<td>P P P P</td>
</tr>
<tr>
<td>PB 1</td>
<td>.</td>
</tr>
<tr>
<td>BSYLNKS</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>Command completed.</td>
<td></td>
</tr>
</tbody>
</table>
NTEX28

in an NIU in an LPP LIS (continued)

Note: NIU unit 0 associates with paddleboard 0. NIU unit 1 associates with paddleboard 1.

<table>
<thead>
<tr>
<th>If the BSYLNKS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 14</td>
</tr>
<tr>
<td>failed</td>
<td>step 22</td>
</tr>
</tbody>
</table>

At the shelf

14

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

WARNING

Possible loss of service

You must not cross-connect the cables when you connect the cables to the new NTEX28 paddleboard. If you cross-connect the cables, you can cause a loss of service when you return the NIU to service.

To replace the card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

Note 1: Determine if the card you replace has switches. Make sure that the switches on the replacement card have the same settings.

Note 2: When you remove the old NTEX28 card and insert the replacement card, use the following diagram. The diagram enables you to identify and label connectors.
At the MAP terminal

15 To return the links to service, type

>RTSLINKS INACTIVE

and press the Enter key

Example of a MAP display:
The next action depends on the reason you perform this procedure.

If the RTSLNKS command passed, return to the maintenance procedure that directed you to this procedure.

If a maintenance procedure directed you here, continue as directed by the maintenance procedure.

To load the NIU, type:

```plaintext
>LOADPM INACTIVE
```

and press the Enter key.

Examples of MAP responses:

Example 1

NIU 1 Load Inactive Unit: Request has been submitted.
NIU 1 Load Unit 0: Command completed.

The Unit contains the "NRS0 123BA" load.

Example 2

Warning: Loadfile NRS09BA is meant for an EX22BB.
Warning: NIU 2 Unit 1 has been datafilled with an EX22CA.
Warning: Load/Processor mismatch.
Warning: Valid only for EX22 upgrades.
NIU 2 load Inactive Unit: Request has been submitted.
NIU 2 Load Unit 1: Command completed.
The Unit contains the "NRS09BA" load.
If the LOADPM command failed

19 To load the PM, perform the procedure Loading a PM in this document.
Complete the procedure and return to this point.

20 To return the NIU to service, type

>RTS INACTIVE
and press the Enter key

Example of a MAP response:

NIU 1 RTS Inactive Unit: Request has been submitted.
NIU 1 RTS Inactive Unit: Command completed.
The Unit is in service

If the RTS command passed

21 Contact the operating company personnel to determine why the component
is offline. Continue as directed by operating company personnel.

22 For additional help, contact the next level of support.

23 To abort Busy, type

>NO
and press the Enter key. Busy request has been aborted, node imaging is
continuing.

Example of a MAP response:

Aborted.

24 The procedure is complete.
System and power cards
in an LPP LIM unit

Application

Use this procedure to replace the following cards in a link interface module (LIM) unit of a link peripheral processor (LPP).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X14</td>
<td>BB</td>
<td>6-Mbyte memory card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X15</td>
<td>AA</td>
<td>Mapper card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X17</td>
<td>AA, AB, AC, AD</td>
<td>Message switch four-port card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X23</td>
<td>BA</td>
<td>Four-port DS30 paddle board</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X26</td>
<td>AA, BA, CA</td>
<td>Remote terminal interface paddle board</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X30</td>
<td>AA</td>
<td>+5 V 86-A power converter card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X30</td>
<td>AB</td>
<td>Global +5 V 86-A power converter card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X31</td>
<td>BA</td>
<td>-5 V power converter card</td>
<td>LIM unit of an FLPP</td>
</tr>
<tr>
<td>NT9X49</td>
<td>CA</td>
<td>Message switch P-bus terminator card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X52</td>
<td>AA</td>
<td>Message switch T-bus access card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X53</td>
<td>AA</td>
<td>Message switch system clock card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td></td>
<td>AD</td>
<td>Message switch system clock card (not for STP office)</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X62</td>
<td>BB</td>
<td>Four-port sub-rate DS512 paddle board</td>
<td>LIM unit of an FLPP</td>
</tr>
<tr>
<td>NT9X73</td>
<td>AA, BA</td>
<td>LMS F-bus rate adapter card</td>
<td>LIM unit of an LPP</td>
</tr>
<tr>
<td>NT9X79</td>
<td>BA</td>
<td>F-bus termination paddle board</td>
<td>LIM unit of an LPP</td>
</tr>
</tbody>
</table>
Refer to the Index if you cannot identify the following for the cards you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Note 1: Some documentation refers to a link interface module (LIM) unit as a local message switch (LMS). LIM unit 0 corresponds to LMS 0. LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit designates an LMS.

Note 2: This document refers to the whole LPP as a link interface module (LIM). This parallels how the link interface shelf (LIS) in the LPP associates with the LIM. The MAP displays and data schema tables also refer to the LPP as a LIM.

Common procedures

This procedure refers to the following common procedures:

- **Verifying load compatibility of SuperNode cards**
- **Manually busying LIM-to-MS DS30 links**
- **Removing cards in equipment shelves**
- **Replacing a card**
- **Replacing cards in equipment shelves**
- **Returning LIM-to-MS DS30 links to service**
- **Loading a PM**

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to preform the procedure.
Summary of Replacing System and power cards in an LPP LIM unit

Check that mate LIM, F-bus, and taps are InSv

Manually busy F-bus for LIM unit

Replace MS port cards?

Manually busy DS30 links

N

Manually busy LIM unit

Power down LIM unit

Replace card

Power up LIM unit

Replace MS port cards?

Y

Return DS30 links to service

N

Load LIM unit

Return LIM unit to service

Return F-bus to service

End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing System and power cards in an LPP LIM unit

At your current location

1

Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

2

Perform the procedure Verifying load compatibility of SuperNode cards in this document. Make sure that the replacement card is compatible with the software load. Complete the procedure and return to this point.

At the MAP terminal

3

To access the PM level of the MAP display, type

>`MAPCI;MTC;PM`

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

4

To post the LIM unit that contains the card you will replace, type

>`POST LIM lim_no`

and press the Enter key.

where

`lim_no`

is the number of the LIM you will post (0 to 16)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIM</th>
<th>InSv</th>
<th>Links_OOS</th>
<th>Taps_OOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit0: InSv</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Unit1: InSv</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

WARNING
Loss of service

This procedure provides instructions to remove an LIM unit from service. When you remove a LIM from service, you remove redundancy from the LPP. Perform this procedure when you need to return the LIM unit to service. Unless it is urgent, perform this procedure during periods of low traffic only.
5 Determine the state of the LIM.

 Note: The state of the LIM appears on the right side of the LIM number on the MAP display.

 If the state of the LIM Do
 is Off1 step 35
 is any other in-service or out-of-service state step 6

6 Determine the state of the mate LIM unit. Refer to table “System cards and associated LIM hardware” to identify the LIM unit that associates with the card you replace.

 Note: The state of the LIM units appears on the right side of the LIM unit number on the MAP display.

 If the state of the mate LIM unit Do
 is InSv step 7
 is ISTb, and the state of the LIM unit that associates with the card you replace is InSv or ISTb step 33
 is ISTb, and the LIM unit that associates with the card you replace is out of service step 33
 is any out-of-service state, and the state of the LIM unit that associates with the card you replace is InSv or ISTb step 33
 is any out-of-service state, and the LIM unit that associates with the card you replace is out of service step 7

7 To access the F-bus level of the MAP display, type

 >FBUS

 and press the Enter key.

 Example of a MAP display:
Determine the states of the F-bus and the F-bus taps for the mate LIM unit.

Note: The state of the F-buses appears on the right side of the F-bus numbers on the MAP display. Refer to table “System cards and associated LIM hardware” to identify the LIM and F-bus components that associate with the card you replace.

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LIM 0 InSv

Unit0: InSv
Unit1: InSv

Tap: 0 4 8 12 16 20 24 28 32

FBus0: InSv

FBus1: InSv

8

WARNING
Potential loss of service
Make sure the mate LIM unit, the mate F-bus, and the F-bus taps on the mate are in service. Complete this action before you manually busy the LIM unit and F-bus that associates with the card you replace. Do not manually busy the F-bus and the LIM unit while the mates are out of service. This can isolate nodes on the link interface shelves (LIS).

To manually busy the F-bus that corresponds to the LIM unit associated with the card you want to replace, type

```>BSY FBUS fbus_no```

and press the Enter key.

*where*
System and power cards in an LPP LIM unit (continued)

fbus_no
is the number of the F-bus (0 or 1)

Note: To identify the components of this F-bus, refer to table “System cards and associated LIM hardware”.

Example of a MAP response:

LIM 0 FBus 0 Busy requires confirmation because the following NIUs may be active on this bus...
NIU 0 unit 0
NIU 0 unit 1
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the command passes</td>
<td>step 11</td>
</tr>
<tr>
<td>you must confirm the command</td>
<td>step 10</td>
</tr>
</tbody>
</table>

10 To confirm the command, type
>YES
and press the Enter key.

Example of a MAP response:

LIM 0 FBus 0 Busy initiated.
LIM 0 FBus 0 Busy passed.

11 To quit the F-bus level of the MAP display, type
>QUIT
and press the Enter key.

12 The next step depends on the card you replace.

<table>
<thead>
<tr>
<th>If the card you replace</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is an NT9X17 or an NT9X23 (MS port cards)</td>
<td>step 13</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 14</td>
</tr>
</tbody>
</table>

13 To manually busy the DS30 links, perform the procedure Manually busying LIM-to-MS DS30 links in this document. Complete the procedure and return to this point.

14 To manually busy the LIM unit that corresponds to the F-bus, that associates with the card you replace, type
>BSY UNIT unit_no
and press the Enter key.

where
System and power cards
in an LPP LIM unit (continued)

unit_no
is the number of the LIM unit (0 or 1)

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>LIM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

LIM 0 ISTb
Links_OOS Taps_OOS
Unit0: ManB 4 10
Unit1: ISTb 4 .

bsy unit 0
LIM 0 UNIT 0 Busy initiated.
LIM 0 UNIT 0 Busy passed.

If the response is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging is currently in step 15 progress on LIM x UNIT y. Busy Action aborted. Use the force option if you wish to override the imaging of this unit.</td>
</tr>
<tr>
<td>Imaging is currently in step 16 progress on LIM x UNIT y and UNIT z. Busy Action aborted. Use the force option if you wish to override the imaging of this unit.</td>
</tr>
<tr>
<td>anything else</td>
</tr>
</tbody>
</table>

| 15 | Imaging is being performed on the LIM unit you are working on. Contact the next level of support to determine if it is safe to proceed. Continue as directed. |
| 16 | Imaging is being performed on the LIM unit you are working on and the mate LIM unit. Contact the next level of support to determine if it is safe to proceed. Continue as directed. |
**System and power cards in an LPP LIM unit** (continued)

**At the shelf**

17

**WARNING**  
**Static electricity damage**  
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

Press down and release the power switch on the faceplate of the NT9X30 power converter that associates with the card you replace. To identify the power converter that associates with the LIM unit, refer to table “System cards and associated LIM hardware”.

**Note:** The CONVERTER OFF LED is lit when you power down the NT9X30 power converter.

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is lit</td>
<td>step 20</td>
</tr>
<tr>
<td>is not lit</td>
<td>step 18</td>
</tr>
</tbody>
</table>

18

**WARNING**  
**Possible loss of service**  
Make sure that the card you remove is in the manual-busy LIM unit. If you unseat the NT9X13 card, you will bypass the safety interlock.

Perform the procedure *Unseating cards in equipment shelves* in this document. Unseat the NT9X13 that associates with the LIM unit on which you work. Complete the procedure and return to this point.

**Note:** To identify the NT9X13 that associates with the LIM unit, refer to table “System cards and associated LIM hardware”.

19

Press down and release the power switch on the faceplate of the NT9X30 power converter that associates with the card you replace. To identify the power converter that associates with the LIM unit, refer to table “System cards and associated LIM hardware”.
System and power cards  
in an LPP LIM unit (continued)

20  To replace the card, perform the procedure \textit{Replacing a card} in this document. Complete the procedure and return to this point.

\textbf{Note 1:} Make sure the handle of the power switch on the replacement power converter is in the OFF position.

\textbf{Note 2:} If the card you will replace has switches, make sure the switches on the replacement card have the same settings.

21  The next step depends on the condition of the NT9X13 card that associates with the card you replaced.

<table>
<thead>
<tr>
<th>If the NT9X13</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is seated</td>
<td>step 23</td>
</tr>
<tr>
<td>is removed</td>
<td>step 22</td>
</tr>
</tbody>
</table>

22  Perform the procedure \textit{Reseating cards in equipment shelves} in this document. Reseat the NT9X13 that associates with the card you replace. Complete this procedure and return to this point.

23  Release the power switch on the faceplate of the NT9X30 power converter that associates with the card you replaced.

\textbf{Note:} The CONVERTER OFF LED is not lit when you power up the NT9X30 power converter.

24  The next action depends on the reason you perform this procedure

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed to this procedure</td>
<td>step 25</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 26</td>
</tr>
</tbody>
</table>

25  Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

\textbf{At the MAP terminal}

26  The next step depends on the card you replace.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace an NT9X17 or an NT9X23 (MS port cards)</td>
<td>step 27</td>
</tr>
<tr>
<td>replace any card other than listed here</td>
<td>step 28</td>
</tr>
</tbody>
</table>

27  Perform the procedure \textit{Returning LIM-to-MS DS30 links to service} in this document. Return the DS30 links to service. Complete the procedure and return to this point.
28 To load the LIM unit, type

```
>LOADPM UNIT unit_no
```

and press the Enter key.

*where*

- **unit_no**
  - is the number of the LIM unit (0 or 1)

*Example of a MAP response:*

```
LIM 0 UNIT 0 Load initiated.
LIM 0 UNIT 0 Load passed.
```

---

### If the LOADPM command

<table>
<thead>
<tr>
<th>Passed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>step 30</td>
</tr>
<tr>
<td>failed</td>
<td>step 29</td>
</tr>
</tbody>
</table>

29 Perform the procedure *How to load a PM* in this document to load the PM. Complete the procedure and return to this point.

30 To return the LIM unit to service, type

```
>RTS UNIT unit_no
```

and press the Enter key.

*where*

- **unit_no**
  - is the number of the LIM unit (0 or 1)

*Example of a MAP response:*

```
LIM 0 UNIT 0 Return to Service initiated.
LIM 0 UNIT 0 Return to Service passed.
```

---

### If the RTS command

<table>
<thead>
<tr>
<th>Passed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>step 31</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

31 To access the F-bus level of the MAP display, type

```
>FBUS
```

and press the Enter key.

32 To return the F-bus to service, type

```
>RTS FBUS fbus_no
```

*where*
System and power cards
in an LPP LIM unit (continued)

حكم fbus_no

is the number of the F-bus that you busied (0 or 1)

Example of a MAP response:

LIM 0 FBus 0 Return to Service initiated.
LIM 0 FBus 0 Return to Service passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 37</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

33 If you continue this procedure, you will remove the whole LIM from service. You will isolate application specific units (ASU) on the link interface shelves (LIS). Contact operating company personnel or the next level of support to determine if you must continue this procedure. Continue as directed by operating company personnel or the next level of support.

34 If you continue this procedure, you will isolate a minimum of one application specific unit (ASU) on the link interface shelves (LIS). Contact operating company personnel or the next level of support to determine if you must continue this procedure. Continue as directed by operating company personnel or the next level of support.

35 Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

36 For additional help, contact the next level of support.
37 The procedure is complete.

System cards and associated LIM hardware

<table>
<thead>
<tr>
<th>PEC</th>
<th>Slot</th>
<th>Associated LIM hardware and F-buses</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X14</td>
<td>16F</td>
<td>LIM unit number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number: 1</td>
</tr>
<tr>
<td>NT9X15</td>
<td>15F</td>
<td></td>
</tr>
<tr>
<td>NT9X26</td>
<td>17R</td>
<td>F-bus number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number: 1</td>
</tr>
<tr>
<td>NT9X30</td>
<td>04F</td>
<td>Location of NT9X13: sot 17F</td>
</tr>
<tr>
<td>NT9X49</td>
<td>07F</td>
<td>Location of NT9X30 power converter: slot 04F</td>
</tr>
<tr>
<td>NT9X52</td>
<td>19F</td>
<td></td>
</tr>
<tr>
<td>NT9X53</td>
<td>18F</td>
<td></td>
</tr>
<tr>
<td>NT9X73</td>
<td>08F</td>
<td></td>
</tr>
<tr>
<td>NT9X79</td>
<td>08R</td>
<td></td>
</tr>
<tr>
<td>NT9X14</td>
<td>23F</td>
<td>LIM unit number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate LIM unit number: 1</td>
</tr>
<tr>
<td>NT9X15</td>
<td>24F</td>
<td></td>
</tr>
<tr>
<td>NT9X26</td>
<td>22R</td>
<td>F-bus number: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mate F-bus number: 1</td>
</tr>
<tr>
<td>NT9X30</td>
<td>36F</td>
<td>Location of NT9X13: sot 22F</td>
</tr>
<tr>
<td>NT9X49</td>
<td>32F</td>
<td>Location of NT9X30 power converter: slot 36F</td>
</tr>
<tr>
<td>NT9X52</td>
<td>20F</td>
<td></td>
</tr>
<tr>
<td>NT9X53</td>
<td>21F</td>
<td></td>
</tr>
<tr>
<td>NT9X73</td>
<td>31F</td>
<td></td>
</tr>
<tr>
<td>NT9X79</td>
<td>31R</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** Some documentation refers to a LIM unit as an LMS. LIM unit 0 corresponds to LMS 0. LIM unit 1 corresponds to LMS 1. In MAP commands, responses, and displays, the term LIM unit designates an LMS. The term LIM refers to the whole LPP cabinet.
VPU cards
in an LPP LIS

Application

Use this procedure to replace the following cards in a voice processor unit (VPU) in a link peripheral processor (LPP) link interface shelf (LIS).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX22</td>
<td>BB</td>
<td>Integrated processor and F-bus interface card</td>
<td>VPU in an LPP LIS</td>
</tr>
<tr>
<td>NTMX97</td>
<td>AA</td>
<td>Recording - announcement processor card</td>
<td>VPU in an LPP LIS</td>
</tr>
<tr>
<td>NTMX99</td>
<td>AA</td>
<td>Channel bus interface - 512-channel paddle board</td>
<td>VPU in an LPP LIS</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEX suffix
- provisioned shelf
- provisioned frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures.

- Verifying load compatibility of SuperNode cards
- Replacing a card
- Loading a PM

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of VPU cards in an LPP LIS

Manually busy VPU

Manually busy F-bus taps for VPU

Replace card

Return F-bus taps to service

Load VPU

Return VPU to service

End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
VPU cards in an LPP LIS

At your current location

1. Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

2. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Make sure the replacement card is compatible with the software load. Complete the procedure and return to this point.

   Note: Do not use this common procedure for VPU cards with PECs NTMX97 and NTMX99.

At the MAP terminal

3. To access the PM level of the MAP display, type

   >MAPCI; MTC; PM

   and press the Enter key.

   Example of a MAP display:

   PM  SysB  ManB  OffL  CBsy  ISTb  InSv
       2     0     7     0  14    63

4. To post the VPU that contains the card you replace, type

   >POST VPU vpu_no

   and press the Enter key.

   where

   vpu_no

   is the number of the VPU (0 to 179)

   Example of a MAP display:
VPU cards in an LPP LIS (continued)

5 Determine the state of the VPU.

<table>
<thead>
<tr>
<th>If the state of the VPU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, SysB (NA), ISTb, or InSv</td>
<td>step 6</td>
</tr>
<tr>
<td>is ManB or ManB (NA)</td>
<td>step 8</td>
</tr>
<tr>
<td>is Offl</td>
<td>step 26</td>
</tr>
</tbody>
</table>

6 To manually busy the VPU, type

>BSY

and press the Enter key.

MAP response:

BSYing VPU 1 may reduce ADAS capacity. Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the command passed</td>
<td>step 8</td>
</tr>
<tr>
<td>you need to confirm the command</td>
<td>step 7</td>
</tr>
</tbody>
</table>

7 To confirm the busy command, type

>YES

and press the Enter key.

MAP response:
VPU cards in an LPP LIS (continued)

VPU 1 BSY Passed.

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 8</td>
</tr>
<tr>
<td>failed</td>
<td>step 27</td>
</tr>
</tbody>
</table>

8 To display information about the VPU, type

>QUERYPM

and press the Enter key.

*Example of a MAP response:*

```
Location : LIM 0 Shelf: 1 Slot: 12 FTA: 4259 1000
PM Load : Default: VPC03BK Running: VPC03BK
Card Info : Processor: NTEX22BB Other: NTMX97AA NTMX99AA
Reserved : Service: ADAS Options: AUDIO: PROALF

<table>
<thead>
<tr>
<th>LIM 0</th>
<th>FBus</th>
<th>Message</th>
<th>Channel</th>
<th>Audits</th>
<th>NIU 0</th>
<th>CBus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 0</td>
<td>InSv</td>
<td>Open</td>
<td>ON</td>
<td>InSv</td>
<td>InSv</td>
<td>InSv</td>
</tr>
<tr>
<td>Unit 1</td>
<td>InSv</td>
<td>Open</td>
<td>ON</td>
<td>InSv</td>
<td>InSv</td>
<td>InSv</td>
</tr>
</tbody>
</table>
```

9 Record the number of the link interface module (LIM) and the taps that associate with the VPU.

*Note:* The LIM number follows the word LIM on the second line of the display. In the example, the LIM number is 0. The tap number follows the word TAP. In the example, the TAP number is 2.

10 To post the LIM, type

>`POST LIM lim_no`

and press the Enter key.

*where*

`lim_no`

is the number of the LIM that you recorded in step 9

*Example of a MAP display:*

```
VPU 1 BSY Passed.
```
To access the F-bus level of the MAP display, type

```
>FBUS
```

and press the Enter key.

*Example of a MAP display:*

```
Tap: 0 4 8 12 16 20 24 28 32
FBus0: InSv...- ---- ---. .-.- ---- ----
FBus1: InSv...- ---- ---. .-.- ---- ----
```

12 To manually busy the VPU tap on F-bus 0, type

```
>BSY FBUS 0 tap_no
```

and press the Enter key.

*where*

```
tap_no
```

is the number of the VPU tap that you recorded in step 9

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to confirm the command</td>
<td>step 13</td>
</tr>
<tr>
<td>you do not need to confirm the command</td>
<td>step 14</td>
</tr>
</tbody>
</table>

13 To confirm the command, type

```
>YES
```

and press the Enter key.

*Example of a MAP response:*

```
Confirmed ...LIM 0 FBus 0 Tap 2 Busy initiated.
LIM 0 FBus 0 Tap 2 Busy passed.
```

14 To manually busy the VPU tap on F-bus 1, type

```
>BSY FBUS 1 tap_no
```

and press the Enter key.
VPU cards
in an LPP LIS (continued)

where

tap_no

is the number of the VPU tap that you recorded in step 9

Example of a MAP response:

LIM 0 FBus 1 Tap 2 Busy requires confirmation because
a SEVERE system OUTAGE may occur if the following
node is isolated:
VPU 1
Do you wish to proceed with this operation?
Please confirm ("YES", "Y", "NO", or "N"):

15 To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response:

Confirmed ...
LIM 0 FBus 1 Tap 2 Busy initiated.
LIM 0 FBus1 Tap 2 Busy passed.

At the shelf

16

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding
point to handle circuit cards. The grounding point is on a
frame supervisory panel (FSP) or a modular supervisory
panel (MSP). The wrist strap protects the cards against static
electricity damage.

To replace the card, perform the procedure Replacing a card in this
document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure the switches on the
replacement card have the same settings.

17 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you here</td>
<td>step 18</td>
</tr>
<tr>
<td>did not direct you here</td>
<td>step 19</td>
</tr>
</tbody>
</table>
VPU cards
in an LPP LIS (continued)

18 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal
19 To return the VPU tap on F-bus 0 to service, type

\texttt{>RTS FBUS 0 tap\_no}

and press the Enter key.

\textit{where}

\texttt{tap\_no}

is the number of the VPU tap that you recorded in step 9

\textit{Example of a MAP response:}

\begin{verbatim}
LIM 0 FBus 0 Tap 2 Return to Service passed
- local maintenance not accessible.
\end{verbatim}

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 20</td>
</tr>
<tr>
<td>failed</td>
<td>step 27</td>
</tr>
</tbody>
</table>

20 To return the VPU tap on F-bus 1 to service, type

\texttt{>RTS FBUS 1 tap\_no}

and press the Enter key.

\textit{where}

\texttt{tap\_no}

is the number of the VPU tap that you recorded in step 9

\textit{Example of a MAP response:}

\begin{verbatim}
LIM 0 FBus 1 Tap 2 Return to Service initiated.
LIM 0 FBus1 Tap 2 Return to Service passed.
\end{verbatim}

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 21</td>
</tr>
<tr>
<td>failed</td>
<td>step 27</td>
</tr>
</tbody>
</table>

21 To quit from the F-bus level of the MAP display, type

\texttt{>QUIT}

and press the Enter key.
VPU cards
in an LPP LIS (end)

To post the VPU, type

```
>POST VPU vpu_no
```

and press the Enter key.

*where*

```
vpu_no
```

is the number of the VPU (0 to 179)

To load the VPU, type

```
>LOADPM
```

and press the Enter key.

*Example of a MAP response:*

```
VPU 1 LOADPM Passed.
```

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 25</td>
</tr>
<tr>
<td>failed</td>
<td>step 24</td>
</tr>
</tbody>
</table>

To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

To return the VPU to service, type

```
>RTS
```

and press the Enter key.

*Example of a MAP response:*

```
VPU 1 RTS Passed.
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 28</td>
</tr>
<tr>
<td>failed</td>
<td>step 27</td>
</tr>
</tbody>
</table>

Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

For additional help, contact the next level of support.

The procedure is complete.
**XLIU cards in an LPP LIS**

**Application**

Use this procedure to replace the following cards in an X.25/X.75 link interface unit (XLIU) in a link peripheral processor (LPP) link interface shelf (LIS).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX22</td>
<td>BA, BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>XLIU in an LPP LIS</td>
</tr>
<tr>
<td>NTFX09</td>
<td>AA</td>
<td>Channelized bus interface paddle board</td>
<td>XLIU in an LPP LIS</td>
</tr>
<tr>
<td>NTFX10</td>
<td>AA</td>
<td>High-density line controller frame processor card</td>
<td>XLIU in an LPP LIS</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEX suffix
- provisioned shelf
- provisioned frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement NTP.

**Common procedures**

This procedure refers to the following common procedures:

- *How to verify load compatibility of SuperNode cards*
- *How to move an XSG to a spare XLIU*
- *How to replace a card*
- *How to load a PM*

Do not go to the common procedure unless the step-action procedure directs you to go.
XLIU cards
in an LPP LIS (continued)

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to preform the procedure.
Summary of replacing XLIU cards in an LPP LIS

Move XSG to a spare XLIU

Manually busy XLIU

Manually busy F-bus taps for XLIU

Replace card

Return F-bus taps to service

Load XLIU

Return XLIU to service

End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing XLIU cards in an LPP LIS

At your current location

1. Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

2. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Make sure the replacement card is compatible with the software load. Complete the procedure and return to this point.

   Note: Do not use this common procedure for XLIU cards with PECs NTFX09 and NTFX10.

At the MAP terminal

3. To access the PM level of the MAP display, type

   >MAPCI;MTC;PM

   and press the Enter key.

   Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>23</td>
<td>0</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

4. To post the XLIU that associates with the card you will replace, type

   >POST XLIU xliu_no

   where

   xliu_no

   is the number of the XLIU (0 to 511)

   Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLIU</td>
<td>0</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

   | XLIU | 27   | InSv | Rsvd |

   Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLIU</td>
<td>0</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

   Example of a MAP display:

   | XLIU | 27   | InSv | Rsvd |
5  Determine the state of the XLIU.

*Note:* The state of the XLIU appears on the right side of the XLIU number. The state appears in the example MAP display in step 4.

<table>
<thead>
<tr>
<th>If the state of the XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, ISTb (NA), ManB, ISTb, or InSv</td>
<td>step 6</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 33</td>
</tr>
</tbody>
</table>

6  Determine if the XLIU is a spare.

*Note:* The code Spre on the right side of the service condition identifies a spare XLIU. The code Rsvd identifies an XLIU with an assigned X.25/X.75 service group (XSG).

<table>
<thead>
<tr>
<th>If the XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is not a spare</td>
<td>step 7</td>
</tr>
<tr>
<td>is a spare, and the service state is SysB, ISTb (NA), ISTb, or InSv</td>
<td>step 9</td>
</tr>
<tr>
<td>is a spare, and the service state is ManB</td>
<td>step 12</td>
</tr>
</tbody>
</table>

7  Determine from office records or from operating company personnel the number of a spare XLIU.

*Note:* The spare XLIU must be on the same shelf as the out-of-service XLIU.

<table>
<thead>
<tr>
<th>If a spare XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is available</td>
<td>step 8</td>
</tr>
<tr>
<td>is not available and the reserved XLIU is out of service</td>
<td>step 9</td>
</tr>
<tr>
<td>is not available and the reserved XLIU is in service</td>
<td>step 32</td>
</tr>
</tbody>
</table>

8  Perform the procedure *Moving an XSG to a spare XLIU* in this document. Move the XSG from the reserved XLIU to the spare XLIU. Complete the procedure and return to this point.

*Note:* The XLIU for which you change cards is now the spare. In the following steps, the XLIU is the spare.

Go to step 12.
### XLIU cards in an LPP LIS (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>To manually busy the XLIU 27, type <strong>&gt;BSY</strong> and press the Enter key.</td>
</tr>
<tr>
<td></td>
<td><strong>If the response is</strong></td>
</tr>
<tr>
<td></td>
<td>XLIU 27 BSY Passed</td>
</tr>
<tr>
<td></td>
<td>Warning: XLIU 27 is currently being imaged. The BSY command will be aborted unless the FORCE option is used.</td>
</tr>
<tr>
<td>10</td>
<td>To manually force busy the XLIU 27, type <strong>&gt;BSY FORCE</strong> and press the Enter key.</td>
</tr>
<tr>
<td></td>
<td>Example of a MAP response:</td>
</tr>
<tr>
<td></td>
<td>WARNING: XLIU 27 is currently being imaged. Do you wish to abort imaging to proceed with the BSY request? Please confirm (&quot;YES&quot;, &quot;Y&quot;, &quot;NO&quot;, or &quot;N&quot;):</td>
</tr>
<tr>
<td></td>
<td><strong>If</strong></td>
</tr>
<tr>
<td></td>
<td>proceed with BSY FORCE request</td>
</tr>
<tr>
<td></td>
<td>abort BSY FORCE request</td>
</tr>
<tr>
<td>11</td>
<td>To force busy XLIU 27, type <strong>&gt;YES</strong> and press the Enter key.</td>
</tr>
<tr>
<td></td>
<td>Example of a MAP response:</td>
</tr>
<tr>
<td></td>
<td>Imaging will be aborted on XLIU 27.</td>
</tr>
<tr>
<td>12</td>
<td>To query the XLIU, type <strong>&gt;QUERYPM</strong> and press the Enter key.</td>
</tr>
<tr>
<td></td>
<td>Example of a MAP response:</td>
</tr>
</tbody>
</table>
Record the numbers of the link interface module (LIM) and the F-bus taps that associate with the XLIU.

**Note:** The LIM number appears on the right side of the word LIM on the third line of the display. The F-bus tap number appears on the right side of the word TAP on the second last line of the display. In the example in step 12, the LIM number is 0; the F-bus tap is 27.

To post the LIM that associates with the XLIU, type

```
>POST LIM lim_no
```

where

```
lim_no
```

is the number of the LIM that you recorded in step 13

**Example of a MAP display:**

```
PM type: XLIU PM No.: 27 Status: ManB
Node Number 20 spare
LIM: 0 Shelf: 3 Slot: 14 XLIU FTA: 4265 1000
Default load: XRC02AW
Running load: XRC02AW
Potential service affecting conditions:
CBUS PORT for NIU Unit 0 is not inservice
CBUS PORT for NIU Unit 1 is not inservice

<table>
<thead>
<tr>
<th></th>
<th>Unit 0</th>
<th>Unit 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMS States</td>
<td>InSv</td>
<td>InSv</td>
</tr>
<tr>
<td>Auditing</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Msg Channels</td>
<td>Acc</td>
<td>Acc</td>
</tr>
<tr>
<td>TAP 27</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>NIU 3</td>
<td>InSv</td>
<td>InSv</td>
</tr>
</tbody>
</table>
```

To access the F-bus level of the MAP display, type

```
>FBUS
```

and press the Enter key.

**Example of a MAP display:**

```
SysB ManB OffL CBsy ISTb InSv
PM 0 2 23 0 10 30
LIM 0 0 1 0 0 1

LIM 0 InSv
Links_OOS Taps_OOS
Unit0: InSv
Unit1: InSv
```

To access the F-bus level of the MAP display, type

```
>FBUS
```

and press the Enter key.

**Example of a MAP display:**
XLIU cards
in an LPP LIS (continued)

16 To manually busy the XLIU tap on F-bus 0, type

>`BSY FBUS 0 tap_no

and press the Enter key.

where

tap_no

is the number of the tap that you recorded in step 21

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to confirm the</td>
<td>step 17</td>
</tr>
<tr>
<td>command</td>
<td></td>
</tr>
<tr>
<td>you do not need to confirm</td>
<td>step 19</td>
</tr>
<tr>
<td>the command</td>
<td></td>
</tr>
</tbody>
</table>

17 To confirm the command, type

>`YES

and press the Enter key.

*Example of a MAP response:*

Confirmed ...
LIM 0 FBus 0 Tap 27 Busy initiated.
LIM 0 FBus 0 Tap 27 Busy passed.

18 Wait until all system-initiated local maintenance processes complete.

*Note:* A maintenance flag (Mtce) on the right of the LIM unit status lines indicates the progress of local maintenance. A maintenance flag (Mt) on the F-bus status lines also indicates the progress of local maintenance.

19 To manually busy the XLIU tap on F-bus 1, type

>`BSY FBUS 1 tap_no

and press the Enter key.

where
XLIU cards
in an LPP LIS (continued)

**tap_no**

is the number of the tap that you recorded in step 12

*Example of a MAP response:*

```
LIM 0 FBus 1 Tap 27 Busy requires confirmation because a SEVERE system OUTAGE may occur if the following node is isolated:
XLIU 27
Do you wish to proceed with this operation?
Please confirm ("YES", "Y", "NO", or "N"):
```

20 To confirm the command, type

>`YES`

and press the Enter key.

*Example of a MAP response:*

```
Confirmed
LIM 0 FBus 1 Tap 9 Busy initiated.
LIM 0 FBus 1 Tap 9 Busy passed.
```

**At the shelf**

21

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static electricity damage</td>
</tr>
</tbody>
</table>

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

*Note:* If the card you will replace has switches, make sure the switches on the replacement card have the same settings.

22 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 23</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 24</td>
</tr>
</tbody>
</table>
XLIU cards
in an LPP LIS (continued)

23 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal
24 To return the first tap to service for the XLIU, type

>RTS  FBUS  0  tap_no

and press the Enter key.

where

tap_no

is the number of the tap that you recorded in step 13

If the RTS command  Do

<table>
<thead>
<tr>
<th>passed</th>
<th>step 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 25</td>
</tr>
</tbody>
</table>

25 Record the number of the tap. Give this information to the next level of support.

26 To return the second tap to service for the XLIU, type

>RTS  FBUS  1  tap_no

and press the Enter key.

where

tap_no

is the number of the tap that you recorded in step 13

If the RTS command  Do

| passed, and the first tap returned to service | step 27 |
| failed, and the first tap did not return to service | step 34 |

27 To quit from the F-bus level of the MAP display, type

>QUIT

and press the Enter key.

28 To post the XLIU, type

>POST  XLIU  xliu_no

and press the Enter key.

where
XLIU cards in an LPP LIS (end)

xliu_no
is the number of the XLIU (0 to 511)

To load the XLIU, type

\texttt{>LOADPM} \newline
and press the Enter key.

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 31</td>
</tr>
<tr>
<td>failed</td>
<td>step 30</td>
</tr>
</tbody>
</table>

To load the PM, perform the procedure \textit{Loading a PM} in this document. Complete the procedure and return to this point.

To return the XLIU to service, type

\texttt{>RTS} \newline
and press the Enter key.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 36</td>
</tr>
<tr>
<td>failed</td>
<td>step 34</td>
</tr>
</tbody>
</table>

Make sure you move the XSG to a spare XLIU before you manually busy an XLIU with an assigned XSG. If you do not perform this action, service degrades for a long period of time. Contact operating company personnel or the next level of support on how to proceed without a spare XLIU.

Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

For additional help, contact the next level of support.

To abort the BSY FORCE request, type

\texttt{>NO} \newline
and press the Enter key.

\textit{Example of a MAP response:}

BSY command aborted due to imaging in progress.

The procedure is complete.
4 SuperNode SE LIS or ENI card replacement procedures

Introduction
This chapter contains card replacement procedures for the SuperNode SE link interface shelf (LIS). The first section in the chapter contains illustrations of LIS shelf layouts.

Card replacement procedures for the frame supervisory panel (FSP) and modular supervisory panel (MSP) are in the chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures”.

Each procedure contains the following sections:
- Application
- Common procedures
- Action

Application
This section identifies the LIS card(s) in the replacement procedure.

Common procedures
This section lists common procedures for the LIS card replacement procedure. A common procedure is a series of steps that you repeat in maintenance procedures. The removal and replacement of a card is an example of a common procedure. Common procedures are found in the common procedures chapter in this NTP.

Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Recording card replacement activities

When you replace a card, record the following information in office records:

- the serial number of the card you replaced
- the date you replaced the card
- the reason why you replaced the card
Application

This procedure provides layout diagrams for the following:

- single core cabinet (SCC) with a link interface shelf (LIS)
- LIS, that shows common fill cards and paddle boards for 2-slot application specific units (ASU)
- LIS 2-slot ASU, that includes ethernet interface units (EIU), frame relay interface units (FRIU), CCS7 link interface units (LIU7), network interface units (NIU), and X.25/X.75 interface units (XLIU)
SuperNode SE link interface shelf layouts (continued)

Figure SuperNode SE link interface shelf

<table>
<thead>
<tr>
<th>Paddle boards</th>
<th>Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>32R NT9X79 F-bus extension PB</td>
<td>NT9X30 Power converter card</td>
</tr>
<tr>
<td>31R</td>
<td>NT9X19 3-slot filler faceplate</td>
</tr>
<tr>
<td>30R NTEX20 F-bus terminator PB</td>
<td>NT9X74 F-bus repeater card</td>
</tr>
<tr>
<td>29R</td>
<td></td>
</tr>
<tr>
<td>29R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>28R</td>
<td></td>
</tr>
<tr>
<td>27R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>26R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>25R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>24R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>23R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>22R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>21R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>20R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>19R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>19R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>18R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>17R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>16R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>15R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>14R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>13R</td>
<td></td>
</tr>
<tr>
<td>12R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>11R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>10R NT9X19 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>09R</td>
<td>NTEX20 F-bus terminator PB</td>
</tr>
<tr>
<td>08R NT9X79 F-bus extension PB</td>
<td>NT9X74 F-bus repeater card</td>
</tr>
<tr>
<td>07R</td>
<td>NT9X30 Power converter card</td>
</tr>
<tr>
<td></td>
<td>NT9X19 3-slot filler faceplate</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rear  Front
SuperNode SE link interface shelf layouts (end)

Figure SuperNode SE link interface shelf

<table>
<thead>
<tr>
<th>Rear paddle boards</th>
<th>Front cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX26 C-bus interface PB</td>
<td>NT9X76 Signaling terminal card</td>
</tr>
<tr>
<td>2-slot LIU7 (channelized)</td>
<td>NTEX22 Integrated processor and F-bus card</td>
</tr>
<tr>
<td>NT9X77 or NT9X78 V.35 or DS-0A PB</td>
<td>NT9X76 Signaling terminal card</td>
</tr>
<tr>
<td>2-slot LIU7 (non-channelized)</td>
<td>NTEX22 Integrated processor and F-bus card</td>
</tr>
<tr>
<td>NTFX09 C-bus access interface PB</td>
<td>NTFX10 HDLC frame processor card</td>
</tr>
<tr>
<td>2-slot XLIU</td>
<td>NTEX22 Integrated processor and F-bus card</td>
</tr>
<tr>
<td>NTEX30 T1 access PB</td>
<td>NTEX31 Frame relay access processor card</td>
</tr>
<tr>
<td>2-slot FRIU</td>
<td>NTEX22 Integrated processor and F-bus card</td>
</tr>
<tr>
<td>NTEX28 NIU link interface PB</td>
<td>NTEX25 Channel bus controller card</td>
</tr>
<tr>
<td>2-slot NIU</td>
<td>NTEX22 Integrated processor and F-bus card</td>
</tr>
<tr>
<td>NT9X85 Ethernet AUI PB</td>
<td>NT9X76 Signaling terminal card</td>
</tr>
<tr>
<td>2-slot EIU</td>
<td>NTEX22 Integrated processor and F-bus card</td>
</tr>
</tbody>
</table>
Common fill cards
in a SuperNode SE LIS or ENI shelf

Application
Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X74</td>
<td>AA, BA, CA, DA</td>
<td>F-bus repeater card</td>
<td>link interface shelf (LIS), enhanced network and interface (ENI)</td>
</tr>
<tr>
<td>NT9X79</td>
<td>AA, BA</td>
<td>F-bus extension paddle board</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NTEX20</td>
<td>AA, BA</td>
<td>Within the shelf termination paddle board</td>
<td>LIS, ENI</td>
</tr>
</tbody>
</table>

Refer to the “Index” if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The “Index” contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures
The procedure refers to the following common procedures:

- Verifying load compatibility of SuperNode cards
- Replacing a card

Do not proceed to the common procedure unless the step-action procedure directs you.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Common fill cards in a SuperNode SE LIS or ENI shelf (continued)

Summary of replacing Common fill cards in a SuperNode SE LIS or ENI shelf

- Manually busy associated F-bus
- Replace card
- Return F-bus to service
- End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing Common fill cards in a SuperNode SE LIS or ENI shelf

**At your current location**

1. Obtain a replacement card. Make sure the replacement and the card you remove have the same PEC and PEC suffix.

2. Perform the procedure *Verifying load compatibility of SuperNode cards* in this document. You must perform this procedure to make sure the replacement card is compatible with the software load. Complete the procedure and return to this point.

**At the MAP terminal**

3. To access the MS level of the MAP display, type

   `>MAPCI;MTC;MS`

   and press the Enter key.

   Example of a MAP display:

   ```
 Message Switch Clock Shelf 0 Inter-MS Link 0 1
 MS 0 . M Free . .
 MS 1 . Slave . .
   ```

4. Determine the state of the MS that controls the mate F-bus.

   **Note:** The MS 0 controls F-bus 0. The F-bus 0 is the mate F-bus for a card in slot 32F, 32R, or 30R. The MS 1 controls F-bus 1. The F-bus 1 is the mate F-bus for a card in slot 7F, 7R, or 8R.

<table>
<thead>
<tr>
<th>If the MS controlling the mate F-bus</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is in service or in-service trouble</td>
<td>step 6</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 5</td>
</tr>
</tbody>
</table>

5. To return the MS to service, perform the correct MS alarm clearing procedure in *Alarm and Performance Monitoring Procedures*. Complete the procedure and return to this point.

6. To access the F-bus level of the MAP display, type

   `>SHELF 0;CARD 12`

   and press the Enter key.

   *Example of a MAP display:*
Common fill cards in a SuperNode SE LIS or ENI shelf (continued)

Note 1: A dot under the F-bus header indicates the F-bus is in service. The letter S indicates the F-bus is system busy. The letter M indicates the F-bus is manually busy. The letter I indicates the F-bus is in-service trouble. The letter O indicates the F-bus is offline.

Note 2: The letter C appears under the F-bus tap number and indicates the F-bus is manually busy. The letter C can also indicate that the controlling MS or MS port is system busy or manually busy. The letter S indicates the F-bus tap is system busy. A dot indicates the F-bus tap is in service. The letter M indicates the F-bus tap is manually busy. The letter I indicates the F-bus tap is in-service trouble. A dash (-) indicates the F-bus tap is offline.

7 Determine the state of the mate F-bus and the provisioned mate F-bus taps.

Note: The MS 0 controls F-bus 0. The F-bus 0 is the mate F-bus that associates with a card in slot 30R, 32R, or 32F. The MS 1 controls F-bus 1. The F-bus 1 is the mate that associates with a card in slot 7R, 8R, or 7F.

<table>
<thead>
<tr>
<th>Shelf 0</th>
<th>1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card 1</td>
<td>2 3 4 5 6 7 8 9 0 1 2 3</td>
</tr>
<tr>
<td>Chain</td>
<td></td>
</tr>
<tr>
<td>MS 0</td>
<td>. . . . . – – . . . . .</td>
</tr>
<tr>
<td>MS 1</td>
<td>. . . . . – – . . . . .</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card 12</th>
<th>FBus Tap: 0</th>
<th>11 12 16 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>MS 1</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

CARD:

CAUTION
Potential loss of service
Make sure that the mate F-bus and the F-bus taps on the mate are in service. Perform this procedure before you manually busy the F-bus that associates with the replacement card. If you manually busy the F-bus while the mates are out of service, you will isolate nodes on the LIS.

8
Common fill cards in a SuperNode SE LIS or ENI shelf (continued)

To manually busy the F-bus that associates with the replacement card, type

>`BSY  ms_no  FBUS`

and press the Enter key.

`where`

`ms_no` is the number of the MS (0 or 1) that controls the F-bus

`Note:` The MS 0 controls F-bus 0. The F-bus 0 associates with a card in slot 7R, 8R or 7F. The MS 1 controls F-bus 1. The F-bus 1 associates with a card in slot 30R, 32R, or 32F.

`Example of a MAP response:`

Request MAN BSY MS: 0 shelf 0 card:12 port 0 FBus requires confirmation because the following NIUs may be active on this bus...
NIU 001 unit 0
NIU 001 unit 1
Please confirm ("YES", "Y", "NO", or "N")

<table>
<thead>
<tr>
<th>If the response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>indicates the BSY command passed</td>
<td>step 10</td>
</tr>
<tr>
<td>requests confirmation</td>
<td>step 9</td>
</tr>
</tbody>
</table>

9

To confirm the command, type

>`YES`

and press the Enter key.

`Example of a MAP response:`

Request MAN BSY MS: 0 shelf 0 card:12 port 0
FBus submitted
Request MAN BSY MS: 0 shelf 0 card:12 port 0
FBus passed
Common fill cards
in a SuperNode SE LIS or ENI shelf (continued)

At the LIS or ENI shelf

10

**WARNING**

*Static electricity damage*

Wear a wrist strap connected to the wrist-strap grounding point to handle circuit cards. The grounding is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

**Note:** If the card that you will replace has switches, make sure that the switches on the replacement card have the same settings.

At the MAP terminal

11

To return the F-bus to service, type

>`RTS  ms_no  FBUS`

and press the Enter key.

*where*

`ms_no`

is the number of MS (0 or 1) that controls the F-bus

**Example of a MAP response:**

Request return to Service MS: 0 shelf 0 card:12 port 0
FBus submitted
Request return to Service MS: 0 shelf 0 card:12 port 0
FBus passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 12</td>
</tr>
<tr>
<td>failed</td>
<td>step 15</td>
</tr>
</tbody>
</table>

12

The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If another maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 13</td>
</tr>
</tbody>
</table>
Common fill cards in a SuperNode SE LIS or ENI shelf (end)

<table>
<thead>
<tr>
<th>If another maintenance procedure did not direct you to this procedure</th>
<th>Do step 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Return to the maintenance procedure that sent you to this procedure and continue as directed.</td>
</tr>
<tr>
<td>14</td>
<td>If you continue with this procedure, you can isolate one or more application specific units (ASU). To determine if you should continue with this procedure, consult operating company personnel or the next level of support. Proceed as directed.</td>
</tr>
<tr>
<td>15</td>
<td>For additional help, contact the next level of support.</td>
</tr>
<tr>
<td>16</td>
<td>The procedure is complete.</td>
</tr>
</tbody>
</table>
EIU cards in a SuperNode SE LIS

Application

Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X76</td>
<td>AA, BA, CA</td>
<td>STP signalling terminal card</td>
<td>link interface shelf (LIS), enhanced network and interface (ENI)</td>
</tr>
<tr>
<td>NT9X85</td>
<td>AA</td>
<td>Ethernet AUI interface paddle board</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NTEX22</td>
<td>BA, BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>LIS, ENI</td>
</tr>
</tbody>
</table>

Refer to the “Index” if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

- Loading a PM
- Replacing a card
- Replacing cards in equipment shelves
- Removing cards in equipment shelves
- Verifying load compatibility of SuperNode cards

Do not proceed to the common procedure unless the step-action procedure directs you.
EIU cards
in a SuperNode SE LIS (continued)

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing EIU cards in a SuperNode SE LIS

1. Manually busy EIU
2. Manually busy F-bus taps for EIU
3. Unseat other EIU cards as needed
4. Replace card
5. Reseat EIU cards as needed
6. Return F-bus taps to service
7. Load EIU
8. Return EIU to service

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing EIU cards in Supernode SE LIS

At your current location

1

Obtain a replacement card. Make sure that the replacement card and the card you remove have the same PEC and PEC suffix.

2

Perform the procedure Verifying load compatibility of SuperNode cards in this document. Perform this procedure to make sure the replacement card is compatible with the software load. Complete the procedure and return to this point.

At the MAP terminal

3

To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>48</td>
</tr>
</tbody>
</table>

4

To post the EIU that contains the replacement card, type

>POST EIU eiu_no

and press the Enter key

where

eiu_no is the number of the EIU (0 to 511)

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>EIU</td>
<td>0</td>
<td>InSv</td>
<td>Rsvd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Determine the state of the EIU.

<table>
<thead>
<tr>
<th>If the state of the EIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), or ManB (NA)</td>
<td>step 6</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 11</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 33</td>
</tr>
</tbody>
</table>

6 To manually busy the EIU, type

```plaintext
>BSY
```

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bsy EIU 0 requires confirmation because the action may isolate the SuperNode from the nodes on the LAN. Please confirm (&quot;YES&quot;, &quot;Y&quot;, &quot;NO&quot;, or &quot;N&quot;): Warning: EIU 0 is currently being imaged. The BSY command will be aborted unless the FORCE option is used.</td>
<td>Step 10</td>
</tr>
</tbody>
</table>

7 To manually force bsy the EIU, type

```plaintext
>BSY FORCE
```

and press the Enter key.

*Example of a MAP response:*

```
WARNING: EIU 0 is currently being imaged.
Do you wish to abort imaging to proceed with the BSY request?
Please confirm ("YES", "Y", "NO", or "N"):
```

8 Determine if it is safe to continue with this procedure.

<table>
<thead>
<tr>
<th>If it is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>proceed with BSY FORCE request</td>
<td>step 9</td>
</tr>
<tr>
<td>abort BSY FORCE request</td>
<td>step 36</td>
</tr>
</tbody>
</table>

9 To force bsy the EIU, type

```plaintext
>YES
```
EIU cards
in a SuperNode SE LIS (continued)

and pressing the Enter key. Go to step 11

*Example of a MAP response:*

Imaging will be aborted on EIU 0.

10 To confirm the command, type

```
>YES
```

and press the Enter key

*Example of a MAP response:*

```
Confirmed...
EIU 0 BSY Passed
```

11 To access the MS level of the MAP display, type

```
>MAPCI;MTC;MS
```

and press the Enter key.

12 To access the F-bus level of the MAP display, type

```
>SHELF 0;CARD 12
```

and press the Enter key.

*Example of a MAP display:*

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0 . M Free .
MS 1 . Slave .
```

```
Shelf 0 1 1 1 1
Card 1 2 3 4 5 6 7 8 9 0 1 2 3
Chain |
MS 0 - -
MS 1 - -
Card 12 FBus Tap: 0 11 12 16 20
MS 0
MS 1
CARD:
```

**Note 1:** A dot ( . ) under the F-bus header indicates the F-bus is in service. The letter S indicates the F-bus is system busy. The letter M indicates the F-bus is manually busy. The letter I indicates the F-bus is in-service trouble. The letter O indicates the F-bus is offline.

**Note 2:** The letter C appears under the F-bus tap numbers and indicates the F-bus is manually busy. The letter C can also indicates that the controlling MS or MS port is system busy. The letter S indicates the F-bus tap is system busy. A dot ( . ) indicates the F-bus tap is in service. The
EIU cards in a SuperNode SE LIS (continued)

letter M indicates the F-bus tap is manually busy. The letter I indicates the F-bus tap is in-service trouble. A dash (-) indicates the F-bus tap is offline.

13 To determine which F-bus taps associate with the replacement card, type

>`TRNSL 0`

and press the Enter key.

*Example of a MAP response:*

<table>
<thead>
<tr>
<th>Site</th>
<th>Flr</th>
<th>RPos</th>
<th>Bay_id</th>
<th>Shf</th>
<th>Description</th>
<th>Slot</th>
<th>EqPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST</td>
<td>01</td>
<td>F02</td>
<td>SCC</td>
<td>0</td>
<td>MS 0:0:12</td>
<td>08</td>
<td>9X73BA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FRNT 17</td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 0</td>
<td>on LIU7</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 11</td>
<td>on LIU7</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 12</td>
<td>on LIU7</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 13</td>
<td>on LIU7</td>
<td>201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 14</td>
<td>on LIU7</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 15</td>
<td>on LIU7</td>
<td>203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 16</td>
<td>on LIU7</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 17</td>
<td>on NIU</td>
<td>1 unit 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 18</td>
<td>on NIU</td>
<td>1 unit 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 19</td>
<td>on FRIU</td>
<td>222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 20</td>
<td>on EIU</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 21</td>
<td>on LIU7</td>
<td>209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 22</td>
<td>on LIU7</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus</td>
<td>0</td>
<td>Tap 23</td>
<td>on LIU7</td>
<td>211</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note:* The tap numbers that appear in the example are for the F-buses controlled by both MSs. The example MAP response indicates tap 17 on F-bus 0 and tap 17 on F-bus 1 associate with unit 0 of NIU 1.

14 Record the tap number that associates with EIU.

15 To manually busy the EIU tap on F-bus 0, type

>`BSY 0 TAP tap_no`

and press the Enter key.

*where*

`tap_no`

is the number of the F-bus tap that you recorded in step 14

*Example of a MAP display:*

Warning, P-side nodes may be isolated. Please confirm ("YES", "Y", "NO", or "N"):  

16 To confirm the command, type

>`YES`

and press the Enter key.
EIU cards in a SuperNode SE LIS (continued)

17 To manually busy the EIU tap on F-bus 1, type

```
>BSY 1 TAP tap_no
```

and press the Enter key.

*where*

```
tap_no
```

is the number of the F-bus tap that you recorded in step 14

*Example of a MAP display:*

Warning, P-side nodes may be isolated.
Please confirm ("YES", "Y", "NO", or "N"):

18 To confirm the command, type

```
>YES
```

and press the Enter key.

*At the LIS shelf*

19

**WARNING**

*Static electricity damage*

Wear a wrist strap connected to the wrist-strap grounding point to handle circuit cards. A grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

The next action depends on the card that you will replace.

<table>
<thead>
<tr>
<th>If you replace</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the NTEX22</td>
<td>step 20</td>
</tr>
<tr>
<td>another card</td>
<td>step 21</td>
</tr>
</tbody>
</table>

20 To replace the NTEX22 card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

*Note:* If the card you replace has switches, make sure the replacement card switches have the same settings.

Go to step 24.

21 To unseat the NTEX22 card for the EIU, perform the procedure *Unseating cards in equipment shelves* in this document. Complete the procedure and return to this point.
EIU cards
in a SuperNode SE LIS (continued)

22 To replace the card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

*Note:* If the replacement card has switches, make sure that the switches on the replacement card have the same settings.

23 To reseat the NTEX22 card for the EIU, perform the procedure *Reseating cards in equipment shelves* in this document. Complete the procedure and return to this point.

**At the MAP terminal**

24 To return to service the F-bus 0 tap you busied in step 15, type

```
>RTS 0 TAP tap_no
```

and press the Enter key.

*where*

```
tap_no
```

is the number of the F-bus tap that you recorded in step 14

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 25</td>
</tr>
<tr>
<td>failed</td>
<td>step 34</td>
</tr>
</tbody>
</table>

25 To return to service the F-bus tap that you busied in step 17, type

```
>RTS 1 TAP tap_no
```

and press the Enter key.

*where*

```
tap_no
```

is the number of the F-bus tap that you recorded in step 14

*Example of a MAP display:*

Warning, P-side nodes may be isolated.
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 26</td>
</tr>
<tr>
<td>failed</td>
<td>step 34</td>
</tr>
</tbody>
</table>

26 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If another maintenance procedure directed you to this procedure</th>
<th>Do</th>
</tr>
</thead>
</table>
### EIU cards in a SuperNode SE LIS (continued)

<table>
<thead>
<tr>
<th>If another maintenance procedure did not direct you to this procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return to the maintenance procedure that sent you to this procedure and continue as directed.</td>
<td>step 28</td>
</tr>
</tbody>
</table>

#### 27
To access the PM level of the MAP display, type

\[>\text{PM}\]

and press the Enter key.

#### 28
To post the EIU, type

\[>\text{POST EIU eiu_no}\]

and press the Enter key

Where

- `eiu_no` is the number of the EIU (0 to 511)

#### 29
To load the EIU, type

\[>\text{LOADPM}\]

and press the Enter key.

*Example of a MAP response:*

EIU 0 LOADPM passed

<table>
<thead>
<tr>
<th>If the LOADPM command passed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the LOADPM command failed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 31</td>
<td></td>
</tr>
</tbody>
</table>

#### 30
To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

#### 31
[To return the EIU to service, type

\[>\text{RTS}\]

and press the Enter key.

*Example of a MAP response:*

EIU 0 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command passed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 36</td>
<td></td>
</tr>
</tbody>
</table>
Consult operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

For additional help, contact the next level of support.

To abort the BSY FORCE request, type

```plaintext
>NO
```
and press the Enter key

*Example of a MAP response:*

```
BSY command aborted due to imaging in progress.
```

The procedure is complete.
FRIU cards in a SuperNode SE LIS

Application

Use this procedure to replace the following cards in the SuperNode SE (SNSE) shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX22</td>
<td>BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>link interface shelf (LIS), enhanced network and interface (ENI)</td>
</tr>
<tr>
<td>NTEX30</td>
<td>AA</td>
<td>T1 analog paddle board</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NTEX31</td>
<td>AA</td>
<td>Frame relay access processor card</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NTEX31</td>
<td>BA</td>
<td>Enhanced frame relay access processor card</td>
<td>LIS, ENI</td>
</tr>
</tbody>
</table>

Refer to the “Index" if you cannot identify one of the following features for the card you want to replace:

• product engineering code (PEC)
• PEC suffix
• provisioned shelf
• provisioned frame

The “Index" contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

• *Loading a PM*
• *Replacing a card*
• *Verifying the load compatibility of SuperNode cards*

Do not proceed to the common procedure unless the step-action procedure directs you.
FRIU cards
in a SuperNode SE LIS (continued)

**Action**

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
FRIU cards
in a SuperNode SE LIS (continued)

Summary of Replacing FRIU cards in a SuperNode SE LIS

1. Manually busy channels
2. Manually busy the carrier
3. Manually busy the FRIU and F-bus taps
4. Replace the card
5. Return the F-bus taps to service
6. Load the FRIU
7. Return the FRIU to service
8. Return carrier and channels to service
9. End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing FRIU cards in a SuperNode SE LIS

At your current location

1

Obtain a replacement card. Make sure the replacement card and the card you remove have the same PEC and PEC suffix.

2 Make sure the replacement card is compatible with the software load. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

At the MAP terminal

3 To access the PM level of the MAP display, type

> MAPCI; MTC; PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

4 To post the FRIU that contains the NTEX22 card you will replace, type

> POST FRIU friu_no

and press the Enter key.

where

friu_no

is the number of the FRIU (0 to 500)

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>xPM</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

FRIU 8 InSv Rsvd

WARNING

Loss of service

This procedure removes an FRIU from service and temporarily interrupts traffic on the associated access or trunking DS-1 channels. Perform this procedure only if you need to return the FRIU to service. Unless it is urgent, perform this procedure during periods of low traffic.
FRIU cards
in a SuperNode SE LIS (continued)

5 Determine the state of the FRIU.

Note: The state of the FRIU appears on the right side of the FRIU number. The state of the FRIU appears in the example MAP display in step 4.

<table>
<thead>
<tr>
<th>If the state of the FRIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, ISTb, ISTb, ISTb</td>
<td>step 6</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 16</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 41</td>
</tr>
</tbody>
</table>

6 To access the CHAN level of the MAP display, type

>CARR;CHAN

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>6</td>
<td>28</td>
</tr>
</tbody>
</table>

FRIU 8 InSv Rsvd

CARRIER

InSv

Alarm BER ES SES UAS

-8.3 0 0 0 0

CHANNEL 1

InSv

CHANNEL 1 (24 x DS0)

7 To manually busy all channels, type

>BSY ALL

and press the Enter key.

8 To confirm the command, type

>YES

and press the Enter key.

Note: If all channels are out of service, the system does not request confirmation.

9 To access the CARR level of the MAP display, type

>QUIT

and press the Enter key.

Example of a MAP display:
To manually busy the carrier, type

>BSY

and press the Enter key.

To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response

Confirmed...
BSY passed.

Note: If the carrier is out of service, the system does not request confirmation.

To quit the CARR level, type

>QUIT

and press the Enter key.

To manually busy the FRIU, type

>BSY FORCE

and press the Enter key.

If MAP response is

Do

Billing data is stored in the FRIU. Uploading billing data...Uploaded FRS Billing data successfully...FRIU 8 BSY Passed

WARNING: FRIU 8 is currently being imaged. Do you wish to abort imaging to proceed with the busy request. Please confirm ("YES", "Y", "NO" or "N")
14 Determine if you should proceed with the BYS and proceed as shown below.

<table>
<thead>
<tr>
<th>If proceed with</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSY and abort imaging</td>
<td>step 15</td>
</tr>
<tr>
<td>abort BSY request</td>
<td>step 44</td>
</tr>
</tbody>
</table>

15 To continue with BSY FORCE, type

>`BSY FORCE`

and press the Enter key.

*Example of a MAP response:*

Imaging will be aborted on FRIU 8.

16 To access the MS level of the MAP display, type

>`MAPCI;MTC;MS`

and press the Enter key.

*Example of a MAP display:*

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0 . M Free ..
MS 1 . Slave . ..
```

17 To access the F-bus level of the MAP display, type

>`SHELF 0;CARD 12`

and press the Enter key.

*Example of a MAP display:*

```
Shelf 0 1 1 1 1
Card 1 2 3 4 5 6 7 8 9 0 1 2 3
Chain |
MS 0
MS 1
Card 12 FBus Tap: 0 11 12 16 20
MS 0
MS 1
```

**Note 1:** A dot (.) under the F-bus header indicates the F-bus is in service. The letter S indicates the F-bus is system busy. The letter M indicates the F-bus is manual busy. The letter I indicates the F-bus is in-service trouble. The letter O indicates the F-bus is offline.

**Note 2:** Letter codes can appear under the F-bus tap numbers. The letter C indicates the F-bus is manually busy or the controlling MS or MS port is
system busy or manually busy. The letter S indicates the F-bus tap is system busy. A dot (.) indicates the F-bus tap is in service. The letter M indicates the F-bus tap is manually busy. The letter I indicates the F-bus tap is in-service trouble, and a dash (-) indicates the F-bus tap is offline.

To determine the F-bus taps associated with the card you replace, type

```plaintext
>TRNSL 0
```

and press the Enter key.

*Example of a MAP response:*

```
Site Flr RPos Bay_id Shf Description Slot EqPEC
HOST 01 F02 SCC 0 39 MS 0:0:12 08 9X73BA FRNT 17
HOST 01 F02 SCC 0 39 MS 0:0:12 08 9X79BA BACK 18
FBus 0 Tap 0 is on LIU7 100
FBus 0 Tap 11 is on LIU7 111
FBus 0 Tap 12 is on LIU7 200
FBus 0 Tap 13 is on LIU7 201
FBus 0 Tap 14 is on LIU7 202
FBus 0 Tap 15 is on LIU7 203
FBus 0 Tap 16 is on LIU7 204
FBus 0 Tap 17 is on NIU 1 unit 0
FBus 0 Tap 18 is on NIU 1 unit 1
FBus 0 Tap 19 is on FRIU 222
FBus 0 Tap 20 is on FRIU 224
FBus 0 Tap 21 is on LIU7 209
FBus 0 Tap 22 is on LIU7 210
FBus 0 Tap 23 is on LIU7 211
```

*Note:* The tap numbers that appear in the example are for the F-buses controlled by both MSs. The example MAP response indicates tap 19 on F-bus 0 and tap 19 on F-bus 1 associate with FRIU number 222.

19 Record the tap number associated with the FRIU.

20 To Manually busy the FRIU tap on F-bus 0, type

```plaintext
>BSY 0 TAP tap_no
```

and press the Enter key.

*where*

- **tap_no** is the number of the F-bus tap you recorded in step 19

*Example of a MAP response:*

```
Request to MAN BUSY MS: 0 shelf: 0 card: 12 port: 0 Tap: 19 submitted.
Request to MAN BUSY MS: 0 shelf: 0 card: 12 port: 0 Tap: 19 passed.
```

21 To manually busy the FRIU tap on F-bus 1, type

```plaintext
>BSY 1 TAP tap_no FORCE
```

and press the Enter key.
FRIU cards
in a SuperNode SE LIS (continued)

where

\[
\text{tap_no}
\]

is the number of the F-bus tap you recorded in step 19

Example of a MAP response:

Warning, P-side nodes may be isolated.
Please confirm ("YES", "Y", "NO", or "N"):

22 To confirm the command, type

\[>\text{YES}\]

and press the Enter key.

Example of a MAP response:

At the LIS shelf

23

**WARNING**

Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

**Note:** Determine if the card you replace has switches. Make sure the switches on the replacement card and the card you replace have the same settings.

At the MAP terminal

24 To return the F-bus tap you busied in step 20 to service, type

\[>\text{RTS} 0 \text{ TAP tap_no}\]

and press the Enter key.

where

\[
\text{tap_no}
\]

is the number of the FRIU tap you recorded in step 19

Example of a MAP response:
FRIU cards
in a SuperNode SE LIS (continued)

25
To test the F-bus tap, type

```
>TST 0 TAP tap_no
```

and press the Enter key.

*where*

`tap_no`

is the number of the F-bus tap you recorded in step 19

*Example of a MAP response:*

Request to RTS MS: 0 shelf: 0 card: 12 port: 0 Tap: 19 submitted.
Request to RTS MS: 0 shelf: 0 card: 12 port: 0 Tap: 19 passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 26</td>
</tr>
<tr>
<td>failed, and you have not tested the tap</td>
<td>step 25</td>
</tr>
<tr>
<td>failed, and you tested the tap</td>
<td>step 42</td>
</tr>
</tbody>
</table>

*Note:* You can perform a test to manually return the tap to service.

26
To return the F-bus tap you busied in step 21 to service, type

```
>RTS 1 TAP tap_no
```

and press the Enter key.

*where*

`tap_no`

is the number of the F-bus tap you recorded in step 19

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 28</td>
</tr>
<tr>
<td>failed, and you have not tested the tap</td>
<td>step 27</td>
</tr>
<tr>
<td>failed, and you tested the tap</td>
<td>step 42</td>
</tr>
</tbody>
</table>
FRIU cards in a SuperNode SE LIS (continued)

27 To test the F-bus tap, type
   >TST 1 TAP tap_no
   and press the Enter key.
   
   where

   tap_no
   is the number of the FRIU tap you recorded in step 19

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 28</td>
</tr>
<tr>
<td>failed</td>
<td>step 42</td>
</tr>
</tbody>
</table>

28 The next action depends on why you perform this procedure.

<table>
<thead>
<tr>
<th>If the maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 29</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 30</td>
</tr>
</tbody>
</table>

29 Return to the maintenance procedure that sent you to this procedure. Continue as directed by the maintenance procedure.

30 To access the PM level of the MAP display, type
   >PM
   and press the Enter key.

31 To post the FRIU, type
   >POST FRIU friu_no
   and press the Enter key.
   
   where

   friu_no
   is the number of the FRIU (0 to 500)

32 To load the FRIU, type
   >LOADPM
   and press the Enter key.

Example of a MAP response:

   FRIU 8 LOADPM Passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 34</td>
</tr>
</tbody>
</table>
FRIU cards in a SuperNode SE LIS (continued)

If the LOADPM command

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
</tr>
</tbody>
</table>

33 To load the FRIU, use the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

34 To return the FRIU to service, type

`>RTS`

and press the Enter key.

*Example of a MAP response:*

FRIU 8 RTS Passed

If the RTS command

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
</tr>
<tr>
<td>failed</td>
</tr>
</tbody>
</table>

35 To access the CARR level of the MAP display, type

`>CARR`

and press the Enter key.

36 To return the carrier to service, type

`>RTS`

and press the Enter key.

*Example of a MAP display:*

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>FRIU 8 ISTb</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>7</td>
<td>27</td>
</tr>
</tbody>
</table>

| FRIU 8 ISTb | Rsvd |

<table>
<thead>
<tr>
<th>CARRIER</th>
<th>Mtce /T1 proving</th>
<th>Alarm</th>
<th>BER</th>
<th>ES</th>
<th>SES</th>
<th>UAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManB</td>
<td></td>
<td></td>
<td>-8.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| CHANNEL 1   |                  |
|             | rts              |

37 Wait until the Mtce flag on the right side of the CARRIER header does not appear in the display. The carrier goes ISTb at this point.
FRIU cards
in a SuperNode SE LIS (continued)

38  Wait 1 min for the carrier to go in service.

<table>
<thead>
<tr>
<th>If after 1 min the state of the carrier</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv</td>
<td>step 39</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 42</td>
</tr>
</tbody>
</table>

39  To access the CHAN level of the MAP display, type

>CHAN

and press the Enter key.

40  To return the channels to service, type

>RTS  ALL

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>7</td>
<td>27</td>
</tr>
</tbody>
</table>

FRIU  8 ISTb Rsvd

CARRIER  Mtce /T1 proving  Alarm  BER  ES  SES  UAS

ManB               -8.3  0  0  0

CHANNEL 1

rts

RTS passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 44</td>
</tr>
<tr>
<td>failed</td>
<td>step 42</td>
</tr>
</tbody>
</table>

41  Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

42  For additional help, contact the operating company personnel responsible for the next level of support.

43  To abort the BSY FORCE request, type

>NO

and press the Enter key.

Example of a MAP response:
BSY command aborted due to imaging in progress.

The procedure is complete.
LIU7 cards in a SuperNode SE LIS or ENI shelf

Application

Use this procedure to replace the following cards in the shelves or frames listed.

If you cannot identify the product engineering code (PEC), suffix, or provisioned shelf or frame for the card you want to replace, refer to the “Index”. The “Index” contains a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X76</td>
<td>AA, BA, CA</td>
<td>STP signaling terminal card</td>
<td>link interface shelf (LIS), enhanced network and interface (ENI)</td>
</tr>
<tr>
<td>NT9X77</td>
<td>AA, AB</td>
<td>DMS-100 V.35 interface paddle board</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NT9X78</td>
<td>AA</td>
<td>DS-0A interface paddle board</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NT9X78</td>
<td>BA, DA, CA</td>
<td>Enhanced DS-0A interface paddle board</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NTEX22</td>
<td>BA, BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NTEX26</td>
<td>AA</td>
<td>LIU channel bus interface card</td>
<td>LIS, ENI</td>
</tr>
</tbody>
</table>

Common procedures

The following common procedures are referenced:

- Activating CCS7 links
- Deactivating CCS7 links
- Loading a PM
- Replacing a card
- Reseating cards in equipment shelves
- Unseating cards in equipment shelves
- Verifying load compatibility of SuperNode cards
LIU7 cards in a SuperNode SE LIS or ENI shelf (continued)

Do not go to the common procedure unless the step action procedure directs you to go.

**Action**

The following flowchart is only a summary of the procedure. To replace the card, use the instructions in the step-action procedure that follows the flowchart.
LIU7 cards in a SuperNode SE LIS or ENI shelf (continued)

Summary of Replacing LIU7 cards in a SuperNode SE LIS or ENI shelf

1. Deactivate any link for the LIU7
2. Manually busy the LIU7
3. Manually busy the F-bus taps for the LIU7
4. Unseat and reseat other LIU7 cards
5. Change the card you are working on
6. Return F-bus taps to service
7. Load and return the LIU7 to service
8. Reactivate any link for the LIU7

End
Replacing LIU7 cards in a SuperNode SE LIS or ENI shelf

At your current location

1

Obtain a replacement card. Make sure that the replacement card has the same PEC, including suffix, as the card being removed.

2

Make sure that the replacement card is compatible with the software load by performing the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

At the MAP terminal

3

To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

```
Pm SysB ManB OffL CBsy ISTb InSv
PM 1 0 2 0 3 6
```

4

To post the LIU7 that contains the card to be replaced, type

>POST LIU7 liu_no

and press the Enter key.

where

liu_no

is the number of the LIU7 (0 to 511)

Example of a MAP display:

```
Pm SysB ManB OffL CBsy ISTb InSv
PM 1 0 2 0 3 6
LIU7 208 0 0 0 0 3
```

LIU7    208  InSv   Rsvd

WARNING

Loss of service

This procedure removes an LIU7 from service and temporarily interrupts messaging on the associated CCS7 link. Perform this procedure only if necessary to return the LIU7 to service. Unless it is urgent, perform this procedure only during periods of low traffic.
LIU7 cards in a SuperNode SE LIS or ENI shelf (continued)

5 Determine the state of the LIU7.

<table>
<thead>
<tr>
<th>If the state of the LIU7 is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>SysB, SysB (NA), ISTb, or InSv</td>
<td>step 6</td>
</tr>
<tr>
<td>ManB or ManB (NA)</td>
<td>step 11</td>
</tr>
<tr>
<td>OffL</td>
<td>step 35</td>
</tr>
</tbody>
</table>

6 Deactivate the CCS7 link (if there is one) associated with the LIU7 using the procedure Deactivating CCS7 links in this document. Complete the procedure and return to this point.

7 To manually busy the LIU7, type

>`BSY  FORCE`

and press the Enter key.

<table>
<thead>
<tr>
<th>If you need to confirm the command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to confirm the command</td>
<td>step 10</td>
</tr>
<tr>
<td>the command passed</td>
<td>step 11</td>
</tr>
</tbody>
</table>

WARNING: LIU7 312 is currently being imaged. Do you wish to abort imaging to proceed with the BSY request? Please confirm ("YES", "Y", "NO", or "N"):

8 Determine if it is safe to continue with this procedure.

<table>
<thead>
<tr>
<th>If it is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>safe to proceed with BSY FORCE request</td>
<td>step 9</td>
</tr>
<tr>
<td>not safe, abort BSY FORCE request</td>
<td>step 37</td>
</tr>
</tbody>
</table>

9 To force busy the LIU7, type

>`YES`

and press the Enter key. Go to step 11

*Example of a MAP response:*

Imaging will be aborted on LIU7 312.
LIU7 cards

in a SuperNode SE LIS or ENI shelf (continued)

10 To confirm the command, type

>YES

and press the Enter key.

11 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

*Example of a MAP display:*

<table>
<thead>
<tr>
<th>Message Switch</th>
<th>Clock</th>
<th>Shelf 0 Inter-MS Link 0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0</td>
<td></td>
<td>M Free</td>
<td>.</td>
</tr>
<tr>
<td>MS 1</td>
<td></td>
<td>Slave</td>
<td>.</td>
</tr>
</tbody>
</table>

12 To access the F-bus level of the MAP display, type

>SHELF 0;CARD 12

and press the Enter key.

*Example of a MAP display:*

<table>
<thead>
<tr>
<th>Shelf 0</th>
<th>1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card 1</td>
<td>1 2 3 4 5 6 7 8 9 0 1 2 3</td>
</tr>
<tr>
<td>Chain</td>
<td></td>
</tr>
<tr>
<td>MS 0</td>
<td>. . . . . - - - - - - - .</td>
</tr>
<tr>
<td>MS 1</td>
<td>. . . . . - - - - - - - .</td>
</tr>
</tbody>
</table>

Card 12 FBus Tap: 0 11 12 16 20

| MS 0 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
| MS 1 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |

CARD:

*Note 1:* A dot (.) under the F-bus header indicates the F-bus is in service. An S indicates the F-bus is system busy. An M indicates the F-bus is manual busy. An I indicates the F-bus is in-service trouble, and an O indicates the F-bus is offline.

*Note 2:* Under the F-bus tap numbers, a C indicates the F-bus is manual busy or the controlling MS or MS port is system busy or manual busy. An S indicates the F-bus tap is system busy. A dot indicates the F-bus tap is in service. An M indicates the F-bus tap is manual busy. An I indicates the F-bus tap is in-service trouble, and a dash (-) indicates the F-bus tap is offline.

13 To determine which F-bus taps are associated with the card you are replacing, type

>TRNSL 0

and press the Enter key.

*Example of a MAP response:*
LIU7 cards in a SuperNode SE LIS or ENI shelf (continued)

<table>
<thead>
<tr>
<th>Site</th>
<th>Flr</th>
<th>RPos</th>
<th>Bay_id</th>
<th>Shf</th>
<th>Description</th>
<th>Slot</th>
<th>EqPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST</td>
<td>01</td>
<td>F02</td>
<td>SCC</td>
<td>0</td>
<td>MS 0:0:12</td>
<td>08</td>
<td>9X73BA FRNT 17</td>
</tr>
<tr>
<td>HOST</td>
<td>01</td>
<td>F02</td>
<td>SCC</td>
<td>0</td>
<td>MS 0:0:12</td>
<td>08</td>
<td>9X79BA BACK 18</td>
</tr>
</tbody>
</table>

FBus 0 Tap 0 is on LIU7 100
FBus 0 Tap 11 is on LIU7 111
FBus 0 Tap 12 is on LIU7 200
FBus 0 Tap 13 is on LIU7 201
FBus 0 Tap 14 is on LIU7 202
FBus 0 Tap 15 is on LIU7 203
FBus 0 Tap 16 is on LIU7 204
FBus 0 Tap 17 is on NIU 1 unit 0
FBus 0 Tap 18 is on NIU 1 unit 1
FBus 0 Tap 19 is on FRIU 222
FBus 0 Tap 20 is on EIU 224
FBus 0 Tap 21 is on LIU7 209
FBus 0 Tap 22 is on LIU7 210
FBus 0 Tap 23 is on LIU7 211

**Note:** The tap numbers shown in the example are for the F-buses controlled by both MSs. The example MAP response indicates tap 12 on F-bus 0 and tap 12 on F-bus 1 are both associated with LIU7 number 200.

14 Record the tap number associated with the LIU7 you are working on.
15 To manually busy the LIU7 tap on F-bus 0, type

```plaintext
>BSY 0 TAP tap_no
```

and press the Enter key.

*where*

- **tap_no** is the number of the F-bus tap recorded in step 14

*Example of a MAP display:*

Request to MAN BUSY MS: 0 shelf: 0 card: 12 port: 0 Tap: 12 submitted.
Request to MAN BUSY MS: 0 shelf: 0 card: 12 port: 0 Tap: 12 passed.

16 To manually busy the LIU7 tap on F-bus 1, type

```plaintext
>BSY 1 TAP tap_no FORCE
```

and press the Enter key.

*where*

- **tap_no** is the number of the F-bus tap recorded in step 14

*Example of a MAP display:*

Warning, P-side nodes may be isolated.
Please confirm ("YES", "Y", "NO", or "N"): 
LIU7 cards in a SuperNode SE LIS or ENI shelf (continued)

17 To confirm the command, type

\texttt{>YES}

and press the Enter key.

\textit{Example of a MAP display:}

\begin{verbatim}
Request to MAN BUSY MS: 1 shelf: 0 card: 12 port: 0 Tap: 12 submitted.
Request to MAN BUSY MS: 1 shelf: 0 card: 12 port: 0 Tap: 12 passed.
\end{verbatim}

\textbf{At the LIS or ENI shelf}

18

\begin{center}
\textbf{WARNING}
\end{center}

\textbf{Static electricity damage}

Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. This protects the cards against damage caused by static electricity.

The next action depends on the card you replace.

<table>
<thead>
<tr>
<th>If you are replacing</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an NT9X76</td>
<td>step 19</td>
</tr>
<tr>
<td>an NTEX22</td>
<td>step 21</td>
</tr>
<tr>
<td>a back plane card</td>
<td>step 24</td>
</tr>
</tbody>
</table>

19 To change an NT9X76 card, unseat and reseat cards in the LIU7 using the following sub-steps. To unseat a card, use the procedure \textit{Unseating cards in equipment shelves} in this document. To reseat a card, use the procedure \textit{Reseating cards in equipment shelves} in this document.

\begin{enumerate}
\item Unseat the NT9X76 card.
\item Unseat the NTEX22 card.
\item Reseat the NTEX22 card.
\end{enumerate}

20 Replace the NT9X76 card using the procedure \textit{Replacing a card} in this document. Complete the procedure and return to this point.

\textbf{Note:} If the card being replaced has switches, make sure that the switches on the replacement card have the same settings.

Go to step 25.

21 To change an NTEX22 card, unseat the NT9X76 card using the procedure \textit{Unseating cards in equipment shelves} in this document. Complete the procedure and return to this point.
LIU7 cards in a SuperNode SE LIS or ENI shelf (continued)

22 Replace the NTEX22 card using the procedure Replacing a card in this document. Complete the procedure and return to this point.

   Note: If the card being replaced has switches, make sure that the switches on the replacement card have the same settings.

23 Reseat the NT9X76 card using the procedure Reseating cards in equipment shelves in this document. Complete the procedure and return to this point.

   Go to step 25.

24 Replace the card using the procedure Replacing a card in this document. Complete the procedure and return to this point.

   Note: If the card being replaced has switches, make sure that the switches on the replacement card have the same settings.

At the MAP terminal

25 To return to service the F-bus 0 tap you busied in step 15, type

   >RTS 0 TAP tap_no

   and press the Enter key.

   where

   tap_no

   is the number of the F-bus tap recorded in step 14

   Example of a MAP response:

   Request to RTS MS: 0 shelf: 0 card: 12 port: 0 Tap: 12 submitted.
   Request to RTS MS: 0 shelf: 0 card: 12 port: 0 Tap: 12 passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 26</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

26 To return to service the F-bus tap you busied in step 16, type

   >RTS 1 TAP tap_no

   and press the Enter key.

   where

   tap_no

   is the number of the F-bus tap recorded in step 14

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 27</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>
LIU7 cards in a SuperNode SE LIS or ENI shelf (continued)

27 The next action depends on your reason for performing this procedure.

| If you were directed to this procedure from another maintenance procedure | Do | step 28 |
| | not directed to this procedure from another maintenance procedure | step 29 |

28 Return to the maintenance procedure that sent you to this procedure and continue as directed.

29 To access the PM level of the MAP display, type

```
>PM
```

and press the Enter key.

30 To post the LIU7 you are working on, type

```
>POST LIU7 liu_no
```

where

```
liu_no
```

is the number of the LIU7 (0 to 511)

31 To load the LIU7, type

```
>LOADPM
```

and press the Enter key.

*Example of a MAP response:*

```
LIU7 208 LOADPM Passed
```

| If the LOADPM command passed | Do | step 33 |
| | failed | step 32 |

32 Load the PM using the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

33 To return the LIU7 to service, type

```
>RTS
```

and press the Enter key.

*Example of a MAP response:*
LIU7 cards in a SuperNode SE LIS or ENI shelf (end)

LIU7 100 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 34</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

34 Activate the CCS7 link (if there is one) associated with the LIU7 using the procedure Activating CCS7 links in this document. Complete the procedure and return to this point.

Go to step 38.

35 Consult office personnel to determine why the component is offline. Continue as directed by office personnel.

36 For further assistance, contact the next level of support.

37 To abort the BSY FORCE request, type

>NO

and press the Enter key.

Example of a MAP response:

BSY command aborted due to imaging in progress.

38 The procedure is complete.
NIU cards in a SuperNode SE LIS

Application

Use this procedure to replace the following cards in the shelves or frames listed.

If you cannot identify the product engineering code (PEC), suffix, or provisioned shelf or frame for the card you want to replace, refer to the “Index”. The “Index” contains a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX22</td>
<td>BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>link interface shelf (LIS), enhanced network and interface (ENI)</td>
</tr>
<tr>
<td>NTEX25</td>
<td>AA, BA</td>
<td>NIU channel bus controller card</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NTEX28</td>
<td>AA</td>
<td>NIU DS30 link interface paddle board</td>
<td>LIS, ENI</td>
</tr>
</tbody>
</table>

Common procedures

The following common procedures are referenced:

- Verifying load compatibility of SuperNode cards
- Replacing a card
- Loading a PM

Do not go to the common procedure unless the step-action procedure directs you.

Action

The following flowchart is only a summary of the procedure. To replace the card, use the instructions in the step-action procedure that follows the flowchart.
NIU cards in a SuperNode SE LIS (continued)

Summary of Replacing NIU cards in a SuperNode SE LIS

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

1. Post NIU and make unit inactive
2. Manually busy the inactive unit
3. Manually busy all links for the inactive unit
4. Replace the card
5. Return all links to service
6. Load the unit
7. Return the unit to service
8. End

Post NIU and make unit inactive
Replacing NIU cards in a SuperNode SE LIS

At your current location

1 Obtain a replacement card. Make sure that the replacement card has the same PEC, including PEC suffix, as the card being removed.

2 Make sure that the replacement card is compatible with the software load by performing the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

At the MAP terminal

3 To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
NIU cards in a SuperNode SE LIS (continued)

4 To post the NIU that contains the card you replace, type
   \texttt{>POST NIU niu\_no}
   and press the Enter key.

   \textit{where}

   \texttt{niu\_no}
   is the NIU number (0 to 29)

\textit{Example of a MAP display:}

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

NIU 1: InSv
Unit 0: InAct InSv
Unit 1: Act InSv

5 Determine the state of the NIU unit that contains the card you replace

\textbf{If the state of the NIU unit} \quad \textbf{Do}

\begin{itemize}
  \item \textbf{is ISTb, InSv, SysB, SysB (NA), ISTb (NA), and active}
    \textbf{step 6}
  \item \textbf{is ISTb, InSv, SysB, SysB (NA), ISTb (NA), and inactive}
    \textbf{step 8}
  \item \textbf{is ManB}
    \textbf{step 9}
  \item \textbf{is OffL}
    \textbf{step 37}
\end{itemize}

6 Determine the state of the mate NIU unit.

\textbf{If the state of the mate NIU unit} \quad \textbf{Do}

\begin{itemize}
  \item \textbf{is ISTb or InSv}
    \textbf{step 7}
  \item \textbf{is anything else}
    \textbf{step 38}
\end{itemize}

7 To switch activity, type
   \texttt{>SWACT}
   and press the Enter key.

\textit{Example of a MAP response:}
NIU cards in a SuperNode SE LIS (continued)

8 To manually busy the inactive NIU unit, type

>BSY INACTIVE

and press the Enter key.

*Example 1 of a MAP display:*

NIU 1 Busy Inactive Unit: Request has been submitted.
NIU 1 Busy Inactive Unit: Command completed.
The Unit is manually busy.

*Example 2 of MAP display:*

Imaging is being performed on the NIU unit you are working on. Contact the next level of support to determine if it is safe to proceed. Continue as directed.

9 Imaging is currently in progress on NIU x Unit Y. Busying the NIU will cause imaging on this NIU to be aborted. Do you wish to continue? Please confirm ("YES", "Y", "NO" or "N").

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>as shown in example 2</td>
<td>step 9</td>
</tr>
<tr>
<td>anything else</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 To confirm Busy, type

>YES

and press the Enter key.

*Example of a MAP response:*

NIU 1 SwAct PM: Request has been submitted.
NIU 1 SwAct PM: Command completed.
The node has switched activity
NIU cards
in a SuperNode SE LIS (continued)

Imaging will be aborted on NIU x, Unit y.

11 The next action depends on the type of card you replace

<table>
<thead>
<tr>
<th>If the card</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is an NTEX28</td>
<td>step 10</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 12</td>
</tr>
</tbody>
</table>

12 To access the DEVICES level of the MAP display, type

>`DEVICES`

and press the Enter key.

*Example of a MAP display:*

```
<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
```

NIU 1: ISTb
Unit 0: InAct ManB
Unit 1: Act InSv

Net Links
```
0 1 2 3 CBUS ports OOS
PB 0 2
PB 1
```

13 To manually busy the network links for the inactive NIU unit, type

>`BSYLNKS INACTIVE`

and press the Enter key.

*Example of a MAP display:*

```
Net Links
0 1 2 3 CBUS ports OOS
PB 0 P P P P 2
PB 1
```

*Note:* Paddle board 0 is associated with NIU unit 0; paddle board 1 is associated with NIU unit 1.

<table>
<thead>
<tr>
<th>If the BSYLNKS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 12</td>
</tr>
</tbody>
</table>
NIU cards
in a SuperNode SE LIS (continued)

If the BSYLNKS command	Do
failed | step 38

14 To access the MS level of the MAP display, type

\texttt{MAPCI;MTC;MS}

and press the Enter key.

Example of a MAP display:

\begin{verbatim}
Message Switch  Clock  Shelf 0 Inter-MS Link 0 1
MS 0 . M Free .
MS 1 . Slave .
\end{verbatim}

15 To access the F-bus level of the MAP display, type

\texttt{SHELF 0;CARD 12}

and press the Enter key.

Example of a MAP display:

\begin{verbatim}
Shelf 0 1 1 1 1
Card 1 2 3 4 5 6 7 8 9 0 1 2 3
Chain |
MS 0 . . . . . . . . . . . . . .
MS 1 . . . . . . . . . . . . . .

Card 12 FBus Tap: 0 11 12 16 20
MS 0 . . . . . . . . . . . . . .
MS 1 . . . . . . . . . . . . . .
\end{verbatim}

\textbf{CARD:}

\textbf{Note 1:} A dot under the F-bus header indicates the F-bus is in service. An \textit{S} indicates the F-bus is system busy. An \textit{M} indicates the F-bus is manual busy. An \textit{I} indicates the F-bus is in-service trouble, and an \textit{O} indicates the F-bus is offline.

\textbf{Note 2:} Under the F-bus tap numbers, a \textit{C} indicates the F-bus is manual busy or the controlling MS or MS port is system busy or manual busy. An \textit{S} indicates the F-bus tap is system busy. A dot indicates the F-bus tap is in service. An \textit{M} indicates the F-bus tap is manual busy. An \textit{I} indicates the F-bus tap is in-service trouble, and a dash (-) indicates the F-bus tap is offline.

16 To determine which F-bus taps are associated with the card you replace, type

\texttt{TRNSL 0}

and press the Enter key.

Example of a MAP response:
NIU cards in a SuperNode SE LIS (continued)

Note: The tap numbers shown in the example are for the F-buses controlled by both MSs. The example MAP response indicates tap 17 on F-bus 0 and tap 17 on F-bus 1 are both associated with unit 0 of NIU 1.

17 Record the tap number associated with the NIU unit you are working on.

18 To manually busy the NIU tap on F-bus 0, type

>BSY 0 TAP tap_no

and press the Enter key.

where

tap_no

is the number of the F-bus tap recorded in step 17

Example of a MAP response:

Request to MAN BUSY MS: 0 shelf: 0 card: 12 port: 0 Tap: 5 submitted.
Request to MAN BUSY MS: 0 shelf: 0 card: 12 port: 0 Tap: 5 passed.

19 To manually busy the NIU tap on F-bus 1, type

>BSY 1 TAP tap_no FORCE

and press the Enter key.

where

tap_no

is the number of the F-bus tap recorded in step 17

Example of a MAP display:
NIU cards
in a SuperNode SE LIS (continued)

Warning, P-side nodes may be isolated.
Please confirm ("YES", "Y", "NO", or "N"):  

20 To confirm the command, type
   >YES
   and press the Enter key.

   Example of a MAP response:

   Request to MAN BUSY MS: 1 shelf: 0 card: 12 port: 0 Tap: 5
   Request to MAN BUSY MS: 1 shelf: 0 card: 12 port: 0 Tap: 5
   passed.

21 The next action depends on the type of card you replace

<table>
<thead>
<tr>
<th>If the card</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is an NTEX28</td>
<td>step 20</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 27</td>
</tr>
</tbody>
</table>
NIU cards
in a SuperNode SE LIS (continued)

At the LIS or ENI shelf

22

WARNING
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. This protects the cards against damage caused by static electricity.

WARNING
Possible loss of service
You must avoid cross-connecting the cables when they are reconnected to the new NTEX28 paddle board. Loss of service can occur if you cross-connect the cables when the NIU returns to service.

Replace the card using the procedure Replacing a card in this document. When you have completed the procedure, return to this point.

Note 1: If the card you are replacing has switches, make sure that the switches on the replacement card have the same settings.

Note 2: When removing the old NTEX28 card and inserting the replacement card, use the illustration on the following page to identify and label connectors.
At the MAP terminal

To access the PM level of the MAP display, type

```
>MAPCI;MTC;PM
```

and press the Enter key.
NIU cards in a SuperNode SE LIS (continued)

24 To post the NIU that contains the card you will replace, type
   >POST NIU niu_no
   and press the Enter key.
   where
   niu_no
   is the NIU number (0 to 29)

25 To access the DEVICES level of the MAP display, type
   >DEVICES
   and press the Enter key.

26 To return the network links on the inactive NIU unit to service, type
   >RTSLINKS INACTIVE
   and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>Net Links</th>
<th>CBUS ports</th>
<th>OOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB 0</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>PB 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTSLINKS</td>
<td>INACTIVE</td>
<td></td>
</tr>
<tr>
<td>Command completed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the RTSLNKS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 25</td>
</tr>
<tr>
<td>failed</td>
<td>step 38</td>
</tr>
</tbody>
</table>

27 To access the MS level of the MAP display, type
   >MAPCI;MTC;MS
   and press the Enter key.

28 To access the F-bus level of the MAP display, type
   >SHELF 0;CARD 12
   and press the Enter key.
   Go to step 30.
At the LIS shelf

29

WARNING
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. This protects the cards against damage caused by static electricity.

Replace the card using the procedure Replacing a card in this document. When you have completed the procedure, return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

At the MAP terminal

30 To return to service the F-bus 0 tap you busied in step 18, type

>RTS 0 TAP tap_no

and press the Enter key.

where

tap_no is the number of the F-bus tap recorded in step 17

Example of a MAP response:

Request to RTS MS: 0 shelf: 0 card: 12 port: 0 Tap: 5 submitted.
Request to RTS MS: 0 shelf: 0 card: 12 port: 0 Tap: 5 passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 29</td>
</tr>
<tr>
<td>failed</td>
<td>step 38</td>
</tr>
</tbody>
</table>

31 To return to service the F-bus tap you busied in step 19, type

>RTS 1 TAP tap_no

and press the Enter key.

where
NIU cards in a SuperNode SE LIS (continued)

- **tap_no** is the number of the F-bus tap recorded in step 18

### If the RTS command	Do
passed | step 30
failed | step 38

32 The next action depends on the reason you perform this procedure.

### If you were	Do
directed here from a maintenance procedure | step 31
not directed here from a maintenance procedure | step 32

33 Return to the maintenance procedure that sent you to this procedure and continue as directed.

34 To access the PM level of the MAP display, type

>PM

and press the Enter key.

35 To post the NIU that contains the card you replace, type

>POST NIU niu_no

and press the Enter key.

- **niu_no** is the NIU number (0 to 29)

36 To load the inactive NIU unit, type

>LOADPM INACTIVE

and press the Enter key.

*Examples of MAP responses:*

*Example 1*

NIU 1 Load Inactive Unit: Request has been submitted.
NIU 1 Load Unit 0: Command completed.
The Unit contains the "NRS0 123BA" load.

*Example 2*
Warning: Loadfile NRS09BA is meant for an EX22BB.
Warning: NIU 2 Unit 1 has been datafilled with an EX22CA.
Warning: Load/Processor mismatch.
Warning: Valid only for EX22 upgrades.
NIU 2 load Inactive Unit: Request has been submitted.
NIU 2 Load Unit 1: Command completed.
The Unit contains the "NRS09BA" load.

### If the LOADPM command
<table>
<thead>
<tr>
<th>Do</th>
<th>If the LOADPM command</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 36</td>
</tr>
<tr>
<td>failed</td>
<td>step 35</td>
</tr>
</tbody>
</table>

37 Load the PM using the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

38 To return the inactive NIU unit to service, type

```
>RTS INACTIVE
```
and press the Enter key.

*Example of a MAP response:*

```
NIU 1 RTS Inactive Unit: Request has been submitted.
NIU 1 RTS Inactive Unit: Command completed.
The Unit is in service
```

### If the RTS command
<table>
<thead>
<tr>
<th>Do</th>
<th>If the RTS command</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 39</td>
</tr>
<tr>
<td>failed</td>
<td>step 38</td>
</tr>
</tbody>
</table>

39 Consult office personnel to determine why the component is offline. Continue as directed by office personnel.

40 For further assistance, contact the next level of support.

41 To abort Busy, type

```
>NO
```
and press the Enter key. Busy request has been aborted, node imaging is continuing.

*Example of MAP response:*

```
Aborted.
```

42 The procedure is complete.
NT9X30 in a SuperNode SE LIS

Application

Use this procedure to replace an NT9X30 in a SuperNode SE (SNSE) link interface shelf.

The Index has a list of the cards, shelves and frames documented in this card replacement book. Refer to the Index if you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame to be replaced.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X30</td>
<td>AA</td>
<td>+5V 86-A power converter</td>
<td>LIS</td>
</tr>
<tr>
<td>NT9X30</td>
<td>AB</td>
<td>Global +5V 86-A power converter</td>
<td>LIS</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to the following common procedures:

- Activating CCS7 links
- Deactivating CCS7 links
- Loading a PM
- Moving an XSG to a spare XLIU
- Replacing a card
- Replacing cards in equipment shelves
- Removing cards in equipment shelves
- Verifying load compatibility of SuperNode cards

Do not go to the common procedure unless the step-action procedure directs you.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing a NT9X30 in a SuperNode SE LIS

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

1. Manually busy all ASUs on the shelf side
2. Manually busy the F-bus
3. Busy affected mate F-bus taps
4. Power down shelf side
5. Replace card
6. Power up shelf side
7. Return F-bus to service
8. Load and return ASUs to service
9. Return mate F-bus taps to service
10. End
Replacing a NT9X30 in a SuperNode SE LIS

At your current location

1

**WARNING**

Loss of service

This procedure removes all application specific units (ASU), from service for an entire shelf side. Service provided by these ASUs will degrade or stop for more than one hour. After you replace the power converter card, you must reload a peripheral module (PM) for all ASUs on the shelf side. Perform this procedure during high traffic periods only if you must return power to the shelf side. Unless it is urgent, perform this procedure during periods of low traffic.

Obtain a replacement card. Make sure that the replacement card and the card you remove has the same product engineering code (PEC) and PEC suffix.

2 Perform the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure, and return to this point.

3 Determine the PM number and slot location of each ASU on the shelf side. The shelf side associates with the NTX9X30 you replace.

If you know the PM number and slot location of each ASU on the shelf side	Do step 13
you do not know the PM number and slot location of each ASU on the shelf side	Do step 4

**Note:** ASUs for an SNSE LIS include network interface units (NIU) and ethernet interface units (EIU). They also include CCS7 link interface units (LIU7), X.25/X.75 interface units (XLIU), and frame-relay interface units (FRIU).

At the MAP terminal

4 To access the CI level of the MAP display, type

>`QUIT ALL`

and press the Enter key.
SuperNode SE LIS or ENI card replacement procedures

NT9X30 in a SuperNode SE LIS (continued)

5 To access table NIUINV, type

>TABLE NIUINV;FORMAT PACK

and press the Enter key.

*Example of a MAP response:*

JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED
TABLE: NIUINV
<line length>: 76 columns can be output per line.
<pack mode>: Pack mode is ON.
<indent column>: Indented lines will begin in column 1.
<first column>: The first column of output is column 1.

6 To list the NIUs, type

>LIST ALL

and press the Enter key.

*Example of a MAP response:*

<table>
<thead>
<tr>
<th>TOPNUMBER LOCATION LOAD U0INFO U1INFO NETLINKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MS 12 0 2 NRS04AR NTEX22BB NTEX25AA NTEX28AA NTEX22BB NTEX25BA NTEX28AA</td>
</tr>
<tr>
<td>(0 15 4 0) (0 15 5 0) (0 15 6 0) (0 15 7 0) $</td>
</tr>
</tbody>
</table>

**Note 1:** The NIU number appears in column 1 and the controlling entity appears in column 2. The number of the MS interface card appears in column 3.

**Note 2:** An MS controls the NIU on an SNSE LIS. Twelve interface cards are present on the MS.

<table>
<thead>
<tr>
<th>If NIU is on the LIS that contains the NT9X30 card you replace</th>
<th>Do step 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A NIU is not on the LIS that contains the NT9X30 card you replace</td>
<td>step 8</td>
</tr>
</tbody>
</table>

7 Record the number of the NIU that associates with the LIS shelf.

*Note:* In the MAP display generated in step 6, the number of the NIU on the LIS is 1.

8 To quit table NIUINV, type

>QUIT

and press the Enter key.
NT9X30
in a SuperNode SE LIS (continued)

9  To access table LIUINV, type
   \texttt{>TABLE LIUINV;FORMAT PACK}
   and press the Enter key.

10 To list all ASUs for the office, type
    \texttt{>LIST ALL}
    and press the Enter key.

\textit{Example of a MAP response:}

\texttt{TOP}
\texttt{LIUNAME LOCATION LOAD PROCINFO CARDINFO}
---
\texttt{LIU7 100 MS 12 0 1 8 LRS04AR NTEX22BB NT9X76AA NT9X78AA}
\texttt{FBUS}
\texttt{LIU7 111 MS 12 0 1 30 LRS04AR NTEX22BB NT9X76AA NT9X78AA}
\texttt{FBUS}
\texttt{LIU7 200 MS 12 0 2 8 LRS04AR NTEX22BB NT9X76AA NT9X78BA}
\texttt{FBUS 56000 NIL}
\texttt{LIU7 201 MS 12 0 2 10 LRS04AR NTEX22BB NT9X76AA NT9X78BA}
\texttt{FBUS 56000 NIL}
\texttt{LIU7 202 MS 12 0 2 12 LRS04AR NTEX22BB NT9X76AA NT9X78BA}
\texttt{FBUS 56000 NIL}
\texttt{LIU7 203 MS 12 0 2 14 LRS04AR NTEX22BB NT9X76AA NT9X78BA}
\texttt{FBUS 56000 NIL}
\texttt{LIU7 204 MS 12 0 2 16 LRS04AR NTEX22BB NT9X76AA NT9X78BA}
\texttt{FBUS 56000 NIL}
\texttt{LIU7 209 MS 12 0 2 26 LRS04AR NTEX22BB NT9X76AA NT9X78BA}
\texttt{FBUS 56000 NIL}
\texttt{LIU7 210 MS 12 0 2 28 LRS04AR NTEX22BB NT9X76AA NT9X78BA}
\texttt{FBUS 56000 NIL}
\texttt{LIU7 211 MS 12 0 2 30 LRS04AR NTEX22BB NT9X76AA NT9X78BA}
\texttt{FBUS 56000 NIL}
\texttt{XLIU 222 MS 12 0 2 22 XRX4AQ NTEX22BB NTFX10AA NTFX09AA}
\texttt{XLIU 224 MS 12 0 2 24 XRX4AQ NTEX22BB NTFX10AA NTFX09AA}
\texttt{BOTTOM}

\textbf{Note 1:} The ASU number appears in columns 1 and 2. The controlling
entity appears in column 3. The number of the associated MS interface
card appears in column 4. The number of the associated MS port appears
in column 5. The shelf number appears in column 6. The slot number of
the card on the far left appears in column 7.

\textbf{Note 2:} In the MAP response example, two LIU7 are on the ENI shelf.
Eight LIU7 and two XLIU are on the LIS shelf. The numbers of the LIU7
on the ENI shelf are are 100 and 111. The numbers of the LIU7 on the LIS
shelf are are 200, 201, 202, 203, 204, 209, 210, and 211. The XLIU
numbers are 222 and 224.

11 Record the number and slot location for each ASU on the shelf side that
   associates with NT9X30.

12 To quit table LIUINV, type
   \texttt{>QUIT}
and press the Enter key.

**At the MAP terminal**

13

**ATTENTION**

The following routines provide instructions to remove ASUs from service in this order: NIU, LIU7, XLIU, FRIU, and EIU.

You can remove ASUs from service in a different order. The priority of services supported by these ASUs and/or the configuration of the shelf side determines the order of removal. Consult operating company personnel or the next level of support to verify service priorities.

To access the PM level of the MAP display, type

```
>MAPCI;MTC;PM
```

and press the Enter key.

*Example of a MAP display:*

```
PM SysB ManB OffL CBsy ISTb InSv
11 0 11 4 16 38
```

14 The next step depends if the LIS has NIUs.

<table>
<thead>
<tr>
<th>If LIS</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has NIU</td>
<td>step 15</td>
</tr>
<tr>
<td>does not have NIU</td>
<td>step 20</td>
</tr>
</tbody>
</table>

15

**WARNING**

Potential loss of channelized access

The following routine removes an NIU from service, which eliminates NIU redundancy for the associated LIS. The in-service NIU unit can go out of service at any time during this maintenance procedure. An out of service affects channelized access for all ASUs on both sides of the LIS.

To post the NIU, type

```
>POST NIU niu_no
```

and press the Enter key.
NT9X30  
in a SuperNode SE LIS (continued)

where

\[
niu\_no
\]

is the NIU number (0 to 29)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

NIU 1:  InSv  
Unit 0:  InAct InSv  
Unit 1:  Act InSv

16  Determine the state of the NIU unit that associates with the shelf side you are working on.

<table>
<thead>
<tr>
<th>If the state of the NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), ISTb (NA), or ManB (NA), and active</td>
<td>step 17</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, SysB (NA), or ISTb (NA), and inactive</td>
<td>step 19</td>
</tr>
<tr>
<td>is ManB or ManB (NA)</td>
<td>step 20</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 114</td>
</tr>
</tbody>
</table>

17  Determine the state of the mate NIU unit.

<table>
<thead>
<tr>
<th>If the state of the mate NIU unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 18</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 110</td>
</tr>
</tbody>
</table>

18  To switch activity, type

\[>SWACT\]

and press the Enter key.

Example of a MAP response:

NIU 1 SwAct PM: Request has been submitted.  
NIU 1 SwAct PM: Command completed.  
The node has switched activity

<table>
<thead>
<tr>
<th>If the SWACT command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 19</td>
</tr>
</tbody>
</table>
To manually busy the inactive NIU unit, type

```
>BSY INACTIVE
```

and press the Enter key.

*Example of a MAP response:*

```
NIU 1 Busy Inactive Unit: Request has been submitted.
NIU 1 Busy Inactive Unit: Command completed.
```

The Unit is manually busy.

The next step depends if the side of the LIS has CCS7 link interface units (LIU7). The side of the LIS contains the NT9X30 card you want to replace.

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has LIU7s</td>
<td>step 21</td>
</tr>
<tr>
<td>does not have LIU7s</td>
<td>step 27</td>
</tr>
</tbody>
</table>

**WARNING**

*Loss of service*

The following routine removes an LIU7 from service. This routine temporarily interrupts messaging on the associated CCS7 link.

To post the LIU7, type

```
>POST LIU7 liu_no
```

and press the Enter key.

*Example of a MAP display:*

```
failed step 115
If shelf side Do
failed package no
If shelf side Do
```

where

```
liu_no
```

is the LIU7 number (0 to 511)
To deactivate the CCS7 link that associates with the LIU7, perform the procedure *Deactivating CCS7 links* in this document. Complete the procedure and return to this point.

Determine the state of the LIU7.

*Note:* The state of the LIU7 appears on the right of the LIU7 number. This appears in the example MAP display in step 21.

<table>
<thead>
<tr>
<th>If the state of the LIU7</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, SysB (NA), ISTb, or InSv</td>
<td>step 24</td>
</tr>
<tr>
<td>is ManB or ManB (NA)</td>
<td>step 26</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 114</td>
</tr>
</tbody>
</table>

To manually busy the LIU7, type

> **BSY**  **FORCE**

and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the system prompts you to confirm the command</td>
<td>step 25</td>
</tr>
<tr>
<td>the command passed</td>
<td>step 26</td>
</tr>
</tbody>
</table>

To confirm the command, type

> **YES**

and press the Enter key.

*Example of a MAP response:*

LIU7 204 BSTY passed.

Repeat steps 21 to 25 for all LIU7s on the shelf side you are working on.
In a SuperNode SE LIS (continued)

27 The next step depends if the XLIUs are on the side of the LIS that contains the NT9X30 card you want to replace.

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has XLIU</td>
<td>step 28</td>
</tr>
<tr>
<td>does not have XLIU</td>
<td>step 35</td>
</tr>
</tbody>
</table>

28 **WARNING**

*Loss of packet handler service*

The following routine removes an XLIU from service. The routine temporarily interrupts traffic on associated X.25/X.75 channels.

To post the XLIU, type

```
>POST XLIU xliu_no
```

and press the Enter key.

*where*

- **xliu_no** is the XLIU number (0 to 511)

*Example of a MAP display:*

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLIU</td>
<td>0</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>XLIU</td>
<td>27</td>
<td>InSv</td>
<td>Rsvd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

29 Determine the state of the XLIU.

*Note:* The state of the XLIU is on the right of the XLIU number. Refer to the example MAP display in step 28.

<table>
<thead>
<tr>
<th>If the state of the XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, ISTb (NA), ManB, ISTb, or InSv</td>
<td>step 30</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 114</td>
</tr>
</tbody>
</table>

30 Determine if the XLIU is a spare XLIU.

*Note:* You can identify spare XLIUs by the code Spre on the right of the service condition. This appears in the MAP display example in step 28. An
NT9X30
in a SuperNode SE LIS (continued)

XLIU with an X.25/X.75 service group (XSG) assigned to it is identified by
the code Rsvd.

<table>
<thead>
<tr>
<th>If the XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is a spare, and the state is ManB</td>
<td>step 34</td>
</tr>
<tr>
<td>is a spare, and the state is other than listed here.</td>
<td>step 33</td>
</tr>
<tr>
<td>is not a spare</td>
<td>step 31</td>
</tr>
</tbody>
</table>

31 Determine from office records or from operating company personnel the
number of a spare XLIU.

   Note: The spare XLIU must be on the same shelf as the out-of-service
XLIU.

<table>
<thead>
<tr>
<th>If a spare XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is available</td>
<td>step 32</td>
</tr>
<tr>
<td>is not available and the reserved XLIU is out of service</td>
<td>step 33</td>
</tr>
<tr>
<td>is not available and the reserved XLIU is in service</td>
<td>step 111</td>
</tr>
</tbody>
</table>

32 Move the XSG from the reserved XLIU to the spare XLIU. Consult the
procedure Moving an XSG to a spare XLIU in this document. Complete the
procedure and return to this point.

   Note: The XLIU for which you change cards becomes the spare. In the
following steps, this XLIU is the spare.

Go to step 34.

33 To manually busy the XLIU, type
   \texttt{>BSY}
   and press the Enter key.

   \textit{Example of a MAP response:}

   XLIU 27 BSY Passed

34 Repeat steps 28 to 33 for all XLIUs on the shelf side you are working on.

35 The next step depends if FRIUs are on the side of the LIS that contains the
NT9X30 card you want to replace.

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has FRIUs</td>
<td>step 36</td>
</tr>
</tbody>
</table>
To post the FRIU, type

```plaintext
>POST FRIU friu_no
```

and press the Enter key.

where

- `friu_no` is the number of the FRIU (0 to 500)

Example of a MAP display:
```
<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>FRIU 1</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>6</td>
<td>28</td>
</tr>
</tbody>
</table>

FRIU 8 InSv Rsvd
```

37. Determine the state of the FRIU.

**Note:** The state of the FRIU is on the right of the FRIU number. The state of the FRIU appears in the example MAP display in step 36.

<table>
<thead>
<tr>
<th>If the state of the FRIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, ISTb (NA), InSv, ISTb</td>
<td>step 38</td>
</tr>
<tr>
<td>or ISTb</td>
<td></td>
</tr>
<tr>
<td>is ManB</td>
<td>step 49</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 114</td>
</tr>
</tbody>
</table>

38. To access the CHAN level of the MAP display, type

```plaintext
>CARR; CHAN
```

and press the Enter key.

Example of a MAP display:
Determine if the FRIU has channelized access.

**Note:** A non-channelized FRIU has one assigned channel. A channelized FRIU has four or 24 assigned channels.

<table>
<thead>
<tr>
<th>If the FRIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is non-channelized</td>
<td>step 40</td>
</tr>
<tr>
<td>is channelized</td>
<td>step 42</td>
</tr>
</tbody>
</table>

To manually busy the channel, type

>`BSY`  

and press the Enter key.

To confirm the command, type

>`YES`  

and press the Enter key.

**Note:** If the channel is out of service, the system does not request confirmation.

Go to step 44.

To manually busy all channels, type

>`BSY  ALL`  

and press the Enter key.

To confirm the command type

>`YES`  

and press the Enter key.

**Note:** If all channels are out of service, the system does not request confirmation.

To access the CARR level of the MAP display type

>`QUIT`
and press the Enter key.

*Example of a MAP display:*

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>FRIU</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

FRIU 8 InSv Rsvd

CARRIER Alarm BER ES SES UAS
InSv

CHANNEL 1

45 To manually busy the carrier, type

`>BSY`

and press the Enter key.

*Example of a MAP response:*

Busying this carrier will affect 1 channels.
Please confirm ("YES", "Y", "NO", or "N"):  

46 To confirm the command, type

`>YES`

and press the Enter key.

*Example of a MAP response:*

Confirmed...BSY passed.

*Note:* If the carrier is out of service, the system does not request confirmation.

47 To quit the CARR level type

`>QUIT`

and press the Enter key.

48 To manually busy the FRIU type

`>BSY FORCE`

and press the Enter key.

*Example of a MAP response:*

Billing data is stored in the FRIU.
Uploading billing data ...
Uploaded FRS Billing data successfully ...
FRIU 8 BSY Passed

49 Repeat steps 36 to 48 for all FRIUs on the shelf side you are working on.
The next step depends if EIUs are in the shelf side that associates with the NT9X30.

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has EIUs</td>
<td>step 51</td>
</tr>
<tr>
<td>does not have EIUs</td>
<td>step 56</td>
</tr>
</tbody>
</table>

**WARNING**

*Loss of service capacity*

The following routine can remove an EIU from service, so the LAN cannot access the Ethernet address. If other EIUs do not provide alternative addresses to the LAN, ASUs on the shelf will be isolated.

To post the EIU, type

```
>POST EIU eiu_no
```

and press the Enter key.

*where*

`eiu_no`

is the EIU number (0 to 511)

**Example of a MAP display:**

```
PM 2 0 7 0 14 63
EIU 0 0 0 0 0 1
EIU 1 InSv Rsvd
```

Determine the state of the EIU.

<table>
<thead>
<tr>
<th>If the state of the EIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, SysB (NA), ISTb, or InSv</td>
<td>step 53</td>
</tr>
<tr>
<td>is ManB or ManB (NA)</td>
<td>step 55</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 114</td>
</tr>
</tbody>
</table>

To manually busy the EIU, type

```
>BSY
```
and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the command passed</td>
<td>step 55</td>
</tr>
<tr>
<td>you need to confirm the command</td>
<td>step 54</td>
</tr>
</tbody>
</table>

54 To confirm the busy command type

>YES

and press the Enter key.

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 55</td>
</tr>
<tr>
<td>failed</td>
<td>step 115</td>
</tr>
</tbody>
</table>

55 Repeat steps 51 to 54 for all EIUs on the shelf side you are working on.

56 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

*Example of a MAP display:*

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0 . M Free . .
MS 1 . Slave . .
```

57 Determine the state of the MS that controls the mate F-bus.

*Note:* MS 0 controls F-bus 0, which is the mate F-bus for a card in slot 32F, 32R, or 30R. MS 1 controls F-bus 1, which is the mate F-bus for a card in slot 7F, 7R, or 8R.

<table>
<thead>
<tr>
<th>If the MS that controls the mate F-bus</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is in service or in-service trouble</td>
<td>step 59</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 58</td>
</tr>
</tbody>
</table>

58 Return the MS to service by following the correct MS alarm clearing procedure in *Alarm and Performance Monitoring Procedures.* Complete the procedure and return to this point.

59 To access the F-bus level of the MAP display, type

`>SHELF 0;CARD 12`
and press the Enter key.

*Example of a MAP display:*

<table>
<thead>
<tr>
<th>Shelf 0</th>
<th>1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card 1</td>
<td>1 2 3 4 5 6 7 8 9 0 1 2 3</td>
</tr>
<tr>
<td>Chain</td>
<td></td>
</tr>
<tr>
<td>MS 0</td>
<td>. . . . . - - . . . . . .</td>
</tr>
<tr>
<td>MS 1</td>
<td>. . . . . - - . . . . . .</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card 12</th>
<th>FBus Tap: 0</th>
<th>11 12 16 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0</td>
<td>. . . . .</td>
<td>.... .... ....</td>
</tr>
<tr>
<td>MS 1</td>
<td>. . . . .</td>
<td>.... .... ....</td>
</tr>
</tbody>
</table>

**CARD:**

**Note 1:** A dot (.) under the F-bus header indicates the F-bus is in service. An S indicates the F-bus is system busy. An M indicates the F-bus is manually busy. An I indicates the F-bus is in-service trouble. An O indicates that the F-bus is offline.

**Note 2:** Under the F-bus tap numbers, a C indicates the F-bus is manually busy. A C can also mean the controlling MS or MS port is system busy or manually busy. An S indicates the F-bus tap is system busy. A dot (.) indicates the F-bus tap is in service. An M indicates the F-bus tap is manually busy. An I indicates the F-bus tap is in-service trouble. A dash (-) indicates the F-bus tap is offline.

60 Determine the state of the mate F-bus and the provisioned mate F-bus taps.

**Note:** F-bus 0 (controlled by MS 0) is the mate F-bus that associates with a card in slot 30R, 32R, or 32F. F-bus 1 (controlled by MS 1) is the mate that associates with a card in slot 7R, 8R, or 7F.

<table>
<thead>
<tr>
<th>If the states</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are in-service. The state of the F-bus is InSv and all F-bus taps are . (dot)</td>
<td>step 61</td>
</tr>
<tr>
<td>are in any other state. The state of the F-bus is not InSv and one or more F-bus taps are not . (dot)</td>
<td>step 112</td>
</tr>
</tbody>
</table>
SuperNode SE LIS or ENI card replacement procedures

NT9X30 in a SuperNode SE LIS (continued)

To manually busy the F-bus associated with the NT9X30 card you want to replace, type

```>BSY  ms_no  FBUS```

and press the Enter key.

where

- **ms_no** is the number of the MS (0 or 1) that controls the F-bus

Note: MS 0 controls F-bus 0. F-bus 0 associates with a NT9X30 card in slot 4F. MS 1 controls F-bus 1. F-bus 1 associates with a NT9X30 card in slot 36F.

Example of a MAP response:

```
Request MAN BSY MS: 0 shelf 0 card:12 port 0
FBus requires confirmation because
the following NIUs may be active on this bus...
NIU 001 unit 0
NIU 001 unit 1
Please confirm ("YES", "Y", "NO", or "N")
```

<table>
<thead>
<tr>
<th>If the response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>indicates the BSY command passed</td>
<td>step 63</td>
</tr>
<tr>
<td>requests confirmation</td>
<td>step 62</td>
</tr>
</tbody>
</table>

To confirm the command, type

```>YES```

and press the Enter key.

**Example of a MAP response:**
NT9X30 in a SuperNode SE LIS (continued)

To determine which taps on the mate F-bus associate with each ASU on the NT9X30 card you replace, type

>TRNSL  0

and press the Enter key.

Example of a MAP response:

<table>
<thead>
<tr>
<th>Site</th>
<th>Flr</th>
<th>RPos</th>
<th>Bay_id</th>
<th>Shf</th>
<th>Description</th>
<th>Slot</th>
<th>EqPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST</td>
<td>01</td>
<td>F02</td>
<td>SCC</td>
<td>0</td>
<td>MS 0:0:12</td>
<td>08</td>
<td>9X73BA FRNT 17</td>
</tr>
<tr>
<td>HOST</td>
<td>01</td>
<td>F02</td>
<td>SCC</td>
<td>0</td>
<td>MS 0:0:12</td>
<td>08</td>
<td>9X79BA BACK 18</td>
</tr>
<tr>
<td>FBus 0 Tap 0 is on LIU7 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 11 is on LIU7 111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 12 is on LIU7 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 13 is on LIU7 201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 14 is on LIU7 202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 15 is on LIU7 203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 16 is on LIU7 204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 17 is on NIU 1 unit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 18 is on NIU 1 unit 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 19 is on XLIU 222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 20 is on XLIU 224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 21 is on LIU7 209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 22 is on LIU7 210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBus 0 Tap 23 is on LIU7 211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The tap numbers that appear in the example are for the F-buses. The Two MSs control the F-buses. In the MAP response example, tap 0 on F-bus 0 and tap 0 on F-bus 1 associate with LIU7 number 100.

Record the mate F-bus tap numbers for each ASU. The NT9X30 card you replace powers each ASU.

Select a tap to work on.

To manually busy the first mate F-bus tap you recorded in step 64, type

>BSY  ms_no  TAP  tap_no

and press the Enter key.

where

ms_no
is the number of the MS (0 or 1) that controls the mate F-bus

tap_no
is the number of a tap
Note: The MS 0 controls F-bus 0. The F-bus is the mate F-bus for an NT9X30 card in slot 36F. The MS 1 controls F-bus 1. The F-bus 1 is the mate F-bus for an NT9X30 card in slot 4F.

Example of a MAP display:

Warning, P-side nodes may be isolated.
Please confirm (“YES”, “Y”, “NO”, or “N”):

67 To confirm the command, type
   >YES
   and press the Enter key.

68 Repeat steps 66 and 67 for the mate F-bus taps that remain. You recorded the F-bus taps that remain in step 64.

At the LIS shelf

69

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To power down the NT9X30 card, press down and release the power switch on the faceplate of the card. The CONVERTER OFF LED turns on when the converter powers down.

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is lit</td>
<td>step 70</td>
</tr>
<tr>
<td>is not lit</td>
<td>step 113</td>
</tr>
</tbody>
</table>

70 Review the procedure Unseating cards in equipment shelves in this document. Unseat the NT9X74 card on the shelf side. Complete the procedure and return to this point.

71 To replace the card, perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.
NT9X30
in a SuperNode SE LIS (continued)

72  To power up the NT9X30 card, lift and release the power switch on the
faceplate of the card. The CONVERTER OFF LED turns off when the
converter powers up.

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is not lit</td>
<td>step 73</td>
</tr>
<tr>
<td>is lit</td>
<td>step 113</td>
</tr>
</tbody>
</table>

73  To reseat the NT9X74 card, perform the procedure Reseating cards in
equipment shelves in this document. Complete the procedure and return to
this point.

At the MAP terminal

74  To return to service the F-bus that you manually busied in step 61, type

>RTS  ms_no  FBUS

and press the Enter key.

where

\[ ms\_no \]

is the number of the MS (0 or 1)

Example of a MAP response:

Request return to Service MS: 0 shelf 0 card:12 port 0FBus

75  To return to service one of the mate F-bus taps that you busied in steps 66 to
68, type

>RTS  ms_no  TAP  tap_no

and press the Enter key.

where

\[ ms\_no \]

is the number of the MS (0 or 1) that controls the mate F-bus

\[ tap\_no \]

is the tap number

Note: You recorded the tap numbers in step 64.

Example of a MAP response:
NT9X30

in a SuperNode SE LIS (continued)

Repeat step 75 for each of the mate F-bus taps that you busied in steps 66 to 68.

To access the PM level of the MAP display, type

>`PM

and press the Enter key.

Determine if the NIUs are in the LIS you are working on.

<table>
<thead>
<tr>
<th>If shelf</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has an NIU</td>
<td>step 79</td>
</tr>
<tr>
<td>does not have an NIU</td>
<td>step 83</td>
</tr>
</tbody>
</table>

ATTENTION

The following routines provide instructions to return ASUs to service in this order: NIU, LIU7, FRIU, XLIU, and EIU.

The priority of services that the ASUs support can require you to return ASUs to service in a different order. The configuration of the shelf side can also require you to return ASUs to service in a different order. Contact operating company personnel or the next level of support to verify service priorities.

To post the NIU, type

>`POST  NIU  niu_no

and press the Enter key.

where

niu_no

is the number of the NIU (0 to 29)

To load the inactive NIU unit, type

>`LOADPM  INACTIVE
and press the Enter key.

*Example of a MAP response:*

NIU 1 Load Inactive Unit: Request has been submitted.
NIU 1 Load Unit 0: Command completed.
The Unit contains the "NRS0 123BA" load.

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 82</td>
</tr>
<tr>
<td>failed</td>
<td>step 81</td>
</tr>
</tbody>
</table>

81 To load the PM, perform the procedure *Loading a PM* in this document.
Complete the procedure and return to this point.

82 To return the inactive NIU unit to service, type

>`RTS INACTIVE`

and press the Enter key.

*Example of a MAP response:*

NIU 1 RTS Inactive Unit: Request has been submitted.
NIU 1 RTS Inactive Unit: Command completed.
The Unit is in service

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 83</td>
</tr>
<tr>
<td>failed</td>
<td>step 115</td>
</tr>
</tbody>
</table>

83 Determine if the CCS7 link interface units (LIU7) are in the shelf side that contains the NT9X30 you replaced.

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has LIU7s</td>
<td>step 84</td>
</tr>
<tr>
<td>does not have LIU7s</td>
<td>step 90</td>
</tr>
</tbody>
</table>

84 To post the LIU7, type

>`POST LIU7 liu_no`

and press the Enter key.

*where*

`liu_no` is the number of the LIU7 (0 to 511)
85 To load the LIU7, type

>`LOADPM`

and press the Enter key.

*Example of a MAP response:*

```
LIU7 208 LOADPM Passed
```

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 87</td>
</tr>
<tr>
<td>failed</td>
<td>step 86</td>
</tr>
</tbody>
</table>

86 To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

87 To return the LIU7 to service, type

>`RTS`

and press the Enter key.

*Example of a MAP response:*

```
LIU7 100 RTS Passed
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 88</td>
</tr>
<tr>
<td>failed</td>
<td>step 115</td>
</tr>
</tbody>
</table>

88 To activate the CCS7 link that associates with the LIU7, perform the procedure *Activating CCS7 links* in this document. Complete the procedure and return to this point.

89 Repeat steps 84 to 88 for all LIU7s on the shelf side.

90 Determine if the FRIUs are in the shelf side that contains the NT9X30.

<table>
<thead>
<tr>
<th>If shelf side</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has FRIU</td>
<td>step 91</td>
</tr>
<tr>
<td>does not have FRIU</td>
<td>step 102</td>
</tr>
</tbody>
</table>

91 To post the FRIU, type

>`POST FRIU friu_no`

and press the Enter key.

*where*
4-88  SuperNode SE LIS or ENI card replacement procedures

NT9X30
in a SuperNode SE LIS (continued)

To load the FRIU, type

>LOADPM

and press the Enter key.

*Example of a MAP response:*

FRIU 8 LOADPM Passed

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 94</td>
</tr>
<tr>
<td>failed</td>
<td>step 93</td>
</tr>
</tbody>
</table>

To load the FRIU, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

To return the FRIU to service, type

>RTS

and press the Enter key.

*Example of a MAP response:*

FRIU 8 RTS Passed

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 95</td>
</tr>
<tr>
<td>failed</td>
<td>step 115</td>
</tr>
</tbody>
</table>

To access the CARR level of the MAP display, type

>CARR

and press the Enter key.

To return the carrier to service, type

>RTS

and press the Enter key.

*Example of a MAP response:*

RTS passed.

Wait until the Mtce flag on the right of the CARRIER header does not appear in the display. The carrier will go ISTb at this point.
98  Wait 1 min for the carrier to go in service.

If after 1 min the state of the carrier
   Do
   
is InSv  step 99
   is any other state  step 115

99  To access the CHAN level of the MAP display, type
   >CHAN
   and press the Enter key.

100 To return the carrier to service, type
    >RTS
    and press the Enter key.

Example of a MAP response:

RTS passed.

101 Repeat steps 91 to 100 for all FRIUs on the shelf side.

102 Determine if the XLIUs or EIUs are in the shelf side that associates with the NT9X30.

If shelf side
   Do
   
has XLIUs or EIUs  step 103

does not have XLIUs or EIUs  step 108

103 To post the XLIU or EIU, type
    >POST  asu_type  asu_no
    and press the Enter key.

   where

   asu_type
   is the ASU type (XLIU or EIU)

   asu_no
   is the number of the ASU (0 to 511)

104 To load the XLIU or EIU, type
    >LOADPM
    and press the Enter key.

   If the LOADPM command
   Do
   
passed  step 106
NT9X30
in a SuperNode SE LIS (end)

If the LOADPM command Do
failed step 105

105 To load the XLIU, perform the procedure Loading a PM in this document. Complete the procedure and return to this point.

106 To return the XLIU or EIU to service, type 
>RTS
and press the Enter key.

If the RTS command Do
passed step 107
failed step 115

107 Repeat steps 103 to 106 for all XLIU and EIUs on the shelf side.

108 Determine the reason that you perform this procedure.

If a maintenance procedure Do
directed you to this procedure step 109
did not direct you to this procedure step 116

109 Return to the maintenance procedure that sent you to this procedure and continue as directed.

110 Clear all faults on the inactive NIU unit before you complete the activity switch. If you do not clear all faults, a loss of service will occur. For direction on how to proceed, contact the next level of support. Continue as directed by the next level of support.

111 Move the XSG to a spare XLIU before you manually busy an XLIU that has an XSG. If you do not perform this procedure, service degradation will occur for a long period of time. For direction on how to proceed, contact the next level of support. Continue as directed by the next level of support.

112 If you continue this procedure, you can isolate a minimum of one application specific unit (ASU). To determine if you must continue this procedure, contact operating company personnel or the next level of support. Continue as directed by operating company personnel or the next level of support.

113 Do not continue this procedure if the power converter is not powered down correctly. For direction on how to proceed, contact operating company personnel or the next level of support.

114 To determine why the component is offline, contact operating company personnel. Continue as directed by operating company personnel.

115 For additional help, contact the next level of support.

116 The procedure is complete.
Application

Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX22</td>
<td>BA, BB, CA</td>
<td>Integrated processor and F-bus interface card</td>
<td>link interface shelf (LIS), enhanced network and interface (ENI)</td>
</tr>
<tr>
<td>NTFX09</td>
<td>AA</td>
<td>C-bus interface paddle board</td>
<td>LIS, ENI</td>
</tr>
<tr>
<td>NTFX10</td>
<td>AA</td>
<td>HDLC frame processor card</td>
<td>LIS, ENI</td>
</tr>
</tbody>
</table>

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- equipped shelf
- equipped frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

- *Loading a PM*
- *Moving an XSG to a spare XLIU*
- *Replacing a card*
- *Verifying load compatibility of SuperNode cards*

Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing XLIU cards in a SuperNode SE LIS

- Move XSG to a spare XLIU
- Manually busy XLIU
- Manually busy F-bus taps for the XLIU
- Replace card
- Return F-bus taps to service
- Load XLIU
- Return XLIU to service
- End

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.
Replacing XLIU cards in a SuperNode SE LIS

At your current location

1 Obtain a replacement card. Make sure that the replacement card and the card you replace have the same PEC and PEC suffix.

2 Review the procedure Verifying load compatibility of SuperNode cards in this document. To make sure that the replacement card is compatible, perform the procedure. Complete the procedure and return to this point.

Note: Do not use this procedure for XLIU cards with PECs NTFX09 and NTFX10.

At the MAP terminal

3 To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>23</td>
<td>0</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

4 To post the XLIU that associates with the card, type

>POST XLIU xliu_no

and press the Enter key.

where

xliu_no

is the number of the XLIU (0 to 511)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>XLIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

XLIU 27 InSv Rsvd

WARNING

Loss of service

This procedure removes an XLIU from service and temporarily interrupts traffic on associated X.25/X.75 channels. Perform this procedure only if you need to return the XLIU to service. Unless it is urgent, perform this procedure during periods of low traffic only.

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>XLIU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>InSv</td>
<td>Rsvd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**XLIU cards in a SuperNode SE LIS** (continued)

5. Determine the state of the XLIU.

   *Note:* The state of the XLIU is on the right of the XLIU number. The example MAP display in step 4 shows the state of the XLIU.

<table>
<thead>
<tr>
<th>If the state of the XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SysB, ISTb (NA), ManB, ISTb, or InSv</td>
<td>step 6</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 31</td>
</tr>
</tbody>
</table>

6. Determine if the XLIU is a spare.

   *Note:* The code Spre on the right of the service condition in the MAP display identifies a spare XLIU. The code Rsvd identifies an XLIU that has an X.25/X.75 service group (XSG).

<table>
<thead>
<tr>
<th>If the XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is not a spare</td>
<td>step 7</td>
</tr>
<tr>
<td>is a spare, and the service state is SysB, ISTb (NA), ISTb, or InSv</td>
<td>step 9</td>
</tr>
<tr>
<td>is a spare, and the service state is ManB</td>
<td>step 12</td>
</tr>
</tbody>
</table>

7. Determine from office records or from operating company personnel the number of a spare XLIU.

   *Note:* The spare XLIU must be on the same shelf as the out-of-service XLIU.

<table>
<thead>
<tr>
<th>If a spare XLIU</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is available</td>
<td>step 8</td>
</tr>
<tr>
<td>is not available and the reserved XLIU is out of service</td>
<td>step 9</td>
</tr>
<tr>
<td>is not available and the reserved XLIU is in service</td>
<td>step 30</td>
</tr>
</tbody>
</table>

8. Move the XSG from the reserved XLIU to the spare XLIU. Perform the procedure *Moving an XSG to a spare XLIU* in this document. Complete the procedure and return to this point.

   *Note:* The XLIU that you change cards for is now the spare. This procedure refers to the XLIU as the spare in the following steps.

   Go to step 12.
9. To manually busy the XLIU, type
   >BSY
   and press the Enter key.
   
   *Example of a MAP response*

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLIU 27 BSY Passed</td>
<td>step 11</td>
</tr>
<tr>
<td>Warning: XLIU 27 is currently being imaged. The BSY command will be aborted unless the FORCE option is used.</td>
<td>step 10</td>
</tr>
</tbody>
</table>

10. To manually force bsy the XLIU, type
    >BSY  FORCE
    and press the Enter key.
    
    *Example of a MAP response:*

    **WARNING: XLIU 27 is currently being imaged.**
    Do you wish to abort imaging to proceed with the BSY request?
    Please confirm ("YES", "Y", "NO", or "N"):  

If To	Do
proceed with BSY FORCE request	step 11
abort BSY FORCE request	step 13

11. To force bsy the XLIU, type
    >YES
    and press the Enter key.
    
    *Example of a MAP response:*

    Imaging will be aborted on XLIU 27.

12. To access the MS level of the MAP display, type
    >MAPCI;MTC;MS
    and press the Enter key.
To access the F-bus level of the MAP display, type

>SHLF 0;CARD 12

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0 . M Free .
MS 1 . Slave .
```

13

To determine which F-bus taps associate with the card that you replace, type

>TRNSL 0

and press the Enter key.

Example of a MAP response:
XLIU cards
in a SuperNode SE LIS (continued)

Site Flr RPos Bay_id Shf Description Slot EqPEC
HOST 01 F02 SCC 0 39 MS 0:0:12 08 9X73BA FRNT 17
HOST 01 F02 SCC 0 39 MS 0:0:12 08 9X79BA BACK 18
FBus 0 Tap 0 is on LIU7 100
FBus 0 Tap 11 is on LIU7 111
FBus 0 Tap 12 is on LIU7 200
FBus 0 Tap 13 is on LIU7 201
FBus 0 Tap 14 is on LIU7 202
FBus 0 Tap 15 is on LIU7 203
FBus 0 Tap 16 is on LIU7 204
FBus 0 Tap 17 is on NIU 1 unit 0
FBus 0 Tap 18 is on NIU 1 unit 1
FBus 0 Tap 19 is on XLIU 222
FBus 0 Tap 20 is on XLIU 224
FBus 0 Tap 21 is on LIU7 209
FBus 0 Tap 22 is on LIU7 210
FBus 0 Tap 23 is on LIU7 211

**Note:** The tap numbers that appear in the example are for the F-buses that both MSs control. The example MAP response indicates that tap 19 on F-bus 0 and tap 19 on F-bus 1 both associate with XLIU number 222.

15 Record the tap number that associates with the XLIU.

16 To manually busy the XLIU tap on F-bus 0, type

```plaintext
>BSY 0 TAP tap_no
```

and press the Enter key.

**where**

- **tap_no** is the number of the F-bus tap that you recorded in step 15

**Example of a MAP display:**

```
Warning, P-side nodes may be isolated.
Please confirm ("YES", "Y", "NO", or "N"):
```

17 To confirm the command, type

```plaintext
>YES
```

and press the Enter key.

18 To manually busy the XLIU tap on F-bus 1, type

```plaintext
>BSY 1 TAP tap_no FORCE
```

and press the Enter key.

**where**

- **tap_no** is the number of the F-bus tap that you recorded in step 15
XLIU cards
in a SuperNode SE LIS (continued)

Example of a MAP display:

Warning, P-side nodes may be isolated.
Please confirm ("YES", "Y", "NO", or "N"):

19  To confirm the command, type
    >YES
    and press the Enter key.

At the LIS shelf
20  To replace a card, perform the procedure Replacing a card in this document.
    Complete the procedure and return to this point.
    Note: If the card you replace has switches, make sure that the switches
    on the replacement card have the same settings.

At the MAP terminal
21  To return to service the F-bus 0 tap that you busied in step 16, type
    >RTS 0 TAP tap_no
    and press the Enter key.
    where
    tap_no
    is the number of the F-bus tap that you recorded in step 15

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 22</td>
</tr>
<tr>
<td>failed</td>
<td>step 32</td>
</tr>
</tbody>
</table>

22  To return to service the F-bus tap that you busied in step 18, type
    >RTS 1 TAP tap_no
    and press the Enter key.
    where
    tap_no
    is the number of the F-bus tap recorded in step 15

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 23</td>
</tr>
<tr>
<td>failed</td>
<td>step 32</td>
</tr>
</tbody>
</table>
23 The next action depends on the reason that you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 24</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 25</td>
</tr>
</tbody>
</table>

24 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

25 To access the PM level of the MAP display, type

```plaintext
>PM
```

and press the Enter key.

26 To post the XLIU, type

```plaintext
>POST XLIU xliu_no
```

and press the Enter key.

where

```plaintext
xliu_no
```

is the number of the XLIU (0 to 511)

27 To load the XLIU, type

```plaintext
>LOADPM
```

and press the Enter key.

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 29</td>
</tr>
<tr>
<td>failed</td>
<td>step 28</td>
</tr>
</tbody>
</table>

28 To load the PM, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

29 To return the XLIU to service, type

```plaintext
>RTS
```

and press the Enter key.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 34</td>
</tr>
<tr>
<td>failed</td>
<td>step 32</td>
</tr>
</tbody>
</table>

30 Move the XSG to a spare XLIU before you manually busy an XLIU that has an assigned XSG. If you do not move the XSG to a spare XLIU, service degradation occurs for a long period of time. For directions on how to
XLIU cards
in a SuperNode SE LIS (end)

proceed without a spare XLIU, contact operating company personnel or the next level of support.

31 Consult operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

32 For additional help, contact the next level of support.

33 Abort the BSY FORCE request by typing
   >NO
   and pressing the Enter key.

   Example of a MAP response:

   BSY command aborted due to imaging in progress.

34 The procedure is complete.
5 MTM card replacement procedures

This chapter provides card replacement procedures for the maintenance trunk module (MTM).
NT1X76 in an MTM

Application

Use this procedure to replace an NT1X76 card in a maintenance trunk module (MTM).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffixes</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1X76</td>
<td>AE</td>
<td>DRAM PROM memory card</td>
</tr>
</tbody>
</table>

If you cannot identify the product engineering code (PEC), suffix, and shelf or frame for the card you want to replace, refer to the index. The index contains a list of cards, shelves, and frames for this card replacement Northern Telecom Publication (NTP).

Common procedures

This procedure refers to the *Shelf card removal and replacement procedure*.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing an NT1X76 in an MTM

From alarm or trouble procedure.

POST the DRAM controller circuit.

BSY the next circuit on the DRAM.

All circuits BSY except controller?

POST and BSY the DRAM controller circuit.

Replace the card that has faults.

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

1

POST the DRAM controller circuit.

Return to service (RTS) the next DRAM circuit.

All circuits RTSed except controller?

POST and RTS the DRAM controller circuit.

Did the DRAM RTS?

End procedure

Y

Y

N

N

Y

Escalate to next level of support.

N

N

Y
Replacing an NT1X76 in an MTM

At your current location:
1 Proceed if a step in a maintenance procedure directs you to this procedure. Separate use of this procedure can cause equipment damage or service interruption.

At the MAP terminal:
2 To access the trunk test position (TTP) level of the MAP and post the DRAM controller circuit (0), type

```
>MAPCI;MTT;TRKS;TTP;POST TM MTM n 0
```

and press the Enter key.

*Note:* You must busy all other DRAM circuits before you busy the DRAM controller circuit.

Example of a MAP response:

```
CM MS IOD Net PM CCS Lns Trks Ext EIO
.......
TTP
0 Quit_ POST DELQ BUSYQ DIG
2 Post_ TTP 6-025
3 Seize_ CKT TYPE PM NO. COM LANG STA S R DOT TE RESULT
4 ANN MTM 1 0 DRAM0 0 IDL
5 Bsy_
6 RTS_
7 Tst_
8
9 CktInfo
10 CktLoc
11 Hold
12 Next_
13 Rls_
14 Ckt_
15 TrnsVf_
16 StkSdr_
17 Pads_
18 Level_
```
To proceed to the next circuit on the DRAM, type

>`NEXT`

and press the Enter key.

To busy the circuit on the DRAM, type

>`BSY`

and press the Enter key.

Repeat steps 3 and 4 until all circuits on the DRAM except the DRAM controller circuit (0) are busy.

*Example of a MAP response:*

```
CM MS IOD Net PM CCS Lns Trks Ext EIO
.
TTP
0 Quit_ POST DELQ BUSYQ DIG
2 Post_ TTP 6-025
3 Seize_ CKT TYPE PM NO. COM LANG STA S R DOT TE RESULT
4 ANN MTM 1 2 ACTSTOPS 0 MB
5 Bsy_
6 RTS_
7 Tst_
8
9 CktInfo
10 CktLoc
11 Hold
12 Next_
13 Rls_
14 Ckt_
15 TrnsVf_
16 StkSdr_
17 Pads_
18 Level_
```

To post the DRAM controller circuit (0), type

>`POST TM MTM n 0`
and press the Enter key.

where

\[ n \]

is the MTM number and the location of the DRAM card that has faults

\[ 0 \]

is the DRAM controller circuit

---

**WARNING**

Service interruption

Removal of a DRAM circuit from service causes service interruption.

---

To busy the DRAM controller circuit, type

\[ >BSY \]

and press the Enter key.

*Example of a MAP response:*

```
CM MS IOD Net PM CCS Lns Trks Ext EIO

TTP
 0 Quit_ POST DELQ BUSYQ DIG
 2 Post_ TTP 6-025
 3 Seize_ CKT TYPE PM NO. COM LANG STA S R DOT TE RESULT
 4 Bsy_ ANN MTM 1 0 DRAM0 0 MB
 5
 6
 7
 8
 9 CktInfo
 10 CktLoc
 11 Hold
 12 Next_
 13 Rls_
 14 Ckt_
 15 TrnsLVf_
 16 StksDrs_
 17 Pads_
 18 Level_
```
At the MTM:

7 To remove and replace the NT1X76 card, see the Common card removal and replacement procedure in this document. Complete the removal and replacement procedure. Return to step 8.
   
   **Note:** Make sure that the dip switches on the new card are in the same positions as the dip switches on the old card.

8 To post the DRAM controller circuit (0), type
   
   `>POST TM MTM n 0`
   
   and press the Enter key.

   *where*

   - `n` is the MTM number and the location of the DRAM card
   - `0` is the DRAM controller circuit

9 To proceed to the next circuit on the DRAM, type
   
   `>NEXT`
   
   and press the Enter key.

10 To perform a RTS for the circuit on the DRAM, type
   
   `>RTS`
   
   and press the Enter key.

   Repeat steps 9 and 10 until all DRAM circuits busied in step 4 RTS.

   **Example of a MAP response:**
To post the DRAM controller circuit (0), type

>POST TM MTM n 0

and press the Enter key.

where

n is the MTM number and the location of the DRAM card

0 is the DRAM controller circuit

To RTS the DRAM controller circuit, type

>RTS

and press the Enter key.

Example of a MAP response:
### DRAM controller circuit and status

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>MS</td>
<td>IOD</td>
<td>Net</td>
<td>PM</td>
<td>CCS</td>
<td>Lns</td>
<td>Trks</td>
<td>Ext</td>
<td>EIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTP</td>
<td>Quit_</td>
<td>POST</td>
<td>DELQ</td>
<td>BUSYQ</td>
<td>DIG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Post_</td>
<td>TTP 6-025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Seize_</td>
<td>CKT TYPE</td>
<td>PM NO.</td>
<td>COM LANG</td>
<td>STA</td>
<td>S</td>
<td>R</td>
<td>DOT</td>
<td>TE</td>
<td>RESULT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ANN</td>
<td>MTM 1</td>
<td>0</td>
<td>DRAM0</td>
<td>0</td>
<td>IDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bsy_</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RTS_</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tst_</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CktInfo</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CktLoc</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hold</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Next_</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ris_</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ckt_</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TrnsIVf_</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>StkSdr_</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pads_</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Level_</td>
<td></td>
</tr>
</tbody>
</table>

**If the DRAM RTS, the response on the MAP display is IDL**

<table>
<thead>
<tr>
<th></th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 13</td>
<td>For additional help, contact the next level of support.</td>
</tr>
</tbody>
</table>

**If the DRAM does not RTS**

<table>
<thead>
<tr>
<th></th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 14</td>
<td>This procedure is complete. Return to the main procedure that sent you to this procedure.</td>
</tr>
</tbody>
</table>

**Step 13**

For additional help, contact the next level of support.

**Step 14**

This procedure is complete. Return to the main procedure that sent you to this procedure.
NT3X67 in an MTM

Application

Use this procedure to replace an NT3X67 card in an MTM.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffixes</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT3X67</td>
<td>BB</td>
<td>Six party conference circuit card</td>
</tr>
</tbody>
</table>

If you cannot identify the PEC, suffix, and shelf or frame for the card you want to replace, refer to the Index. The index contains a list of cards, shelves, and frames in this card replacement NTP.

Common procedures

This procedure references Shelf card removal and replacement procedure:

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Use the instructions that follow this flowchart to replace the card.
Summary of Replacing an NT3X67 in an MTM

- From alarm or trouble procedure
- POST and BSY the associated CF3P
- Replace the card that has faults
- POST and RTS the CF3P
- Did the CF3P RTS?
  - N: Escalate to next level of support
  - Y: End

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.
Replacing an NT3X67 in an MTM

At your current location
1 Proceed only if a step in a maintenance procedure directs you to this procedure. Independent use of this procedure can cause equipment damage or service interruption.

At the MAP
2 To post and busy the associated circuit on the card, type
   \texttt{>MAPCI;MTC;TRKS;TTP;POST G CF3P nnn}
   and press the Enter key.
   \textit{where}
   \begin{itemize}
   \item \texttt{nnn} is the associated circuit on the conference circuit card
   \item \texttt{BSY}
   \end{itemize}
   and press the Enter key.
   \textbf{Note:} Each NT3X67 circuit card provides two three-port conference circuits. Make sure that both circuits are busy before you replace the circuit card. One circuit is already busy in the main procedure.

At the MTM
3 Remove and replace the NT3X67 card. \textit{Common card removal and replacement} in this document contains this procedure. Return to step 4 after you complete the removal and replacement procedure.
   \textbf{Note:} Make sure the dip switches on the new card are set to the same positions as the dip switches on the old card.

At the MAP
4 To return to service the CF3P you busied in step 2, type
   \texttt{>POST CF3P nnn}
   and press the Enter key.
   \textit{where}
   \begin{itemize}
   \item \texttt{nnn} is the CF3P you busied in step 2
   \item \texttt{RTS}
   \end{itemize}
   and press the Enter key.

\begin{tabular}{ll}
\textbf{If the CF3P} & \textbf{Do} \\
returns to service & step 6 \\
does not return to service & step 5 \\
\end{tabular}

5 For additional help, contact the next level of support.
The procedure is complete. Return to the main procedure and continue as the procedure directs.
6 SuperNode message switch card replacement procedures

Introduction
This chapter contains card replacement procedures for the SuperNode message switch (MS). The first section in the chapter provides diagrams of MS shelf layouts.

Card replacement procedures for the SuperNode SE MS are in the chapter “SuperNode SE message switch card replacement procedures”.

The chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures” contains card replacement procedures for the following:
• frame supervisory panel (FSP)
• modular supervisory panel (MSP)

Each procedure contains the following sections:
• Application
• Common procedures
• Action

Application
This section identifies the MS card(s) in the replacement procedure.

Common procedures
This section lists common procedures required during the MS card replacement procedure. A common procedure is a series of steps that repeat within maintenance procedures. The removal and replacement of a card is an example of a common procedure. The common procedures chapter in this NTP contains common procedures.

Do not go to common procedures unless the step-action procedure directs you to go.
**Action**

This section contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

**Recording card replacement activities**

When you replace a card, record the following information in office records:

• the serial number of the card that you replaced
• the date that you replaced the card
• the reason that you replaced the card
SuperNode MS shelf layouts

Application

This section contains the following diagrams:

- dual-plane combined core cabinet (DPCC)
- SuperNode message switch (MS)

Figure Dual-plane combined core cabinet
SuperNode message switch card replacement procedures

SuperNode MS shelf layouts (end)

Figure SuperNode message switch that shows common fill

Legend:
- Slot for card or paddle board

297-8021-547 Standard 14.02 May 2001
Interface cards
in a SuperNode MS

Application

Use this procedure to replace interface cards in a SuperNode message switch (MS), as listed in the following table.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X20</td>
<td>AA</td>
<td>DS512 paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X20</td>
<td>BB</td>
<td>DS512 interface CM-MS EN-MS paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X23</td>
<td>AA, BA</td>
<td>Four-port DS30 paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X54</td>
<td>AA, AB, AC, AD</td>
<td>Subsystem clock paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X62</td>
<td>BA, BB, CB</td>
<td>Four-port subrate DS512 paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X69</td>
<td>BA</td>
<td>DMS-bus 16-link DS30 paddle board</td>
<td>MS</td>
</tr>
</tbody>
</table>

Refer to the “Index”, if you cannot identify the following information for the card you want to replace:

- the product engineering code (PEC)
- suffix, or
- provisioned shelf or frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

- Cleaning fiber optic components and assemblies
- Failure to switch clock mastership

Do not go to the common procedure unless the step-action procedure directs you to go.
Interface cards in a SuperNode MS (continued)

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Replacing Interface cards in a SuperNode MS

1. Check card release compatibility
   - Compatible?
     - Yes: Switch clock mastership
     - No: Obtain a compatible card
2. Card on master MS?
   - Yes: Switch clock mastership
   - No: Manually busy MS
3. Power down MS
   - Replace card
   - Power up MS
   - Load MS again
   - Test MS
4. Return MS to service
   - End
Interface cards in a SuperNode MS (continued)

Replacing Interface cards in a SuperNode MS

At the MAP terminal

1. Obtain a replacement card. Make sure that the replacement card and the card you remove have the same product engineering code (PEC) and PEC suffix.

2. To ensure that the replacement card is compatible with the software load, type

   `>CHECKREL MS pec release`

   and press the Enter key.

   Where

   pec
   is the PEC and suffix of the new card

   release
   is the two-character code located on the faceplate of the replacement card

   Example input:

   `>CHECKREL MS NT9X20AA 2Z`

   Example of a MAP response:

<table>
<thead>
<tr>
<th>PEC</th>
<th>BASELINE</th>
<th>EXCEPT</th>
<th>RELEASE</th>
<th>COMPATIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X20AA</td>
<td>50</td>
<td>None</td>
<td>2Z</td>
<td>*NO</td>
</tr>
</tbody>
</table>

   Card release is below baseline. Do not plug the card into the MS.

   If the replacement card is below baseline, do step 3.

   If the replacement card is on or above baseline, do step 6.

3. From the MAP display, record the baseline release code (BASELINE) and any exception release codes (EXCEPT).

4. Determine which release codes are compatible with the software load in the switch. A compatible release code is one that is

   - greater than or equal to the baseline release code, and
   - not an exception release code

   Note: The range of release codes in ascending order is 01 to 09, 0A to 0Z, and 10 to VZ.
Interface cards in a SuperNode MS (continued)

5 Obtain a replacement card with a compatible release code.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>can obtain a compatible replacement card</td>
<td>step 2</td>
</tr>
<tr>
<td>cannot obtain a compatible replacement card</td>
<td>step 52</td>
</tr>
</tbody>
</table>

6 To access the MS level of the MAP display, type

>`MAPCI;MTC;MS`

and press the Enter key.

*Example of a MAP response:*

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0 . M Free . .
MS 1 . Slave F S
```

7 Determine the clocking configuration.

*Note:* The clocking configuration appears under the Clock header of the MAP display.

<table>
<thead>
<tr>
<th>If the MS that contains the card you will replace</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the slave MS, indicated by Slave, S Flt, S OOS, or S Free under the Clock header</td>
<td>step 11</td>
</tr>
<tr>
<td>is the master MS, indicated by Master, M Free, or M Flt under the Clock header</td>
<td>step 8</td>
</tr>
</tbody>
</table>

8 To switch clock mastership, type

>`SWMAST`

and press the Enter key.

*Example of a MAP response:*

```
Request to Switch Clock Mastership MS: 0 submitted.
Request to Switch Clock Mastership MS: 0 passed.
```

<table>
<thead>
<tr>
<th>If the SWMAST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 10</td>
</tr>
<tr>
<td>failed</td>
<td>step 9</td>
</tr>
</tbody>
</table>

9 Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.
Interface cards in a SuperNode MS (continued)

10 Wait 10 min to make sure MS has stability. Continue this procedure.

11 Determine if the slave MS is manual busy.
   
   **Note:** The letter M on the right of the MS 0 or MS 1 header on the MAP display identifies a manual busy MS.

<table>
<thead>
<tr>
<th>If the slave MS is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not manual busy</td>
<td>step 12</td>
</tr>
<tr>
<td>manual busy</td>
<td>step 13</td>
</tr>
</tbody>
</table>

**CAUTION**  
Possible service interruption  
Make sure that you manually busy the slave MS. Do not busy the master MS. If you busy the master MS, you can cause service interruption.

To manually busy the slave MS, type

```
>BSY ms_number
```

and press the Enter key.

*where*

**ms_number**  
is the number of the slave MS (0 or 1)

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 13</td>
</tr>
<tr>
<td>aborted or failed</td>
<td>step 52</td>
</tr>
</tbody>
</table>

**At the MS shelf**

13 Determine if the LED on the NT9X13 card in the slave MS is lit.

   **Note:** Allow 5 min for the LED to light.

<table>
<thead>
<tr>
<th>If the LED is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>lit</td>
<td>step 14</td>
</tr>
<tr>
<td>not lit</td>
<td>step 52</td>
</tr>
</tbody>
</table>
Interface cards in a SuperNode MS (continued)

14

CAUTION
Possible loss of service
Make sure that you power down the slave MS. If you power down the master MS, the system will shut down.

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards or cables. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects cards against static electricity damage.

Power down the slave MS, as follows:

a  Press down and release the switch on the faceplate of the NT9X30 power converter in slot 4F.
b  Press down and release the switch on the faceplate of the NT9X31 power converter in slot 1F.
c  Press down and release the switches on the faceplates of the power converters in slots 33F and 36F at the same time.

15  Locate the card on the shelf.
16  The next action depends on the type of card you replace.

<table>
<thead>
<tr>
<th>If the card you are replacing is an</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X20</td>
<td>step 17</td>
</tr>
<tr>
<td>NT9X23</td>
<td>step 21</td>
</tr>
<tr>
<td>NT9X54</td>
<td>step 23</td>
</tr>
<tr>
<td>NT9X62</td>
<td>step 25</td>
</tr>
<tr>
<td>NT9X69</td>
<td>step 28</td>
</tr>
</tbody>
</table>
Label each fiber cable. Use Transmit for the top cable and Receive for the bottom cable.

18 Disconnect the fiber cables from the faceplate of the card, as follows:
   a Loosen the fiber connections with the locking levers open.
   b Carefully push in and turn the fiber cable connector counter-clockwise halfway until the connector slides out of the receptacle.

   Note: The NT9X20 cable connections appear in Figure at the end of this procedure.

19 Perform the procedure Cleaning fiber optic components and assemblies in this document. Complete the procedure and return to this point.

20 Go to step 29.

21 Disconnect the RS-232 cable from the card you are removing, as follows:
   a To prevent damage to the pins, remove the connector at a 90° angle to the faceplate.
   b Loosen the cable with the latch handles up.

   Note: The RS232 cable connection appears in Figure at the end of this procedure.

22 Go to step 29.

23 Label the cables connected to the faceplate of the card you are replacing.

   Note: The NT9X54 cable connections appear in Figure at the end of this procedure.
24 Disconnect the cables from the faceplate of the card you are replacing. Note the connector numbers.
Go to step 29.

25 Label each fiber cable. Use Transmit for the top cable and Receive for the bottom cable.

*Note:* The NT9X62 cable connections appear in Figure at the end of this procedure.

26

**DANGER**

*Do not contaminate the fiber tip surface*
Do not touch the tip of the fiber. Dirt or oil from the skin transfers to the fiber tip surface and degrades fiber performance.

**DANGER**

*Fiber cable can become damaged*
Handle fiber cables carefully. Do not crimp or bend fiber cables to a radius of less than 25 mm (1 in.).

Disconnect the fiber links from the card as follows:

a Loosen the fiber connections with the latch handles up.
b Push in and turn the fiber cable connector counter-clockwise until the connector slides out of the receptacle.
c Place dust caps on the ends of the connectors when you disconnect the connectors.

*Note:* The fiber cable connections appear in Figure at the end of this procedure.
Interface cards in a SuperNode MS (continued)

27 Go to step 29.

28

**DANGER**

Possible damage to the pins on the DS30 connector

Do not remove the cables by first unseating the top pins and then unseating the bottom pins, or the reverse. This method bends the pins. When you insert the connector again, the pins may not align correctly. Some pins can then bend and become unseated from the connector block.

Disconnect the DS30 cables from the card as follows:

- **a** Remove the connectors at a 90° angle to the faceplate. This action prevents damage to the pins.
  
  *Note:* The DS30 cable connections appear in Figure at the end of this procedure.

- **b** Loosen the DS30 connections.

29

**DANGER**

Do not hold card by levers only

If you hold a card by the levers only, you can cause lever breakage. When you pull the card halfway out of the shelf, carefully grasp the card from below for more secure support. Continue to remove the card from the shelf. Do not touch any wires or internal parts on the card.

Open the locking levers on the card you will replace.
30 Grasp the locking levers. Carefully pull the card toward you until the card protrudes 5 cm (about 2 in.) from the equipment shelf.

31 Hold the card by the faceplate with one hand while you support the bottom edge with the other hand. Carefully pull the card toward you until the card clears the shelf.
32 Place the card you removed in an electrostatic discharge (ESD) protective container.

33 Make sure the replacement card and the card you removed have the same PEC and PEC suffix.

34 Insert the replacement card into the shelf.
   a Open the locking levers on the card.
   b Hold the card by the faceplate with one hand while you support the bottom edge with the other hand. Carefully slide the card into the shelf.

35 The next action depends on the type of card you are replacing.

<table>
<thead>
<tr>
<th>If you are replacing an</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X20 or NT9X62</td>
<td>step 36</td>
</tr>
<tr>
<td>NT9X23</td>
<td>step 38</td>
</tr>
<tr>
<td>NT9X54</td>
<td>step 40</td>
</tr>
<tr>
<td>NT9X69</td>
<td>step 42</td>
</tr>
</tbody>
</table>

36

**DANGER**
Do not contaminate the fiber tip surface
Do not touch the tip of the fiber. Dirt or oil from the skin transfers to the fiber tip surface and degrades fiber performance.

Connect the fiber cables to the replacement card, as follows:
Interface cards in a SuperNode MS (continued)

- **a** Tighten the cable connections with the locking levers open.
- **b** Carefully guide the cable connector into the receptacle notches.
- **c** Push in and turn the cable connector clockwise halfway until the connection is tight.

37 Go to step 43.

38 Connect the RS-232 cable to the replacement card, as follows:

- **a** To prevent damage to the pins, carefully insert the connector into the card with the latch handles up.
- **b** Make sure the retaining screws on the RS-232 connection are tight and completely screwed in. Perform this action so that all pins make the correct contact.

39 Go to step 43.

40 Connect the cables to the replacement card.

41 Go to step 43.

42 Connect the DS30 cables again, as follows:

- **a** To prevent damage to the pins, carefully insert the connectors into the card.
- **b** Tighten the DS30 connections.
- **c** Make sure the retaining screws on the DS30 connections are tight and completely screwed in. Perform this action so that all pins make the correct contact.

43 Seat and lock the card.

- **a** Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Perform this action to make sure that you seat the card completely in the shelf.
- **b** Close the locking levers to secure the card.
44  Power up the slave MS as follows:
   a. Lift and release the switches on the faceplates of the power converters in
      slots 33F and 36F at the same time.
   b. Lift and release the switch on the faceplate of the NT9X31 power
      converter in slot 1F.
   c. Lift and release the switch on the faceplate of the NT9X30 power
      converter in slot 4F.

At the MAP terminal

45  To make sure that you are at the MS level of the MAP display, type
    \texttt{>MAPCI;MTC;MS}
    and press the Enter key.

46  To reload the slave MS, type
    \texttt{>LOADMS ms\_number}
    and press the Enter key.
    \textit{where}
    \begin{center}
    \textit{ms\_number}
    \end{center}
    is the number of the slave MS (0 or 1)

Example of a MAP response:

\begin{verbatim}
Active boot file CSP04AX\_MS from S01DVOL1 on SLM DISK
will be loaded
Do you want to proceed with loading?
Please confirm ("YES", "Y", "NO", or "N"):
\end{verbatim}

<table>
<thead>
<tr>
<th>If the response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>indicates the LOADMS command passed</td>
<td>step 48</td>
</tr>
<tr>
<td>requests confirmation</td>
<td>step 47</td>
</tr>
</tbody>
</table>

47  To confirm the command, type
    \texttt{>YES}
    and press the Enter key.

<table>
<thead>
<tr>
<th>If the LOADMS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 48</td>
</tr>
<tr>
<td>failed</td>
<td>step 52</td>
</tr>
</tbody>
</table>
Interface cards in a SuperNode MS (continued)

48 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 49</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 50</td>
</tr>
</tbody>
</table>

49 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

50 To perform an out-of-service test on the slave MS, type

```
>TST ms_number
```

and press the Enter key.

where

- `ms_number` is the number of the slave MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted.
Request to TEST OOS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS0.
Request to TEST VIA MATE MS: 0 submitted.
Request to TEST VIA MATE MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

If the TST command passed step 51

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 51</td>
</tr>
<tr>
<td>failed</td>
<td>step 52</td>
</tr>
</tbody>
</table>

51 To return the slave MS to service, type

```
>RTS ms_number
```

and press the Enter key.

where

- `ms_number` is the number of the slave MS (0 or 1)

Example of a MAP response:
Interface cards
in a SuperNode MS (continued)

Request to RTS MS: 0 submitted.
Request to RTS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 53</td>
</tr>
<tr>
<td>failed</td>
<td>step 52</td>
</tr>
</tbody>
</table>

52 For additional help, contact the next level of support.
53 The procedure is complete.

The following diagrams show the cable connections for the cards in this procedure.
Cable connections for an NT9X20 in a SuperNode MS

- Transmit port 0
- Receive port 0
- Receptacle
- Fiber cable connector
Interface cards in a SuperNode MS (continued)

Cable connections for an NT9X23 in a SuperNode MS
Interface cards
in a SuperNode MS (continued)

Cable connections for an NT9X54 in a SuperNode MS

- External reference clock cable
- Remote clock cable
- Alarm 01 cable
- Mate frame pulse cable
- Remote communication cable
- Composite clock
Interface cards in a SuperNode MS (continued)

Cable connections for an NT9X62 in a SuperNode MS
Cable connections for an NT9X69 in a SuperNode MS

NT9X69BA

DS30

DS30
Manually busying LIM-to-MS SR128 links

Application

Use this procedure to manually busy SR128 links between a link interface module (LIM) unit and the message switch (MS) before replacing an NT9X17 or NT9X62 card in the LIM unit. This procedure applies only to LIM units equipped with SR128 fiber links.

Before using this procedure, the LIM is posted and available for query; this procedure instructs you to again post the LIM you have been working on. This procedure also assumes a known location for the MS port card to be changed on the LIM.

Action

The following flowchart is only a summary of the procedure. To perform this procedure, use the instructions in the step-action procedure that follows the flowchart.
Manually busying LIM-to-MS SR128 links

Summary of Manually busying LIM-to-MS SR128 links

- Post the MS card
- Manually busy the MS port
- End

This flowchart summarizes the procedure.

Use the instructions in the procedure that follows this flowchart to perform the procedure.
Manually busying LIM-to-MS SR128 links

---

**CAUTION**

**Potential loss of service**

Proceed only if you have been directed to this procedure from a step in a maintenance procedure. This procedure removes LIM-to-MS SR128 links from service. Loss of service may result.

---

**At the MAP**

1. Display information about the SR128 links between the LIM unit that contains the card to be replaced and the MS by typing

   ```
 >TRNSL unit_no
   ```

   and pressing the Enter key.

   Where

   - **unit_no** is the number of the LIM unit (0 or 1)

   Example of a MAP response:

   ```
 LIM 0 UNIT 0 LINK 0 (9:0 - MS 1:20:0) Open
 LIM 0 UNIT 0 LINK 1 (9:1 - MS 0:20:0) Open
 LIM 0 UNIT 0 LINK 2 (9:2 - LIM 0:30:2) Open
 LIM 0 UNIT 0 LINK 3 is unequipped.
 LIM 0 UNIT 0 LINK 4 (10:0 - MS 0:21:0) Open
 LIM 0 UNIT 0 LINK 5 (10:1 - MS 1:21:0) Open
 LIM 0 UNIT 0 LINK 6 (10:2 - LIM 0:29:2) Open
 LIM 0 UNIT 0 LINK 7 is unequipped.
   ```

   **Note:** In this example response, 9:0 is slot 9 and port 0 on the LIM side of the connection. MS 1:20:0 is MS 1, card 20, and port 0 that the link is connected to in the MS.

---

**CAUTION**

**Possible service impact**

Manually busy only the SR128 links associated with a specific NT9X17 or NT9X62 card in the LIM unit. The remaining SR128 links associated with the LIM unit must remain in service.
Manually busy LIM-to-MS SR128 links (continued)

From the response obtained in step 1, record the MS number, MS card number, and MS port number for each LIM-to-MS link associated with the card to be replaced.

**Note:** Each MS port card for the LIM unit supports two LIM-to-MS links.

3 Access the SHELF level of the MAP display by typing

>MS; SHELF 0

and pressing the Enter key.

*Example of a MAP display:*

```
<table>
<thead>
<tr>
<th>Message Switch</th>
<th>Clock</th>
<th>Shelf 0</th>
<th>Inter-MS Link 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0</td>
<td></td>
<td>Master</td>
<td></td>
</tr>
<tr>
<td>MS 1</td>
<td></td>
<td>Slave</td>
<td></td>
</tr>
</tbody>
</table>

Shelf 0: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
Card 1: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Chain:
MS 0: .
MS 1: .
```

4 Post the MS card number of the first SR128 link you recorded in step 2 by typing

>CARD card_no

and pressing the Enter key.

*where*

`card_no`

is the card number (1 to 26) of the first link recorded in step 2

*Example of a MAP response:*

```
<table>
<thead>
<tr>
<th>Message Switch</th>
<th>Clock</th>
<th>Shelf 0</th>
<th>Inter-MS Link 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0</td>
<td></td>
<td>Master</td>
<td></td>
</tr>
<tr>
<td>MS 1</td>
<td></td>
<td>Slave</td>
<td></td>
</tr>
</tbody>
</table>

Shelf 0: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
Card 1: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Chain:
MS 0: .
MS 1: .
```

5 Manually busy the MS port for the first SR128 link recorded in step 2 by typing

>BSY ms_no PORT port_no

and pressing the Enter key.

*where*
Manually busying LIM-to-MS SR128 links (continued)

\[ \text{ms\_no} \]
- is the MS number (0 or 1) of the first link recorded in step 2

\[ \text{port\_no} \]
- is the MS port number (0 to 3) of the first link recorded in step 2

**Example of a MAP response:**

Request to MAN BUSY MS: 1 shelf: 0 card:20 port: 0 submitted.

Request to MAN BUSY MS: 1 shelf: 0 card:20 port: 0 passed.

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 6</td>
</tr>
<tr>
<td>failed</td>
<td>step 11</td>
</tr>
</tbody>
</table>

6 Determine the card number of the second SR128 link recorded in step 2.

<table>
<thead>
<tr>
<th>If the second SR128 link is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>on the same MS card as the first link</td>
<td>step 7</td>
</tr>
<tr>
<td>not on the same MS card as the first link</td>
<td>step 8</td>
</tr>
</tbody>
</table>

7

**CAUTION**

Possible service impact
Manually busy only the SR128 links associated with a specific NT9X17 or NT9X62 card in the LIM unit. The remaining SR128 links associated with the LIM unit must remain in service.

Manually busy the MS port for the second SR128 link by typing

\[ >\text{BSY} \ ms\_no \ PORT \ port\_no \]

and pressing the Enter key.

*where*

\[ \text{ms\_no} \]
- is the MS number (0 or 1) of the second link recorded in step 2
Manually busying LIM-to-MS SR128 links (continued)

**port_no**
is the MS port number (0 to 3) of the second link recorded in step 2

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 10</td>
</tr>
<tr>
<td>failed</td>
<td>step 11</td>
</tr>
</tbody>
</table>

8 Post the MS card number of the second SR128 link recorded in step 2 by typing

>`CARD card_no`

and pressing the Enter key.

where

**card_no**
is the card number (1 to 26) of the second link recorded in step 2

9 Manually busy the MS port for the second SR128 link by typing

>`BSY ms_no PORT port_no`

and pressing the Enter key.

where

**ms_no**
is the MS number (0 or 1) of the second link recorded in step 2

**port_no**
is the MS port number (0 to 3) of the second link recorded in step 2

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 10</td>
</tr>
<tr>
<td>failed</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 Post the LIM that contains the card to be replaced by typing

>`PM;POST LIM lim_no`

and pressing the Enter key.

where

**lim_no**
is the number of the LIM (0 to 16)

Example of a MAP display:

```
LIM 0 ISTb Links_OOS Taps_OOS
Unit0: ISTb 2 .
Unit1: InSv . .
```

Go to step 12.
Manually busying LIM-to-MS SR128 links (end)

11 For further assistance, contact the personnel responsible for the next level of support.

12 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
Returning LIM-to-MS SR128 links to service

Application
Use this procedure to return SR128 links between a link interface module (LIM) unit and the message switch (MS) to service after replacing an NT9X17 or NT9X62 card in a LIM unit. This procedure applies only to LIM units equipped with SR128 fiber links.

Action
The following flowchart is only a summary of the procedure. To perform this procedure, use the instructions in the step-action procedure that follows the flowchart.
Returning LIM-to-MS SR128 links to service (continued)

Summary of Returning LIM-to-MS SR128 links to service

- Post the MS card
- Return the port to service
- End

This flowchart summarizes the procedure.

Use the instructions in the procedure that follows this flowchart to perform the procedure.
Returning LIM-to-MS SR128 links to service

**CAUTION**

**Potential loss of service**

Proceed only if you have been directed to this procedure from a step in a maintenance procedure. This procedure returns LIM-to-MS SR128 links from service. Loss of service may result.

**At the MAP terminal**

1. Display information about the SR128 links between the LIM unit that contains the card to be replaced and the MS by typing
   
   >TRNSL  unit_no
   
   and pressing the Enter key.

   where

   **unit_no**

   is the number of the LIM unit (0 or 1)

   **Example of a MAP response:**

   | LIM 0 UNIT 0 LINK 0 ( 9:0 - MS 1:20:0 ) OEC |
   | LIM 0 UNIT 0 LINK 1 ( 9:1 - MS 0:20:0 ) Open |
   | LIM 0 UNIT 0 LINK 2 ( 9:2 - LIM 0:30:2 ) Open |
   | LIM 0 UNIT 0 LINK 3 is unequipped. |
   | LIM 0 UNIT 0 LINK 4 ( 10:0 - MS 0:21:0 ) Open |
   | LIM 0 UNIT 0 LINK 5 ( 10:1 - MS 1:21:0 ) OEC |
   | LIM 0 UNIT 0 LINK 6 ( 10:2 - LIM 0:29:2 ) Open |
   | LIM 0 UNIT 0 LINK 7 is unequipped. |

   **Note:** In this example response, 9:0 is slot 9 and port 0 on the LIM side of the connection. MS 1:20:0 is MS 1, card 20, and port 0 that the link is connected to in the MS.

2. From the response obtained in step 1, record the MS number, MS card number, and MS port number for each LIM-to-MS link associated with the card to be replaced.

3. Access the SHELF level of the MAP display by typing

   >MS; SHELF  0

   and pressing the Enter key.

   **Example of a MAP display:**

   | LIM 0 UNIT 0 LINK 0 ( 9:0 - MS 1:20:0 ) OEC |
   | LIM 0 UNIT 0 LINK 1 ( 9:1 - MS 0:20:0 ) Open |
   | LIM 0 UNIT 0 LINK 2 ( 9:2 - LIM 0:30:2 ) Open |
   | LIM 0 UNIT 0 LINK 3 is unequipped. |
   | LIM 0 UNIT 0 LINK 4 ( 10:0 - MS 0:21:0 ) Open |
   | LIM 0 UNIT 0 LINK 5 ( 10:1 - MS 1:21:0 ) OEC |
   | LIM 0 UNIT 0 LINK 6 ( 10:2 - LIM 0:29:2 ) Open |
   | LIM 0 UNIT 0 LINK 7 is unequipped. |
Returning LIM-to-MS SR128 links to service (continued)

4 Post the MS card number of the first SR128 link you recorded in step 2 by typing
   >CARD card_no
   and pressing the Enter key.

   where

   card_no
   is the card number (1 to 26) of the first link recorded in step 2

   Example of a MAP response:

   Message Switch  Clock  Shelf  0  Inter-MS Link  0  1
   MS 0 . Master . - -
   MS 1 . Slave . - -
   Shelf 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
   Card 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
   Chain
   MS 0 : : : : : : - - - - - - - - - - - - F . : : : : : :
   MS 1 : : : : : : - - - - - - - - - - - - F . : : : : : :
   Card 20 Protocol Port  0_____3
   MS 0 . DS512 4 M - .
   MS 1 . DS512 4 M - .

5 Return to service the MS port for the first SR128 link recorded in step 2 by typing
   >RTS ms_no PORT port_no
   and pressing the Enter key.

   where

   ms_no
   is the MS number (0 or 1) of the first link recorded in step 2

   port_no
   is the MS port number (0 to 3) of the first link recorded in step 2

   Example of a MAP response:
Returning LIM-to-MS SR128 links to service (continued)

6 Determine the card number of the second SR128 link recorded in step 2.

   If the RTS command                Do
   passed                            step 6
   failed                            step 11

7 Return to service the MS port for the second SR128 link by typing
   \texttt{\textgreater RTS ms\_no PORT port\_no}
and pressing the Enter key.

   where

\begin{itemize}
\item \texttt{ms\_no} is the MS number (0 or 1) of the second link recorded in step 2
\item \texttt{port\_no} is the MS port number (0 to 3) of the second link recorded in step 2
\end{itemize}

   If the RTS command                Do
   passed                            step 10
   failed                            step 11

8 Post the MS card number of the second SR128 link you recorded in step 2 by typing
   \texttt{\textgreater CARD card\_no}
and pressing the Enter key.

   where

\begin{itemize}
\item \texttt{card\_no} is the card number (1 to 26) of the second link recorded in step 2
\end{itemize}

9 Return to service the MS port for the second SR128 link by typing
   \texttt{\textgreater RTS ms\_no PORT port\_no}
and pressing the Enter key.

   where
Returning LIM-to-MS SR128 links to service (end)

- **ms_no**
  - is the MS number (0 or 1) of the second link recorded in step 2

- **port_no**
  - is the MS port number (0 to 3) of the second link recorded in step 2

### If the RTS command

<table>
<thead>
<tr>
<th>Passed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 Post the LIM that you are working on by typing

```
>PM; POST LIM lim_no
```

and pressing the Enter key

**where**

- **lim_no**
  - is the number of the LIM (0 to 16)

**Example of a MAP display:**

```
 LIM 0 InSv Links_OOS Taps_OOS
Unit0: InSv . . .
Unit1: InSv . . .
```

Go to step 12.

11 For further assistance, contact the personnel responsible for the next level of support.

12 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
System cards
in a SuperNode MS

Application

Use this procedure to replace the following cards in a SuperNode message switch (MS).

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X13</td>
<td>DA, DB, DC, DD</td>
<td>CPU 16-MHz card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X14</td>
<td>AA</td>
<td>4-Byte memory card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X14</td>
<td>BB</td>
<td>6-Byte memory card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X14</td>
<td>DB</td>
<td>24-Byte memory card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X15</td>
<td>AA</td>
<td>Mapper card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X17</td>
<td>AA, AD</td>
<td>Message switch four-port card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X17</td>
<td>BB</td>
<td>DMS-bus 32-port card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X17</td>
<td>CA</td>
<td>DMS-bus 128-port card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X17</td>
<td>DA</td>
<td>Message switch 64-port card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X25</td>
<td>AA</td>
<td>MS port expander paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X25</td>
<td>BA</td>
<td>MS port terminator paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X26</td>
<td>AA</td>
<td>Remote terminal interface card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X26</td>
<td>AB</td>
<td>Remote terminal interface paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X30</td>
<td>AA</td>
<td>+5V 86-A power converter</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X31</td>
<td>AA</td>
<td>-5V 20-A power converter</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X32</td>
<td>AA</td>
<td>DMS-bus load paddle board</td>
<td>MS</td>
</tr>
</tbody>
</table>
System cards in a SuperNode MS (continued)

Refer to the Index if you cannot identify the following for the card you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame

The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

- Failure to switch clock mastership
- Replacing a card

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
System cards in a SuperNode MS

Summary of System cards in a SuperNode MS

1. Check card release compatibility
   - Compatible? (Y/N)
     - Y: Card on master MS? (Y/N)
       - Y: Switch clock mastership
       - N: Manually busy MS
         - Power down MS
         - Replace card
         - Power up MS
         - Load MS again
         - NT9X17BB, CA, or DA replaced? (Y/N)
           - Y: Test MS
           - N: Load firmware
         End
     - N: Obtain a compatible card
   End
2. Return MS to service
3. Test card
4. Load firmware
5. NT9X26 replaced? (Y/N)
   - Y: Test card
   - N: End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Obtain a replacement card. Make sure that the replacement card and the card you remove have the same product engineering code (PEC) and PEC suffix.

**At the MAP terminal**

To ensure that the replacement card is compatible with the software load, type

```bash
>CHECKREL MS pec release
```

and press the Enter key.

**Example input:**

```bash
>CHECKREL MS NT9X13DD 2Z
```

**Example of a MAP response:**

<table>
<thead>
<tr>
<th>PEC</th>
<th>BASELINE</th>
<th>EXCEPT</th>
<th>RELEASE</th>
<th>COMPATIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X13DD</td>
<td>13</td>
<td>None</td>
<td>2Z</td>
<td>YES</td>
</tr>
</tbody>
</table>

OK. Card release is above baseline.

If the replacement card is **below baseline**, step 3

If the replacement card is **on or above baseline**, step 6

3 From the MAP display, record the baseline release code (BASELINE) and any exception release codes (EXCEPT).
System cards in a SuperNode MS (continued)

4 Determine which release codes are compatible with the software load in the switch. A compatible release code is the code that is
• greater than or equal to the baseline release code, and
• not an exception release code

Note: The range of release codes in ascending order is 01 to 09, 0A to 0Z, and 10 to VZ.

5 Obtain a replacement card with a compatible release code.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>can obtain a compatible replacement card</td>
<td>step 2</td>
</tr>
<tr>
<td>cannot obtain a compatible replacement card</td>
<td>step 35</td>
</tr>
</tbody>
</table>

6 To access the MS level of the MAP display, type

>`MAPCI;MTC;MS`

and press the Enter key.

Example of a MAP response:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0 . M Free . .
MS 1 M Slave F S
```

7 Determine the clocking configuration.

Note: The clocking configuration appears under the Clock header of the MAP display.

<table>
<thead>
<tr>
<th>If the MS that contains the card you will replace</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the slave MS, indicated by Slave, S Flt, S OOS, or S Free under the Clock header</td>
<td>step 11</td>
</tr>
<tr>
<td>is the master MS, indicated by Master, M Free or M Flt under the Clock header</td>
<td>step 8</td>
</tr>
</tbody>
</table>

8 To switch clock mastership, type

>`SWMAST`

and press the Enter key.

Example of a MAP response:
If the SWMAST command passed
Do step 10
failed step 9

9 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.

10 Wait 10 min to make sure the MS has stability. Continue this procedure.

11 Determine if the slave MS is manually busy.

   Note: The letter M appears on the right side of the MS 0 or MS 1 header on the MAP display. The letter M identifies a manually busy MS.

If the slave MS is not manually busy
Do step 12
is manually busy step 17

12 To manually busy the slave MS, type
   \texttt{>BSY \ ms\_number}\n
   \texttt{where}\n
   \texttt{ms\_number}\n
   is the number of the slave MS (0 or 1)

If the BSY command passed
Do step 13
aborted or failed step 35

13 Determine the type of card you will replace.

If the card you will replace is an NT9X30 or NT9X31
Do step 17
is not an NT9X30 or NT9X31 step 14

14 To access the Shelf level of the MAP display, type
   \texttt{>SHELF \ shelf\_number}\n
   and press the Enter key.
SuperNode message switch card replacement procedures

System cards
in a SuperNode MS (continued)

where

**shelf_number**

is the number of the shelf (0 to 3)

*Example of a MAP response:*

<table>
<thead>
<tr>
<th>Shelf 0</th>
<th>1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card</td>
<td>1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6</td>
</tr>
<tr>
<td>Chain</td>
<td>MS 0 . . . . . . . . . . . . . . .</td>
</tr>
<tr>
<td></td>
<td>MS 1 . . . . . . . . . . . . . . .</td>
</tr>
</tbody>
</table>

15 To translate the location of the card, type

```plaintext
>TRNSL ms_number card_number
```

and press the Enter key.

*where*

**ms_number**

is the number of the MS (0 or 1) that contains the card you will replace

**card_number**

is the card identification number (1 to 13)

*Example of a MAP response:*

| Site Flr RPos Bay_id Shf Description Slot EqPEC |
|-----------------------------------------------|-------------------------------------------------|
| HOST 01 A01 DPCC 0 39 MS 0:0: 5 11 9X15AA FRNT |
| HOST 01 A01 DPCC 0 39 MS 0:0: 5 11 BACK         |

No resources to translate on card 5.

16 Record the location, description, slot number, PEC, and PEC suffix of the card you will replace.

*At the MS shelf*

17 Determine if the LED on the NT9X13 card in the slave MS is lit.

*Note:* Allow 5 min for the LED to light.

<table>
<thead>
<tr>
<th>If the LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is lit</td>
<td>step 18</td>
</tr>
<tr>
<td>is not lit</td>
<td>step 35</td>
</tr>
</tbody>
</table>
System cards
in a SuperNode MS (continued)

18

**WARNING**
Possible loss of service
Make sure that you power down the slave MS. If you power down the master MS the system will shut down.

**WARNING**
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point of the frame supervisory panel (FSP) to handle cards. The wrist strap protects the cards against static electricity damage.

Power down the slave MS, as follows:

a. Press down and release the switch on the faceplate of the NT9X30 power converter in slot 4F.

b. Press down and release the switch on the faceplate of the NT9X31 power converter in slot 1F.

c. Press down and release the switches on the faceplates of the power converters in slots 33F and 36F at the same time.

19

Perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

20

Power up the slave MS, as follows:

a. Lift and release the switches on the faceplates of the power converters in slots 33F and 36F at the same time.

b. Lift and release the switch on the faceplate of the NT9X31 power converter in slot 1F.

c. Lift and release the switch on the faceplate of the NT9X30 power converter in slot 4F.

**At the MAP terminal**

21

To make sure you are at the MS level of the MAP display, type

>`MAPCI;MTC;MS`

and press the Enter key.

22

To load the slave MS again, type

>`LOADMS     ms_number`

and press the Enter key.

*where*
System cards in a SuperNode MS (continued)

**ms_number**
- is the number of the slave MS (0 or 1)

*Example of a MAP response:*

Active boot file CSP04AX_MS from S01DVOL1 on SLM DISK will be loaded.
Do you want to proceed with loading? Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>indicates the LOADMS command passed</td>
<td>step 24</td>
</tr>
<tr>
<td>requests confirmation</td>
<td>step 23</td>
</tr>
</tbody>
</table>

| 23 | To confirm the command, type >YES and press the Enter key. |

<table>
<thead>
<tr>
<th>If the LOADMS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 24</td>
</tr>
<tr>
<td>failed</td>
<td>step 35</td>
</tr>
</tbody>
</table>

| 24 | Determine the type of the replaced card. |

<table>
<thead>
<tr>
<th>If the replaced card</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is a NT9X17BB, NT9X17CA, or NT9X17DA</td>
<td>step 25</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 27</td>
</tr>
</tbody>
</table>

| 25 | To access the Shelf level of the MAP display, type >SHELF and press the Enter key. |

| 26 | To load the firmware into the replacement card, type >LOADCD ms_number card_number1 FROMCD card_number2 and press the Enter key. |

*where*

**ms_number**
- is the number of the slave MS (0 or 1)

**card_number1**
- is the number of the card (6 to 25) that you replaced.
System cards
in a SuperNode MS
(continued)

    card_number2
    is the number of the card (6 to 25) you load from

    Note: Both cards must be in the same MS. The card you load from and
    the card you load must have the same PEC and PEC suffix.

Example input

>LOADCD 0 5 FROMCD 7

Determine if a maintenance procedure directed you to this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 28</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 29</td>
</tr>
</tbody>
</table>

Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

To perform an out-of-service test on the slave MS, type

> TST ms_number

and press the Enter key.

where

ms_number
    is the number of the slave MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted.
Request to TEST OOS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS0.
Request to TEST VIA MATE MS: 0 submitted.
Request to TEST VIA MATE MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 30</td>
</tr>
<tr>
<td>failed</td>
<td>step 35</td>
</tr>
</tbody>
</table>

To return the slave MS to service, type

> RTS ms_number

and press the Enter key.

where
SuperNode message switch card replacement procedures

System cards in a SuperNode MS (continued)

**ms_number**
is the number of the slave MS (0 or 1)

*Example of a MAP response:*

Request to RTS MS: 0 submitted.
Request to RTS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 31</td>
</tr>
<tr>
<td>failed</td>
<td>step 35</td>
</tr>
</tbody>
</table>

31 Determine the type of card that you replaced.

<table>
<thead>
<tr>
<th>If the card</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is an NT9X26</td>
<td>step 32</td>
</tr>
<tr>
<td>is other than an NT9X26</td>
<td>step 36</td>
</tr>
</tbody>
</table>

32 To access the Shelf level of the MAP display, type

>`SHELF`

and press the Enter key.

33 To access the Card level for the card you replaced, type

>`CARD 3`

and press the Enter key.

34 To test the card, type

>`TST ms_number BACK`

and press the Enter key.

*where*

**ms_number**
is the number of the slave MS (0 or 1)

*Example of a MAP response:*

Request to TEST INSV MS: 0 shelf: 0 card: 3 back submitted.
Request to TEST InSV MS: 0 shelf: 0 card: 3 back passed.

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 36</td>
</tr>
</tbody>
</table>
System cards in a SuperNode MS (end)

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 35</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>For additional help, contact the next level of support.</td>
</tr>
<tr>
<td>36</td>
<td>The procedure is complete.</td>
</tr>
</tbody>
</table>
7 SuperNode SE message switch card replacement procedures

Introduction

This chapter contains card replacement procedures for the SuperNode SE message switch (MS). The first section in the chapter provides diagrams that show SuperNode SE MS shelf layouts.

Card replacement procedures for the SuperNode MS are in the chapter titled “SuperNode message switch card replacement procedures”.

The card replacement procedures for the frame supervisory panel (FSP) and the modular supervisory panel (MSP) are in the chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures”.

Each procedure contains the following sections:

• Application
• Common procedures
• Action

Application

This section identifies the MS card(s) the replacement procedure covers.

Common procedures

This section lists common procedures used during the card replacement procedure. A common procedure is a series of steps that repeat within maintenance procedures. An example of a common procedure is card removal and replacement. Common procedures appear in the common procedures chapter in this NTP.

Do not go to the common procedure unless the step-action procedure directs you to go.
Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Recording card replacement activities

Record the following information in office records when you replace a card:

• the serial number of the card you replace
• the date you replace the card
• the reason you replace the card
SuperNode SE message switch shelf layouts

Application
This procedure provides the following layout diagrams:
- single core cabinet
- SuperNode SE message switch (MS)

Figure Single core cabinet
SuperNode SE message switch shelf layouts (end)

Figure 2 SuperNode SE message switch, that shows common fill

Legend:
- Available card or paddle board

Paddle boards

Cards

NT9X17 MS port card
NT9X17 MS four-port card
NT9X13 MS processor card
NT9X13 MS processor card
NT9X15 Mapper card
NT9X30 Power converter card
NT9X31 Power converter card
NT9X54 Subsystem clock PB
NT9X54 Subsystem clock PB
NT9X23 Four-port DS30 PB
NT9X26 RTIF PB
NT9X26 RTIF PB
NT9X52 MSP T-bus access card
NT9X52 MSP T-bus access card
NT9X19 Filler faceplate
NT9X19 Filler faceplate
NT9X17 MS port card
NT9X17 MS port card
NT9X62 Subrate PB
NT9X62 Subrate PB
NT9X53 Clock card
NT9X53 Clock card
NT9X30 Power converter card
NT9X30 Power converter card
NT9X15 Mapper card
NT9X15 Mapper card
NT9X49 P-bus terminator card
NT9X49 P-bus terminator card

Interface paddle boards in a SuperNode SE MS

Application

Use this procedure to replace the following cards in a SuperNode SE (SNSE) message switch (MS).

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X23</td>
<td>AA</td>
<td>Four-port DS30 paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X54</td>
<td>AC, AD</td>
<td>Subsystem clock paddle board (external interface)</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X62</td>
<td>BA</td>
<td>Four-port subrate DS512 paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X62</td>
<td>CA</td>
<td>SR-512 subrate paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X69</td>
<td>BA</td>
<td>DMS-bus 16-link DS30 paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X79</td>
<td>BA</td>
<td>F-bus termination paddle board</td>
<td>MS</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to the following common procedures:

- Failure to switch clock mastership
- Verifying load compatibility of SuperNode cards
- Cleaning fiber optic components and assemblies

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Interface paddle boards in a SuperNode SE MS

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

1. Card on master MS?
   - Y: Switch clock mastership
   - N: Manually busy MS

2. Power down MS
   - Replace card
   - Power up MS
   - Reload MS
   - Test MS
   - Return MS to service
   - End
Interface paddle boards in a SuperNode SE MS

At the MAP terminal

1. Obtain a replacement card. Make sure that the replacement card has the same product engineering code (PEC) and PEC suffix as the card you replace.

2. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

3. To access the MS level of the MAP display, type

   >MAPCI;MTC;MS

   and press the Enter key.

   Example of a MAP response:

   Message Switch Clock Shelf 0 Inter-MS Link 0 1
   MS 0 . M Free . .
   MS 1 M Slave F S .

4. Determine the clocking configuration.

   **Note:** The clocking configuration is under the Clock header of the MAP display.

<table>
<thead>
<tr>
<th>If the MS that contains the card you replace is the slave MS, indicated by Slave,S Flt , S OOS , or S Free under the Clock header</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace is the slave MS, indicated by Slave,S Flt , S OOS , or S Free under the Clock header</td>
<td>step 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the MS that contains the card you replace is the master MS, indicated by Master,M Free or M Flt under the Clock header</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace is the master MS, indicated by Master,M Free or M Flt under the Clock header</td>
<td>step 5</td>
</tr>
</tbody>
</table>

5. To switch clock mastership, type

   >SWMAST

   and press the Enter key.

   Example of a MAP response:

   Request to Switch Clock Mastership MS: 0 submitted.
   Request to Switch Clock Mastership MS: 0 passed.

<table>
<thead>
<tr>
<th>If the SWMAST command passed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the SWMAST command failed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 6</td>
</tr>
</tbody>
</table>
Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.

Wait 10 min to make sure the MS has stability. Continue with this procedure.

Determine if the slave MS is manual busy.

**Note:** A letter M on the right of the MS 0 or MS 1 header on the MAP display identifies a manual-busy MS.

<table>
<thead>
<tr>
<th>If the slave MS</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is not manual busy</td>
<td>step 9</td>
</tr>
<tr>
<td>is manual busy</td>
<td>step 10</td>
</tr>
</tbody>
</table>

To manually busy the slave MS, type

```plaintext
>BSY ms_number
```

and press the Enter key.

*where*

```plaintext
ms_number
```

is the number of the slave MS (0 or 1)

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 10</td>
</tr>
<tr>
<td>failed or aborted</td>
<td>step 56</td>
</tr>
</tbody>
</table>

To access the Shelf level of the MAP display, type

```plaintext
>SHELF shelf_number
```

and press the Enter key.

*where*

```plaintext
shelf_number
```

is the number of the shelf (0 to 3)

*Example of a MAP response:*

```
Shelf 0 1 1 1 1
Card 1 2 3 4 5 6 7 8 9 0 1 2 3
Chain
MS 0 F . . .
MS 1
```

To translate the location of the card, type

```plaintext
>TRNSL ms_number card_number
```

and press the Enter key.

*where*
**Interface paddle boards in a SuperNode SE MS** (continued)

- **ms_number**
  - is the number of the MS (0 or 1) that contains the card to replace

- **card_number**
  - is the card identification number (1 to 13)

*Example of a MAP response:*

```
Site Flr RPos Bay_id Shf Description Slot EqPEC
HOST 00 A00 SCC 0 39 MS 1 :0: 3 22 9X13NA FRNT
HOST 00 A00 SCC 0 39 MS 1 :0: 3 22 9X26AB BACK
No resources to translate on card 3.
```

12 Record the location, description, slot number, and PEC and PEC suffix of the card you replace.

13 Determine which MS is the slave MS.

<table>
<thead>
<tr>
<th>If the slave MS</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is MS 0</td>
<td>step 14</td>
</tr>
<tr>
<td>is MS 1</td>
<td>step 16</td>
</tr>
</tbody>
</table>

14

**WARNING**

Possible loss of service

Make sure that you power down the slave MS. If you power down the MS that contains the master clock, the system shuts down completely.

**WARNING**

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

Power down the slave MS, as follows:

- **a** Press down and release the switch on the faceplate of the NT9X30 power converter in slot 4F.
- **b** Press down and release the switch on the faceplate of the NT9X31 power converter in slot 1F.

15 Go to step 17.
### Interface paddle boards
in a SuperNode SE MS (continued)

#### At the MS shelf

16

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Static electricity damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear a wrist strap that connects to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. This protects the cards against static electricity damage.</td>
<td></td>
</tr>
</tbody>
</table>

Power down the slave MS, as follows:

**a** Press down and release the switch on the faceplate of the NT9X30 power converter in slot 36F.

**b** Press down and release the switch on the faceplate of the NT9X31 power converter in slot 33F.

17 Locate the card on the shelf.

18 The next action depends on the type of card you replace.

<table>
<thead>
<tr>
<th>If the card you replace is NT9X23</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the card you replace is NT9X54</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the card you replace is NT9X62</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the card you replace is NT9X69</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 26</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the card you replace is NT9X79</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 28</td>
<td></td>
</tr>
</tbody>
</table>

19

<table>
<thead>
<tr>
<th>DANGER</th>
<th>Possible equipment damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins in the RS-232 cable connector bend if you remove the top pins and then remove the bottom pins. When you insert the connector again, the pins will be misaligned and can bend further and become unseated from the connector block.</td>
<td></td>
</tr>
</tbody>
</table>

Disconnect the RS-232 cable from the card you replace as follows:

**a** To prevent damage to the pins, remove the connector at a 90° angle to the faceplate.
Interface paddle boards
in a SuperNode SE MS (continued)

b  Loosen the cable with the latch handles up.

   Note: The RS-232 cable connection is in Figure 1 at the end of this procedure.

   20  Go to step 29.

21  Label the cables connected to the faceplate of the card you replace.

   Note: A normal cable connection configuration is in Figure 2 at the end of this procedure.

22  Note the connector numbers and disconnect the cables from the faceplate of the card you replace.

   Go to step 29.

23  Label each fiber cable. Use Transmit for the top cable and Receive for the bottom cable.

   Note: The fiber cable connections appear in Figure 3 at the end of this procedure.

24

DANGER
Avoid contaminating the fiber tip surface
Do not touch the tip of the fiber. Dirt or oil from the skin transferred to the fiber tip surface degrades fiber performance.

DANGER
Fiber cable may become damaged
Exercise care in handling fiber cables. Do not crimp or bend fiber cables to a radius of less than 25 mm (1 in.).

Disconnect the fiber links from the card as follows:

   a  Loosen the fiber connections with the latch handles up.

   b  Carefully push in and turn the fiber cable connector counterclockwise until the connector slides out of the connector receptacle.

   c  Place dust caps on the ends of the connectors as you disconnect them.
Interface paddle boards
in a SuperNode SE MS (continued)

Note 1: Perform the procedure, *Cleaning fiber optic components and assemblies* in this NTP.

Note 2: The fiber cable connections are in Figure 3 at the end of this procedure.

25 Go to step 29.

26 Disconnect the DS30 cables from the card as follows:
   a To prevent damage to the pins, remove the connectors at a 90° angle to the faceplate.
      *Note:* The DS30 cable connections appear in Figure 4 at the end of this procedure.
   b Loosen the DS30 connections.

27 Go to step 29.

28 Disconnect the cables from the NT9X79 card, as follows:
   a Remove the composite clock cable.
      *Note:* The cable connections appear in Figure 5 at the end of this procedure.
   b Use a screwdriver to disconnect the F-bus ribbon cables from the card.
Open the locking levers on the card you replace.

30 Grasp the locking levers. Pull the card toward you until the card protrudes 2 in. (5.1 cm) from the equipment shelf.

DANGER
Do not hold card by levers only
If you hold a card by the levers, you can cause lever breakage. When you pull the card half way out, grasp the card underneath for support. Continue to remove the card from the shelf. Avoid contact with any wires or internal parts on the card.
Interface paddle boards in a SuperNode SE MS (continued)

31 Hold the card by the face plate with one hand. Support the bottom edge with the other hand. Carefully pull the card toward you until the card clears the shelf.

32 Place the card you removed in an electrostatic discharge (ESD) protective container.

33 Make sure that the replacement card has the same PEC and the PEC suffix as the card you replace.

34 Insert the replacement card into the shelf.
   a Open the locking levers on the card.
   b Hold the card by the face plate with one hand. Support the bottom edge with the other hand. Carefully slide the card into the shelf.
The next action depends on the type of the card you replace.

<table>
<thead>
<tr>
<th>If the card you replace</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace is NT9X23</td>
<td>step 36</td>
</tr>
<tr>
<td>replace is NT9X54</td>
<td>step 38</td>
</tr>
<tr>
<td>replace is NT9X62</td>
<td>step 39</td>
</tr>
<tr>
<td>replace is NT9X69</td>
<td>step 41</td>
</tr>
<tr>
<td>replace is NT9X79</td>
<td>step 43</td>
</tr>
</tbody>
</table>

Connect the RS-232 cable to the replacement card, as follows:

- To prevent damage to the pins, carefully insert the connector into the card with the latch handles up.

- The retaining screws on the RS-232 connection must be tight and screwed in completely. This makes sure that all pins make proper contact.

Go to step 44.

Connect the cables to the replacement card.

Go to step 44.
Interface paddle boards
in a SuperNode SE MS (continued)

39

DANGER
Damage to fiber cables
Take care when handling fiber cables. Do not crimp or bend fiber cables to a radius of less than 25 mm (1 in.).

Connect the fiber cables to the card in use, as follows:
   a  Tighten the cable connections with the locking levers open.
   b  Carefully guide the cable connector into its receptacle notches.
   c  Push in and turn the cable connector clockwise until the connection is tight.

40  Go to step 44.

41  Reconnect the DS30 cables, as follows:
   a  To prevent damage to the pins, carefully insert the connectors into the card.
   b  Tighten the DS30 connections.
   c  The retaining screws on the DS30 connections must be tight and fully screwed in. This makes sure that all pins make contact.

42  Go to step 44.

43  Connect the cables to the replacement card, as follows:
   a  To prevent damage to the pins, carefully insert the cables.
   b  Use a screwdriver to tighten the retaining screws on the F-bus ribbon cables. To make sure that all pins make proper contact, the retaining screws must be tight and screwed in completely.

44  Seat and lock the card.
   a  Use your fingers and thumbs to push on the upper and lower edges of the faceplate. Make sure that the card sits completely in the shelf.
   b  Close the locking levers to secure the card.
The next action depends on which MS is the slave MS.

<table>
<thead>
<tr>
<th>If the slave MS</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is MS 0</td>
<td>step 46</td>
</tr>
<tr>
<td>is MS 1</td>
<td>step 48</td>
</tr>
</tbody>
</table>

Power up the slave MS, as follows:

- a Lift and release the switch on the faceplate of the NT9X31 power converter in slot 1F.
- b Lift and release the switch on the faceplate of the NT9X30 power converter in slot 4F.

Go to step 49.

Power up the slave MS, as follows:

- a Lift and release the switch on the faceplate of the NT9X31 power converter in slot 33F.
- b Lift and release the switch on the faceplate of the NT9X30 power converter in slot 36F.

At the MAP terminal

To make sure you are at the MS level of the MAP display, type

```plaintext
>MAPCI;MTC;MS
```

and press the Enter key.

To load the slave MS again, type

```plaintext
>LOADMS ms_number
```

and press the Enter key.
Interface paddle boards
in a SuperNode SE MS (continued)

where

ms_number
is the number of the slave MS (0 or 1)

Example of a MAP response:

Active boot file CSP04AX_MS from S01DVOL1 on SLM DISK
will be loaded
Do you want to proceed with loading?
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>indicates the LOADMS command passed</td>
<td>step 52</td>
</tr>
<tr>
<td>requests confirmation</td>
<td>step 51</td>
</tr>
</tbody>
</table>

51 To confirm the command, type

>`YES`

and press the Enter key.

<table>
<thead>
<tr>
<th>If the LOADMS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 52</td>
</tr>
<tr>
<td>failed</td>
<td>step 56</td>
</tr>
</tbody>
</table>

52 The next action depends on the reason that you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 53</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 54</td>
</tr>
</tbody>
</table>

53 Return to the maintenance procedure that sent you to this procedure and continue as directed.

54 To perform an out-of-service test on the slave MS, type

>`TST  ms_number`

and press the Enter key.

where

ms_number
is the number of the slave MS (0 or 1)

Example of a MAP response:
Interface paddle boards
in a SuperNode SE MS (continued)

Request to TEST OOS MS: 0 submitted.
Request to TEST OOS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.
Request to TEST VIA MATE MS: 0 submitted.
Request to TEST VIA MATE MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 55</td>
</tr>
<tr>
<td>failed</td>
<td>step 56</td>
</tr>
</tbody>
</table>

55 To return the slave MS to service, type

>RTS  ms_number

and press the Enter key.

where

ms_number

is the number of the slave MS (0 or 1)

Example of a MAP response:

Request to RTS MS: 0 submitted.
Request to RTS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 57</td>
</tr>
<tr>
<td>failed</td>
<td>step 56</td>
</tr>
</tbody>
</table>

56 For additional help, contact the next level of support.

57 The procedure is complete.

The following diagrams show the cable connections for the cards covered in this procedure.
Interface paddle boards in a SuperNode SE MS (continued)

Cable connections for an NT9X23 in a SuperNode SE MS
Cable connections for an NT9X54 in a SuperNode SE MS

- External reference clock cable
- Remote clock cable
- Alarm 01 cable
- Mate frame pulse cable
- Remote communication cable
- Composite clock

NT9X54
Interface paddle boards
in a SuperNode SE MS (continued)

Cable connections for an NT9X62 in a SuperNode SE MS

Transmit link 0
Receive link 0
Transmit link 1
Receive link 1
Receptacle
Fiber cable connector
Cable connections for an NT9X69 in a Supernode SE MS
Interface paddle boards in a SuperNode SE MS (end)
System cards in a SuperNode SE MS

Application

Use this procedure to replace the following cards in a SuperNode SE (SNSE) message switch (MS).

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card to replace, refer to the “Index”. The “Index” provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X13</td>
<td>NA</td>
<td>CPU card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X15</td>
<td>AA</td>
<td>Mapper card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X17</td>
<td>AA, AD</td>
<td>Message switch four-port card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X17</td>
<td>BB</td>
<td>DMS-bus 32-port card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X17</td>
<td>CA</td>
<td>DMS-bus 128-port card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X17</td>
<td>DA</td>
<td>Message switch 64-port card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X25</td>
<td>BA</td>
<td>MS port terminator paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X26</td>
<td>AB</td>
<td>remote terminal interface paddle board</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X30</td>
<td>AA</td>
<td>+5V 86-A power converter</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X31</td>
<td>AA</td>
<td>-5V 20-A power converter</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X49</td>
<td>CC</td>
<td>Message switch P-bus terminator card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X52</td>
<td>AA</td>
<td>MSP T-bus access card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X53</td>
<td>AC</td>
<td>SuperNode clock card</td>
<td>MS</td>
</tr>
</tbody>
</table>
System cards
in a SuperNode SE MS (continued)

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X53</td>
<td>AD</td>
<td>SuperNode clock card</td>
<td>MS</td>
</tr>
<tr>
<td>NT9X73</td>
<td>BA</td>
<td>LMS F-bus rate adapter card</td>
<td>MS</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to the following common procedures:

- Verifying load compatibility of SuperNode cards
- Failure to switch clock mastership
- Replacing a card

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing System cards in a SuperNode SE MS

1. Card on master MS?
   - Y: Switch clock mastership
   - N: Manually busy MS

2. Power down MS
3. Replace card
4. Power up MS
5. Reload MS
6. Test MS
   - NT9X17BB, CA, or DA replaced?
     - Y: Load firmware
     - N: NT9X26 replaced?
       - Y: Test card
       - N: End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing System cards in a SuperNode SE MS

At the MAP terminal

1. Obtain a replacement card. Make sure that the replacement card has the same product engineering code (PEC) and PEC suffix as the card you replace.

2. Perform the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

3. To access the MS level of the MAP display, type

   `>MAPCI;MTC;MS`

   and press the Enter key.

   Example of a MAP response:

   ```
 Message Switch Clock Shelf 0 Inter-MS Link 0 1
 MS 0 . M Free . .
 MS 1 M Slave F S .
   ```

4. Determine the clocking configuration.

   **Note:** The clocking configuration appears under the Clock header of the MAP display.

   | If the MS with the card you replace is the slave MS, indicated by Slave, S Flt, S OOS, or S Free under the Clock header |
   | Do                                                                 |
   | replace is the master MS, indicated by Master, M Free or M Flt under the Clock header |

5. To switch clock mastership, type

   `>SWMAST`

   and press the Enter key.

   Example of a MAP response:

   ```
 Request to Switch Clock Mastership MS: 0 submitted.
 Request to Switch Clock Mastership MS: 0 passed.
   ```

   | If the SWMAST command passed failed |
   | Do step 7 step 6 |
System cards in a SuperNode SE MS (continued)

6 Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.

7 Wait 10 min to make sure of MS stability. Continue with the procedure.

8 Determine if the slave MS is manual busy.

   Note: A letter M on the right side of the MS 0 or MS 1 header on the MAP display identifies a manual busy MS.

<table>
<thead>
<tr>
<th>If the slave MS</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is not manual busy</td>
<td>step 9</td>
</tr>
<tr>
<td>is manual busy</td>
<td>step 10</td>
</tr>
</tbody>
</table>

9 To manually busy the slave MS, type

   >BSY  ms_number

and press the Enter key.

   where

   ms_number is the number of the slave MS (0 or 1)

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 10</td>
</tr>
<tr>
<td>aborted or failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

10 The next action depends on the type of card you replace.

<table>
<thead>
<tr>
<th>If the card you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace is an NT9X30</td>
<td>step 14</td>
</tr>
<tr>
<td>or NT9X31</td>
<td></td>
</tr>
<tr>
<td>replace is other than</td>
<td>step 11</td>
</tr>
<tr>
<td>listed here</td>
<td></td>
</tr>
</tbody>
</table>

11 To access the Shelf level of the MAP display, type

   >SHELF  shelf_number

and press the Enter key.

   where

   shelf_number is the number of the shelf (0 to 3)

Example of a MAP response:
System cards
in a SuperNode SE MS (continued)

To translate the location of the card, type

```
>TRNSL ms_number card_number
```

and press the Enter key.

where

- `ms_number` is the number of the MS (0 or 1) that contains the card you must replace
- `card_number` is the card identification number (1 to 13)

Example of a MAP response:

```
Site Flr RPos Bay_id Shf Description Slot EqPEC
HOST 00 A00 SCC 0 39 MS 1 :0: 3 22 9X13NA FRNT
HOST 00 A00 SCC 0 39 MS 1 :0: 3 22 9X26AB BACK
```

No resources to translate on card 3.

Record the location, description, slot number, PEC, and PEC suffix of the card you replace.

The next action depends on which MS is the slave MS.

<table>
<thead>
<tr>
<th>If the slave MS</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is MS 0</td>
<td>step 15</td>
</tr>
<tr>
<td>is MS 1</td>
<td>step 19</td>
</tr>
</tbody>
</table>
At the MS shelf

15

**WARNING**

Possible loss of service
Make sure that you power down the slave MS. If you power down the master MS, the system will shut down completely.

**WARNING**

Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point of the frame supervisory panel (FSP) to handle cards. The wrist strap protects cards against static electricity damage.

Power down the slave MS, as follows:

a  Press down and release the switch on the faceplate of the NT9X30 power converter in slot 4F.

b  Press down and release the switch on the faceplate of the NT9X31 power converter in slot 1F.

16 Perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

17 Power up the slave MS, as follows:

a  Lift and release the switch on the faceplate of the NT9X31 power converter in slot 1F.

b  Lift and release the switch on the faceplate of the NT9X30 power converter in slot 4F.

18 Go to step 22.
System cards
in a SuperNode SE MS (continued)

At the MS shelf

19

WARNING
Possible loss of service
Make sure that you power down the slave MS. If you power
down the MS that contains the master clock, the system shuts
down completely.

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding
point of the frame supervisory panel (FSP) to handle cards.
The wrist strap protects the cards against static electricity
damage.

Power down the slave MS, as follows:

a  Press down and release the switch on the faceplate of the NT9X30 power
    converter in slot 36F.

b  Press down and release the switch on the faceplate of the NT9X31 power
    converter in slot 33F.

20  Perform the procedure Replacing a card in this document. Complete the
    procedure and return to this point.

21  Power up the slave MS, as follows:

a  Lift and release the switch on the faceplate of the NT9X31 power
    converter in slot 33F.

b  Lift and release the switch on the faceplate of the NT9X30 power
    converter in slot 36F.

At the MAP terminal

22  To make sure you are at the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

23  To reload the slave MS, type

>LOADMS  ms_number

and press the Enter key.

where

ms_number

is the number of the slave MS (0 or 1)
Example of a MAP response:

Active boot file CSP04AX_MS from S01DVOL1 on SLM DISK will be loaded.
Do you want to proceed with loading?
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>indicates the LOADMS command passed</td>
<td>step 25</td>
</tr>
<tr>
<td>requests confirmation</td>
<td>step 24</td>
</tr>
</tbody>
</table>

24 To confirm the command, type

>YES

and press the Enter key.

<table>
<thead>
<tr>
<th>If the LOADMS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 25</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

25 The next action depends on the type of card that you replace.

<table>
<thead>
<tr>
<th>If the card you replace is an NT9X17BB, NT9X17CA, or NT9X17DA</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace is other than listed here</td>
<td>step 28</td>
</tr>
</tbody>
</table>

26 To access the Shelf level of the MAP display, type

>SHELF

and press the Enter key.

27 To load the firmware into the replacement card, type

>LOADCD ms_number card_number1 FROMCD card_number2

where

- **ms_number**
  - is the number of the slave MS (0 or 1)
- **card_number1**
  - is the number of the card you replaced
- **card_number2**
  - is the number of the card you from where you load
System cards
in a SuperNode SE MS (continued)

**Note:** Both cards must be in the same MS. The card the system loads from must be an NT9X17DA.

*Example input*

```
>LOADCD 0 5 FROMCD 7
```

**At the MAP terminal**

28 The next action depends on the reason that you perform this procedure

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 29</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 30</td>
</tr>
</tbody>
</table>

29 Return to the maintenance procedure that sent you to this procedure and continue as directed.

30 To perform an out-of-service test on the slave MS, type

```
>TST ms_number
```

and press the Enter key.

*where*

*ms_number* is the number of the slave MS (0 or 1)

*Example of a MAP response:*

Request to TEST OOS MS: 0 submitted.
Request to TEST OOS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS0.
Request to TEST VIA MATE MS: 0 submitted.
Request to TEST VIA MATE MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 31</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

31 To return the slave MS to service, type

```
>RTS ms_number
```

and press the Enter key.

*where*
System cards in a SuperNode SE MS (continued)

`ms_number` is the number of the slave MS (0 or 1)

**Example of a MAP response:**

Request to RTS MS: 0 submitted.
Request to RTS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 32</td>
</tr>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

32 The next action depends on the type of the card that you replace.

<table>
<thead>
<tr>
<th>If the card</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is an NT9X26</td>
<td>step 33</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 37</td>
</tr>
</tbody>
</table>

33 To access the Shelf level of the MAP display, type

```
>SHELF
```

and press the Enter key.

34 To access the Card level for the card that you replaced, type

```
>CARD 3
```

and press the Enter key.

35 To test the card, type

```
>TST ms_number BACK
```

and press the Enter key.

**where**

`ms_number` is the number of the slave MS (0 or 1)

**Example of a MAP response:**

Request to TEST INSV MS: 0 shelf: 0 card: 3 back submitted.
Request to TEST InSV MS: 0 shelf: 0 card: 3 back passed.

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 37</td>
</tr>
</tbody>
</table>
System cards in a SuperNode SE MS (end)

<table>
<thead>
<tr>
<th>If the TST command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 36</td>
</tr>
</tbody>
</table>

36 For additional help, contact the next level of support.

37 The procedure is complete.
8 Message switch and buffer card replacement procedures

Introduction
This chapter contains card replacement procedures for the message switch and buffer (MSB). The first section in the chapter provides diagrams that show MSB shelf layouts.

Card replacement procedures for the frame supervisory panel (FSP) and modular supervisory panel (MSP) are in the chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures”.

Each procedure contains the following sections:
- Application
- Common procedures
- Action

Application
This section identifies the MSB card(s) in the replacement procedure.

Common procedures
This section lists common procedures used during the MSB card replacement procedure. A common procedure is a series of steps that repeat within maintenance procedures. The removal and replacement of a card is an example of a common procedure. Common procedures are in the common procedures chapter in this NTP.

Do not go to the common procedures unless the step-action procedure directs you to go.

Action
This section contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Recording card replacement activities

When you replace a card, record the following information in office records:

- the serial number of the card that you replaced
- the date that you replaced the card
- the reason that you replaced the card
Application

This procedure provides frame layouts for the following frames used to provision a message switch and buffer (MSB):

- CCS6 MSB equipment frame (MS6E)
- CCS6 signaling terminal equipment frame (ST6E)
- CCS7 MSB equipment frame (MS7E)
- CCS7 signaling terminal equipment frame (ST7E)

This procedure provides shelf layouts for the following shelves in an MSB:

- CCS6 signaling terminal array (6STA) for MSB6
- CCS6 signaling terminal controller array (STCM) for MSB6
- CCS7 signaling terminal group (ST7G) for MSB7
- CCS7 signaling terminal array (STA7) for MSB7

Note: The frame and shelf layouts provided on the following pages are standard. The shelves in your office can have some differences.
Frame layout for CCS6 MSB equipment frame (MS6E)

Legend:
- 6STA: CCS6 signaling terminal array
- FSP: Frame supervisory panel
- STCM: Signaling terminal controller module

Filler panel
STCM shelf
FSP
6STA shelf
6STA shelf
Cooling unit
Frame layout for CCS6 signaling terminal equipment frame (ST6E)

Legend:
- FSP: Frame supervisory panel
- STCM: Signaling terminal controller module

Filler panel
STCM shelf
FSP
STCM shelf
STCM shelf
Cooling unit
Frame layout for CCS7 MSB equipment frame (MS7E)

Legend:
- FSP: Frame supervisory panel
- ST7G: CCS7 signaling terminal group
- STA7: CCS7 Signaling terminal array

Filler panel
ST7G shelf
FSP
STA7
STA7
Cooling unit
Frame layout for CCS7 signaling terminal equipment frame (ST7E)

Legend:
- FSP: Frame supervisory panel
- ST7G: CCS7 signaling terminal group

- Filler panel
- ST7G shelf
- FSP
- ST7G shelf
- ST7G shelf
- Cooling unit
Shelf layout for CCS6 signaling terminal array shelf

Cards	25F	24F	23F	22F	21F	20F	19F	18F	17F	16F	15F	14F	13F	12F	11F	10F	09F	08F	07F	06F	05F	04F	03F	02F	01F		
NT2X70 Power converter card																											
NT6X40 DS30 C-side interface card	25F																										
NT6X40 DS30 C-side interface card	24F																										
NT6X41 Speech bus formatter card	23F																										
NT6X42 Channel supervision card	22F																										
NT6X43 Message interface card	21F																										
NT6X45 Signaling processor card	20F																										
NT6X46 Signaling processor memory card	19F																										
NT6X47 Master processor memory card	18F																										
NT6X47 Master processor memory card	17F																										
NT6X45 Master processor card	16F																										
NT6X67 Signaling terminal buffer card	15F																										
NT6X68 Signaling terminal interface card	14F																										
NT6X68 Signaling terminal interface card	13F																										
NT6X65 Signaling terminal card	12F																										
NT6X65 Signaling terminal card	11F																										
NT6X65 Signaling terminal card	10F																										
NT6X65 Signaling terminal card	09F																										
NT6X65 Signaling terminal card	08F																										
NT6X65 Signaling terminal card	07F																										
NT6X65 Signaling terminal card	06F																										
NT6X65 Signaling terminal card	05F																										
NT6X65 Signaling terminal card	04F																										
NT6X65 Signaling terminal card	03F																										
NT6X65 Signaling terminal card	02F																										
NT6X65 Signaling terminal card	01F																										
Shelf layout for CCS6 signaling terminal shelf

<table>
<thead>
<tr>
<th>Cards</th>
<th>25F</th>
<th>24F</th>
<th>23F</th>
<th>22F</th>
<th>21F</th>
<th>20F</th>
<th>19F</th>
<th>18F</th>
<th>17F</th>
<th>16F</th>
<th>15F</th>
<th>14F</th>
<th>13F</th>
<th>12F</th>
<th>11F</th>
<th>10F</th>
<th>09F</th>
<th>08F</th>
<th>07F</th>
<th>06F</th>
<th>05F</th>
<th>04F</th>
<th>03F</th>
<th>02F</th>
<th>01F</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70 Power converter card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td></td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td></td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td></td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td></td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td></td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT6X65 Signaling terminal card</td>
<td></td>
</tr>
<tr>
<td>NT2X70 Power converter card</td>
<td></td>
</tr>
</tbody>
</table>
## MSB shelf layouts (continued)

### Shelf layout for CCS7 signaling terminal array shelf

<table>
<thead>
<tr>
<th>Cards</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70 Power converter card</td>
<td>25F</td>
</tr>
<tr>
<td>NT6X40 DS30 C-side interface card</td>
<td>24F</td>
</tr>
<tr>
<td>NT6X41 Speech bus formatter card</td>
<td>23F</td>
</tr>
<tr>
<td>NT6X42 Channel supervision message card</td>
<td>22F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>21F</td>
</tr>
<tr>
<td>NT6X69 Message protocol card</td>
<td>20F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>19F</td>
</tr>
<tr>
<td>NT6X44 Time switch card</td>
<td>18F</td>
</tr>
<tr>
<td>NT6X48 DS30A peripheral interface card</td>
<td>17F</td>
</tr>
<tr>
<td>NT6X45 Signaling processor card</td>
<td>16F</td>
</tr>
<tr>
<td>NT6X47 Signaling processor memory card</td>
<td>15F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>14F</td>
</tr>
<tr>
<td>NT6X47 Master processor memory plus card</td>
<td>13F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>12F</td>
</tr>
<tr>
<td>NT6X45 Master processor card</td>
<td>11F</td>
</tr>
<tr>
<td>NT6X67 Signaling terminal buffer card</td>
<td>10F</td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td>09F</td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td>08F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>07F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>06F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>05F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>04F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>03F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>02F</td>
</tr>
<tr>
<td>NT2X70 Power converter card</td>
<td>01F</td>
</tr>
</tbody>
</table>

Rear

Front
Shelf layout for signaling terminal 7 group shelf

<table>
<thead>
<tr>
<th>Cards</th>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70 Power converter card</td>
<td>01F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>04F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>05F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>06F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>07F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>08F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>09F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>10F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>11F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>12F</td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td>13F</td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td>14F</td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td>15F</td>
</tr>
<tr>
<td>NT6X68 Signaling terminal interface card</td>
<td>16F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>17F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>18F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>19F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>20F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>21F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>22F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>23F</td>
</tr>
<tr>
<td>NT6X66 CCS7 signaling terminal card</td>
<td>24F</td>
</tr>
<tr>
<td>NT2X70 Power converter card</td>
<td>25F</td>
</tr>
</tbody>
</table>
Control complex cards in an MSB

Application

Use this procedure to replace the following cards in the shelves or frames listed.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X41</td>
<td>AA, AB, AC</td>
<td>Speech bus formatter card (The NT6X41AB is reserved for international application.)</td>
<td>CCS6 signaling terminal array (6STA) of a CCS6 message switch and buffer (MSB6), CCS7 signaling terminal array (STA7) of a CCS7 message switch and buffer (MSB7)</td>
</tr>
<tr>
<td>NT6X42</td>
<td>AA</td>
<td>Channel supervision message card</td>
<td>6STA, STA7</td>
</tr>
<tr>
<td>NT6X43</td>
<td>AA, BA</td>
<td>Message interface card</td>
<td>6STA</td>
</tr>
<tr>
<td>NT6X44</td>
<td>AA, AB, AC</td>
<td>Time switch card</td>
<td>STA7</td>
</tr>
<tr>
<td>NT6X44</td>
<td>BA, EA</td>
<td>Universal time switch card</td>
<td>STA7</td>
</tr>
<tr>
<td>NT6X44</td>
<td>DA</td>
<td>Time switch DPNSS card</td>
<td>STA7</td>
</tr>
<tr>
<td>NT6X48</td>
<td>AA</td>
<td>DS30A peripheral interface card</td>
<td>STA7</td>
</tr>
<tr>
<td>NT6X67</td>
<td>AA</td>
<td>Signaling terminal buffer card</td>
<td>6STA, STA7</td>
</tr>
<tr>
<td>NT6X69</td>
<td>AA</td>
<td>CPP message protocol card</td>
<td>6STA, STA7</td>
</tr>
<tr>
<td>NT6X69</td>
<td>AB, AC, DA, MA</td>
<td>CPP message protocol and tones card</td>
<td>6STA, STA7</td>
</tr>
<tr>
<td>NT6X69</td>
<td>LA, LB</td>
<td>CPP message protocol and downloadable tones card</td>
<td>6STA, STA7</td>
</tr>
</tbody>
</table>

Refer to the “Index”, if you cannot identify one of the following features for the card that you want to replace:

- product engineering code (PEC)
- PEC suffix
- provisioned shelf
- provisioned frame
The “Index” contains a list of the cards, shelves, and frames documented in this card replacement book.

Common procedures
This procedure refers to *Replacing a card*.

Do not go to the common procedure unless the step-action procedure directs you to go.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Control complex cards in an MSB (continued)

Summary of replacing Control complex cards in an MSB

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

1. Post PM and make the unit inactive
2. Manually busy and reset the unit
3. Change the card
4. Return the unit to service
5. End
Replacing Control complex cards in an MSB

At your current location
1

Obtain a replacement card. Make sure that the replacement and the card that you remove have the same PEC and PEC suffix.

At the shelf
2

Locate the card that you want to replace. Record the number of the signaling terminal array (STA) and the number of the PM unit that associate with the card.

Note: Switch activity to the other PM unit before you remove the card from the shelf.

At the MAP terminal
3

To access the PM level of the MAP display, type:
>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>Cbsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

4

To post the MSB, type
>POST pm_type pm_no

and press the Enter key.

where

- **pm_type**
  - is the PM type (MSB6 or MSB7)

- **pm_no**
  - is the PM number (0 to 999)
Control complex cards  
in an MSB (continued)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>Cbsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB7</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>3</td>
</tr>
</tbody>
</table>

MSB7  0  InSv  Links_OOS: CSide 0, PSide 0
Unit0: Inact InSv
Unit1: Act  InSv

5 Determine the state and activity of the PM unit that contains the card you replace.

<table>
<thead>
<tr>
<th>If the state of the PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, or Cbsy, and active</td>
<td>step 6</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, or Cbsy, and inactive</td>
<td>step 9</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 11</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 16</td>
</tr>
</tbody>
</table>

6 From the MAP display, determine the state of the mate PM unit.

<table>
<thead>
<tr>
<th>If the state of the mate PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 18</td>
</tr>
</tbody>
</table>

7 To switch activity, type

>SWACT

and press the Enter key.

Example of a MAP response:

MSB7 0  A Warm SwAct will be performed after data sync of active terminals.
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you must confirm the command</td>
<td>step 8</td>
</tr>
<tr>
<td>the system rejects the SWACT</td>
<td>step 17</td>
</tr>
</tbody>
</table>

8 To confirm the command, type

>YES
and press the Enter key.

*Example of a MAP response:*

Unit0:  Inact SysB  Mtce
Unit1:  Act   ISTb
MSB7 0   SwAct Passed

<table>
<thead>
<tr>
<th>If the MAP response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SWACT passed</td>
<td>step 9</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 17</td>
</tr>
</tbody>
</table>

9 A maintenance flag (Mtce) can appear. This flag indicates that system-initiated maintenance tasks are in progress. Wait until the flag disappears from the status lines for both PM units before you proceed to the next step.

10 To manually busy the inactive unit, type

>`BSY INACTIVE`

and press the Enter key.

*Example of a MAP display:*

MSB7 0 ISTb Links_OOS: CSide 0 , PSide 0
Unit0:  Inact ManB
Unit1:  Act   InSv
bsy unit 0
MSB7 0 Unit 0   Bsy Passed

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 11</td>
</tr>
<tr>
<td>failed</td>
<td>step 18</td>
</tr>
</tbody>
</table>

11 To reset the PM unit, type

>`PMRESET UNIT unit_no NORUN`

and press the Enter key.

where

`unit_no`

is the PM unit number (0 or 1)

*Example of a MAP response:*

MSB7 0 Unit 0   PMReset Passed
Control complex cards  
in an MSB (continued)

At the shelf

12

**WARNING**

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the cards against static electricity damage.

To replace the card, perform the procedure *Replacing a card* in this document. When you complete the procedure, return to this point.

*Note:* If the card that you replace has switches, make sure that the switches on the replacement card have the same settings.

13 The next action depends on the reason that you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 14</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 15</td>
</tr>
</tbody>
</table>

14 Return to the maintenance procedure that directed you to this procedure. Continue as directed by the maintenance procedure.

At the MAP terminal

15 To return the inactive unit to service, type

`>RTS INACTIVE`

and press the Enter key.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 19</td>
</tr>
<tr>
<td>failed</td>
<td>step 18</td>
</tr>
</tbody>
</table>

16 To determine why the component is offline, consult operating company personnel. Continue as directed by operating company personnel.

17 For additional help with switch of activity, contact the next level of support.

*Note:* If the system recommends that you use the SWACT command with the FORCE option, consult operating company personnel. Consult operating company personnel to determine if you must use the FORCE option.
Control complex cards in an MSB (end)

18 For additional help, contact the next level of support.
19 The procedure is complete.
NT2X70 in an MSB

Application

Use this procedure to replace an NT2X70 in the shelves or frames listed in the following table.

If you cannot identify the product engineering code (PEC), suffix, or provisioned shelf or frame for the card you want to replace, refer to the “Index” for a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70</td>
<td>AA, AB, AC, AD, AE, AF</td>
<td>Power converter card</td>
<td>CCS6 signaling terminal array (6STA) slot 25, CCS7 signaling terminal array (STA7) slot 25</td>
</tr>
<tr>
<td>NT2X70</td>
<td>EA</td>
<td>-48 V power converter card</td>
<td>6STA slot 25, STA7 slot 25</td>
</tr>
<tr>
<td>NT2X70</td>
<td>KA</td>
<td>-60 V power converter card</td>
<td>6STA slot 25, STA7 slot 25</td>
</tr>
</tbody>
</table>

*Note:* This procedure is not used to change the NT2X70 power converter card in the CCS6 signaling terminal controller module (STCM) of an MSB6, or the CCS7 signaling terminal group (ST7G) of an MSB7. Refer to the “Index” to locate the correct procedure for these card/shelf configurations.

Common procedures

The following common procedures are referenced:

- “Manually busying Series II PM C-side links”
- “Loading a PM”

Do not go to the common procedure unless directed to do so in the step-action procedure.

Action

The following flowchart is only a summary of the procedure. To replace the card, use the instructions in the step-action procedure that follows the flowchart.
Summary of replacing an NT2X70 in an MSB

1. **Post PM**
2. **Verify card is from inactive unit**
3. **Place sign on active unit**
4. **Busy inactive unit**
5. **Remove and replace faulty card**
6. **RTS inactive unit**
7. **RTS passed?**
   - **Y**: **Remove sign from active unit**
   - **N**: **Contact next level of support**
8. **End**

**This flowchart summarizes the procedure.**

**Use the instructions in the procedure that follow this flowchart to perform the procedure.**
Replacing an NT2X70 in an MSB

At your current location
1

Obtain a replacement card. Ensure that the replacement card has the same PEC, including suffix, as the card being removed.

At the shelf
2
Identify the physical location of the power converter you are replacing. Record the number of the signaling terminal array (STA) and the number of the PM unit associated with the power converter.

Note: When removing power from an STA shelf, you must switch activity to the other in-service PM unit. You must also manually busy the network links associated with the DS-30 interface card located on the shelf that is being powered down.

At the MAP terminal
3
To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

4
To post the MSB, type

>POST pm_type pm_no

and press the Enter key.

where

pm_type
is the PM type (MSB6, MSB7)

pm_no
is the PM number (0 to 999)
Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSB6 0 InSv  Links_OOS: CSide 0 , PSide 0
Unit0: Inact InSv
Unit1: Act InSv

5 Determine the state and activity of the PM unit associated with the card you are replacing.

If the state of the PM unit is Do

| ISTb, InSv, SysB, or CBsy, and active | step 6 |
| ISTb, InSv, SysB, or CBsy, and inactive | step 9 |

| ManB | step 11 |
| OffL | step 39 |

6 Determine the state of the mate PM unit.

If the state of the mate PM unit is Do

| ISTb or InSv | step 7 |
| any other state | step 40 |

7 To switch activity, type

>SWACT

and press the Enter key.

Example of a MAP response:

MSB6 0 A Warm SwAct will be performed after data sync of active terminals. Please confirm ("YES", "Y", "NO", or "N"): 

If Do

| you must confirm the command | step 8 |
| the system rejects the SWACT | step 40 |

8 To confirm the command, type

>YES
and press the Enter key.

*Example of a MAP response:*

```
Unit0: Inact SysB Mtce
Unit1: Act ISTb
MSB6 0 SwAct Passed
```

<table>
<thead>
<tr>
<th>If the message is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWACT passed</td>
<td>step 9</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 40</td>
</tr>
</tbody>
</table>

9 A maintenance flag (Mtce) may appear, indicating that system-initiated maintenance tasks are in progress. Wait until the flag disappears from the status lines for both PM units before proceeding to the next step.

10 To manually busy the inactive unit, type

>`BSY INACTIVE`

and press the Enter key.

*Example of a MAP response:*

```
MSB6 0 ISTb Links_OOS: CSide 0, PSide 0
Unit0: Inact ManB
Unit1: Act InSv
bsy unit 0
MSB6 0 Unit 0 Bsy Passed
```

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 11</td>
</tr>
<tr>
<td>failed</td>
<td>step 40</td>
</tr>
</tbody>
</table>

11 To reset the PM unit, type

>`PMRESET UNIT unit_no NORUN`

and press the Enter key.

*where*

`unit_no` is the PM unit number (0 or 1)

*Example of a MAP response:*

```
MSB6 0 Unit 0 PMReset Passed
```

12 Manually busy all C-side links associated with the shelf you are working on using the procedure “Manually busying Series II PM C-side links” in this document. When you have completed the procedure, return to this point.
DMS-100 Family NA100 Card Replacement Procedures Volume 2 of 7 LET0015 and up

NT2X70 in an MSB (continued)

At the shelf

13

**DANGER**

*Static electricity damage*

Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) while handling circuit cards. This protects the cards against damage caused by static electricity.

Put on a wrist strap.

14

Determine the type of MSB you are working on.

<table>
<thead>
<tr>
<th>If you are working on an</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB6</td>
<td>step 15</td>
</tr>
<tr>
<td>MSB7</td>
<td>step 16</td>
</tr>
</tbody>
</table>

15

Unseat cards in the MSB6 control complex.

a Unseat the NT6X43 message interface card in slot 20.

b Unseat the NT6X45 signaling processor card in slot 19.

c Unseat the NT6X45 master processor card from slot 15.

Go to step 17.

16

Unseat cards in the MSB7 control complex.

a Unseat the NT6X69 message protocol card in slot 20.

b Unseat the NT6X45 signaling processor card in slot 16.

c Unseat the NT6X45 master processor card from slot 11.

17

Power down the unit by pulling and setting the handle of the power converter POWER switch downward to the OFF position.

18

**DANGER**

*Equipment damage*

Take the following precautions when removing or inserting a card:

1. Do not apply direct pressure to the components.

2. Do not force the cards into the slots.

Remove the NT2X70 power converter card as shown in the following figures.
a  Locate the card to be removed on the appropriate shelf.

b  If the card has an ENBL/DSBL switch, operate the switch to the DSBL position.

c  Grasp the top and the bottom latch assemblies.

d  Simultaneously rotate the top latch upward and the bottom latch downward until the latches are in the horizontal position. This will move the card 1/2 inch from the shelf backplane.
e Holding the card by the face plate, slide the card along the guides until the card is free from the shelf.

f Immediately place the card into an approved electro-static discharge (ESD) protective container.
Insert the NT2X70 power converter replacement card as shown in the following figures.

- **a** Hold the card by the face plate with the components visible on the right-hand side.
- **b** If the card has an ENBL/DSBL switch, operate the switch to the DSBL position.
- **c** Place the back edge of the card into the upper and lower guides of the desired slot position on the shelf.
- **d** Gently slide the card into the shelf.

**DANGER**

Equipment damage
Take these precautions when removing or inserting a card:

1. Do not apply direct pressure to the components.
2. Do not force the cards into the slots.
20  Seat and lock the card.

a  Push the card into the shelf. The card will stop about 1/2 inch from its final position.

b  Rotate the top latch down and the bottom latch up at the same time. The card will lock into position when the lock-latches are flush with the faceplate of the card.
NT2X70 in an MSB (continued)

<table>
<thead>
<tr>
<th>If you are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replacing an NT2X70 card and the FSP or MSP has circuit breakers</td>
<td>step 22</td>
</tr>
<tr>
<td>replacing an NT2X70 card and the FSP or MSP does not have circuit breakers</td>
<td>step 23</td>
</tr>
<tr>
<td>not replacing an NT2X70 card and the FSP or MSP has circuit breakers</td>
<td>step 24</td>
</tr>
<tr>
<td>not replacing an NT2X70 card and the FSP or MSP does not have circuit breakers</td>
<td>step 25</td>
</tr>
</tbody>
</table>

22 Power up the converter.

a Pull and set the handle of the POWER switch upward to the RESET position and hold.

b Set the switch of the converter circuit breaker on the FSP or MSP upwards until it clicks into place.
c Release the handle of the POWER switch and the switch of the circuit breaker.
   Go to step 26.

23 Power up the converter.
   a Pull and set the handle of the POWER switch upward to the RESET position and hold until the CONVERTER FAIL LED goes off.
   b Release the handle of the POWER switch.
   Go to step 26.

24 Power up the converter.
   a Pull and set the handle of the POWER switch upward to the ON position.
   b Press and hold the RESET button on the power converter.
   c Set the switch of the converter circuit breaker on the FSP or MSP upwards until it clicks into place.
   d Release the RESET button and circuit breaker.
   Go to step 26.

25 Power up the converter.
   a Pull and set the handle of the POWER switch upward to the ON position.
   b Press and hold the RESET button on the power converter until the CONVERTER FAIL LED goes off.
   c Release the RESET button.

26 The next action depends on the type of MSB you are working on.

If you are working on an MSB

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB6</td>
</tr>
<tr>
<td>MSB7</td>
</tr>
</tbody>
</table>

27 Reseat cards in the MSB6 control complex.
   a Reseat the NT6X45 master processor card in slot 15.
   b Reseat the NT6X45 signaling processor card in slot 19.
   c Reseat the NT6X43 message interface card in slot 20.
   Go to step 29.

28 Reseat cards in the MSB7 control complex.
   a Reseat the NT6X45 master processor card in slot 11.
   b Reseat the NT6X45 signaling processor card in slot 16.
   c Reseat the NT6X69 message protocol card in slot 20.
At the MAP terminal

29 The next action depends on the type of network in the office.

<table>
<thead>
<tr>
<th>If you are working on</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNET</td>
<td>step 30</td>
</tr>
<tr>
<td>ENET</td>
<td>step 32</td>
</tr>
</tbody>
</table>

30 To return to service one of the network links associated with the PM unit you are working on, type

>RTS plane_no link_no

and press the Enter key.

where

plane_no

is the number of the plane (0 or 1) for the link

link_no

is the link number (0 to 63)

<table>
<thead>
<tr>
<th>If the link</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>returned to service and there are more manual-busy links</td>
<td>step 31</td>
</tr>
<tr>
<td>returned to service and there are no more manual-busy links</td>
<td>step 33</td>
</tr>
<tr>
<td>did not return to service</td>
<td>step 40</td>
</tr>
</tbody>
</table>

31 Repeat step 30 for all C-side links for the PM unit you are working on.

32 To return the link to service, type

>RTS plane_no LINK link_no

and press the Enter key.

where

plane_no

is the number of the plane (0 or 1) for the link

link_no

is the link number (0 to 63)

Example of a MAP response:

Request to RTS ENET Plane:0 Shelf:00 Slot:32 Link:01 submitted.
Request to RTS ENET Plane:0 Shelf:00 Slot:32 Link:01 passed.
To post the MSB you are working on, type

\texttt{PM;POST pm\_type pm\_no}

and press the Enter key.

\textit{where}

- \texttt{pm\_type} is the PM type (MSB6, MSB7)
- \texttt{pm\_no} is the PM number (0 to 256)

The next action depends on your reason for performing this procedure.

To load the inactive unit, type

\texttt{LOADPM INACTIVE}

and press the Enter key.

If the LOADPM command

\begin{tabular}{|l|l|}
\hline
failed & step 37 \\
\hline
passed & step 38 \\
\hline
\end{tabular}

Load the PM unit using the procedure \textit{Loading a PM} in this document. When you have completed the procedure, return to this point.

Return the inactive unit to service by typing

\texttt{RTS INACTIVE}

and pressing the Enter key.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 41</td>
</tr>
</tbody>
</table>

If the link returned to service do step 33
If the link did not return to service do step 40
## NT2X70
### in an MSB (end)

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 40</td>
</tr>
</tbody>
</table>

39 Contact operating company personnel to determine why the component is offline. Continue as directed.

40 For further assistance, contact the personnel responsible for the next level of support.

41 You have completed this procedure.
NT2X70 in an ST7G or STCM

Application

Use this procedure to replace an NT2X70 in the shelves or frames listed in the following table.

If you cannot identify the product engineering code (PEC), suffix, or provisioned shelf or frame for the card you want to replace, refer to the “Index” for a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70</td>
<td>AA, AB, AC, AD, AE, AF</td>
<td>Power converter card</td>
<td>CCS6 signalling terminal controller module (STCM), CCS7 signaling terminal group (ST7G)</td>
</tr>
<tr>
<td>NT2X70</td>
<td>EA</td>
<td>-48 V power converter card</td>
<td>STCM, ST7G</td>
</tr>
<tr>
<td>NT2X70</td>
<td>KA</td>
<td>-60 V power converter card</td>
<td>STCM, ST7G</td>
</tr>
</tbody>
</table>

Note: This procedure is not used to change the NT2X70 power converter card in the CCS6 signaling terminal controller module (STCM) of an MSB6. Refer to the “Index” to locate the correct procedure for this card/shelf combination.

Common procedures

The common procedure “Loading a PM” is referenced in this procedure.

Do not go to the common procedure unless directed to do so in the step-action procedure.

Action

The following flowchart is only a summary of the procedure. To replace the card, use the instructions in the step-action procedure that follows the flowchart.
NT2X70
in an ST7G or STCM (continued)

Summary of replacing an NT2X70 in an ST7G or STCM

This flowchart summarizes the procedure.
Use the instructions in the procedure that follow this flowchart to perform the procedure.

Post the MSB

Post the STC

Manually busy all STs

Change the card

RTS STs

RTS passed?

Y  End

N  Contact next level of support
Replacing an NT2X70 in an ST7G or STCM

**At your current location**

1

**CAUTION**

*Loss of service*

This procedure includes directions to manually busy one or more signaling terminals (ST). Since manually busying an ST can cause service degradation, perform this procedure only if necessary to restore out-of-service components. Otherwise, carry out this procedure during periods of low traffic.

Obtain a replacement card. Ensure that the replacement card has the same PEC, including suffix, as the card being removed.

**At the shelf**

2 Identify the physical location of the power converter you are replacing.

Record the STCM number or the ST7G number associated with that power converter.

*Note:* When removing power from an STCM or an ST7G, you must manually busy all signaling terminals in the group before card replacement.

**At the MAP terminal**

3 To access the PM level of the MAP display, type

```
>MAPCI;MTC;PM
```

and press the Enter key.

*Example of a MAP display:*

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

4 To post the MSB, type

```
>POST pm_type pm_no
```

and press the Enter key.

*where*

- **pm_type** is the PM type (MSB6, MSB7)
- **pm_no** is the PM number (0 to 256)

*Example of a MAP display:*
NT2X70
in an ST7G or STCM (continued)

5 To access the STC level of the MAP display, type
   \texttt{>STC}
   
   and press the Enter key.
   
   \textit{Example of a MAP display:}

   \begin{tabular}{ccccccc}
   PM & SysB & ManB & OffL & CBsy & ISTb & InSv \\
   MSB7 & 12 & 0 & 2 & 0 & 13 & 24 \\
   
   MSB7 & 0 ISTb & Links\_OOS: CSide 0 , PSide 0 \\
   Unit0: & Inact ISTb \\
   Unit1: & Act ISTb \\
   \end{tabular}

6 To post the STCM or ST7G that you recorded in step 2, type
   \texttt{>POST stcm\_no}
   
   and press the Enter key.
   
   \textit{where}

   \begin{tabular}{ccccccc}
   PM & SysB & ManB & OffL & CBsy & ISTb & InSv \\
   MSB7 & 12 & 0 & 2 & 0 & 13 & 24 \\
   
   MSB7 & 1 ISTb & Links\_OOS: CSide 0 , PSide 0 \\
   Unit0: & Inact ISTb \\
   Unit1: & Act ISTb \\
   \end{tabular}

   \textit{Example of a MAP display:}

   \begin{tabular}{ccccccc}
   PM & SysB & ManB & OffL & CBsy & ISTb & InSv \\
   MSB7 & 12 & 0 & 2 & 0 & 13 & 24 \\
   
   MSB7 & 1 ISTb & Links\_OOS: CSide 0 , PSide 0 \\
   Unit0: & Inact ISTb \\
   Unit1: & Act ISTb \\
   \end{tabular}

   \texttt{STC}

7 To manually busy the STs, type
   \texttt{>BSY \_ALL}
   
   and press the Enter key.
   
   \textit{Example of a MAP response:}

   \begin{tabular}{cccccccc}
   SysB & ManB & OffL & CBsy & ISTb & InSv & Ctrl & Bd & SysB & Diag & Mtce \\
   PM & 12 & 0 & 2 & 0 & 13 & 24 & \\
   MSB7 & 0 & 0 & 0 & 0 & 3 & 0 & \\
   MSB7 & 1 ISTb & Links\_OOS: CSide 0 , PSide 0 \\
   Unit0: & Inact ISTb \\
   Unit1: & Act ISTb \\
   \end{tabular}
To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response:

STC 301 Bsy Passed
STC 302 Bsy Passed
STC 303 Bsy Passed
STC 304 Bsy Passed

At the shelf

9

DANGER
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) while handling circuit cards. This protects the cards against damage caused by static electricity.

Put on a wrist strap.

10

Power down the unit by pulling and setting the handle of the power converter POWER switch downward to the OFF position.

11

DANGER
Equipment damage
Take the following precautions when removing or inserting a card:

1. Do not apply direct pressure to the components.
2. Do not force the cards into the slots.

Remove the NT2X70 power converter card as shown in the following figures.

a. Locate the card to be removed on the appropriate shelf.
b If the card has an ENBL/DSBL switch, set the switch to the DSBL position.

c Grasp the top and the bottom latch assemblies.

d Rotate the top latch up and the bottom latch down at the same time until the latches are in the horizontal position. This action will move the card 1/2 inch from the shelf backplane.
NT2X70
in an ST7G or STCM (continued)

e  Hold the card by the face plate and slide the card along the guides until the card is free from the shelf.

f  Immediately place the card into an approved electro-static discharge (ESD) protective container.
NT2X70 in an ST7G or STCM (continued)

12

DANGER
Equipment damage
Take these precautions when removing or inserting a card:
1. Do not apply direct pressure to the components.
2. Do not force the cards into the slots.

Insert the NT2X70 power converter replacement card as shown in the following figures.

a Hold the card by the face plate with the components visible on the right-hand side.

b If the card has an ENBL/DSBL switch, set the switch to the DSBL position.

c Place the back edge of the card into the upper and lower guides of the desired slot position on the shelf.

d Gently slide the card into the shelf.
13 Seat and lock the card.

a Push the card into the shelf. The pack will stop about 1/2 inch from its final position.

b Simultaneously rotate the top latch downward and the bottom latch upward. The card will lock into position when the lock-latches are flush with the face plate of the card.
c If the card has an ENBL/DSBL switch, set the switch to the ENBL position.

14 The next action depends on the power converter version and the type of supervisory panel.

<table>
<thead>
<tr>
<th>If you are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replacing an NT2X70 card and the FSP or MSP has circuit breakers</td>
<td>step 15</td>
</tr>
<tr>
<td>replacing an NT2X70 card and the FSP or MSP does not have circuit breakers</td>
<td>step 16</td>
</tr>
<tr>
<td>not replacing an NT2X70 card and the FSP or MSP has circuit breakers</td>
<td>step 17</td>
</tr>
<tr>
<td>not replacing an NT2X70 card and the FSP or MSP does not have circuit breakers</td>
<td>step 18</td>
</tr>
</tbody>
</table>

15 Power up the converter.

a Pull and set the handle of the POWER switch upward to the RESET position and hold.

b Set the switch of the converter circuit breaker on the FSP or MSP upwards until it clicks into place.

c Release the handle of the POWER switch and the switch of the circuit breaker.
NT2X70
in an ST7G or STCM (continued)

Go to step 19.

16 Power up the converter.
   a Pull and set the handle of the POWER switch upward to the RESET position and hold until the CONVERTER FAIL LED goes off.
   b Release the handle of the POWER switch.
      Go to step 19.

17 Power up the converter.
   a Pull and set the handle of the POWER switch upward to the ON position.
   b Press and hold the RESET button on the power converter.
   c Set the switch of the converter circuit breaker on the FSP or MSP upwards until it clicks into place.
   d Release the RESET button and circuit breaker.
      Go to step 19.

18 Power up the converter.
   a Pull and set the handle of the POWER switch to the ON position.
   b Press and hold the RESET button on the power converter until the CONVERTER FAIL LED goes off.
   c Release the RESET button.

At the MAP terminal

19 To load the STs, type
   >LOADPM ALL
   and press the Enter key.

   Example of a MAP response #1:

   STC 301 load Passed : M7CQA01
   STC 302 load Passed : M7CQA01
   STC 303 load Passed : M7CQA01
   STC 304 load Passed : M7CQA01

   Example of a MAP response #2:
STC load 'M7CQA01' not in MSB7 0

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 25</td>
</tr>
<tr>
<td>failed, with the message</td>
<td>step 20</td>
</tr>
<tr>
<td>STC Load &lt;loadname&gt; not in</td>
<td></td>
</tr>
<tr>
<td>&lt;msb_unit&gt;</td>
<td></td>
</tr>
<tr>
<td>failed, with any other</td>
<td>step 22</td>
</tr>
<tr>
<td>message</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** As shown above in “Example of a MAP response #2”, loadname is the name of the ST load; msb_unit is the MSB (MSB6, MSB7) and the unit number.

20 To return to the PM level of the MAP display, type

>QUIT
and press the Enter key.

21 To add the load to the MSB, type

>STCLOAD PM ADD loadname
and press the Enter key.

<table>
<thead>
<tr>
<th>If the STCLOAD command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 23</td>
</tr>
<tr>
<td>failed</td>
<td>step 22</td>
</tr>
</tbody>
</table>

22 Load the PM unit using the procedure “Loading a PM” in this document. When you have completed the procedure, return to this point.

23 To access the STC level of the MAP display, type

>STC
and press the Enter key.

24 To post the STCM or ST7G that you recorded in step 2, type

>POST stcm_no
and press the Enter key.

*where*

stcm_no

is the STCM number (0 to 9)

Go to step 19.

25 To return the STs to service, type

>RTS ALL
and press the Enter key.

*Example of a MAP response:*

```
STC 301 Out-of-service test initiated
STC 301 Tst Passed
STC 301 Rts Passed
STC 302 Out-of-service test initiated
STC 302 Tst Passed
STC 302 Rts Passed
STC 303 Out-of-service test initiated
STC 303 Tst Passed
STC 303 Rts Passed
STC 304 Out-of-service test initiated
STC 304 T Passed
STC 304 Rts Passed
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed for all STCs</td>
<td>step 26</td>
</tr>
<tr>
<td>failed for any STC</td>
<td>step 31</td>
</tr>
</tbody>
</table>

26 Send any faulty cards for repair according to local procedure.

27 Record the following items in office records:
   - date the card was replaced
   - serial number of the card
   - symptoms that prompted replacement of the card.

Go to step 28.

28 The next action depends on your reason for performing this procedure.

<table>
<thead>
<tr>
<th>If you were</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed to this procedure from a maintenance procedure</td>
<td>step 29</td>
</tr>
<tr>
<td>not directed to this procedure from a maintenance procedure</td>
<td>step 32</td>
</tr>
</tbody>
</table>

29 Return to the maintenance procedure that sent you to this procedure and continue as directed.

30 Consult office personnel to determine why the component is offline. Continue as directed by office personnel.

31 For further assistance, contact the personnel responsible for the next level of support.

32 You have completed this procedure.
NT6X40 in an MSB

Application

Use this procedure to replace the following cards in the shelves or frames listed.

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X40</td>
<td>AA, AB, AC, BA</td>
<td>DS30 C-side interface card</td>
<td>CCS6 signaling terminal array (6STA) of a CCS6 message switch and buffer (MSB6), CCS7 signaling terminal array (STA7) of a CCS7 message switch and buffer (MSB7)</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to the following common procedures:

- *Manually busying Series II PM C-side links*
- *Replacing a card*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
NT6X40
in an MSB (continued)

Summary of replacing NT6X40 in an MSB

1. Post PM and make unit inactive
2. Manually busy network links
3. Change the card
4. Return network links to service
5. End

This flowchart summarizes the procedure.
Use the instructions in the procedure that follows this flowchart to perform the procedure.
Replacing an NT6X40 in an MSB

At your current location

1

Obtain a replacement card. Make sure that the replacement card and the card you replace have the same PEC and PEC suffix.

At the shelf

2

Locate the card you replace.

Note: Before you remove the NT6X40 from the shelf, you must switch activity to the other PM unit. Manually busy network links that associate with the card.

At the MAP terminal

3

To access the PM level of the MAP display, type

>MAPCI; MTC; PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>Cbsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

4

To post the MSB, type

>POST pm_type pm_no

and press the Enter key.

where

PM_TYPE
the PM type (MSB6 or MSB7)

PM_NO
is the PM number (0 to 999)

Example of a MAP display:

WARNING
Loss of service
This procedure manually busies network links and removes network link redundancy. Perform this procedure if you need to restore out-of-service components. Unless its urgent, perform the procedure during periods of low traffic only.
5 Determine the state and activity of the PM unit that contains the card you replace.

If the state of the PM unit  
Do

<table>
<thead>
<tr>
<th>If the state of the PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, or Cbsy, and active</td>
<td>step 6</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, Cbsy, or ManB, and inactive</td>
<td>step 9</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 18</td>
</tr>
</tbody>
</table>

6 From the MAP display, determine the state of the mate PM unit.

<table>
<thead>
<tr>
<th>If the state of the mate PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 20</td>
</tr>
</tbody>
</table>

7 To switch activity, type

>SWACT

and press the Enter key.

Example of a MAP response:

```
MSB7 0 A Warm SwAct will be performed after data sync of active terminals.
```

Confirm ("YES", "Y", "NO", or "N"): 

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you must confirm the command</td>
<td>step 8</td>
</tr>
<tr>
<td>the system rejects the SWACT</td>
<td>step 19</td>
</tr>
</tbody>
</table>

8 To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response:
A maintenance flag (Mtce) indicates that system-initiated maintenance tasks are in progress. Wait until the flag disappears from the status lines for both PM units before you proceed to the next step.

Manually busy all C-side links associated with the NT6X40 involved. Perform the procedure Manually busying Series II PM C-side links in this document. Complete the procedure and return to this point.

At the shelf

To replace the card, perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: Make sure that the replacement card and the card you remove have the same switch settings.

At the MAP terminal

The next action depends on the type of network in the office.

To return to service one of the network links, type

>RTS plane_no link_no
and press the Enter key.

*where*

- **plane_no**
  - is the number of the plane (0 or 1) for the link

- **link_no**
  - is the link number (0 to 63)

<table>
<thead>
<tr>
<th>If the link</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>returned to service and there are more manual-busy links</td>
<td>step 14</td>
</tr>
<tr>
<td>returned to service and there are no more manual-busy links</td>
<td>step 16</td>
</tr>
<tr>
<td>did not return to service</td>
<td>step 20</td>
</tr>
</tbody>
</table>

14 Repeat step 13 for each manual busy C-side link. Return all C-side links to service and go to step 16.

15 To return the link to service, type

```bash
>RTS plane_no LINK link_no
```

and press the Enter key.

*where*

- **plane_no**
  - is the number of the surface (0 or 1) for the link

- **link_no**
  - is the link number (0 to 63)

*Example of a MAP response:*

Request to RTS ENET Surface:0 Shelf:00 Slot:32 Link:01 submitted
Request to RTS ENET Surface:0 Shelf:00 Slot:32 Link:01 passed.

<table>
<thead>
<tr>
<th>If the link</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>returned to service</td>
<td>step 16</td>
</tr>
<tr>
<td>did not return to service</td>
<td>step 20</td>
</tr>
</tbody>
</table>

16 The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 17</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 21</td>
</tr>
</tbody>
</table>
NT6X40
in an MSB (end)

17 Return to the maintenance procedure that sent you to this procedure and continue as directed.

18 Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

19 For additional help with switch of activity, contact the next level of support.

Note: If the system recommends that you use the SWACT command with the FORCE option, contact operating company personnel to determine if you must use the FORCE option.

20 For additional help, contact the next level of support.

21 The procedure is complete.
Application

Use this procedure to replace the following cards in the shelves or frames listed.

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X68</td>
<td>AA</td>
<td>Signaling terminal interface card</td>
<td>CCS6 message switch and buffer (MSB6)</td>
</tr>
<tr>
<td>NT6X68</td>
<td>AB</td>
<td>Signaling terminal interface card with terminator</td>
<td>MSB6</td>
</tr>
<tr>
<td>NT6X68</td>
<td>AC</td>
<td>Signaling terminal interface card</td>
<td>CCS7 message switch and buffer (MSB7)</td>
</tr>
<tr>
<td>NT6X68</td>
<td>AD</td>
<td>Signaling terminal interface card with terminator</td>
<td>MSB7</td>
</tr>
<tr>
<td>NT6X68</td>
<td>CA</td>
<td>International signaling terminal interface card</td>
<td>MSB7</td>
</tr>
<tr>
<td>NT6X68</td>
<td>DA</td>
<td>International signaling terminal interface card with terminator</td>
<td>MSB7</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to Replacing a card.

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing NT6X68 in an MSB

- Post MSB and make unit inactive
- Manually busy the PM unit
- Reset the PM unit
- Change the card
- Return the PM unit to service
- End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing an NT6X68 in an MSB

At your current location

1

**WARNING**

*Loss of service*

This procedure manually busies a minimum of one peripheral module (PM) unit, which can result in a loss of service. Perform this procedure if you need to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.

Obtain a replacement card. Make sure that the replacement card and the card you replace has the same PEC and PEC suffix.

At the shelf

2

Locate the card you replace. Record the number of the PM unit that associates with the card. To identify the PM unit associated with the card you will replace, use the following table:

<table>
<thead>
<tr>
<th>MSB and shelf</th>
<th>Slot</th>
<th>Associated PM unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB7, upper shelf</td>
<td>slot 08</td>
<td>MSB7 unit 0</td>
</tr>
<tr>
<td></td>
<td>slot 09</td>
<td>MSB7 unit 1</td>
</tr>
<tr>
<td>MSB7, lower shelf</td>
<td>slot 08</td>
<td>MSB7 unit 1</td>
</tr>
<tr>
<td></td>
<td>slot 09</td>
<td>MSB7 unit 0</td>
</tr>
<tr>
<td>MSB6, upper shelf</td>
<td>slot 12</td>
<td>MSB6 unit 0</td>
</tr>
<tr>
<td></td>
<td>slot 13</td>
<td>MSB6 unit 1</td>
</tr>
<tr>
<td>MSB6, lower shelf</td>
<td>slot 12</td>
<td>MSB6 unit 1</td>
</tr>
<tr>
<td></td>
<td>slot 13</td>
<td>MSB6 unit 0</td>
</tr>
</tbody>
</table>

*Note:* Before you replace the card, you must switch activity to the PM unit that does not associate with the card you replace.
At the MAP terminal

3 To access the PM level of the MAP display, type
>MAPCI;MTC;PM
and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>Cbsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>24</td>
</tr>
</tbody>
</table>

4 To post the PM associated with the card that you replace, type
>POST pm_type pm_no
and press the Enter key.

where

pm_type  
is the PM type (MSB6 or MSB7)

pm_no  
is the PM identification number (0 to 999)

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>Cbsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>MSB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSB7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unit0:</td>
<td>Inact</td>
<td>InSv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit1:</td>
<td>Act</td>
<td>InSv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Determine the state and activity of the PM unit that associates with the card that you replace.

<table>
<thead>
<tr>
<th>If the state of the PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, or Cbsy, and active</td>
<td>step 6</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, or Cbsy, and inactive</td>
<td>step 9</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 11</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 16</td>
</tr>
</tbody>
</table>

6 From the MAP display, determine the state of the mate PM unit.

<table>
<thead>
<tr>
<th>If the state of the mate PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 7</td>
</tr>
</tbody>
</table>
To switch activity, type
>SWACT
and press the Enter key.

Example of a MAP response:

MSB7 0  A Warm SwAct will be performed after
data sync of active terminals.
Confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the state of the mate PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is other than listed here</td>
<td>step 18</td>
</tr>
</tbody>
</table>

To confirm the command, type
>YES
and press the Enter key.

Example of a MAP response:

Unit0:   Inact SysB  Mtce
Unit1:   Act   ISTbMSB7 0    SwAct Passed

<table>
<thead>
<tr>
<th>If the MAP response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SWACT passed</td>
<td>step 9</td>
</tr>
<tr>
<td>is any other response</td>
<td>step 17</td>
</tr>
</tbody>
</table>

A maintenance flag (Mtce) indicates that system-initiated maintenance tasks are in progress. Wait until the flag disappears from the status lines for both PM units before you proceed to the next step.

To manually busy the inactive unit, type
>BSY INACTIVE
and press the Enter key.

Example of a MAP response:
NT6X68
in an MSB (continued)

If the BSY command  Do

| passed   | step 11 |
| failed   | step 18 |

11 To reset the PM unit, type

```plaintext
>PMRESET UNIT unit_no NORUN
```

and press the Enter key.

**where**

`unit_no` is the PM unit number (0 or 1)

**Example of a MAP response:**

```
MSB7 0 Unit 0 PMReset Passed
```

**At the shelf**

12

**WARNING**

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a modular supervisory panel (MSP) or a frame supervisory panel (FSP). The wrist-strap protects the cards against static electricity damage.

To replace the card, perform the *Replacing a card* procedure in this document. Complete the procedure and return to this point.

**Note:** If the card that you replace has switches, make sure that the switches on the replacement card have the same settings.

13 The next action depends on the reason you perform this procedure.

**If a maintenance procedure  Do**

| directed you to this procedure | step 14 |
14 Return to the maintenance procedure that sent you to this procedure and continue as directed.

**At the MAP terminal**

15 To return the inactive PM unit to service, type

```plaintext
>RTS INACTIVE
```

the Enter key.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 19</td>
</tr>
<tr>
<td>failed</td>
<td>step 18</td>
</tr>
</tbody>
</table>

16 Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

17 For additional help with switch of activity, contact the next level of support.

**Note:** If the system recommends the use of the SWACT command with the FORCE option, contact operating company personnel to determine if you must use the FORCE option.

18 For additional help, contact the next level of support.

19 The procedure is complete.
Processor and memory cards
in an MSB

Application

Use this procedure to replace the following cards in the shelves or frames listed.

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card to replace, refer to the Index. The Index provides the list of the cards, shelves, and frames in this card replacement book.

Common procedures

This procedure refers to the following common procedures:

- *Loading a PM*
- *Replacing a card*
- *Replacing cards in equipment shelves*
- *Removing cards in equipment shelves*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X45</td>
<td>AA, AB, AC, AD, AE, AF, BC, BD, BA, BB</td>
<td>Processor card</td>
<td>CCS6 signaling terminal array (6STA) of a CCS6 message switch and buffer (MSB6), CCS7 signaling terminal array (STA7) of a CCS7 message switch and buffer (MSB7)</td>
</tr>
<tr>
<td>NT6X46</td>
<td>AB, AC, BA, BB</td>
<td>Signaling processor memory card</td>
<td>6STA, STA7</td>
</tr>
<tr>
<td>NT6X47</td>
<td>AA, AB</td>
<td>Master memory processor plus card</td>
<td>6STA, STA7</td>
</tr>
</tbody>
</table>
Summary of replacing Processor and memory cards in an MSB

Post PM and make unit inactive

Manually busy PM unit and reset

Reseat control complex cards

Change the card

Reseat control complex cards

Load PM unit and return to service

End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing Processor and memory cards in an MSB

At your current location

1

Obtain a replacement card. Make sure that the replacement card and the card you replace have the same PEC and PEC suffix.

At the shelf

2

Locate the card that you will replace. Record the number of the STA7 and the number of the PM unit that associate with the card.

Note: Before you remove the card from the shelf, switch activity to the other PM unit.

At the MAP terminal

3

To access the PM level of the MAP display, type

>MAPCI;MTC;PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>Cbsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>24</td>
</tr>
</tbody>
</table>

4

To post the MSB7, type

>POST pm_type pm_no

and press the Enter key.

where

pm_type

is the PM type (MSB6 or MSB7)

pm_no

is the PM number (0 to 999)

Example of a MAP display:
5 Determine the state and activity of the PM unit that contains the card that you replace.

<table>
<thead>
<tr>
<th>If the state of the PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb, InSv, SysB, or Cbsy, and active</td>
<td>step 6</td>
</tr>
<tr>
<td>is ISTb, InSv, SysB, or Cbsy, and inactive</td>
<td>step 9</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 11</td>
</tr>
<tr>
<td>is OffL</td>
<td>step 28</td>
</tr>
</tbody>
</table>

6 From the MAP display, determine the state of the mate PM unit.

<table>
<thead>
<tr>
<th>If the state of the mate PM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is ISTb or InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 30</td>
</tr>
</tbody>
</table>

7 To switch activity, type

>`SWACT`

and press the Enter key.

*Example of a MAP response:*

```
MSB7 0 A Warm SwAct will be performed after data sync of active terminals. Please confirm ("YES", "Y", "NO", or "N"):
```

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you must confirm the command</td>
<td>step 8</td>
</tr>
<tr>
<td>the system rejects the SWACT</td>
<td>step 29</td>
</tr>
</tbody>
</table>

8 To confirm the command, type

>`YES`
Message switch and buffer card replacement procedures

Processor and memory cards in an MSB (continued)

and press the Enter key.

*Example of a MAP response:*

```
Unit0: Inact SysB Mtce
Unit1: Act ISTb
MSB7 0 SwAct Passed
```

<table>
<thead>
<tr>
<th>If the MAP response</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is SWACT passed</td>
<td>step 9</td>
</tr>
<tr>
<td>is a response other than listed here</td>
<td>step 29</td>
</tr>
</tbody>
</table>

9 A maintenance flag (Mtce) indicates that system-initiated maintenance tasks are in progress. Wait until the flag disappears from the status lines for both PM units before you proceed to the next step.

10 To manually busy the inactive unit, type

```
>BSY INACTIVE
```

and press the Enter key.

*Example of a MAP response:*

```
MSB7 0 ISTb Links_OOS: CSide 0, PSide 0
Unit0: Inact ManB
Unit1: Act InSv
bsy unit 0
MSB7 0 Unit 0 Bsy Passed
```

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 11</td>
</tr>
<tr>
<td>failed</td>
<td>step 30</td>
</tr>
</tbody>
</table>

11 To reset the PM unit, type

```
>PMRESET UNIT unit_no NORUN
```

and press the Enter key.

*where*

```
unit_no
```

is the PM unit number (0 or 1)

*Example of a MAP response:*

```
MSB7 0 Unit 0 PMReset Passed
```
Message switch and buffer card replacement procedures

Processor and memory cards in an MSB (continued)

At the shelf

12

**WARNING**

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a modular supervisory panel (MSP) or a frame supervisory panel (FSP). The wrist-strap protects the cards against static electricity damage.

The next action depends on the processor configuration of the PM involved.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace an NT6X45 in an MSB6</td>
<td>step 13</td>
</tr>
<tr>
<td>replace an NT6X46 in an MSB6</td>
<td>step 14</td>
</tr>
<tr>
<td>replace an NT6X45 in an MSB7</td>
<td>step 15</td>
</tr>
<tr>
<td>replace an NT6X46 in an MSB7</td>
<td>step 16</td>
</tr>
<tr>
<td>replace an NT6X47 in either an MSB6 or an MSB7</td>
<td>step 17</td>
</tr>
</tbody>
</table>

13 **Unseat processor and memory cards in the MSB6 control complex.** For each substep below, perform the procedure *Unseating cards in equipment shelves* in this document.

a Unseat the NT6X43 message interface card in slot 20.
b Unseat the NT6X45 signaling processor card in slot 19.
c Unseat the NT6X45 master processor card form slot 15.

Go to step 17.

14 **Unseat the NT6X67 signaling terminal buffer card** in slot 14 of the MSB6 control complex. Perform the procedure *Unseating cards in equipment shelves* in this document.

Go to step 17.

15 **Unseat processor and memory cards in the MSB7 control complex.** For each substep below, perform the procedure *Unseating cards in equipment shelves* in this document.

a Unseat the NT6X69 message protocol card in slot 20.
b Unseat the NT6X45 signaling processor card in slot 16.
c Unseat the NT6X45 master processor card form slot 11.

Go to step 17.
### Processor and memory cards in an MSB (continued)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>16</strong></td>
<td>Unseat the NT6X67 signaling terminal buffer card in slot 10 of the MSB7 control complex. Perform the procedure <em>Unseating cards in equipment shelves</em> in this document.</td>
</tr>
</tbody>
</table>
| **17** | To replace the card, perform the procedure *Replacing a card* in this document. Complete the procedure and return to this point.  
*Note 1:* If the card that you replace was unseated in a previous step, leave the replacement card unseated in the shelf.  
*Note 2:* If the card that you replace has switches, make sure that the replacement card and the card you replace have the same settings. |
| **18** | The next action depends on the processor configuration of the PM.  
<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an NT6X45 in an MSB6 is in use</td>
<td>step 19</td>
</tr>
<tr>
<td>an NT6X46 in an MSB6 is in use</td>
<td>step 20</td>
</tr>
<tr>
<td>an NT6X45 in an MSB7 is in use</td>
<td>step 21</td>
</tr>
<tr>
<td>an NT6X46 in an MSB7 is in use</td>
<td>step 22</td>
</tr>
<tr>
<td>an NT6X47 in either an MSB6 or an MSB7 is in use</td>
<td>step 23</td>
</tr>
</tbody>
</table>
| **19** | Reseat processor and memory cards in the MSB6 control complex. For each substep below, perform the procedure *Reseating cards in equipment shelves* in this document.  
| a | Reseat the NT6X45 master processor card in slot 15.  
| b | Reseat the NT6X45 signaling processor card in slot 19.  
| c | Reseat the NT6X43 message interface card in slot 20.  
| Go to step 23. |
| **20** | Reseat the NT6X67 signaling terminal buffer card in slot 14 of the MSB6 control complex. Perform the procedure *Reseating cards in equipment shelves* in this document.  
| Go to step 23. |
| **21** | Reseat processor and memory cards in the MSB7 control complex. For each substep below, perform the procedure *Reseating cards in equipment shelves* in this document.  
| a | Reseat the NT6X45 master processor card in slot 11.  
| b | Reseat the NT6X45 signaling processor card in slot 16.  
| c | Reseat the NT6X69 message protocol card in slot 20.  
| Go to step 23. |
| **22** | Reseat the NT6X67 signaling terminal buffer card in slot 10 of the MSB7 control complex. Perform the procedure *Reseating cards in equipment shelves* in this document. |
The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 24</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 25</td>
</tr>
</tbody>
</table>

Return to the maintenance procedure that sent you to this procedure and continue as directed.

**At the MAP terminal**

To load the inactive unit, type

>`LOADPM INACTIVE`

and press the Enter key.

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 27</td>
</tr>
<tr>
<td>failed</td>
<td>step 26</td>
</tr>
</tbody>
</table>

To load the PM unit, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

To return the inactive unit to service, type

>`RTS INACTIVE`

and press the Enter key.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 31</td>
</tr>
<tr>
<td>failed</td>
<td>step 30</td>
</tr>
</tbody>
</table>

Contact operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

For additional help with switch of activity, contact the next level of support.

**Note:** If the system recommends that you use the SWACT command with the FORCE option, contact operating company personnel to determine if you must use the FORCE option.

For additional help, contact the next level of support.

The procedure is complete.
Signaling terminal cards in an MSB

Application

Use this procedure to replace the following cards in the shelves or frames listed.

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT6X65</td>
<td>AA</td>
<td>Common channel interoffice signaling terminal card</td>
<td>CCS6 signaling terminal controller module (STCM)</td>
</tr>
<tr>
<td>NT6X66</td>
<td>AA, AB, AC</td>
<td>CCS7 signaling terminal card</td>
<td>CCS7 signaling terminal group (ST7G)</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to the following common procedures:

- *Replacing a card*
- *Loading a PM*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing Signaling terminal cards in an MSB

1. Post the MSB
2. Post the signaling terminal (ST)
3. Manually busy the ST
4. Replace the card
5. Load the ST
6. Return the ST to service
7. End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing Signaling terminal cards in an MSB

**At your current location**

1. Obtain a replacement card. Make sure that the replacement card and the card you replace have the same PEC and PEC suffix.

**At the shelf**

2. Locate the card you replace. Record the number of the signaling-terminal controller module (STCM) for the MSB6 or the signaling terminal group (STG) for the MSB7 that associates with the card.

**At the MAP terminal**

3. To access the PM level of the MAP display, type
   
   ```
 >MAPCI;MTC;PM
   ```
   and press the Enter key.

   *Example of a MAP display:*

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>Cbsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

4. To post the PM associated with the card you replace, type
   
   ```
 >POST pm_type pm_no
   ```
   and press the Enter key.

   *where*

   **pm_type**
   
   is the PM type (MSB6, MSB7)

   **pm_no**
   
   is the PM identification number (0 to 999)

   *Example of a MAP display:*

**WARNING**

*Loss of service*

This procedure manually busies one or more signaling terminals (ST), which can degrade service. Perform this procedure only if you need to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.
To access the STC level of the MAP display, type

>`STC`

and press the Enter key.

*Example of a MAP display:*

```
PM ManB OffL Cbsy ISTb InSv
MSB7 0 12 0 2 0 13 24

MSB7 0 InSv Links_OOS: CSide 0, PSide 0
Unit0: Inact InSv
Unit1: Act InSv

STC 4 0 0 0 0 20
```

To post the STCM or ST7G you recorded in step 2, type

>`POST stcm_no`

and press the Enter key.

*where*

`stcm_no`

is the STCM number (0 to 9)

*Example of a MAP display:*

```
PM ManB OffL Cbsy ISTb InSv
MSB7 0 12 0 2 0 13 24

MSB7 1 ISTb Links_OOS: CSide 0, PSide 0
Unit0: Inact ManB
Unit1: Act InSv

STC 4 0 0 0 0 20
```

To display location information for the displayed ST, type

>`QUERYPM`

and press the Enter key.

*Example of a MAP response:*

```
SysB ManB OffL Cbsy ISTb InSv
PM 12 0 2 0 13 24
MSB7 0 0 0 0 1 2

MSB7 0 ISTb Links_OOS: CSide 0, PSide 0
Unit0: Inact ManB
Unit1: Act InSv

STC 4 0 0 0 0 20
```

```
STC 301 STCM 0 Ctrl 0 Bd InSv Diag Mtce
```
To display the next ST in the posted set, type

> NEXT

and press the Enter key.

Go to step 7.

9 Record the ST number.

10 To manually busy the ST, type

> BSY

and press the Enter key.

Example of a MAP response:

STC 301
This will busy the above STC(S)
Please confirm ("YES", "Y", "NO", or "N"):

11 To confirm the command, type

> YES

and press the Enter key.

Example of a MAP response:

STC 301 Bsy Passed
Signaling terminal cards in an MSB (continued)

At the shelf

12

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point to handle circuit cards. The wrist-strap grounding point is on a modular supervisory panel (MSP) or a frame supervisory panel (FSP). The wrist-strap protects the cards against static electricity damage.

To replace the card, perform the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

13

The next action depends on the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 14</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 15</td>
</tr>
</tbody>
</table>

14

Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

15

To load the ST, type

>LOADPM

and press the Enter key.

where

unit_no

is the PM unit number (0 or 1)

Example #1 of a MAP response:

STC 301 load Passed : M7CQA01

Example #2 of a MAP response:
Signaling terminal cards in an MSB (continued)

STC load 'M7CQA01' not in MSB 0

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 21</td>
</tr>
<tr>
<td>failed, with the message STC Load &lt;loadname&gt; not in &lt;msb_unit&gt;</td>
<td>step 16</td>
</tr>
<tr>
<td>failed, with a message other than listed here</td>
<td>step 18</td>
</tr>
</tbody>
</table>

**Note:** In Example #2 of a MAP response, loadname is the name of the ST load. The msb_unit is the MSB (MSB6, MSB7) and the unit number.

16 To return to the PM level of the MAP display, type
>QUIT
and press the Enter key.

17 To add the load to the MSB, type
>STCLOAD PM ADD loadname
and press the Enter key.

where
loadname
is the STC load name

<table>
<thead>
<tr>
<th>If the STCLOAD command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 18</td>
</tr>
<tr>
<td>passed</td>
<td>step 19</td>
</tr>
</tbody>
</table>

18 To load the PM unit, perform the procedure *Loading a PM* in this document. Complete the procedure and return to this point.

19 To access the STC level of the MAP display, type
>STC
and press the Enter key.

20 To post the STCM or ST7G, type
>POST stcm_no
and press the Enter key.

where
stcm_no
is the STCM number (0 to 9)
Go to step 15.

21 To return the ST to service, type

>RTS

and press the Enter key.

*Example of a MAP response:*

```
STC 301 Out-of-service test initiated
STC 301 Tst Passed
STC 301 Rts Passed
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 23</td>
</tr>
<tr>
<td>passed</td>
<td>step 24</td>
</tr>
</tbody>
</table>

22 Consult operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

23 For additional help, contact the next level of support.

24 The procedure is complete.
9 SuperNode network card replacement procedures

Introduction
This chapter contains card replacement procedures for the SuperNode junctored network (JNET) and enhanced network (ENET). The first section in the chapter provides illustrations that show network shelf layouts.

Card replacement procedures for the SuperNode SE ENET are in the chapter titled “SuperNode SE ENET card replacement procedures”.

Card replacement procedures for the frame supervisory panel (FSP) and modular supervisory panel (MSP) are in the chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures”.

Each procedure contains the following sections:
• Application
• Common procedures
• Action

Application
This section identifies the network card(s) that the replacement procedure covers.

Common procedures
This section lists the common procedures to use during the ENET card replacement procedure. A common procedure is a series of steps that repeats within maintenance procedures, such as the steps to remove and replace a card. Common procedures are in the common procedures chapter in this NTP.

Do not use common procedures unless the step-action procedure directs you to go.
Action

This section provides a summary flowchart of the procedure. A detailed step-action procedure follows the flowchart.

Recording card replacement activities

When you replace a card, record the following information in office records:

• the serial number of the card you replace
• the date you replace the card
• the reason you replace the card
Network shelf layouts

Application

Frame layouts are provided for the following:

- NT0X48 (single-bay network-NET)
- NT5X13 (combined single-bay network-NETC)
- NT8X11 (dual-shelf network-DSN)
- SuperNode enhanced network (ENET) for 64k
- SuperNode ENET for 128k

Shelf layouts are provided for the following shelves:

- NET interface shelf
- NET crosspoint shelf
- NETC interface shelf
- NETC crosspoint shelf
- DSN shelf
- enhanced network shelf
Network shelf layouts (continued)

Figure NT0X48AG single-bay network (NET) equipment frame, in dual-bay configuration

Legend:
FSP Frame supervisory panel
Network shelf layouts (continued)

Figure NT5X13 combined single-bay network (NETC) equipment frame

Legend:
FSP Frame supervisory panel
Network shelf layouts (continued)

Figure NT8X11 dual-shelf network (DSN) equipment frame

Legend:
FSP  Frame supervisory panel

Network module
Plane 0
Network 1

Network module
Plane 0
Network 0

FSP

Network module
Plane 1
Network 1

Network module
Plane 1
Network 0

Cooling inverter unit
Network shelf layouts (continued)

Figure SuperNode 64k ENET cabinet

- FSP
- ENET shelf
  - Plane 0
  - Shelf 0
- ENET shelf
  - Plane 0
  - Shelf 1
- ENET shelf
  - Plane 1
  - Shelf 2
- ENET shelf
  - Plane 1
  - Shelf 3
- Cooling unit
Network shelf layouts (continued)

Figure SuperNode 128k ENET cabinet
**Network shelf layouts (continued)**

Figure NET interface shelf

<table>
<thead>
<tr>
<th>Cards</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X06</td>
<td>Power converter card</td>
<td>27F</td>
</tr>
<tr>
<td>NT2X07</td>
<td>Power converter card</td>
<td>26F</td>
</tr>
<tr>
<td>NT0X50</td>
<td>Filler faceplate</td>
<td>25F</td>
</tr>
<tr>
<td>NT0X50</td>
<td>Filler faceplate</td>
<td>24F</td>
</tr>
<tr>
<td>NT3X21</td>
<td>Network bus interface card</td>
<td>23F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>22F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>21F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>20F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>19F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>18F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>17F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>16F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>15F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>14F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>13F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>12F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>11F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>10F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>09F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>08F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>07F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>06F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>05F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>04F</td>
</tr>
<tr>
<td>NT3X19</td>
<td>Network speech interface card</td>
<td>03F</td>
</tr>
<tr>
<td>NT3X21</td>
<td>Network bus interface card</td>
<td>02F</td>
</tr>
<tr>
<td>NT0X50</td>
<td>Filler faceplate</td>
<td>01F</td>
</tr>
</tbody>
</table>

Rear  Front
Network shelf layouts (continued)

Figure NET crosspoint shelf

```
<table>
<thead>
<tr>
<th>Cards</th>
<th>(Front)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X06 Power converter card</td>
<td>27F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>26F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>25F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>24F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>23F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>22F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>21F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>20F</td>
</tr>
<tr>
<td>NT3X21 Network bus interface card</td>
<td>19F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>18F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>17F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>16F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>15F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>14F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>13F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>12F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>11F</td>
</tr>
<tr>
<td>NT3X17 Network incoming crosspoint card</td>
<td>10F</td>
</tr>
<tr>
<td>NT3X18 Network outgoing crosspoint card</td>
<td>09F</td>
</tr>
<tr>
<td>NT3X18 Network outgoing crosspoint card</td>
<td>08F</td>
</tr>
<tr>
<td>NT3X18 Network outgoing crosspoint card</td>
<td>07F</td>
</tr>
<tr>
<td>NT3X18 Network outgoing crosspoint card</td>
<td>06F</td>
</tr>
<tr>
<td>NT3X18 Network outgoing crosspoint card</td>
<td>05F</td>
</tr>
<tr>
<td>NT3X18 Network outgoing crosspoint card</td>
<td>04F</td>
</tr>
<tr>
<td>NT3X18 Network outgoing crosspoint card</td>
<td>03F</td>
</tr>
<tr>
<td>NT3X20 Test card</td>
<td>02F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>01F</td>
</tr>
</tbody>
</table>
```

Rear  Front
Figure NETC interface shelf

<table>
<thead>
<tr>
<th>Cards</th>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X07 Power converter card</td>
<td>23F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>22F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>21F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>20F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>19F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>18F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>17F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>16F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>15F</td>
</tr>
<tr>
<td>NT3X73 Serial-to-parallel formatter card</td>
<td>14F</td>
</tr>
<tr>
<td>NT3X73 Serial-to-parallel formatter card</td>
<td>13F</td>
</tr>
<tr>
<td>NT3X75 P-side processor card</td>
<td>12F</td>
</tr>
<tr>
<td>NT3X86 Parallel-to-serial formatter card</td>
<td>11F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>10F</td>
</tr>
<tr>
<td>NT3X73 Serial-to-parallel formatter card</td>
<td>09F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>08F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>07F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>06F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>05F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>04F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>03F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>02F</td>
</tr>
<tr>
<td>NT3X72 Speech interface card</td>
<td>01F</td>
</tr>
</tbody>
</table>
Figure NETC crosspoint shelf

<table>
<thead>
<tr>
<th>Cards</th>
<th>25F</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT0X50 Filler faceplate</td>
<td></td>
</tr>
<tr>
<td>NT2X70 Power converter card</td>
<td>22F</td>
</tr>
<tr>
<td>NT3X71 Test code card</td>
<td>21F</td>
</tr>
<tr>
<td>NT3X70 Crosspoint card</td>
<td>20F</td>
</tr>
<tr>
<td>NT3X70 Crosspoint card</td>
<td>19F</td>
</tr>
<tr>
<td>NT3X70 Crosspoint card</td>
<td>18F</td>
</tr>
<tr>
<td>NT3X70 Crosspoint card</td>
<td>17F</td>
</tr>
<tr>
<td>NT3X70 Crosspoint card</td>
<td>16F</td>
</tr>
<tr>
<td>NT3X70 Crosspoint card</td>
<td>15F</td>
</tr>
<tr>
<td>NT3X70 Crosspoint card</td>
<td>14F</td>
</tr>
<tr>
<td>NT3X70 Crosspoint card</td>
<td>13F</td>
</tr>
<tr>
<td>NT3X74 Network control processor card</td>
<td>12F</td>
</tr>
<tr>
<td>NT3X76 Network clock card</td>
<td>11F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>10F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>09F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>08F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>07F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>06F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>05F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>04F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>03F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>02F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>01F</td>
</tr>
</tbody>
</table>
Network shelf layouts (continued)

Figure DSN shelf

Cards	25F	24F	23F	22F	21F	20F	19F	18F	17F	16F	15F	14F	13F	12F	11F	10F	09F	08F	07F	06F	05F	04F	03F	02F	01F				
NT2X70  Power converter card																													
NT0X50  Filler faceplate																													
NT3X76  Network clock card																													
NT0X50  Filler faceplate																													
NT3X74  Network control processor card																													
NT0X50  Filler faceplate																													
NT3X75  P-side processor card																													
NT0X50  Filler faceplate																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT2X70  Power converter card																													
NT0X50  Filler faceplate																													
NT3X76  Network clock card																													
NT0X50  Filler faceplate																													
NT3X74  Network control processor card																													
NT0X50  Filler faceplate																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
NT8X12  Network interface card																													
SuperNode network card replacement procedures

Network shelf layouts (end)

Figure Enhanced network shelf

<table>
<thead>
<tr>
<th>Paddle boards</th>
<th>Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>32R NT9X40/41 PM I/F PB</td>
<td>NT9X30 Power converter card</td>
</tr>
<tr>
<td>31R NT9X40/41 PM I/F PB</td>
<td>NT9X30 Power converter card</td>
</tr>
<tr>
<td>30R NT9X40/41 PM I/F PB</td>
<td>NT9X31 Power converter card</td>
</tr>
<tr>
<td>29R NT9X40/41 PM I/F PB</td>
<td>NT9X31 Power converter card</td>
</tr>
<tr>
<td>28R NT9X40/41 PM I/F PB</td>
<td>NT9X35 H-bus terminating crosspoint card</td>
</tr>
<tr>
<td>27R NT9X40/41 PM I/F PB</td>
<td>NT9X35 H-bus terminating crosspoint card</td>
</tr>
<tr>
<td>26R NT9X40/41 PM I/F PB</td>
<td>NT9X35 16K x 16K crosspoint card</td>
</tr>
<tr>
<td>25R NT9X40/41 PM I/F PB</td>
<td>NT9X35 16K x 16K crosspoint card</td>
</tr>
<tr>
<td>24R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>23R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>22R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>21R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>20R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>19R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>18R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>17R NT9X19 Filler faceplate</td>
<td>NT9X19 Filler faceplate</td>
</tr>
<tr>
<td>16R NT9X40/41 PM I/F PB</td>
<td>NT9X35 16K x 16K crosspoint card</td>
</tr>
<tr>
<td>15R NT9X40/41 PM I/F PB</td>
<td>NT9X35 16K x 16K crosspoint card</td>
</tr>
<tr>
<td>14R NT9X40/41 PM I/F PB</td>
<td>NT9X35 16K x 16K crosspoint card</td>
</tr>
<tr>
<td>13R NT9X40/41 PM I/F PB</td>
<td>NT9X35 16K x 16K crosspoint card</td>
</tr>
<tr>
<td>12R NT9X40/41 PM I/F PB</td>
<td>NT9X35 16K x 16K crosspoint card</td>
</tr>
<tr>
<td>11R NT9X40/41 PM I/F PB</td>
<td>NT9X35 16K x 16K crosspoint card</td>
</tr>
<tr>
<td>10R NT9X40/41 PM I/F PB</td>
<td>NT9X35 H-bus terminating crosspoint card</td>
</tr>
<tr>
<td>09R NT9X40/41 PM I/F PB</td>
<td>NT9X35 H-bus terminating crosspoint card</td>
</tr>
<tr>
<td>08R NT9X40 QUAD fibre MS I/F PB</td>
<td>NT9X36 Clock and message card</td>
</tr>
<tr>
<td>07R NT9X26 RTIF PB</td>
<td>NT9X13 CPU card</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Crosspoint and interface cards in a 64k or 128k ENET

Application

Use this procedure to replace the following cards in a 64k or 128k enhanced network (ENET) shelf.

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card, refer to the “Index”. The "Index" provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X35</td>
<td>BA, CA</td>
<td>128K ENET crosspoint card</td>
<td>64k ENET, 128k ENET</td>
</tr>
<tr>
<td>NT9X40</td>
<td>BA</td>
<td>ENET quad fiber interface paddle board (primarily for North America)</td>
<td>64k ENET, 128k ENETslots10 to 16 and 25 to 32</td>
</tr>
<tr>
<td>NT9X40</td>
<td>BB</td>
<td>ENET quad fiber interface paddle board (for International and North America)</td>
<td>64k ENET, 128k ENETslots10 to 16 and 25 to 32</td>
</tr>
<tr>
<td>NT9X40</td>
<td>DA</td>
<td>ENET quad fiber interface paddle board</td>
<td>64k ENET, 128k ENETslots10 to 16 and 25 to 32</td>
</tr>
<tr>
<td>NT9X41</td>
<td>BA</td>
<td>International 16-port DS-30 paddle board</td>
<td>64k ENET, 128k ENET</td>
</tr>
<tr>
<td>NT9X45</td>
<td>BA</td>
<td>Three DS-512 link and 16 DS-30 port paddle board</td>
<td>64k ENET, 128k ENET</td>
</tr>
</tbody>
</table>

*Note:* To replace an NT9X40 in slot 8, use the procedure *System cards in a 64k or 128k ENET* in this chapter.

Common procedures

The following common procedures are referenced:

- Replacing a card
- Verifying load compatibility of SuperNode cards
- Cleaning fiber optic components and assemblies
Crosspoint and interface cards
in a 64k or 128k ENET (continued)

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing Crosspoint and interface cards in a 64k or 128k ENET

1. Set deload for the plane and shelf
2. Wait 30 min for traffic to clear
3. Manually busy and offline the plane and shelf
4. Manually busy the MS chain head cards
5. Replace the card
6. Return the MS chain head cards to service
7. Manually busy the plane and shelf
8. Return the plane and shelf to service
9. Clear deload for the plane and shelf
10. End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Crosspoint and interface cards in a 64k or 128k ENET (continued)

Replacing Crosspoint and interface cards in a 64k or 128k ENET

CAUTION
Calls can drop
This procedure removes an ENET shelf from service, and potentially drops calls in progress. Perform this procedure to return crosspoint and interface cards to service. Perform this procedure only if necessary and during periods of low traffic.

At the MAP terminal

1 Obtain a replacement card. Make sure that the replacement card has the same PEC, including suffix, as the card being removed.

   Note: For North American switches, NT9X40BA and NT9X40BB are interchangeable and can both be present. For international switches, only NT9X40BB can be present.

2 Make sure the replacement card is compatible with the software load. Use the procedure Verifying load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

3 To access the NET;SYSTEM level of the MAP display, type

   >MAPCI;MTC;NET;SYSTEM

   and press the Enter key.

   Example of a MAP display:

   
   
   SYSTEM
   Shelf  Plane 0     Plane 1
   00  CSLink 1 closed
   01 .
   02 .
   03 .

   4 Check the status of the node for the card that you replace. The Plane headers on the SYSTEM level MAP display indicate the status. The example in step 3 shows that the node defined by shelf 00 plane 1 is in-service trouble. In this example, all other nodes are in service.

   If that state of the node is     Do

   T (TEST)                     step 5
   M (MANBUSY)                  step 14
   O (OFFLINE)                  step 15
### Crosspoint and interface cards in a 64k or 128k ENET (continued)

<table>
<thead>
<tr>
<th>If that state of the node is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>anything else</td>
<td>step 6</td>
</tr>
</tbody>
</table>

5. Wait 1 min for the system to complete the test.
   Go to step 4 to evaluate the state of the node again.

6. To determine if there are deloaded crosspoint cards in the other plane for the shelf in use, type
   ```
 >DELOAD plane_no shelf_no QUERY
   ```
   and press the Enter key.
   
   **where**
   
   - **plane_no**
     - is the ENET plane number (0 or 1) of the mate node
   
   - **shelf_no**
     - is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

   **Example of a MAP response:**

   Request to QUERY DELOAD ENET Plane:0 Shelf:00 submitted.
   Request to QUERY DELOAD ENET Plane:0 Shelf:00 passed.
   11111111 11122222 22222333
   90123456 78901234 56789012
   Plane:0 Shelf:00 ..Y... -------- -------- --------

   **Note:** The letter Y under the slot number indicates a deloaded crosspoint card.

<table>
<thead>
<tr>
<th>If the node</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has deloaded cards</td>
<td>step 56</td>
</tr>
<tr>
<td>does not have deloaded cards</td>
<td>step 7</td>
</tr>
</tbody>
</table>

7. To determine if there are deloaded crosspoint cards in the node, type
   ```
 >DELOAD plane_no shelf_no QUERY
   ```
   and press the Enter key.
   
   **where**
   
   - **plane_no**
     - is the ENET plane number (0 or 1)
   
   - **shelf_no**
     - is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

<table>
<thead>
<tr>
<th>If the node</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has deloaded cards</td>
<td>step 8</td>
</tr>
</tbody>
</table>
8 Record the plane number, shelf number, and slot number for any deloaded crosspoint cards in the node. Complete this procedure and refer to this list to make sure that these cards return to the deloaded state.

9 Set all crosspoint cards to a deloaded state for the node that associates with the card that you replaced. To set all crosspoint cards to a deloaded status, type

```plaintext
>DELOAD plane_no shelf_no SET
```

and press the Enter key.

where

- `plane_no` is the ENET plane number (0 or 1)
- `shelf_no` is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

Example of a MAP response:

```
Request to SET DELOAD ENET Plane:0 Shelf:00 submitted.
Request to SET DELOAD ENET Plane:0 Shelf:00 passed.
```

10 Wait 30 min to permit network traffic on the node to clear.

11 To manually busy the node, type

```plaintext
>BSY plane_no shelf_no
```

and press the Enter key.

where

- `plane_no` is the ENET plane number (0 or 1)
- `shelf_no` is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

If the response is

<table>
<thead>
<tr>
<th>If the response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING: This action will abort ENET dump. Please confirm (“YES”, “Y”, “NO”, or “N”):</td>
<td>step 12</td>
</tr>
</tbody>
</table>

Note: The above Warning message is generated when a BSY request and ENET imaging take place at the same time. As card replacement procedures are usually performed during scheduled maintenance periods this conflict may never occur.
Crosspoint and interface cards in a 64k or 128k ENET (continued)

12 To confirm the command, type
  >YES
and press the Enter key.

13 To abort ENET dump and continue with BSY, type
  >YES
and press the Enter key.

14 To offline the node, type
  >OFFL plane_no shelf_no
and press the Enter key.

   where

   plane_no
   is the ENET plane number (0 or 1)

   shelf_no
   is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

   Example of a MAP response:

   Request to OFFL ENET Plane:0 Shelf:00 submitted.
   Request to OFFL ENET Plane:0 Shelf:00 passed.

15 To locate the chain head card of the message switch (MS) that associates
with the ENET plane involved, type
  >TRNSL plane_no shelf_no
and press the Enter key.

   where

If the response is

| Request to MAN BUSY ENET Plane:0 Shelf:00 Slot:25 submitted. Request to MAN BUSY ENET Plane:0 Shelf:00 Slot:25 passed. | step 14

If Responding to the message

| with YES, abort dump and continue with busy | step 13
| with NO, abort busy, continue with dump | step 57

If the OFFL command

| passed | step 15
| failed | step 58
Crosspoint and interface cards
in a 64k or 128k ENET (continued)

plane_no
is the ENET plane number (0 or 1)

shelf_no
is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

Example of a MAP response:

Request to TRNSL ENET Plane:0 Shelf:00 submitted.
Request to TRNSL ENET Plane:0 Shelf:00 passed.
ENET Plane:0 Shelf:00 : MS 0 and 1 Card:16 Link:00 Port:000

Note: In the example, the number of the chain head card is 16. The link number is 0.

16 Record the number of the chain head card and the link number.

17 To access the MS SHELF level of the MAP display, type

>MS; SHELF

and press the Enter key.

Example of a MAP display:

Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0  M Slave C ---
MS 1  . M Free F ---
Shelf 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2
Card 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Chain |
MS 0 ------------- F |
MS 1 ------------- F |

18 To post the chain head card, type

>CHAIN card_no

and press the Enter key.

where

card_no
is the card number you recorded in step 16

Example of a MAP display:

Chain 16 Range Link 0 1
MS 0 . 16-17 DS512 .
MS 1 . 16-17 DS512 .

19 To manually busy the link on the chain on MS 1, type

>BSY 0 LINK link_no

and press the Enter key.
Crosspoint and interface cards
in a 64k or 128k ENET (continued)

where

\( \text{link\_no} \)

is the link number you recorded in step 16

Example of a MAP response:

Request to MAN BUSY MS: 0 shelf: 0 chain:16 submitted.
Request to MAN BUSY MS: 0 shelf: 0 chain:16 passed.

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 20</td>
</tr>
<tr>
<td>failed</td>
<td>step 58</td>
</tr>
</tbody>
</table>

20  To manually busy the link on the chain on MS 0, type

\( >\text{BSY} \ 1 \ \text{LINK} \ \text{link\_no} \)

and press the Enter key.

where

\( \text{link\_no} \)

is the link number you recorded in step 16

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 21</td>
</tr>
<tr>
<td>failed</td>
<td>step 58</td>
</tr>
</tbody>
</table>

21  To access the ENET SHELF level of the MAP display, type

\( >\text{NET; SHELF} \ \text{shelf\_no} \)

and press the Enter key.

where

\( \text{shelf\_no} \)

is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

Example of a MAP display:

\[
\text{SHELF} \ 01 \text{ Slot} \ 1111111 \ 11122222 \ 22222333 \ 3333333 \\
123456 \ 78 \ 90123456 \ 78901234 \ 56789012 \ 345678 \\
\text{Plane 0} \ O \ O \ 0 \ 0 \ \text{CCCCCCCC} \text{ ------ CCCCCCCC O O} \\
\text{Plane 1} \ . \ . \ . \ ........ \text{ --------- ........ . .}
\]

22  To manually busy the slot that contains the card you replace, type

\( >\text{BSY} \ \text{plane\_no} \ \text{slot\_no} \)

and press the Enter key.

where
Crosspoint and interface cards
in a 64k or 128k ENET (continued)

plane_no
is the ENET plane number (0 or 1)

Example of a MAP response:

Request to MAN BUSY ENET Plane:0 Shelf:01 Slot:15 submitted.
Warning: Card replacement requires front and back bsy/rts to prevent
possible service degradation to peripherals.
Request to MAN BUSY ENET Plane:0 Shelf:01 Slot:15 passed.

To take the slot that contains the card you replaced offline, type
>OFFL plane_no slot_no
and press the Enter key.
where
plane_no
is the plane number

Example of a MAP response:

Request to OFFLINE ENET Plane:0 Shelf:01 Slot:15 submitted.
Request to OFFLINE ENET Plane:0 Shelf:01 Slot:15 passed.

At the shelf

24

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding
point of a frame supervisory panel (FSP) or a modular
supervisory panel (MSP) to handle circuit cards. The wrist
strap protects the cards against static electricity damage.

Determine the type of card that you must replace.

<table>
<thead>
<tr>
<th>If you must</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace an NT9X35</td>
<td>step 25</td>
</tr>
<tr>
<td>replace an NT9X41</td>
<td>step 27</td>
</tr>
<tr>
<td>replace an NT9X40 or NT9X45</td>
<td>step 31</td>
</tr>
</tbody>
</table>
Crosspoint and interface cards in a 64k or 128k ENET (continued)

25 Use the procedure Replacing a card in this document to replace the card. Complete the procedure and return to this point.

Note: If the card to be replace has switches, make sure that the switches on the replacement card have the same settings.

26 Go to step 39.

27 The following diagram shows the faceplate of the NT9X41BA interface card.
Crosspoint and interface cards in a 64k or 128k ENET (continued)

28 Locate the NT9X41 card and disconnect the DS30 connectors, as follows:
   a Loosen the connector retaining screws.
   b Unplug the connectors.
Crosspoint and interface cards in a 64k or 128k ENET (continued)

29 Use the procedure Replacing a card in this document to replace the card. Complete the procedure and return to this point. 

**Note:** If the card that you replace has switches, make sure that the switches on the replacement card have the same settings.

30 Connect the DS30 connectors again, as follows:

- **a** Plug the connectors into the card.
- **b** Tighten the connector retaining screws.
- **c** Go to step 39.

31

**ATTENTION**

Make sure you correctly identify connector zone numbers. Refer to Figure, "NT9X40BA/BB connector zone numbers" on page -37 (for the NT9X40) and Figure, "NT9X45BA connector zone numbers" on page -38 for the NT9X45) to identify zone numbers. Diagrams of fiber connector components for these cards are provided in Figure, "Fiber connector detail" on page -39 and Figure, "Fiber connector and receptacle detail" on page -39.

Before you disconnect the fiber cables, make sure that you are at the correct ENET node (plane and shelf name) and the correct interface card (slot).

Make sure that each cable has a label that has the following information:

- the ENET shelf number
- the plane number
- the slot number
- the link number
- the signal type (transmit or receive)

If this information is not present, create a label and attach it to the cable. This label provides the necessary information to correctly reconnect the fiber cables to the card.

*Example of a label:*

ENCO	00	39
10R	04	17T
LTE	000	18
22R	RX	

*Label field descriptions*
Crosspoint and interface cards
in a 64k or 128k ENET (continued)

Disconnect the transmit and receive connectors for each fiber cable.

**Note:** Place dust caps on the ends of the connectors as you disconnect them.

- Grasp the sleeve with two fingers and gently push the sleeve toward the frame.

---

ENC0 ENET plane (0 or 1)
00 cabinet number
39 ENET shelf by its base mounting position number
10R slot number and position (R for rear, or F for front)
04 zone number
17T link number and the signal type (T for transmit, R for receive)
LTE PM that the cable terminates on
000 PM frame number
18 PM shelf by its base mounting position number
22R slot number and position (R for rear, or F for front)
RX signal type at the PM end (RX for receive or TX for transmit)

---

**DANGER**

*Avoid contaminating the fiber tip surface*

Do not touch the tip of the fiber. Dirt or oil from the skin transferred to the fiber tip surface degrades fiber performance.

---

**DANGER**

*Fiber cable may become damaged*

Exercise care in handling fiber cables. Do not crimp fiber cables or bend fiber cables to a radius of less than 3 cm (1.180 in.).
Crosspoint and interface cards in a 64k or 128k ENET (continued)

b Turn the connector counter-clockwise until the connector pin is in the position shown at the right.

c Carefully pull the connector away from the frame.

*Note:* Perform the procedure, *Cleaning fiber optic components and assemblies* in this NTP.
33 Determine the next action to perform.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are replacing an NT9X45</td>
<td>step 34</td>
</tr>
<tr>
<td>are replacing an NT9X40</td>
<td>step 35</td>
</tr>
</tbody>
</table>

34 Disconnect the DS30 connectors.
   a Loosen the connector retaining screws.
   b Unplug the connectors.

35 Use the procedure *Replacing a card* in this document to replace the card. Complete the procedure and return to this point.

   *Note:* If the card that you replace has switches, make sure that the switches on the replacement card have the same settings.

36 Remove the dust caps on the transmit and receive connectors as you reconnect them to the new card.

Reconnect the transmit and receive connectors for each fiber cable as follows:
   a Align the connector pin and slot with the receptacle slot and pin, as shown.
   b Carefully slide the connector into the receptacle.
Crosspoint and interface cards in a 64k or 128k ENET (continued)

- **c** Turn the connector clockwise to lock the connector in place.

- **d** Release the connector. The following figure shows the final connector position.

37 Determine the next action to perform.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are replacing an NT9X45</td>
<td>step 38</td>
</tr>
</tbody>
</table>
Crosspoint and interface cards 
in a 64k or 128k ENET (continued)

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are replacing an NT9X40</td>
<td>step 38</td>
</tr>
</tbody>
</table>

38
Connect the DS30 connectors again.

- Plug the connectors into the card.
- Tighten the connector retaining screws.

At the MAP terminal

39
To access the Chain level of the MAP display, type
>
\textit{MS; SHELF; CHAIN card\_no}

and press the Enter key.

\textbf{where}

- \textit{card\_no} is the card number you recorded in step 16

40
To return the link on the chain on MS 0 to service, type
>
\textit{RTS 0 LINK link\_no}

and press the Enter key.

\textbf{where}

- \textit{link\_no} is the link number you recorded in step 16

\textbf{Example of a MAP response:}

Request to RTS MS: 0 shelf: 0 chain:16 submitted.
Request to RTS MS: 0 shelf: 0 chain:16 passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 41</td>
</tr>
<tr>
<td>failed</td>
<td>step 58</td>
</tr>
</tbody>
</table>

41
To return the link on the chain on MS 1 to service, type
>
\textit{RTS 1 LINK link\_no}

and press the Enter key.

\textbf{where}

- \textit{link\_no} is the link number you recorded in step 16

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 42</td>
</tr>
</tbody>
</table>
Crosspoint and interface cards in a 64k or 128k ENET (continued)

If the RTS command  Do
failed  step 58

42 To access the NET;SYSTEM level of the MAP display, type
>NET;SYSTEM
and press the Enter key.

43 To manually busy the node, type
>BSY plane_no shelf_no
and press the Enter key.

where

plane_no
  is the ENET plane number (0 or 1)

shelf_no
  is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

If the BSY command  Do
passed  step 44
failed  step 58

44 To return the node to service, type
>RTS plane_no shelf_no
and press the Enter key.

where

plane_no
  is the ENET plane number (0 or 1)

shelf_no
  is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

Example of a MAP response:

Request to RTS ENET Plane:0 Shelf:00 submitted.
Request to RTS ENET  Plane:0 Shelf:00 passed.

There are no suspect cards.

If the RTS command  Do
passed  step 45
failed  step 58
Crosspoint and interface cards
in a 64k or 128k ENET (continued)

45 To access the ENET SHELF of the MAP display, type
SHELF shelf_no
and press the Enter key.
where
shelf_no is the shelf number

46 To manually busy all cards in the ENET shelf, type
>BSY plane_no ALL
and press the Enter key.
where
plane_no is the ENET plane number (0 or 1)

47 To return all cards in the ENET shelf to service, type
>RTS plane_no ALL
and press the Enter key.
where
plane_no is the ENET plane number (0 or 1)

Example of a MAP response:

Request to RTS ENET Plane:0 Shelf:01 submitted.
Request to RTS ENET Plane:0 Shelf:01 passed.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 50</td>
</tr>
<tr>
<td>failed</td>
<td>step 48</td>
</tr>
</tbody>
</table>

48 The replacement card is damaged. Obtain another replacement card.

49 Access the ENET system level of the MAP display by typing
>SYSTEM
and pressing the Enter key.
Go to Step 11

50 To access the ENET system level of the MAP display, type
>SYSTEM
and press the Enter key.

51 To clear the deoload condition on all crosspoint cards in the node, type
>DELOAD plane_no shelf_no CLEAR
and press the Enter key.

where

plane_no
is the ENET plane number (0 or 1)

shelf_no
is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

Example of a MAP response:

Request to CLEAR DELOAD ENET Plane:0 Shelf:00 submitted.
Request to CLEAR DELOAD ENET Plane:0 Shelf:00 passed.

52 Determine if the deloaded cards were listed in step 8.

<table>
<thead>
<tr>
<th>If deloaded cards</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are listed</td>
<td>step 53</td>
</tr>
<tr>
<td>are not listed</td>
<td>step 59</td>
</tr>
</tbody>
</table>

53 To access the SHELF level of the MAP display, type

> SHELF shelf_no

and press the Enter key.

where

shelf_no
is the number of the shelf that contains the node in use

54 To set the first card on the list to deloaded status, type

> DELOAD plane_no slot_no SET

and press the Enter key.

where

plane_no
is the ENET plane number (0 or 1)

shelf_no
is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>more cards are on the list that you did not deload</td>
<td>step 55</td>
</tr>
<tr>
<td>you deloaded all cards on the list</td>
<td>step 59</td>
</tr>
</tbody>
</table>

55 Repeat step 54 for the next card on the list.

56 This procedure instructs you to deload and manually busy a node. Do not continue with this procedure except under special conditions because the
Crosspoint and interface cards
in a 64k or 128k ENET (continued)

mate node has deloaded cards. Consult operating company personnel or the next level of support. Continue as directed by operating company personnel or the next level of support.

57 Abort ENET busy request and continue with the dump by typing
   >NO
   and pressing the Enter key.
   BSY request has been aborted, ENET dump is continuing.

58 For additional help, contact the next level of support.

59 The procedure is complete.
The figure relates the zone numbers and the link numbers. The zone numbers (1 to 8) appear on the face of the card. The link numbers appear on the MAP display for the NT9X40BA or NT9X40BB interface card. Note that the figure shows only fiber connections. Note the zone designations for transmit and receive.
Crosspoint and interface cards
in a 64k or 128k ENET (continued)

NT9X45BA connector zone numbers

The figure relates the zone numbers and the link numbers. The zone numbers (1 to 12) appear on the face of the card. The link numbers appear on the MAP display for the NT9X45BA interface card. Note that the figure shows only fiber connections. Note the zone designations for transmit and receive.
Crosspoint and interface cards in a 64k or 128k ENET (end)

This diagram shows the type of connector for fiber connections to an NT9X40 or NT9X45 paddle board.

**Fiber connector detail**

![Fiber connector detail diagram]

This diagram shows the different parts of the connector and receptacle as referred to in this procedure.

**Fiber connector and receptacle detail**

![Fiber connector and receptacle detail diagram]
Power converter cards
in JNET shelves

Application

Use this procedure to replace the following cards in the shelves or frames listed.

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card you want to replace, refer to the Index. The Index contains a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X06</td>
<td>AA, AB</td>
<td>Power converter common features card</td>
<td>NT0X48 single-bay network (NET)</td>
</tr>
<tr>
<td>NT2X07</td>
<td>AA, AB, AC</td>
<td>Power converter (5V/12V) card</td>
<td>NET</td>
</tr>
<tr>
<td>NT2X70</td>
<td>AA, AB, AC, AD</td>
<td>Power converter (5V/12V) card</td>
<td>NT5X13 combined single-bay network (NETC), NT8X11 dual shelf network (DSN)</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to Replacing a card.

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

The following flowchart is a summary of the procedure. To replace the card, use the instructions in the step-action procedure that follows the flowchart.
Power converter cards in JNET shelves (continued)

Summary of replacing Power converter cards in JNET shelves

- Manually busy the network module
- Manually busy the MS port to the module
- Power down the shelf
- Replace the card
- Power up the shelf
- Return the MS port to service
- Return the network module to service
- End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing Power converter cards in JNET shelves

At the MAP terminal

1 Obtain a replacement card. Make sure that the replacement card has the same PEC, including suffix, as the card you remove.

2 To access the NET level of the MAP display, type

>`MAPCI;MTC;NET`

and press the Enter key.

Example of a MAP display:

```
Net 11111 11111 22222 22222 33
Plane 01234 56789 01234 56789 01234 56789 01
0 S...
1
```

JNET:

3 Determine the state of the plane and pair associated with the card you replace.

<table>
<thead>
<tr>
<th>If the state</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is T (testing)</td>
<td>step 4</td>
</tr>
</tbody>
</table>

CAUTION
Loss of service
The out-of-service test used in this procedure can cause a momentary alarm in far-end offices. Before performing this procedure, notify all far-end offices with common channel signaling of a possible momentary alarm.

CAUTION
Loss of service
This procedure explains how to manually busy one plane of a network pair, resulting in loss of network redundancy. Perform this procedure only if necessary to restore out-of-service components. Carry out this procedure during periods of low traffic.
Power converter cards in JNET shelves (continued)

<table>
<thead>
<tr>
<th>If the state</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is M (manual busy)</td>
<td>step 6</td>
</tr>
<tr>
<td>is O (offline)</td>
<td>step 29</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 5</td>
</tr>
</tbody>
</table>

4 Wait 5 min for the test to complete. When system testing is complete, go to step 3 to evaluate the state of the plane and pair again.

5 To manually busy the network module that contains the card you want to replace, type

   \[>\text{BSY} \text{ plane_no} \text{ pair_no}\]

and press the Enter key.

   where

   \[
   \begin{align*}
   \text{plane_no} & \quad \text{is the number of the network plane (0 to 1)} \\
   \text{pair_no} & \quad \text{is the number of the network plane pair (0 to 31)}
   \end{align*}
   \]

   Example of a MAP response:

   \[
   \begin{align*}
   \text{bsy} & \quad 0 \quad 0 \\
   \text{OK} & \quad \text{bsy 0 0 OK}
   \end{align*}
   \]

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 6</td>
</tr>
<tr>
<td>needs to be confirmed</td>
<td>step 28</td>
</tr>
<tr>
<td>failed</td>
<td>step 30</td>
</tr>
</tbody>
</table>

6 Wait 30 min to make sure that calls in progress are complete.

7 To obtain information on the link to the message switch (MS), type

   \[>\text{TRNSL} \text{ plane_no} \text{ pair_no}\]

and press the Enter key.

   where

   \[
   \begin{align*}
   \text{plane_no} & \quad \text{is the number of the network plane (0 to 1)} \\
   \text{pair_no} & \quad \text{is the number of the network plane pair (0 to 31)}
   \end{align*}
   \]

   Example of a MAP response:
Power converter cards
in JNET shelves (continued)

8 Record the slot position and the port number of the MS port card connected
to the network plane and pair involved.

*Note:* In the example MAP response in step 6, the slot position is 22 and
the port number is 1.

9 To access the MS;SHELF level of the MAP display, type

>MS;SHELF

and press the Enter key.

*Example of a MAP display:*

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0 . M Free F
MS 1 S Slave C

Shelf 0 1 1 1 1 1 1 1 1 1 2
SuperNode network card replacement procedures

Power converter cards in JNET shelves (continued)

11 To manually busy the port on MS 0 that connects to the network plane and pair on which you work, type

 >BSY 0 PORT port_no

and press the Enter key.

 where

 port_no

 is the number of the card slot recorded in step 8

 Example of a MAP response:

Request to MAN BUSY MS: 0 shelf: 0 card:22 port: 1 submitted.
Request to MAN BUSY MS: 0 shelf: 0 card:22 port: 1 passed.

12 To manually busy the port on MS1 that connects to the network plane and pair on which you work, type

 >BSY 1 PORT port_no

and press the Enter key.

 where

 port_no

 is the number of the card slot recorded in step 8

At the shelf

13

WARNING

Static electricity damage

Wear a wrist strap connected to the wrist strap grounding point of a frame supervisory panel (FSP) or modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

Set the handle of the POWER switch on the power converter you replace down to the OFF position.

14 The next action depends on the power converter configuration for the shelf involved.

<table>
<thead>
<tr>
<th>If the shelf</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has one power converter</td>
<td>step 16</td>
</tr>
<tr>
<td>has two power converters</td>
<td>step 15</td>
</tr>
</tbody>
</table>

15 Set the handle of the POWER switch on the other power converter for the shelf involved down to the OFF position.
Power converter cards
in JNET shelves (continued)

16 Use the procedure Replacing a card in this document to replace the card. Complete the procedure and return to this point.

 Note 1: Make sure that the handle of the POWER switch on the replacement power converter is also in the OFF position.

 Note 2: If the card that you replace has switches, make sure that the switches on the replacement card have the same settings.

17 The next action depends on the power converter you replaced and the type of supervisory panel.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are replacing an NT2X06 or an NT2X07</td>
<td>step 20</td>
</tr>
<tr>
<td>are replacing an NT2X70 and the FSP has circuit breakers</td>
<td>step 18</td>
</tr>
<tr>
<td>are replacing an NT2X70 and the FSP does not have circuit breakers</td>
<td>step 19</td>
</tr>
</tbody>
</table>

18 Power up the converter, as follows:
 a Pull and set the handle of the POWER switch up to the ON position.
 b Press and hold the RESET button on the power converter.
 c Set the handle of the converter circuit breaker on the FSP up until it clicks into place.
 d Release the RESET button.
 e Go to step 21.

19 Power up the converter, as follows:
 a Pull and set the handle of the POWER switch up to the ON position.
 b Press and hold the RESET button on the power converter until the CONVERTER FAIL LED goes off.
 c Release the RESET button.
 d Go to step 21.

20 Power up the converter, as follows:
 a Set the handle of the POWER switch up on the power converter.
 b Press and hold the RESET button on the power converter.
 c Release the RESET button.

21 The next action depends on the power converter configuration for the shelf you are working on.

<table>
<thead>
<tr>
<th>If the shelf</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has one power converter</td>
<td>step 22</td>
</tr>
</tbody>
</table>
Power converter cards in JNET shelves (continued)

If the shelf

| has two power converters, and you have powered up | step 22 |
| has two power converters, and you have powered up | step 20 |
| both converters | |
| only one converter (the mate converter is an NT2X06 or an NT2X07) | |

At the MAP terminal

22 To return to service the port on MS0 that connects to the network plane and pair, type

>RTS 0 PORT port_no

and press the Enter key.

where

port_no is the number of the card slot recorded in step 8

Example of a MAP response:

Request to RTS MS: 0 shelf: 0 card:22 port: 1 submitted.
Request to RTS MS: 0 shelf: 0 card:22 port: 1 passed.

23 To return to service the port on MS1 that connects to the network plane and pair, type

>RTS 1 PORT port_no

and press the Enter key.

where

port_no is the number of the card slot recorded in step 8

24 To access the NET level of the MAP display, type

>NET

and press the Enter key.

25 To return the network module to service, type

>RTS plane_no pair_no

and press the Enter key.

where

plane_no is the number of the network plane (0 to 1) associated with the card you replace
Power converter cards
in JNET shelves

(pair_no)
is the number of the network plane pair (0 to 31) associated with the card you replace

Example of a MAP response:

```
rts 0 0
Request submitted. Reply expected within 3 mins.
Test Passed
OK
```

If the RTS command

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
</tr>
<tr>
<td>failed</td>
</tr>
</tbody>
</table>

26 The next action depends on the reason you perform this procedure.

If a maintenance procedure

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed</td>
</tr>
<tr>
<td>did not direct</td>
</tr>
</tbody>
</table>

27 Return to the maintenance procedure that sent you to this procedure and continue as directed.

28 Consult the next level of support to determine if you can proceed to manually busy the network plane and pair. Continue as directed.

29 Consult operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

30 For additional help, contact the next level of support.

31 The procedure is complete.
Application

Use this procedure to replace the following cards in a 64k or 128k enhanced network shelf (ENET).

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card you want to replace, refer to the “Index”. The index contains a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X13</td>
<td>FA, KA</td>
<td>DMS SuperNode processor card</td>
<td>64k ENET, 128k ENET</td>
</tr>
<tr>
<td>NT9X26</td>
<td>AA, AB</td>
<td>Reset terminal interface (RTIF) paddle board</td>
<td>64k ENET, 128k ENET</td>
</tr>
<tr>
<td>NT9X30</td>
<td>AA, AB</td>
<td>+5V 86-A power converter card</td>
<td>64k ENET, 128k ENET</td>
</tr>
<tr>
<td>NT9X31</td>
<td>AA, AB</td>
<td>-5V 20-A power converter for DMS-100E card</td>
<td>64k ENET, 128k ENET</td>
</tr>
<tr>
<td>NT9X36</td>
<td>BA</td>
<td>ENET messaging clock card</td>
<td>64k ENET, 128k ENET</td>
</tr>
<tr>
<td>NT9X40</td>
<td>BA</td>
<td>ENET + quad fiber paddle board</td>
<td>32k ENET, slot 8</td>
</tr>
<tr>
<td>NT9X40</td>
<td>BA, BB, DA</td>
<td>ENET + quad fiber paddle board</td>
<td>64k or 128k ENET, slot 8</td>
</tr>
</tbody>
</table>

Common procedures

The procedure references the following common procedures:

- Replacing a card
- Verifying load compatibility of SuperNode cards
- Cleaning fiber optic components and assemblies

Do not go to the common procedure unless the step-action procedure directs you to go.
System cards
in a 64k or 128k ENET (continued)

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of How to replace System cards in a 64k or 128k ENET

- Set deload for the plane and shelf
- Wait 30 min for traffic to clear
- Manually busy and offline the plane and shelf
- Manually busy the MS chain head cards
- Replace the card
- Return the MS chain head cards to service
- Manually busy the plane and shelf
- Load the plane and shelf
- Return the plane and shelf to service
- Clear deload for the plane and shelf
- End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
How to replace System cards in a 64k or 128k ENET

At the MAP terminal

1 Obtain a replacement card. Make sure that the replacement card has the same PEC and PEC suffix as the card you remove.

2 Make sure that the replacement card is compatible with the software load. Use the procedure How to verify load compatibility of SuperNode cards in this document. Complete the procedure and return to this point.

3 To access the NET;SYSTEM level of the MAP display, type

>MAPCI;MTC;NET;SYSTEM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>Shelf</th>
<th>Plane 0</th>
<th>Plane 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>I CSLink 1 closed</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Check the status of the node for the card that you replace. The Plane headers on the SYSTEM level MAP display indicates the status of the node. In the example in step 3, the node that associates with shelf 00 plane 1 is in-service trouble. All other nodes in the example are in service.

<table>
<thead>
<tr>
<th>If that status of the node</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is O</td>
<td>step 13</td>
</tr>
<tr>
<td>is M</td>
<td>step 12</td>
</tr>
<tr>
<td>is T</td>
<td>step 5</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 6</td>
</tr>
</tbody>
</table>

5 Wait 1 min for testing to complete. When system initiated testing is complete, go to step 4 to evaluate the state of the node again.
System cards
in a 64k or 128k ENET (continued)

6 To determine if there are deloaded crosspoint cards in the other plane for the shelf, type

```
>DELOAD plane_no shelf_no QUERY
```

and press the Enter key.

where

- **plane_no**
 - is the ENET plane number (0 or 1) for the mate node
- **shelf_no**
 - is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

Example of a MAP response:

```
Request to QUERY DELOAD ENET Plane:0 Shelf:00 submitted.
Request to QUERY DELOAD ENET Plane:0 Shelf:00 passed.
1111111 11122222 22222233
90123456 78901234 56789012
Plane:0 Shelf:00 ..Y.----- ----- ----...
```

Note: A deloaded crosspoint card is indicated by the letter Y under the slot number.

<table>
<thead>
<tr>
<th>If the node</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has deloaded cards</td>
<td>step 59</td>
</tr>
<tr>
<td>does not have deloaded cards</td>
<td>step 7</td>
</tr>
</tbody>
</table>

7 To determine if there are deloaded crosspoint cards in the node, type

```
>DELOAD plane_no shelf_no QUERY
```

and press the Enter key.

where

- **plane_no**
 - is the ENET plane number (0 or 1)
- **shelf_no**
 - is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

<table>
<thead>
<tr>
<th>If the node</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has deloaded cards</td>
<td>step 8</td>
</tr>
<tr>
<td>does not have deloaded cards</td>
<td>step 9</td>
</tr>
</tbody>
</table>

8 Record the plane number, shelf number, and slot number for any deloaded crosspoint cards in the node. Use this list to make sure that these cards are returned to the deloaded state when you complete this procedure.

9 To set all crosspoint cards to a deloaded status for the node associated with the card that you replace, type

```
>DELOAD plane_no shelf_no SET
```
and press the Enter key.

 where

 plane_no
 is the ENET plane number (0 or 1)

 shelf_no
 is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

Example of a MAP response:

Request to SET DELOAD ENET Plane:0 Shelf:00 submitted.
Request to SET DELOAD ENET Plane:0 Shelf:00 passed.

10 Wait 30 min to permit network traffic on the node to clear.
11 To manually busy the node, type
>BSY plane_no shelf_no

 and press the Enter key.

 where

 plane_no
 is the ENET plane number (0 or 1)

 shelf_no
 is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

Example of a MAP response:

Request to MAN BUSY ENET Plane:0 Shelf:00 submitted.
Request to MAN BUSY ENET Plane:0 Shelf:00 passed.

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 12</td>
</tr>
<tr>
<td>failed</td>
<td>step 60</td>
</tr>
</tbody>
</table>

12 To offline the node, type
>OFFL plane_no shelf_no

 and press the Enter key.

 where

 plane_no
 is the ENET plane number (0 or 1)

 shelf_no
 is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

Example of a MAP response:
Request to OFFL ENET Plane:0 Shelf:00 submitted.
Request to OFFL ENET Plane:0 Shelf:00 passed.

<table>
<thead>
<tr>
<th>If the OFFL command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 13</td>
</tr>
<tr>
<td>failed</td>
<td>step 60</td>
</tr>
</tbody>
</table>

13 To locate the message switch (MS) chain head card that associates with the ENET node, type

\[
> \text{TRNSL } \text{plane}_\text{no} \ \text{shelf}_\text{no}
\]

and press the Enter key.

where

- \text{plane}_\text{no} is the ENET plane number (0 or 1)
- \text{shelf}_\text{no} is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

\text{Example of a MAP response:}

Request to TRNSL ENET Plane:0 Shelf:00 submitted.
Request to TRNSL ENET Plane:0 Shelf:00 passed.
ENET Plane:0 Shelf:00 : MS 0 and 1 Card:16 Link:00 Port:000

\text{Note:} In the example, the number of the chain head card is 16. The link number is 0.

14 To access the MS SHELF level of the MAP display, type

\[
> \text{MS; SHELF}
\]

and press the Enter key.

\text{Example of a MAP display:}

<table>
<thead>
<tr>
<th>Message Switch</th>
<th>Clock</th>
<th>Shelf</th>
<th>Inter-MS Link</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0</td>
<td>M</td>
<td>Slave</td>
<td>C</td>
<td>- -</td>
</tr>
<tr>
<td>MS 1</td>
<td>.</td>
<td>M Free</td>
<td>F</td>
<td>- -</td>
</tr>
</tbody>
</table>

Shelf 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
Card 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Chain | |
MS 0 - - - - - - - - - - - - - - - - F I
MS 1 - - - - - - - - - - - - - - - - F I

15 Record the number of the chain head card and record the link number.

16 To post the chain head card, type

\[
> \text{CHAIN } \text{card}_\text{no}
\]

and press the Enter key.
System cards
in a 64k or 128k ENET (continued)

where

\(\text{card}_\text{no} \)

is the card number you recorded in step 15

Example of a MAP display:

Chain 16 Range Link 0 1
MS 0 . 16-17 DS512 ..
MS 1 . 16-17 DS512 ..

17 To manually busy the link on the chain on MS 0, type

\(>\text{BSY } 0 \text{ LINK link_no} \)

and press the Enter key.

where

\(\text{link}_\text{no} \)

is the link number you recorded in step 15

Example of a MAP response:

Request to MAN BUSY MS: 0 shelf: 0 chain:16 link 0 submitted.
Request to MAN BUSY MS: 0 shelf: 0 chain:16 link 0 passed.

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 18</td>
</tr>
<tr>
<td>failed</td>
<td>step 60</td>
</tr>
</tbody>
</table>

18 To manually busy the link on the chain on MS 1, type

\(>\text{BSY } 1 \text{ LINK link_no} \)

and press the Enter key.

where

\(\text{link}_\text{no} \)

is the link number you recorded in step 15

19 To access the ENET SHELF level of the MAP display, type

\(>\text{NET;SHELF shelf_no} \)

and press the Enter key.

where

\(\text{shelf}_\text{no} \)

is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

Example of a MAP display:
To access the Card level for the card you replace, type

\[\texttt{>CARD card_no}\]

and press the Enter key.

where

- \texttt{card_no} is the card number

Example of a MAP display:

```
SHELF 01 Slot   1111111 11122222 22222333 3333333
       123456 78 90123456 78901234 56789012 345678
Plane 0 O O OO CCCCCCCC -------- CCCCCCCC O O
```

To manually busy the slot that contains the card you replace, type

\[\texttt{>BSY plane_no}\]

and press the Enter key.

where

- \texttt{plane_no} is the ENET plane number (0 or 1)

Example of a MAP response:

```
Request to MAN BUSY ENET Plane:0 Shelf:01 Slot:15 submitted.
Warning: Card replacement requires front and back bsy/rts
to prevent possible service degradation to peripherals.
Request to MAN BUSY ENET Plane:0 Shelf:01 Slot:15 passed.
```

To offline the slot that contains the card you replace, type

\[\texttt{>OFFL plane_no}\]

and press the Enter key.

where

- \texttt{plane_no} is the plane number

Example of a MAP response:

```
```
SuperNode network card replacement procedures

System cards in a 64k or 128k ENET (continued)

Request to OFFLINE ENET Plane:0 Shelf:01 Slot:07 submitted.
Request to OFFLINE ENET Plane:0 Shelf:01 Slot:07 passed.

At the shelf

23

WARNING
Static electricity damage
Wear a wrist strap that connects to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

The next action depends on the ENET card you replace.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are replacing an NT9X30 or NT9X31</td>
<td>step 26</td>
</tr>
<tr>
<td>are replacing an NT9X13</td>
<td>step 24</td>
</tr>
<tr>
<td>are replacing an NT9X40</td>
<td>step 28</td>
</tr>
<tr>
<td>are replacing an NT9X26 or NT9X36</td>
<td>step 31</td>
</tr>
</tbody>
</table>

24 Unseat the NT9X36 (messaging clock) card on the shelf. Use the procedure How to unseat cards in equipment shelves in this NTP. When you complete the procedure, wait 20 s and return to this point.

25 Use the procedure How to reseat cards in equipment shelves in this NTP to reseat the NT9X36 card. When you complete the procedure, wait 20 s and return to this point.

Go to step 31.

26 To power down the NT9X30 card that associates with the ENET shelf side, press down and release the power switch on the faceplate of the card.

Note: The CONVERTER OFF LED will light when the converter correctly powers down.

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is lit</td>
<td>step 27</td>
</tr>
</tbody>
</table>

297-8021-547 Standard 14.02 May 2001
System cards in a 64k or 128k ENET (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>To power down the NT9X31 card that associates with the ENET shelf side, press down and release the power switch on the faceplate of the card.</td>
</tr>
<tr>
<td>Note: The CONVERTER OFF LED will light when the converter correctly powers down.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is not lit</td>
<td>step 60</td>
</tr>
</tbody>
</table>

ATTENTION

Make sure you correctly identify connector zone numbers. Refer to figure “NT9X40BA/BB connector zone numbers” (at the end of this procedure) for the NT9X40 to identify zone numbers. Figures “Fiber connector detail” and “Fiber connector and receptacle detail” provide diagrams of fiber connector components for these cards.

Make sure that you are at the correct ENET node (plane and shelf name) and the correct interface card (slot). Disconnect the fiber cables.

29 Make sure that each cable has a label that has the following information:

- the ENET shelf number
- the plane number
- the slot number
- the link number
- the signal type (transmit or receive)

If this information is not present, create a label and attach it to the cable. This label provides the necessary information to correctly reconnect the fiber cables to the card.

Example of a label:

```
ENCO  00  39
10R   04  17T
LTE   000 18
22R   RX
```

Label field descriptions
Disconnect the transmit and receive connectors for each fiber cable, as follows:

Note: As you disconnect the connectors place dust caps on the ends of the connectors.

a. Grasp the sleeve with two fingers and gently push the sleeve towards the frame.
System cards
in a 64k or 128k ENET (continued)

b Turn the connector counter-clockwise until the connector pin is in the position shown below.

c Gently pull the connector away from the frame.

Perform the procedure, Cleaning fiber optic components and assemblies in this NTP.
System cards
in a 64k or 128k ENET (continued)

31 Use the procedure How to replace a card in this document to replace the
card. Complete the procedure and return to this point.

Note 1: If you replace the power converter card, make sure that the PWR
switch on the replacement power converter is in the OFF position.

Note 2: If the card that you replace has switches, make sure that the
switches on the replacement card have the same settings.

32 The next action depends on the ENET card you replace.

<table>
<thead>
<tr>
<th>If you</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace an NT9X30 or NT9X31</td>
<td>step 33</td>
</tr>
<tr>
<td>replace an NT9X13</td>
<td>step 38</td>
</tr>
<tr>
<td>replace an NT9X40</td>
<td>step 35</td>
</tr>
<tr>
<td>replace an NT9X26 or NT9X36</td>
<td>step 36</td>
</tr>
</tbody>
</table>

33 Press up and release the power switch on the faceplate of the card to power
up the NT9X30 card.

Note: The CONVERTER OFF LED will go out when the converter
correctly powers up.

34 Press up and release the power switch on the faceplate of the card to power
up the NT9X31 card.

Note: The CONVERTER OFF LED will go out when the converter
correctly powers up.

<table>
<thead>
<tr>
<th>If the CONVERTER OFF LED</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is not lit</td>
<td>step 34</td>
</tr>
<tr>
<td>is lit</td>
<td>step 60</td>
</tr>
</tbody>
</table>

35 Remove the dust caps on the transmit and receive connectors as you
reconnect them to the new card.

Reconnect the transmit and receive connectors for each fiber cable, as
follows:

a Align the connector pin and slot with the receptacle slot and pin, as
shown.
System cards

in a 64k or 128k ENET (continued)

b Carefully slide the connector into the receptacle.

c Turn the connector clockwise to lock the connector in place.

d Release the connector. The figure illustrates the final connector position.
System cards
in a 64k or 128k ENET (continued)

36 Unseat the NT9X13 (processor) card on the shelf side involved. Perform the procedure How to unseat cards in equipment shelves in this NTP. Complete the procedure and return to this point.

37 Reseat the NT9X13 card on the shelf side involved. Perform the procedure How to reseat cards in equipment shelves in this NTP. Complete the procedure and return to this point.

At the MAP terminal

38 To access the Chain level of the MAP display, type

>MS; SHELF; CHAIN card_no

and press the Enter key.

where

card_no
is the card number you recorded in step 15

39 To return the link on the chain on MS 0 to service, type

>RTS 0 LINK link_no

and press the Enter key.

where

link_no
is the link number you recorded in step 15

Example of a MAP response:

Request to RTS MS: 0 shelf: 0 chain:16 link 0 submitted.
Request to RTS MS: 0 shelf: 0 chain:16 link 0 passed.

If the RTS command Do

passed step 40

failed step 60
System cards in a 64k or 128k ENET (continued)

40. To return the link on the chain on MS 1 to service, type

\[\text{>RTS 1 LINK link_no} \]

and press the Enter key.

where

- **link_no**
 - is the link number you recorded in step 15

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 41</td>
</tr>
<tr>
<td>failed</td>
<td>step 60</td>
</tr>
</tbody>
</table>

41. To access the NET;SYSTEM level of the MAP display, type

\[\text{>NET;SYSTEM} \]

and press the Enter key.

42. To manually busy the node, type

\[\text{>BSY plane_no shelf_no} \]

and press the Enter key.

where

- **plane_no**
 - is the ENET plane number (0 or 1)
- **shelf_no**
 - is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 43</td>
</tr>
<tr>
<td>failed</td>
<td>step 60</td>
</tr>
</tbody>
</table>

43. The next action depends on the location of the load file.

<table>
<thead>
<tr>
<th>If the load file</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is as specified in tables PM-LOADS and ENINV</td>
<td>step 44</td>
</tr>
<tr>
<td>is different from the file specified in tables PM-LOADS and ENINV</td>
<td>step 45</td>
</tr>
</tbody>
</table>

44. To load the node, type

\[\text{>LOADEN plane_no shelf_no} \]

and press the Enter key.
System cards in a 64k or 128k ENET (continued)

where

plane_no
is the ENET plane number (0 or 1)

shelf_no
is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

Example of a MAP response:

WARNING Any software load in the ENET will be destroyed. Please confirm ("YES" or "NO"):

Go to step 48.

45 To access the DISKUT utility, type

>DISKUT

and press the Enter key.

Example of a MAP response:

Disk utility is now active.
DISKUT:

46 To list the contents for the volume that contains the loadfile, type

>LISTFILE vol_name

and press the Enter key.

where

vol_name
is the name of the volume

Example of a MAP response:

File information for volume S00DVOL1:
{NOTE: 1 BLOCK = 512 BYTES }

<table>
<thead>
<tr>
<th>LAST FILE</th>
<th>O R I O</th>
<th>FILE</th>
<th>NUM OF</th>
<th>MAX</th>
<th>FILE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY CODE</td>
<td>RET P</td>
<td>SIZE</td>
<td>RECORDS</td>
<td>REC</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>G C O E</td>
<td>IN</td>
<td>IN</td>
<td>LEN</td>
<td></td>
</tr>
<tr>
<td>C N</td>
<td>BLOCKS</td>
<td>FILE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>760128</td>
<td>0 O F</td>
<td>277</td>
<td>3219</td>
<td>44</td>
<td>EDRMAC07</td>
</tr>
<tr>
<td>941101</td>
<td>0 I F Y</td>
<td>9494</td>
<td>4747</td>
<td>1020</td>
<td>RAPC03AW_1101_MS</td>
</tr>
<tr>
<td>760104</td>
<td>0 O V</td>
<td>651</td>
<td>162</td>
<td>2048</td>
<td>MPC402BX</td>
</tr>
<tr>
<td>760104</td>
<td>0 O F</td>
<td>63</td>
<td>424</td>
<td>76</td>
<td>TDCMPA01</td>
</tr>
<tr>
<td>760104</td>
<td>0 O F</td>
<td>37</td>
<td>249</td>
<td>76</td>
<td>TTMNA01</td>
</tr>
<tr>
<td>941101</td>
<td>0 I F Y</td>
<td>202934</td>
<td>101467</td>
<td>1020</td>
<td>RAPC03AW_1101_CM</td>
</tr>
<tr>
<td>941025</td>
<td>0 I F</td>
<td>9494</td>
<td>4747</td>
<td>1020</td>
<td>RBCC3SCV_1025_MS</td>
</tr>
<tr>
<td>941025</td>
<td>0 I F</td>
<td>242454</td>
<td>121227</td>
<td>1020</td>
<td>RBCC3SCV_1025_CM</td>
</tr>
<tr>
<td>940426</td>
<td>0 O F</td>
<td>784</td>
<td>392</td>
<td>1024</td>
<td>MPCX33AB</td>
</tr>
<tr>
<td>930427</td>
<td>0 O F</td>
<td>314</td>
<td>2006</td>
<td>80</td>
<td>MTUL101</td>
</tr>
</tbody>
</table>
To load the node, type

```
>LOADEN plane_no shelf_no filename
```

and press the Enter key.

where

- `plane_no` is the ENET plane number (0 or 1)
- `shelf_no` is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)
- `filename` is the name of the load file

Example of a MAP response:

```
WARNING  Any software load in the ENET will be destroyed. Please confirm ("YES" or "NO"):
```

To confirm the command, type

```
>YES
```

and press the Enter key.

Example of a MAP response:

```
Request to LOADEN ENET Plane:0 Shelf:00 submitted. Request to LOADEN ENET Plane:0 Shelf:00 passed.
```

To return the node to service, type

```
>RTS plane_no shelf_no
```

and press the Enter key.

where

- `plane_no` is the ENET plane number (0 or 1)
- `shelf_no` is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

Example of a MAP response:

```
Request to RTS ENET Plane:0 Shelf:00 submitted. Request to RTS ENET Plane:0 Shelf:00 passed.
```

If the RTS command

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 50</td>
</tr>
<tr>
<td>failed</td>
<td>step 60</td>
</tr>
</tbody>
</table>

There are no suspect cards.
System cards in a 64k or 128k ENET (continued)

50 To access the ENET SHELF level of the MAP display, type

>`SHELF shelf_no

and press the Enter key.

where

shelf_no
is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

51 To busy all crosspoint cards on the shelf, type

>`BSY plane_no ALL

and press the Enter key.

plane_no
is the ENET plane number (0 or 1)

Example of a MAP response:

WARNING: This action will be performed on ALL XPT slots in ENET Plane:1 that are MBSY, INSV, OFFL, SBSY, or CBSY. Please confirm ("YES", "Y", "NO", or "N"):

52 To return all crosspoint cards on the shelf to service, type

>`RTS plane_no ALL

and press the Enter key.

plane_no
is the ENET plane number (0 or 1)

Example of a MAP response:

Request to RTS ENET Plane:1 Shelf:00 submitted. Request to RTS ENET Plane:1 Shelf:00 passed.

53 To access the ENET SYSTEM level of the MAP display, type

>`SYSTEM

and press the Enter key.

54 To clear the deload condition on all crosspoint cards in the node, type

>`DELOAD plane_no shelf_no CLEAR

and press the Enter key.

where

plane_no
is the ENET plane number (0 or 1)

shelf_no
is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128k ENET)

Example of a MAP response:
System cards in a 64k or 128k ENET (continued)

Determine if you recorded the deloaded cards in step 8.

<table>
<thead>
<tr>
<th>If there</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are cards listed</td>
<td>step 56</td>
</tr>
<tr>
<td>are no cards listed</td>
<td>step 61</td>
</tr>
</tbody>
</table>

To access the SHELF level of the MAP display, type

\[\text{>SHELF} \ shelf_no \]

and press the Enter key.

where

\[shelf_no \]

is the number of the shelf that contains the node on which you are working

To set the first card on the list to deloaded status, type

\[\text{>DELOAD} \ plane_no \ shelf_no \ slot_no \ SET \]

and press the Enter key.

where

\[plane_no \]

is the ENET plane number (0 or 1)

\[shelf_no \]

is the ENET shelf number (0 or 1 for 64k ENET; 0 to 3 for 128kENET)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>more cards are on the list that you did not deload</td>
<td>step 58</td>
</tr>
<tr>
<td>you deloaded all cards on the list</td>
<td>step 61</td>
</tr>
</tbody>
</table>

Repeat step 57 for the next card on the list.

This procedure instructs you to deload and manually busy a node. Do not continue with this procedure except under special conditions because the mate node has deloaded cards. Consult operating company personnel or the next level of support. Continue as directed by operating company personnel or the next level of support.

For additional help, contact the next level of support.

The procedure is complete.
System cards
in a 64k or 128k ENET (continued)

NT9X40BA/BB connector zone numbers

The figure correlates the zone numbers (1 to 8) that appear on the face of the card to the link numbers that appear on the MAP display for the NT9X40BA or NT9X40BB interface card. Note that only fiber connections are shown. Pay careful attention to the zone designations for transmit and receive.

This diagram shows the type of connector used for fiber connections to an NT9X40 or NT9X45 paddle board.
System cards in a 64k or 128k ENET (end)

Fiber connector detail

This diagram shows the different parts of the connector and receptacle as this procedure refers to them.

Fiber connector and receptacle detail
System, interface, and crosspoint cards in JNET shelves

Application

Use this procedure to replace the following cards in the shelves or frames listed.

If you cannot identify the product engineering code (PEC), PEC suffix, or provisioned shelf or frame for the card, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT3X17</td>
<td>AA</td>
<td>Network incoming crosspoint card</td>
<td>NT0X48 single-bay network (NET)</td>
</tr>
<tr>
<td>NT3X18</td>
<td>AA</td>
<td>Network outgoing crosspoint card</td>
<td>NET</td>
</tr>
<tr>
<td>NT3X19</td>
<td>AA</td>
<td>Network speech interface card</td>
<td>NET</td>
</tr>
<tr>
<td>NT3X20</td>
<td>AA</td>
<td>Network test access card</td>
<td>NET</td>
</tr>
<tr>
<td>NT3X21</td>
<td>AA</td>
<td>Network interface bus card</td>
<td>NET</td>
</tr>
<tr>
<td>NT3X22</td>
<td>AA</td>
<td>Network module input/output interface card</td>
<td>NET</td>
</tr>
<tr>
<td>NT3X23</td>
<td>AA</td>
<td>Crosspoint controller card</td>
<td>NET</td>
</tr>
<tr>
<td>NT3X23</td>
<td>AB</td>
<td>Network signaling controller card</td>
<td>NET</td>
</tr>
<tr>
<td>NT3X24</td>
<td>AA</td>
<td>Network clock card</td>
<td>NET</td>
</tr>
<tr>
<td>NT3X70</td>
<td>AA, AB</td>
<td>Network crosspoint card</td>
<td>NT5X13 combined single-bay network (NETC)</td>
</tr>
<tr>
<td>NT3X71</td>
<td>AA</td>
<td>Network test code card</td>
<td>NETC</td>
</tr>
<tr>
<td>NT3X72</td>
<td>AA, AB</td>
<td>Network serial port interface card</td>
<td>NETC</td>
</tr>
</tbody>
</table>
System, interface, and crosspoint cards in JNET shelves (continued)

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT3X73</td>
<td>AA</td>
<td>Network serial to parallel formatter card</td>
<td>NETC</td>
</tr>
<tr>
<td>NT3X74</td>
<td>AA, CB</td>
<td>Network card processor</td>
<td>Combined single-bay network (NETC), NT8X11 dual shelf network (DSN)</td>
</tr>
<tr>
<td>NT3X75</td>
<td>AA</td>
<td>Network P-side message processor card</td>
<td>NETC, DSN</td>
</tr>
<tr>
<td>NT3X76</td>
<td>AA</td>
<td>Network clock card</td>
<td>NETC, DSN</td>
</tr>
<tr>
<td>NT3X86</td>
<td>AA</td>
<td>Network serial to parallel formatter card</td>
<td>NETC</td>
</tr>
<tr>
<td>NT8X12</td>
<td>AA</td>
<td>Network port card</td>
<td>DSN</td>
</tr>
<tr>
<td>NT8X13</td>
<td>AA</td>
<td>Dual-shelf network crosspoint card</td>
<td>DSN</td>
</tr>
<tr>
<td>NT8X14</td>
<td>AA</td>
<td>Network test code card</td>
<td>DSN</td>
</tr>
</tbody>
</table>

Common procedures

This procedure references the procedure *Replacing a card*.

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
System, interface, and crosspoint cards in JNET shelves (continued)

Summary of replacing System, interface, and crosspoint cards in JNET shelves

- Wait for system testing to complete
- Manually busy the network plane and pair
- Replace the card
- Return the plane and pair to service
- End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing System, interface, and crosspoint cards in JNET shelves

At the MAP terminal

1. Obtain a replacement card. Make sure that the replacement card has the same PEC and PEC suffix as the card you remove.

2. To access the NET level of the MAP display, type

 `>MAPCI;MTC;NET`

 and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th>Net</th>
<th>11111</th>
<th>11111</th>
<th>22222</th>
<th>22222</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>01234</td>
<td>56789</td>
<td>01234</td>
<td>56789</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>.S.S</td>
<td></td>
<td>.S.S</td>
<td></td>
<td>.S.S</td>
</tr>
</tbody>
</table>

3. Determine the state of the plane and pair for the card you replace.

<table>
<thead>
<tr>
<th>If the state</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is T (testing)</td>
<td>step 4</td>
</tr>
<tr>
<td>is M (manual busy)</td>
<td>step 6</td>
</tr>
</tbody>
</table>
System, interface, and crosspoint cards in JNET shelves (continued)

<table>
<thead>
<tr>
<th>If the state</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is Ø (offline)</td>
<td>step 11</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 5</td>
</tr>
</tbody>
</table>

4 Wait 5 min for the test to complete. When system testing is complete, go to step 3 to evaluate the state of the plane and pair again.

5 To manually busy the network module that contains the card to be replaced, type

>BSY plane_no pair_no

and press the Enter key.

where

- **plane_no**
 - is the network plane number (0 and 1)
- **pair_no**
 - is the plane pair number (0 to 31)

Example of a MAP response:

bsy 0 00K

<table>
<thead>
<tr>
<th>If the BSY command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 6</td>
</tr>
<tr>
<td>needs to be confirmed</td>
<td>step 12</td>
</tr>
<tr>
<td>failed</td>
<td>step 13</td>
</tr>
</tbody>
</table>

6 Wait 30 min to make sure that calls in progress are complete.

7

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

To replace the card, use the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.
The next action depends on your reason for performing this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 9</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 10</td>
</tr>
</tbody>
</table>

Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

10 To return the network module to service, type

>`RTS plane_no pair_no`

and press the Enter key.

Where

- `plane_no` is the network plane number (0 and 1)
- `pair_no` is the plane pair number (0 to 31)

Example of a MAP response:

```
rts 0 0
Request submitted. Reply expected within 3 mins.
Test Passed
OK
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 14</td>
</tr>
<tr>
<td>failed</td>
<td>step 13</td>
</tr>
</tbody>
</table>

11 Consult operating company personnel to determine why the component is offline. Continue as directed by operating company personnel.

12 Consult the next level of support to determine if you can proceed to manually busy the network plane and pair. Continue as directed.

13 For additional help, contact the next level of support.

14 This procedure is complete.
10 Office alarm unit card replacement procedures

Introduction

This chapter contains card replacement procedures for the office alarm unit (OAU). The first section in the chapter illustrates OAU shelf layouts.

The chapter “Frame supervisory panel and maintenance supervisory panel card replacement procedures” provides card replacement procedures for the frame supervisory panel (FSP) and modular supervisory panel (MSP).

Each procedure contains the following sections:
- Application
- Common procedures
- Action

Application

This section identifies the OAU card(s) that the replacement procedure covers.

Common procedures

This section lists common procedures that the OAU card replacement procedures use. A common procedure is a series of steps that you repeat within maintenance procedures. Common procedures appear in the common procedures chapter in this NTP.

Do not use common procedures unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Recording card replacement activities

When you replace a card, record the following information in office records:

- the serial number of the card you replace
- the date you replace the card
- the reason you replace the card
Application

This section shows a frame layout diagram for the trunk module equipment (TME) frame that contains the office alarm unit (OAU). It also shows shelf diagrams for the OAU shelf.

Note 1: The frame and shelf layouts on the following pages are standard. There can be some difference in the shelves in your office.

Note 2: Slot widths vary, depending on the PM type and the card type. Cards occupy a slot that is 1 in wide (double-slot cards are 2 in wide). The NT2X09 power converter occupies a slot that is 2 in wide. The NT2X06 power converter occupies a slot that is 2.25 in wide. Filler faceplates are 1 in wide, except when there is an asterisk (*). This indicates that filler faceplates are 0.75 in wide.
OAU shelf layouts (continued)

Trunk module equipment frame

Legend:
- AXU: Alarm crosspoint unit
- FSP: Frame supervisory panel
- MTM: Maintenance trunk module
- OAU: Office alarm unit

Note: Shelf positions 4 and 18 can be equipped with any combination of the following: integrated service modules (ISM), maintenance trunk modules (MTM), service trunk modules (STM), and trunk modules (TM).
Office alarm unit with NT0X70 TM processor and memory card

<table>
<thead>
<tr>
<th>Cards</th>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X06 Power converter card</td>
<td>20F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate*</td>
<td>19F</td>
</tr>
<tr>
<td>NT2X09 Power converter card</td>
<td>17F</td>
</tr>
<tr>
<td>NT3X82 OAU dead system card</td>
<td>15F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>14F</td>
</tr>
<tr>
<td>NT3X85 OAU alarm group card</td>
<td>13F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate**</td>
<td>12F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate**</td>
<td>11F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate**</td>
<td>10F</td>
</tr>
<tr>
<td>NT2X57 Signal distributor card type I</td>
<td>09F</td>
</tr>
<tr>
<td>NT2X57 Signal distribution card type I</td>
<td>08F</td>
</tr>
<tr>
<td>NT2X57 Signal distribution card type I</td>
<td>07F</td>
</tr>
<tr>
<td>NT0X10 Miscellaneous scan card</td>
<td>06F</td>
</tr>
<tr>
<td>NT0X10 Miscellaneous scan card</td>
<td>05F</td>
</tr>
<tr>
<td>NT2X59 Group CODEC card</td>
<td>04F</td>
</tr>
<tr>
<td>NT2X53 TM control card</td>
<td>03F</td>
</tr>
<tr>
<td>NT0X70 TM processor and memory card</td>
<td>02F</td>
</tr>
<tr>
<td>NT2X45 TM interface card</td>
<td>01F</td>
</tr>
</tbody>
</table>

Note 1: Slots marked with double asterisk (**) are available for service circuit or alarm cards.

Note 2: Slots 08F, 09F, and 10F are available for office alarm circuit cards (NT2X41, NT2X42, and NT2X43).
Office alarm unit with NT4X65 TM group control card

<table>
<thead>
<tr>
<th>Cards</th>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X06 Power converter card</td>
<td>20F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate**</td>
<td>19F</td>
</tr>
<tr>
<td>NT2X09 Power converter card</td>
<td>17F</td>
</tr>
<tr>
<td>NT3X82 OAU dead system card</td>
<td>15F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>14F</td>
</tr>
<tr>
<td>NT3X85 OAU alarm group card</td>
<td>13F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate**</td>
<td>12F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate**</td>
<td>11F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate**</td>
<td>10F</td>
</tr>
<tr>
<td>NT2X57 Signal distribution card type I</td>
<td>09F</td>
</tr>
<tr>
<td>NT2X57 Signal distribution card type I</td>
<td>08F</td>
</tr>
<tr>
<td>NT0X10 Miscellaneous scan card</td>
<td>07F</td>
</tr>
<tr>
<td>NT0X10 Miscellaneous scan card</td>
<td>06F</td>
</tr>
<tr>
<td>NT2X59 Group CODEC card</td>
<td>05F</td>
</tr>
<tr>
<td>NT4X65 TM combination control card</td>
<td>04F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>03F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>02F</td>
</tr>
<tr>
<td>NT0X50 Filler faceplate</td>
<td>01F</td>
</tr>
</tbody>
</table>

Note 1: Slots marked with double asterisk (**) are available for service circuit or alarm cards.

Note 2: Slots 08F, 09F, and 10F can have office alarm circuit cards (NT2X41, NT2X42, and NT2X43).
Control and circuit cards in the office alarm unit

Application

Use this procedure to replace the following cards in the office alarm unit (OAU).

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT0X10</td>
<td>AA</td>
<td>Miscellaneous scan detector card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT0X70</td>
<td>AA</td>
<td>TM processor card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT2X41</td>
<td>AA</td>
<td>Office alarm circuit #1</td>
<td>OAU</td>
</tr>
<tr>
<td>NT2X42</td>
<td>AA</td>
<td>Office alarm circuit #2</td>
<td>OAU</td>
</tr>
<tr>
<td>NT2X43</td>
<td>AB</td>
<td>Office alarm circuit #3</td>
<td>OAU</td>
</tr>
<tr>
<td>NT2X45</td>
<td>AB</td>
<td>TM interface card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT2X53</td>
<td>AA</td>
<td>TM control card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT2X57</td>
<td>AA</td>
<td>Signal distribution card, type I</td>
<td>OAU</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>Signal distribution card with office alarm unit monitor circuit</td>
<td>OAU</td>
</tr>
<tr>
<td>NT2X59</td>
<td>AA</td>
<td>Group CODEC and tone card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT3X82</td>
<td>AA, AC, AE, AF, AH, AK, AB, AD, AG, AJ</td>
<td>Office alarm unit dead system with unique audibles card</td>
<td>OAU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Office alarm unit dead system with common audibles card</td>
<td>OAU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPA dead system with audibles card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT3X83</td>
<td>AA, AB, AC, AD</td>
<td>Office alarm unit alarm transfer card</td>
<td>OAU</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>LP alarm transfer & sending card</td>
<td>OAU</td>
</tr>
</tbody>
</table>
Control and circuit cards
in the office alarm unit (continued)

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT3X84</td>
<td>AA, AB</td>
<td>Office alarm unit alarm sending card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT3X85</td>
<td>AA, AB</td>
<td>Office alarm unit alarm group card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT4X65</td>
<td>AA</td>
<td>TM combination control card</td>
<td>OAU</td>
</tr>
</tbody>
</table>

Note: The OAU has either the NT4X65 card or the NT0X70, NT2X45, and NT2X53 cards. The NT4X65 card combines the functionality of the NT0X70, NT2X45, and NT2X53 cards.

Common procedures

This procedure refers to the following common procedures:

- *Replacing a card*
- *Loading a PM*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Control and circuit cards
in the office alarm unit (continued)

Summary of replacing Control and circuit cards in the office alarm unit

- Post the OAU
- Manually busy the OAU
- Replace the card
- Load the OAU if needed
- Return the OAU to service
- End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing Control and circuit cards in the office alarm unit

At the MAP terminal

1

CAUTION
Loss of alarm indication
This procedure includes directions to remove the OAU from service, which renders alarm indicators unavailable. Perform this procedure only if necessary to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.

Obtain a replacement card. Make sure that the replacement card has the same product engineering code (PEC) and PEC suffix as the card you remove.

2

To access the PM level of the MAP display, type

>PM

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td>102</td>
</tr>
</tbody>
</table>

3

To post the OAU, type

>POST OAU pm_no

and press the Enter key.

where

pm_no

is the number of the PM (0 to 9999)

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OAU</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OAU</td>
<td>0</td>
<td>SysB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control and circuit cards in the office alarm unit (continued)

4 Determine the state of the PM.

 Note: The PM state appears on the right of the PM number. In the example display in step 3, the PM state is system busy (SysB).

<table>
<thead>
<tr>
<th>If the PM</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is OffL</td>
<td>step 13</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 6</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 5</td>
</tr>
</tbody>
</table>

5 To manually busy the PM, type `>BSY` and press the Enter key.

 Example of a MAP display:

```
PM          SysB | ManB | OffL | CBsy | ISTb | InSv
OAU         0      1     6     0    0    102
```

 `OAU 0 ManB
 bsy
 OAU 0 Bsy
 OK.`

At the shelf

6

WARNING

Static electricity damage

Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

To replace the card, use the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

 Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.
Control and circuit cards
in the office alarm unit (continued)

7 Determine the reason you performed this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 8</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 9</td>
</tr>
</tbody>
</table>

8 Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

9 Determine the type of card you replaced.

<table>
<thead>
<tr>
<th>If the card you replaced</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replaced is the NT0X70, NT2X45, NT2X53, NT2X59, NT4X65</td>
<td>step 10</td>
</tr>
<tr>
<td>replaced is other than listed here</td>
<td>step 12</td>
</tr>
</tbody>
</table>

10 To load the PM, type

>LOADPM

and press the Enter key.

Example of a MAP response:

```
OAU 0 LoadPM  Passed
```

<table>
<thead>
<tr>
<th>If the LOADPM command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 12</td>
</tr>
<tr>
<td>failed</td>
<td>step 11</td>
</tr>
</tbody>
</table>

11 Use the procedure *Loading a PM* in this document to load the PM. Complete the procedure and return to this point.

12 To return the PM to service, type

>RTS

and press the Enter key.

Example of a MAP response:

```
OAU 0 Rts Passed
```

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 15</td>
</tr>
</tbody>
</table>
Control and circuit cards
in the office alarm unit (end)

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 14</td>
</tr>
</tbody>
</table>

13 Consult operating company personnel to determine why the component is offline. Continue as directed.
14 For additional help contact the next level of support.
15 The procedure is complete.
Power converter cards
in the office alarm unit

Application
Use this procedure to replace the following cards in the office alarm unit (OAU).

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X06</td>
<td>AB</td>
<td>Power converter card</td>
<td>OAU</td>
</tr>
<tr>
<td>NT2X09</td>
<td>AA</td>
<td>Power converter card</td>
<td>OAU</td>
</tr>
</tbody>
</table>

Common procedures
This procedure refers to the following common procedures:

• Replacing a card
• Loading a PM

Do not go to the common procedure unless the step-action procedure directs you to go.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of replacing Power converter cards in the office alarm unit

1. Post and manually busy the OAU
2. Power down the OAU
3. Replace the card
4. Power up the OAU
5. Load the OAU
6. Return the OAU to service
7. End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Power converter cards in the office alarm unit (continued)

Replacing Power converter cards in the office alarm unit

At the MAP terminal

1. Obtain a replacement card. Make sure that the replacement card has the same product engineering code (PEC) and PEC suffix as the card you remove.

2. To access the PM level of the MAP display, type

 `>MAPCI;MTC;PM`

 and press the Enter key.

 Example of a MAP display:

   ```
   PM    SysB    ManB    OffL    CBsy    ISTb    In Sv
   1    6    102
   ```

3. To post the OAU, type

 `>POST OAU pm_no`

 and press the Enter key.

 where

 `pm_no`

 is the number of the PM (0 to 9999)

 Example of a MAP display:
Office alarm unit card replacement procedures

Power converter cards
in the office alarm unit (continued)

4. Determine the state of the PM.

 Note: The PM state appears on the right of the PM number. In the example display in step 3, the PM state is system busy (SysB).

<table>
<thead>
<tr>
<th>If the PM</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is OffL</td>
<td>step 18</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 6</td>
</tr>
<tr>
<td>is other than listed here</td>
<td>step 5</td>
</tr>
</tbody>
</table>

5. To manually busy the PM, type

 >BSY

 and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th>PM</th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAU</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>102</td>
</tr>
</tbody>
</table>

 bsy
 OAU 0 Bsy
 OK.
Power converter cards
in the office alarm unit (continued)

At the shelf

6

WARNING
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects cards against static electricity damage.

For the power converter you replace, pull and set the handle of the POWER switch down to the OFF position.

7 For the other power converter on the shelf, pull and set the handle of the POWER switch down to the OFF position.

8 To replace a card, use the procedure Replacing a card in this document. Complete the procedure and return to this point.

 Note 1: Make sure that the handle of the PWR switch on the replacement power converter is also in the OFF position.

 Note 2: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

9 Determine the type of supervisory panel.

<table>
<thead>
<tr>
<th>If the FSP or MSP</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has circuit breakers</td>
<td>step 10</td>
</tr>
<tr>
<td>does not have circuit breakers</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 Power up the converter as follows:
 a Pull and set the handle of the POWER switch up to the ON position.
 b Press and hold the RESET button on the power converter.
 c Set the handle of the converter circuit breaker on the FSP or MSP up until it clicks into place.
 d Release the RESET button.
 e Go to step 12.

11 Power up the converter as follows.
 a Pull and set the handle of the POWER switch up to the ON position.
 b Press and hold the RESET button on the power converter until the CONVERTER FAIL LED goes off.
 c Release the RESET button.

12 For the other power converter on the shelf, repeat step 9. Go to step 13.
Power converter cards in the office alarm unit (end)

13 Determine the reason you performed this procedure.

If a maintenance procedure directed you to this procedure, do step 14.

If a maintenance procedure did not direct you to this procedure, do step 15.

14 Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

15 To load the OAU, type >LOADPM and press the Enter key.

Example of a MAP response:

OAU 0 Load PM Passed

If the LOADPM command passed, do step 17.

If the LOADPM command failed, do step 16.

16 To load the PM use the procedure Loading a PM in this document. Complete the procedure and return to this point.

17 To return the PM to service, type >RTS and press the Enter key.

Example of a MAP response:

OAU 0 RTS Passed

If the RTS command passed, do step 20.

If the RTS command failed, do step 19.

18 Consult operating company personnel to determine why the component is offline. Continue as directed by office personnel.

19 For additional help, contact the next level of support.

20 The procedure is complete.
11 Remote line module card replacement procedures

Introduction
This chapter contains card replacement procedures for the remote line module (RLM). The first section in the chapter provides RLM shelf layouts.

Card replacement procedures for the frame supervisory panel (FSP) and modular supervisory panel (MSP) are in the chapter “Frame supervisory panel card replacement procedures”.

Each procedure contains the following sections:
• Application
• Common procedures
• Action

Application
This section identifies the RLM card(s) the replacement procedures cover.

Common procedures
This section lists common procedures the RLM card replacement procedures use. A common procedure is a series of steps repeated within maintenance procedures. Common procedures appear in the common procedures chapter in this NTP.

Do not use common procedures unless the step-action procedure directs you to go.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Recording card replacement activities

Record the following information in office records when you replace cards:

- the serial number of the card you replace
- the date you replace the card
- the reason you replace the card
Application

This module provides a frame layout for the remote line module (RLM) frame. The RLM frame contains line drawers and the remote line controller (RLC). The module provides shelf diagrams for the following:

- RLC
- line drawer shelf
- line drawer layout

Note: The frame and shelf layouts on the following pages are standard. There can be differences in the shelves in your RLM.
Remote line module frame (double bay)

Legend:
FSP Frame supervisory panel
RLC Remote line controller
Remote line controller

<table>
<thead>
<tr>
<th>Cards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70</td>
<td>Power converter card</td>
</tr>
<tr>
<td>NT2X21</td>
<td>Terminal address I/F and tone card</td>
</tr>
<tr>
<td>NT0X50</td>
<td>Filler faceplate</td>
</tr>
<tr>
<td>NT2X23</td>
<td>Receiver multiplexer card</td>
</tr>
<tr>
<td>NT2X22</td>
<td>Connect memory and multiplexer card</td>
</tr>
<tr>
<td>NT3X48</td>
<td>T1 interface circuit card</td>
</tr>
<tr>
<td>NT3X48</td>
<td>T1 interface circuit card</td>
</tr>
<tr>
<td>NT3X47</td>
<td>RLM message controller card</td>
</tr>
<tr>
<td>NT2X26</td>
<td>Master processor card</td>
</tr>
<tr>
<td>NT3X49</td>
<td>RLM extension memory card</td>
</tr>
<tr>
<td>NT0X50</td>
<td>Filler faceplate</td>
</tr>
<tr>
<td>NT2X25</td>
<td>Signaling processor interface card</td>
</tr>
<tr>
<td>NT2X24</td>
<td>Signaling processor card</td>
</tr>
<tr>
<td>NT2X27</td>
<td>Ringing generator interface card</td>
</tr>
<tr>
<td>NT2X05</td>
<td>Ringing generator card</td>
</tr>
</tbody>
</table>

![RLM shelf layouts](image-url)
RLM shelf layouts (continued)

Line drawer shelf

![Line drawer shelf diagram]

- Cards
- Line drawer

Rear **Front**
Line drawer design (plastic)

Legend:
LC Line card
LDI Line drawer interface

Note: Card position 31 is optionally assignable to a +48V power converter card instead of a line circuit.
RLM shelf layouts (end)

Line drawer design (metal)

Legend:

- **LC** Line card

Note: Card position 32 is optionally assignable to a +48V power converter card instead of a line circuit.
Control complex cards
in a remote line controller

Application

Use this procedure to replace the following cards in a remote line controller (RLC).

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X21</td>
<td>AA</td>
<td>Terminal address interface and tone generator card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X22</td>
<td>AA, AB</td>
<td>Connection memory and transmit MUX card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X23</td>
<td>AA</td>
<td>Receive MUX card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X24</td>
<td>AB</td>
<td>Signaling processor card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X25</td>
<td>AB</td>
<td>Signaling processor interface card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X26</td>
<td>AB</td>
<td>Main processor card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AA</td>
<td>Ringing generator interface - 20Hz Bell system card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AB</td>
<td>Ringing generator interface decimonic multifrequency ringing card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AC</td>
<td>Ringing generator interface harmonic multifrequency ringing card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT2X27</td>
<td>AD</td>
<td>Ringing generator interface syndromonic 16KHz multifrequency ringing card</td>
<td>RLC</td>
</tr>
</tbody>
</table>
Control complex cards in a remote line controller (continued)

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X27</td>
<td>AE</td>
<td>Ringing generator interface SYNC multifrequency ringing card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT3X47</td>
<td>AA</td>
<td>RLM message controller card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT3X48</td>
<td>AA</td>
<td>T1 interface circuit card</td>
<td>RLC</td>
</tr>
<tr>
<td>NT3X49</td>
<td>AA</td>
<td>RLM extension memory card</td>
<td>RLC</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to the following common procedures:

- *Replacing a card*
- *Loading a PM*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Remote line module card replacement procedures

Control complex cards in a remote line controller (continued)

Summary of Replacing Control complex cards in a remote line controller

1. Post the RLM unit
2. Verify that the mate RLM unit is in service
3. Manually busy the RLM unit
4. Replace the card
5. Load the RLM unit
6. Return the RLM unit to service
7. End

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Control complex cards in a remote line controller (continued)

Replacing Control complex cards in a remote line controller

WARNING
Potential loss of service
This procedure includes directions to manually busy one or more RLCs. Since manually busying an RLC can cause service degradation, perform this procedure only if necessary to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.

At your current location
1 Obtain a replacement card. Make sure that the replacement card has the same PEC and PEC suffix as the card you remove.

At the MAP terminal
2 To access the PM level of the MAP display, type

`>MAPCI;MTC;PM`

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

3 To post the RLM unit, type

`>POST LM site frame_no unit_no`

and press the Enter key.

where

- **site**
 is the RLM location (alphanumeric)

- **frame_no**
 is the frame number (0 to 511)

- **unit_no**
 is the PM unit number (0 or 1)

Example of a MAP display:

<table>
<thead>
<tr>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LM HOST 00 0 ISTb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGen : 0 InSv 1 InSv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control complex cards in a remote line controller (continued)

Note: In commands and MAP displays, the acronym LM means the same as RLM.

4. Determine the state of the RLM unit.

<table>
<thead>
<tr>
<th>If the state of the RLM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv or ISTb</td>
<td>step 5</td>
</tr>
<tr>
<td>is SysB or CBsy</td>
<td>step 8</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 9</td>
</tr>
<tr>
<td>is Off1</td>
<td>step 15</td>
</tr>
</tbody>
</table>

5. To post the mate RLM unit, type

```
>POST LM site frame_no unit_no
```

and press the Enter key.

where

- **site**
 is the RLM location (alphanumeric)

- **frame_no**
 is the frame number (0 to 511)

- **unit_no**
 is the PM unit number (0 or 1)

6. Determine the state of the mate RLM unit and the ringing generators (RG) of the unit.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the state of the mate LM is InSv or ISTb and both RGs are InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>the mate LM and RG states are other than listed here</td>
<td>step 16</td>
</tr>
</tbody>
</table>

7. To post the RLM unit on which you want to replace a card, type

```
>POST LM site frame_no unit_no
```

and press the Enter key.

where

- **site**
 is the RLM location (alphanumeric)

- **frame_no**
 is the frame number (0 to 511)
Control complex cards
in a remote line controller (continued)

unit_no
is the PM unit number (0 or 1)

8 To manually busy the RLM unit, type
>BSY
and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>LM</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LM HOST 01 0 ManB
RGen : 0 Standby 1 InSv
bsy
OK.

At the shelf

9

WARNING
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

To replace a card, use the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

10 Determine the reason that you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 11</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11 Return to the maintenance procedure that sent you to this procedure and continue as directed.
At the MAP terminal

12 To load the RLM unit, type

>LOADPM

and press the Enter key.

Example of a MAP response:

LM HOST 01 0 LoadPM PASSED

13 To load the RLM unit, use the procedure Loading a PM in this document. Complete the procedure and return to this point.

14 To return the RLM unit to service, type

>RTS

and press the Enter key.

Example of a MAP response:

rts
OK.
InSvce Tests Initiated
OK.

Go to step 18.

15 Consult operating company personnel to determine why the component is offline. Continue as directed.

16 You cannot manually busy an RLM unit without losing calls in progress. Consult your next level of support to proceed. Continue as directed.

17 For additional help, contact the next level of support.

18 The procedure is complete.
Line cards
in an RLM line drawer

Application

Use this procedure to replace the following cards in the remote line module (RLM) line drawer.

If you cannot identify the product engineering code (PEC), PEC suffix, or shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X17</td>
<td>AA, AB, AC, AD, UK</td>
<td>Line circuit card type A</td>
<td>RLM line drawer</td>
</tr>
<tr>
<td></td>
<td>AA, AC, AD, AE, AF, AG</td>
<td>Line circuit card type B</td>
<td>RLM line drawer</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to Replacing a line card.

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of Replacing Line cards in a RLM line drawer

- Post the line associated with the card
- Manually busy the line circuit
- Replace the card
- Diagnose the line circuit
- Return the line to service
- End

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.
Replacing Line cards in an RLM line drawer

WARNING

Loss of service

This procedure includes directions to manually busy one or more lines. Removal of a line from service drops calls in progress. Perform this procedure only if necessary to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.

At your current location

1. Obtain a replacement card. Make sure that the replacement card has the same PEC and PEC suffix, as the card you remove.

At the MAP terminal

2. To access the LTP level of the MAP display, type

 `>MAPCI;MTC;LNS;LTP`

 and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th>POST</th>
<th>DELQ</th>
<th>BUSYQ</th>
<th>PREFIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCC</td>
<td>PTY</td>
<td>RNG</td>
<td>.......LEN.........</td>
</tr>
</tbody>
</table>

3. To post the line that associates with the card you remove, type

 `>POST L site frame_no unit_no drawer_no slot_no`

 and press the Enter key.

 where

 - **site**
 is the PM location (alphanumeric)
 - **frame_no**
 is the frame number (0 to 511)
 - **unit_no**
 is the PM unit number (0 or 1)
 - **drawer_no**
 is the logical drawer number (0 to 19)
 - **slot_no**
 is the card slot number (0 to 31)

 Example of a MAP display:
Remote line module card replacement procedures

Line cards

in an RLM line drawer (continued)

1. Determine the state of the posted line.

 - If the state of the line is CPB, CPD, step 5
 - If the state of the line is CUT, HAZ, IDL, LO, PLO, SB, step 6
 - If the state of the line is MB, step 7
 - If the state of the line is NEQ, step 12
 - If the state of the line is DEL, DMB, INB, LMB, step 13

2. Wait until the line state changes. Return to step 4.

3. To manually busy the line circuit, type

 >BSY

 and press the Enter key.

 Example of a MAP display:

 POST 30 DELQ BUSYQ PREFIX
 LCC PTY RNGLEN.......... DN STA F S LTA TE RESULT
 IBN HOST 01 0001 722 3211 MB

 Note: When the BSY command is successful, the line status reads MB.

 - If BSY command passed step 7
 - If BSY command failed step 13
Line cards
in an RLM line drawer (continued)

At the shelf

To replace the card, use the procedure Replacing a line card in this document. Complete the procedure and return to this point.

Note: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

If a maintenance procedure directed you to this procedure

If a maintenance procedure did not direct you to this procedure

Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

To perform a diagnostic test on the line, type

>DIAG

and press the Enter key.

Example of a MAP response:

```
COMRUS031BL ***+LINE100 DEC01 17:25:31 8800 PASS LN_DIAG
LEN HOST 01 00 00 02 DN 7223212
DIAGNOSTIC RESULT Card Diagnostic OK
ACTION REQUIRED None
CARD TYPE 2X17AB
```

If the DIAG command passed

If the DIAG command failed

<table>
<thead>
<tr>
<th>If the DIAG command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 11</td>
</tr>
<tr>
<td>failed</td>
<td>step 13</td>
</tr>
</tbody>
</table>
Remote line module card replacement procedures

11 To return the line to service, type

>RTS

and press the Enter key.

Example of a MAP display:

<table>
<thead>
<tr>
<th>POST</th>
<th>DELQ</th>
<th>BUSYQ</th>
<th>PREFIX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 14</td>
</tr>
<tr>
<td>failed</td>
<td>step 13</td>
</tr>
</tbody>
</table>

12 Consult operating company personnel to determine why the component is not equipped. Continue as directed by operating company personnel.

13 For additional help, contact the next level of support.

14 The procedure is complete.
NT2X05
in a remote line controller

Application
Use this procedure to replace an NT2X05 in a remote line controller (RLC).

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X05</td>
<td>AA</td>
<td>Line module converter</td>
<td>RLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+24V card</td>
<td></td>
</tr>
</tbody>
</table>

Note: This procedure refers to the NT2X05 as a ringing generator (RG).

Common procedures
This procedure refers to *Replacing a card*.

Do not go to the common procedure unless the step-action procedure directs you to go.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
NT2X05 in a remote line controller (continued)

Summary of Replacing an NT2X05 in a remote line controller

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

1. Post the RLM unit
2. Manually busy the RGI
3. Replace the card
4. Return the RGI to service
5. End
Replacing NT2X05 in a remote line controller

WARNING
Potential loss of service
This procedure includes directions to manually busy an RG in an RLC. When you manually busy an RG, you remove RG redundancy from the bay. Perform this procedure only if necessary to restore out-of-service components. Unless it is urgent, perform this procedure during periods of low traffic only.

At your current location
1 Obtain a replacement card. Make sure that the replacement card has the same PEC and PEC suffix, as the card you remove.

At the MAP terminal
2 To access the PM level of the MAP display, type
 >MAPCI;MTC;PM
 and press the Enter key.
 Example of a MAP display:

 PM SysB ManB OffL CBsy ISTb InSv
 3 0 0 0 0 0 71

3 To post the RLM unit, type
 >POST LM site frame_no unit_no
 and press the Enter key.
 where
 site
 is the RLM location (alphanumeric)
 frame_no
 is the frame number (0 to 511)
 unit_no
 is the PM unit number (0 or 1)
 Example of a MAP display:

 PM SysB ManB OffL CBsy ISTb InSv
 3 0 0 0 1 71
 LM 0 0 0 0 1 6

 LM HOST 00 0 InSv
 RGen : 0 InSv 1 InSv
NT2X05

in a remote line controller (continued)

Note: In commands and MAP displays, the system uses the acronym LM instead of RLM.

4 Determine the state of the ringing generators.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>either RG is Standby</td>
<td>step 13</td>
</tr>
<tr>
<td>the RG you want to replace is InSv and the mate RG is InSv or ISTb</td>
<td>step 5</td>
</tr>
<tr>
<td>the RG you want to replace is InSv and the mate RG is ManB or SysB</td>
<td>step 13</td>
</tr>
<tr>
<td>the RG you want to replace is ManB</td>
<td>step 7</td>
</tr>
<tr>
<td>the RG you want to replace is SysB</td>
<td>step 5</td>
</tr>
</tbody>
</table>

5 To manually busy the RG, type

>BSY RGI rgi_no

and press the Enter key.

where

rgi_no

is the number (0 or 1) of the ringing generator interface (RGI)

Example of a MAP response:

WARNING: CALLS IN RINGING STATE USING THIS RGI WILL BE LOST DO YOU WANT TO CONTINUE ?
Please confirm ("YES", "Y", "NO", or "N"):

6 To confirm the command, type

>YES

and press the Enter key.

Example of a MAP response:

OK
NT2X05
in a remote line controller (continued)

At the shelf

7

WARNING
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

Pull and set the handle of the RG POWER switch down to the OFF position.

8
To replace a card, use the procedure Replacing a card in this document. Complete the procedure and return to this point.

Note 1: Make sure that the handle of the POWER switch on the replacement power converter is also in the OFF position.

Note 2: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

9
Power up the RG, as follows:

a Pull and set the handle of the POWER switch up to the ON position.

b Press and hold the RESET button on the ringing generator.

c Set the handle of the converter circuit breaker on the FSP or MSP up until the handle clicks into place.

d Release the RESET button.

10 Determine the reason you perform this procedure.

<table>
<thead>
<tr>
<th>If a maintenance procedure</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed you to this procedure</td>
<td>step 11</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11 Return to the maintenance procedure that sent you to this procedure and continue as directed.

At the MAP terminal

12 To return the RGI to service, type

>RTS RGI rgi_no

and press the Enter key.

where
rgi_no
is the number (0 or 1) of the RGI

Example of a MAP response:

OK.

Go to step 15.

13 When you manually busy the RG in use, you must disable all RGs in the RLM bay. Consult operating company personnel or the next level of support to determine how to proceed. Continue as directed.

14 For additional help, contact the next level of support.

15 The procedure is complete.
Application

Use this procedure to replace the following cards in a remote line controller (RLC).

If you cannot identify the product engineering code (PEC), PEC suffix, shelf or frame for the card to replace, refer to the Index. The Index provides a list of the cards, shelves, and frames documented in this card replacement book.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
<th>Shelf or frame name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT2X70</td>
<td>AA, AB, AC, AD, BA, DA, EA</td>
<td>Power converter card</td>
<td>RLC</td>
</tr>
</tbody>
</table>

Common procedures

This procedure refers to the following common procedures:

- *Replacing a card*
- *Loading a PM*

Do not go to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform this procedure.
Summary of Replacing an NT2X70 in a remote line controller

1. Post the RLM unit
2. Verify the state of the mate RLM unit
3. Manually busy the RLM unit
4. Power down the shelf
5. Replace the card
6. Power up the shelf
7. Load the RLM unit
8. Return the RLM unit to service

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Replacing an NT2X70 in a remote line controller

WARNING

Potential loss of service

This procedure includes directions to manually busy one or more RLCs. Since manually busying an RLC can cause service degradation, perform this procedure only if necessary to restore out of service components. Unless it is urgent, perform this procedure during periods of low traffic only.

At your current location

1. Obtain a replacement card. Make sure that the replacement card has the same PEC and PEC suffix, as the card you remove.

At the MAP terminal

2. To access the PM level of the MAP display, type

   ```
   >MAPCI;MTC;PM
   ```

 and press the Enter key.

 Example of a MAP display:

   ```
   PM                  3       0       0       0       1      71
   ```

3. To post the RLM unit, type

   ```
   >POST LM site frame_no unit_no
   ```

 and press the Enter key.

 where

 - **site** is the RLM location (alphanumeric)
 - **frame_no** is the frame number (0 to 511)
 - **unit_no** is the PM unit number (0 or 1)

 Example of a MAP display:

   ```
   PM                  3       0       0       0       1      71
   LM                  0       0       0       0       1       1
   LM  HOST 00 0 ISTb
   RGen : 0 InSv        1 InSv
   ```
NT2X70

in a remote line controller (continued)

Note: In commands and MAP displays, the system uses the acronym LM instead of RLM.

4 Determine the state of the RLM unit.

<table>
<thead>
<tr>
<th>If the state of the RLM unit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is InSv or ISTb</td>
<td>step 5</td>
</tr>
<tr>
<td>is SysB or CBsy</td>
<td>step 8</td>
</tr>
<tr>
<td>is ManB</td>
<td>step 9</td>
</tr>
<tr>
<td>is Offl</td>
<td>step 18</td>
</tr>
</tbody>
</table>

5 To post the mate RLM unit, type

```
>POST LM site frame_no unit_no
```

and press the Enter key.

where

- **site** is the RLM location (alphanumeric)
- **frame_no** is the frame number (0 to 511)
- **unit_no** is the PM unit number (0 or 1)

6 Determine the state of the mate RLM unit and the ringing generators (RG) of the unit.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the state of the mate LM is InSv or ISTb</td>
<td>step 7</td>
</tr>
<tr>
<td>or CBsy and both RGs are InSv</td>
<td></td>
</tr>
<tr>
<td>the mate LM and RG states are other than listed here</td>
<td>step 19</td>
</tr>
</tbody>
</table>

7 To post the RLM unit on which you want to replace a card, type

```
>POST LM site frame_no unit_no
```

and press the Enter key.

where

- **site** is the RLM location (alphanumeric)
- **frame_no** is the frame number (0 to 511)
Remote line module card replacement procedures

NT2X70
in a remote line controller (continued)

- **unit_no**
 - is the PM unit number (0 or 1)

8 To manually busy the RLM unit, type

> BSY

 and press the Enter key.

 Example of a MAP display:

<table>
<thead>
<tr>
<th></th>
<th>SysB</th>
<th>ManB</th>
<th>OffL</th>
<th>CBsy</th>
<th>ISTb</th>
<th>InSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>LM</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LM HOST 01 0 ManB
RGen : 0 Standby 1 InSv
bsy
OK.

At the shelf

9

WARNING

Static electricity damage

Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP) or a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects cards against static electricity damage.

Pull and set the handle of the power converter POWER switch down to the OFF position.

10 To replace the card, use the procedure *Replacing a card* in this document. Complete the procedure and return to this point.

 Note 1: Make sure that the handle of the POWER switch on the replacement power converter is also in the OFF position.

 Note 2: If the card you replace has switches, make sure that the switches on the replacement card have the same settings.

11 The next action depends on the power converter version and the type of supervisory panel.

12 Power up the converter.

 a Pull and set the handle of the POWER switch up to the ON position.

 b Press and hold the RESET button on the power converter.

 c Set the handle of the converter circuit breaker on the FSP or MSP up until the handle clicks into place.

 d Release the RESET button.
Remote line module card replacement procedures 11-33

NT2X70
in a remote line controller (end)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>The next action depends on the reason you perform this procedure.</td>
</tr>
<tr>
<td>14</td>
<td>Return to the maintenance procedure that sent you to this procedure and continue as directed.</td>
</tr>
<tr>
<td>If a maintenance procedure</td>
<td>Do</td>
</tr>
<tr>
<td>directed you to this procedure</td>
<td>step 14</td>
</tr>
<tr>
<td>did not direct you to this procedure</td>
<td>step 15</td>
</tr>
<tr>
<td>15</td>
<td>To load the RLM unit, type <code>>LOADPM</code> and press the Enter key.</td>
</tr>
<tr>
<td></td>
<td>Example of a MAP response:</td>
</tr>
<tr>
<td></td>
<td>LM HOST 01 0 LoadPM PASSED</td>
</tr>
<tr>
<td>16</td>
<td>Use the procedure <code>Loading a PM</code> in this document to load the RLM unit. Complete the procedure and return to this point.</td>
</tr>
<tr>
<td>17</td>
<td>To return the RLM unit to service, type <code>>RTS</code> and press the Enter key.</td>
</tr>
<tr>
<td></td>
<td>Example of a MAP response:</td>
</tr>
<tr>
<td></td>
<td>rts OK. InSvce Tests Initiated OK.</td>
</tr>
<tr>
<td></td>
<td>Go to step 21.</td>
</tr>
<tr>
<td>18</td>
<td>Consult operating company personnel to determine why the component is offline. Continue as directed.</td>
</tr>
<tr>
<td>19</td>
<td>When you manually busy the RLC, the system drops calls in progress. Consult the next level of support to determine how to proceed. Continue as directed.</td>
</tr>
<tr>
<td>20</td>
<td>For additional help, contact the next level of support.</td>
</tr>
<tr>
<td>21</td>
<td>The procedure is complete.</td>
</tr>
</tbody>
</table>
Index

C

Card
 replacing Vol. 3, 9-166

Card replacement common procedures
 Activity switch with memory match Vol. 3, 9-2
 Activating CCS7 links Vol. 3, 9-2
 card removal and placement Vol. 3, 9-19
 Card replacement procedures Vol. 3, 9-19
 Correcting a load mismatch Vol. 3, 9-32
 Deactivating CCS7 links Vol. 3, 9-47
 Failure to switch clock mastership Vol. 3, 9-55
 Loading a PM Vol. 3, 9-64
 Manually busying LIM-to-MS DS30 links Vol. 2, 6-26, Vol. 3, 9-76
 Manually busying Series II PM C-side links Vol. 3, 9-82, Vol. 3, 9-95
 Manually busying SMA C-side links Vol. 3, 9-89
 Moving an XSG to a spare XLIU Vol. 3, 9-137
 placing MP in service (integrated) Vol. 3, 9-57
 placing MP in service (standalone) Vol. 3, 9-145
 removing MP from service (integrated) Vol. 3, 9-62
 removing MP from service (standalone) Vol. 3, 9-150
 Replacing a card Vol. 3, 9-160
 Replacing a line card Vol. 3, 9-172
 Reseating cards in equipment shelves Vol. 3, 9-179
 Returning LIM-to-MS DS30 links to service Vol. 2, 6-33, Vol. 3, 9-188
 Switching the clock source Vol. 3, 9-193
 TMS shelf layouts Vol. 3, 4-2
 Unseating cards in equipment shelves Vol. 3, 9-200
 Verifying load compatibility of SuperNode cards Vol. 3, 9-204

Card replacement procedures
 NT2X70 Vol. 4, 1-490, Vol. 4, 1-498
 NT6X17 Vol. 4, 1-739
 NT6X18 Vol. 4, 1-783
 NT6X19 Vol. 4, 1-823
 NT6X20 Vol. 4, 1-863
 NT6X21 Vol. 4, 1-920
 NT6X41 Vol. 5, 1-64, Vol. 5, 1-71
 NT6X44 Vol. 5, 1-138
 NT6X50 Vol. 5, 1-259, Vol. 5, 1-275
 NT6X53 Vol. 5, 1-487
 NT6X54 Vol. 5, 1-556
 NT6X71 Vol. 5, 1-721
 NT6X76 Vol. 5, 1-869
 NT6X78 Vol. 5, 1-919, Vol. 5, 1-925
 NT6X80 Vol. 5, 1-951, Vol. 5, 1-957
 NT6X92 Vol. 6, 1-112, Vol. 6, 1-118
 NT6X99 Vol. 6, 1-186
 NTAX74 Vol. 6, 1-303, Vol. 6, 1-315
 NTAX78 Vol. 6, 1-337, Vol. 6, 1-347
 NTBX01 Vol. 6, 1-417, Vol. 6, 1-423
 Vol. 6, 1-430

DMS-100 Family NA100 Card Replacement Procedures Volume 2 of 7 LET0015 and up
NTBX02 Vol. 6, 1-508, Vol. 6, 1-515,
Vol. 6, 1-523
NTBX27 Vol. 6, 1-586
NTMX71 Vol. 6, 1-916, Vol. 6, 1-924
NTMX72 Vol. 6, 1-1002
NTMX73 Vol. 7, 1-54
NTMX75 Vol. 7, 1-162
NTMX76 Vol. 7, 1-214
NTMX79 Vol. 7, 1-390
NTRX41 Vol. 7, 1-655
in CDSN (cabinetized dual shelf network) Vol. 1, 8-197
in CDTO (cabinetized digital trunk controller offshore) Vol. 1, 8-197
in CIOE (cabinetized input/output equipment) Vol. 1, 8-197
in CIPE (cabinetized international peripheral equipment) Vol. 1, 8-197
in CLGO (cabinetized line group controller offshore) Vol. 1, 8-197
in CMIS (cabinetized miscellaneous equipment) Vol. 1, 8-197
in CMS7 (cabinetized message switch 7) Vol. 1, 8-197
in CTME (cabinetized trunk module equipment) Vol. 1, 8-197
NTRX42 Vol. 7, 1-766
NTRX43 Vol. 7, 1-816
NTRX54 Vol. 7, 1-889
NTTR46 Vol. 7, 1-902
NTTR47 Vol. 7, 1-908
NTTR60 Vol. 7, 1-914
NTTR66 Vol. 7, 1-921
NTTR67 Vol. 7, 1-927
NTTR70 Vol. 7, 1-934
NTTR71 Vol. 7, 1-941
NTTR72 Vol. 7, 1-946
NTTR73 Vol. 7, 1-952
NTTR74 Vol. 7, 1-956
NTTR75 Vol. 7, 1-962
NTTR76 Vol. 7, 1-970
NTTR77 Vol. 7, 1-979
NTTR87 Vol. 7, 1-986
card replacement procedures
EDRAM Vol. 3, 6-84
NT0X10 Vol. 4, 1-2, Vol. 4, 1-6, Vol. 4, 1-14,
Vol. 4, 1-37, Vol. 4, 1-43
in an RMM Vol. 4, 1-10
in MTM, STM Vol. 3, 6-93
in OAU Vol. 2, 10-7
NT0X36
in an international cabinet auxiliary module Vol. 1, 8-74
in CIOE with DDU, DPP, IOC, MTD, or ROS Vol. 1, 8-8
in IOE frame Vol. 1, 8-53
NT0X67
in IOC Vol. 1, 9-97
NT0X70
in MTM, TM Vol. 3, 6-27
in OAU Vol. 2, 10-7
NT0X91 Vol. 4, 1-61
in CPCE provisioned for DTC, DTCI, IDTC, PDTC Vol. 1, 8-98
in CPCE provisioned for ILGC, LGC, LGCI, PLGC Vol. 1, 8-98
in CPCE provisioned for ILTC, LTC, LTCI, PLTC Vol. 1, 8-98
in CTME with ISM, MTM, OAU, STM, or TM Vol. 1, 8-29
in DCE Vol. 1, 8-112
in LME Vol. 1, 8-123
in MS6E Vol. 1, 8-133
in MS7E Vol. 1, 8-147
in NT0X48 single-bay network Vol. 1, 8-159
in NT5X13 combined single-bay network Vol. 1, 8-159
in NT8X11 dual shelf network Vol. 1, 8-159
in ST6E, ST7E Vol. 1, 8-147
in TME with ISM, MTM, OAU, STM, and TM Vol. 1, 8-172
NT0X91AA Vol. 4, 1-49, Vol. 4, 1-90
NT0X91AE Vol. 4, 1-49, Vol. 4, 1-96,
Vol. 4, 1-105
NT1X00
in ISM, MTM, STM Vol. 3, 6-93
NT1X31
in MTM, STM Vol. 3, 6-93
NT1X54
in ISM, TM Vol. 3, 6-93
NT1X55
in IOC Vol. 1, 9-10
NT1X62
in IOC Vol. 1, 9-97
NT1X67
in IOC Vol. 1, 9-21
NT1X68
in IOC Vol. 1, 9-10
NT1X75
in MTM with DRAM, STM with DRAM Vol. 3, 6-27
NT1X76
in DRAM Vol. 3, 6-93
in MTM, STM Vol. 3, 6-93
NT1X76 in MTM Vol. 2, 5-2
NT1X77
in DRAM Vol. 3, 6-93
in MTM, STM Vol. 3, 6-93
NT1X78
in dual DDU shelf Vol. 1, 9-28
in single DDU shelf Vol. 1, 9-28
in SuperNode ROS Vol. 3, 1-5
in SuperNode SE ROS Vol. 3, 1-5
NT1X79
in DRAM Vol. 3, 6-93
in MTM, STM Vol. 3, 6-93
NT1X80
in ISM, MTM, STM Vol. 3, 6-84
NT1X81
in ISM, MTM, STM Vol. 3, 6-84
NT1X89
in IOC Vol. 1, 9-37
NT1X90
in ISM, MTM, STM Vol. 3, 6-93
NT2X01
in ISM, MTM, STM Vol. 3, 6-93
NT2X02
in LM line drawer Vol. 2, 2-16
NT2X03
in LM line drawer Vol. 2, 2-16
NT2X05
in LM controller Vol. 2, 2-30
in remote line controller Vol. 2, 11-22
in RLM Vol. 2, 11-22
NT2X06 Vol. 4, 1-114, Vol. 4, 1-121,
in DCM, DES Vol. 1, 4-47
in MTM, TM Vol. 3, 6-69
in NT0X48 single-bay network Vol. 2, 9-40
in OAU Vol. 2, 10-14
NT2X07
in DCM, DES Vol. 1, 4-47
in NT0X48 single-bay network Vol. 2, 9-40
NT2X09 Vol. 4, 1-171, Vol. 4, 1-178,
Vol. 4, 1-211, Vol. 4, 1-220
in DRAM Vol. 3, 6-69
in EDRAM Vol. 3, 6-69
in MTM, TM Vol. 3, 6-69
in OAU Vol. 2, 10-14
NT2X10 Vol. 4, 1-229, Vol. 4, 1-233,
Vol. 4, 1-237, Vol. 4, 1-244, Vol. 4, 1-251,
Vol. 4, 1-258
in ISM, MTM, STM Vol. 3, 6-93
NT2X11 Vol. 4, 1-265, Vol. 4, 1-270,
Vol. 4, 1-278, Vol. 4, 1-282, Vol. 4, 1-289,
Vol. 4, 1-298, Vol. 4, 1-307
in an RMM Vol. 4, 1-274
in ISM, MTM, STM Vol. 3, 6-93
NT2X16
in LM line drawer Vol. 2, 2-16
NT2X20
NT2X21
in LM controller Vol. 2, 2-9
in remote line controller Vol. 2, 11-9
in RLM Vol. 2, 11-9
NT2X22
in LM controller Vol. 2, 2-9
in remote line controller Vol. 2, 11-9
in RLM Vol. 2, 11-9
NT2X23
in LM controller Vol. 2, 2-9
in remote line controller Vol. 2, 11-9
in RLM Vol. 2, 11-9
NT2X24
in LM controller Vol. 2, 2-9
in remote line controller Vol. 2, 11-9
in RLM Vol. 2, 11-9
NT2X25
in LM controller Vol. 2, 2-9
in remote line controller Vol. 2, 11-9
in RLM Vol. 2, 11-9
NT2X26
in LM controller Vol. 2, 2-9
in remote line controller Vol. 2, 11-9
in RLM Vol. 2, 11-9
NT2X27
in LM controller Vol. 2, 2-9
in remote line controller Vol. 2, 11-9
in RLM Vol. 2, 11-9
NT2X32
in DCM, DES Vol. 1, 4-8
NT2X33
in DCM, DES Vol. 1, 4-8
in LM controller Vol. 2, 2-9
NT2X34
in DCM, DES Vol. 1, 4-8
in LM controller Vol. 2, 2-9
NT2X35
in DCM Vol. 1, 4-13
NT2X36
in DCM Vol. 1, 4-27
in LM controller Vol. 2, 2-9
NT2X37
in DCM, DES Vol. 1, 4-8
NT2X38
in DCM, DES Vol. 1, 4-8
NT2X41
in OAU Vol. 2, 10-7
NT2X42
in OAU Vol. 2, 10-7
NT2X43
in ISM, MTM, STM Vol. 3, 6-93
in OAU Vol. 2, 10-7
NT2X45
in MTM, TM Vol. 3, 6-27
in OAU Vol. 2, 10-7
NT2X47
in ISM, MTM, STM Vol. 3, 6-93
NT2X48
in ISM, MTM, STM Vol. 3, 6-93
Vol. 4, 1-316, Vol. 4, 1-321,
Vol. 4, 1-326
in ISM, MTM, STM Vol. 3, 6-93
NT2X50
in MTM, STM Vol. 3, 6-93
NT2X53
in MTM, TM Vol. 3, 6-27
in OAU Vol. 2, 10-7
NT2X55
in ISM, MTM, STM Vol. 3, 6-93
NT2X56
in ISM, MTM, STM Vol. 3, 6-93
NT2X57
in ISM, MTM, STM Vol. 3, 6-93
NT2X59
Vol. 4, 1-383, Vol. 4, 1-387,
Vol. 4, 1-401, Vol. 4, 1-406, Vol. 4, 1-413,
Vol. 4, 1-420, Vol. 4, 1-427
in an RMM Vol. 4, 1-394
in MTM, TM Vol. 3, 6-27
in OAU Vol. 2, 10-7
NT2X65
in ISM, MTM, STM, TM Vol. 3, 6-93
NT2X66
in ISM, MTM, STM, TM Vol. 3, 6-93
NT2X70
Vol. 4, 1-434, Vol. 4, 1-441,
Vol. 4, 1-517, Vol. 4, 1-526
in 6STA or MSB6 Vol. 2, 8-20
in an HIE Vol. 4, 1-455
in DCM, DES Vol. 1, 4-47
in DRAM Vol. 3, 6-69
in DTC, DTCI, IDTC, PDTC Vol. 3, 8-42
in EDRAM Vol. 3, 6-69
in ILGC, LGC, LGCI, PLGC Vol. 3, 8-42
in ILTC, LTC, LTCI, PLTC Vol. 3, 8-42
in IOC Vol. 1, 9-44
in LM controller Vol. 2, 2-36
in NT5X13 combined single-bay network
Vol. 2, 9-40
in NT8X11 dual shelf network Vol. 2, 9-40
in remote line module Vol. 2, 11-28
in RLM Vol. 2, 11-28
in ST7G of MSB7 Vol. 2, 8-35
in STA7 or MSB7 Vol. 2, 8-20
in STCM of MSB6 Vol. 2, 8-35
in STM Vol. 3, 6-69
NT2X70 in TMS Vol. 3, 4-8
NT2X70 in TPC Vol. 3, 5-2
NT2X71
in ISM, MTM, STM Vol. 3, 6-93
NT2X72
in ISM, TM Vol. 3, 6-93
NT2X75
in ISM, MTM, STM Vol. 3, 6-93
NT2X77
in ISM, MTM, STM Vol. 3, 6-93
NT2X78
in TM Vol. 3, 6-93
NT2X80
in MTM, STM Vol. 3, 6-93
NT2X81
in TM Vol. 3, 6-93
NT3X75
 in NT5X13 combined single-bay network
 Vol. 2, 9-72
 in NT8X11 dual-shelf network Vol. 2, 9-72

NT3X76
 in NT5X13 combined single-bay network
 Vol. 2, 9-72
 in NT8X11 dual-shelf network Vol. 2, 9-72

NT3X82 Vol. 4, 1-653
 in OAU Vol. 2, 10-7

NT3X83 Vol. 4, 1-660
 in OAU Vol. 2, 10-7

NT3X84
 in OAU Vol. 2, 10-7

NT3X85
 in OAU Vol. 2, 10-7

NT3X86
 in NT5X13 combined single-bay network
 Vol. 2, 9-72

NT3X91
 in ISM, TM Vol. 3, 6-93

NT4X23
 in ISM, MTM, STM Vol. 3, 6-93

NT4X65
 in MTM, STM, TM Vol. 3, 6-27
 in OAU Vol. 2, 10-7

NT4X97 Vol. 4, 1-668, Vol. 4, 1-673,
 Vol. 4, 1-680
 in ISM, MTM, STM Vol. 3, 6-44

NT4X98 Vol. 4, 1-687, Vol. 4, 1-694
 in ISM, MTM, STM Vol. 3, 6-44

NT5X03
 in ISM, TM Vol. 3, 6-93

NT5X04
 in ISM, TM Vol. 3, 6-93

NT5X06
 in TM Vol. 3, 6-93

NT5X25
 in ISM, TM Vol. 3, 6-93

NT5X29
 in ISM, MTM, STM Vol. 3, 6-93

NT5X30
 in ISM, MTM, STM, TM Vol. 3, 6-93

NT6X1205
 in DTC, IDTC, PDTC Vol. 3, 8-19
 in ILGC, LGC, PLGC Vol. 3, 8-19
 in ILTC, LTC, PLTC Vol. 3, 8-19

NT6X17 Vol. 4, 1-703, Vol. 4, 1-707,
 Vol. 4, 1-731
 in ILCM, LCM, LCME Vol. 2, 1-39

NT6X18 Vol. 4, 1-743, Vol. 4, 1-747,
 Vol. 4, 1-767, Vol. 4, 1-775
 in LCM, LCME Vol. 2, 1-39

NT6X19 Vol. 4, 1-787, Vol. 4, 1-791,
 Vol. 4, 1-815
 in LCM, LCME Vol. 2, 1-39

NT6X20 Vol. 4, 1-827, Vol. 4, 1-831,
 Vol. 4, 1-855
 in LCM Vol. 2, 1-73

NT6X21 Vol. 4, 1-867, Vol. 4, 1-871,
 Vol. 4, 1-902, Vol. 4, 1-911
 in an LCM Vol. 4, 1-879
 in LCM, LCME Vol. 2, 1-39

NT6X23
 in LCM Vol. 2, 1-73

NT6X27 Vol. 4, 1-924, Vol. 4, 1-931,
 Vol. 4, 1-938
 in IDTC, ILGC, ILTC Vol. 3, 8-124
 in PDTC, PLGC, PLTC Vol. 3, 8-124

NT6X28
 in IDTC, ILGC, ILTC Vol. 3, 8-31
 in IPDTC, PLGC, LTCO, PLTC Vol. 3, 8-31

NT6X30 Vol. 4, 1-945, Vol. 4, 1-960,
 in LCE, LCEI Vol. 2, 1-47

NT6X33
 in ILCM, LCM, LCME Vol. 2, 1-39

NT6X36 Vol. 4, 1-1021, Vol. 4, 1-1031,
 Vol. 4, 1-1036
 in an FSP Vol. 4, 1-1016, Vol. 4, 1-1026
 in LCE frame Vol. 1, 8-192
 in LCEI frame Vol. 1, 8-192

NT6X40 Vol. 5, 1-38, Vol. 5, 1-51
 in 6STA of MSB6 Vol. 2, 8-48
 in DTC, DTCI, IDTC, DTCO, PDTC Vol. 3, 8-59
 in ILGC, LGC, LGCI, LGCO,PLGC Vol. 3, 8-59

297-8021-547 Standard 14.02 May 2001
Index A-7

DMS-100 Family NA100 Card Replacement Procedures Volume 2 of 7 LET0015 and up

in ILTC, LTC, LTCI, LTCO, PLTC Vol. 3, 8-59
in STA7 of MSB7 Vol. 2, 8-48

NT6X41 Vol. 5, 1-78, Vol. 5, 1-87, Vol. 5, 1-95
in DTC, DTCI, IDTC, DTCO, PDTC Vol. 3, 8-31
in ILGC, LGC, LGCI, LGCO, PLGC Vol. 3, 8-31
in ILTC, LTC, LTCI, LTCO, PLTC Vol. 3, 8-31

NT6X42 Vol. 5, 1-114, Vol. 5, 1-122
in DTC, DTCI, IDTC, DTCO, PDTC Vol. 3, 8-31
in ILGC, LGC, LGCI, LGCO, PLGC Vol. 3, 8-31
in ILTC, LTC, LTCI, LTCO, PLTC Vol. 3, 8-31

in DTC, LGC, LTC Vol. 3, 8-31

in DTC, DTCI, IDTC, DTCO, PDTC Vol. 3, 8-31
in ILGC, LGC, LGCI, LGCO, PLGC Vol. 3, 8-31
in ILTC, LTC, LTCl, LTCO, PLTC Vol. 3, 8-31

NT6X46 Vol. 3, 8-62
in DTC, IDTC, DTCO, PDTC Vol. 3, 8-81
in ILTC, LTC, LTCI, LTCO, PLTC Vol. 3, 8-31

NT6X47 Vol. 3, 8-72, Vol. 3, 8-82, Vol. 5, 1-208
in DTC, DTCI, IDTC, DTCO, DTCOI Vol. 3, 8-124
in ILGC, LGC, LGCI, LGCO, PLGC Vol. 3, 8-124
in ILTC, LTC, LTCI, LTCO, PLTC Vol. 3, 8-124

NT6X50 Vol. 5, 1-202
in 6STA of MSB6 Vol. 2, 8-62
in STA7 of MSB7 Vol. 2, 8-62

in 6STA of MSB6 Vol. 2, 8-62
in STA7 of MSB7 Vol. 2, 8-62

NT6X49 Vol. 5, 1-208
in DTC, DTCI, IDTC, DTCO, PDTC Vol. 3, 8-31
in ILGC, LGC, LGCI, LGCO, PLGC Vol. 3, 8-31
in ILTC, LTC, LTCI, LTCO, PLTC Vol. 3, 8-31

NT6X50 Vol. 5, 1-216, Vol. 5, 1-223,
in an HIE Vol. 5, 1-230
in DTC, DTCI, IDTC, DTCO, DTCOI Vol. 3, 8-124
in ILGC, LGC, LGCI, LGCO Vol. 3, 8-124
in ILTC, LTC, LTCI, LTCO Vol. 3, 8-124

in an LCM Vol. 5, 1-319
in LCM, LCM Vol. 2, 1-31

NT6X52 Vol. 5, 1-355, Vol. 5, 1-361,
in an LCM Vol. 5, 1-379
in LCM, LCM Vol. 2, 1-31

NT6X53 Vol. 5, 1-418, Vol. 5, 1-425,
in an LCM Vol. 5, 1-453
in LCM, LCM Vol. 2, 1-79

NT6X54 Vol. 5, 1-493, Vol. 5, 1-500,
Vol. 5, 1-542, Vol. 5, 1-549
in an LCM Vol. 5, 1-527
in LCM, LCM Vol. 2, 1-13

NT6X55 Vol. 5, 1-684, Vol. 5, 1-688,
Vol. 5, 1-713
in LCM, LCME Vol. 2, 1-79

NT6X56 Vol. 5, 1-713
in DTC, IDTC, DTCO, PDTC Vol. 3, 8-31
in ILTC, LTC, LTCI, LTCO, PLTC Vol. 3, 8-31

NT6X57 Vol. 5, 1-565, Vol. 5, 1-572,

NT6X58 Vol. 3, 8-31
in DTC, IDTC, DTCO, PDTC Vol. 3, 8-31
in ILGC, LGC, PLGC Vol. 3, 8-31

NT6X59 Vol. 3, 4-19

NT6X60 Vol. 3, 8-70

NT6X61 Vol. 2, 8-70

NT6X62 Vol. 3, 8-70

NT6X63 Vol. 2, 8-70

NT6X64 Vol. 2, 8-55

NT6X65 Vol. 2, 8-55

NT6X66 Vol. 2, 8-55

NT6X67 Vol. 2, 8-55

NT6X68 Vol. 2, 8-55

NT6X69 Vol. 2, 8-62

NT6X70 Vol. 2, 8-62
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>in LCM, LCME</td>
<td>Vol. 2, 1-39</td>
</tr>
<tr>
<td>NT6X72</td>
<td>Vol. 5, 1-725</td>
</tr>
<tr>
<td>in an HIE</td>
<td>Vol. 5, 1-746</td>
</tr>
<tr>
<td>in an RMM</td>
<td>Vol. 5, 1-768</td>
</tr>
<tr>
<td>NT6X76</td>
<td>Vol. 5, 1-845, Vol. 5, 1-853</td>
</tr>
<tr>
<td>in LCM, LCME</td>
<td>Vol. 2, 1-39</td>
</tr>
<tr>
<td>in ILGC</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in ILTC</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in LGC</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in LGCO</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in LGCOI</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in LTC</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in LTCO</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in LTCI</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in PLGC</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>in PLC</td>
<td>Vol. 3, 8-90</td>
</tr>
<tr>
<td>NT6X79</td>
<td>in DTC, DTCO, PDTC</td>
</tr>
<tr>
<td>in LGC, LGCI</td>
<td>Vol. 3, 8-31</td>
</tr>
<tr>
<td>in LTC, LTCI</td>
<td>Vol. 3, 8-31</td>
</tr>
<tr>
<td>NT6X85</td>
<td>Vol. 6, 1-2, Vol. 6, 1-13, Vol. 6, 1-24</td>
</tr>
<tr>
<td>NT6X86</td>
<td>Vol. 6, 1-30, Vol. 6, 1-39</td>
</tr>
<tr>
<td>NT6X87</td>
<td>Vol. 6, 1-48, Vol. 6, 1-56</td>
</tr>
<tr>
<td>in DTC, DTCI, IDTC, DTCO, PDTC</td>
<td>Vol. 3, 8-31</td>
</tr>
<tr>
<td>in ILGC, LGC, LGCI, LGCO, PLGC</td>
<td>Vol. 3, 8-31</td>
</tr>
<tr>
<td>in ILTC, LTC, LTCI, LGCO, PLTC</td>
<td>Vol. 3, 8-31</td>
</tr>
<tr>
<td>NT6X93</td>
<td>in ILCM, LCM</td>
</tr>
<tr>
<td>NT6X94</td>
<td>in ILCM</td>
</tr>
<tr>
<td>NT6X95</td>
<td>in LCME</td>
</tr>
<tr>
<td>NT6X98</td>
<td>in ILCM, LCM, LCME</td>
</tr>
<tr>
<td>in LCM, LCME</td>
<td>Vol. 2, 1-39</td>
</tr>
<tr>
<td>NT6Xseries in TMS</td>
<td>Vol. 3, 4-17</td>
</tr>
<tr>
<td>in LGC, LGCI, LTC, LTCI, DTC, DTCI</td>
<td>Vol. 3, 8-31</td>
</tr>
<tr>
<td>NT8X02</td>
<td>Vol. 6, 1-261, Vol. 6, 1-265</td>
</tr>
<tr>
<td>NT8X12</td>
<td>in NT8X11 dual-shelf network</td>
</tr>
<tr>
<td>NT8X13</td>
<td>in NT8X11 dual-shelf network</td>
</tr>
<tr>
<td>NT8X14</td>
<td>in NT8X11 dual-shelf network</td>
</tr>
<tr>
<td>NT8X18</td>
<td>Vol. 6, 1-270</td>
</tr>
<tr>
<td>NT8X99</td>
<td>in LCM</td>
</tr>
<tr>
<td>NT9X10</td>
<td>in SuperNode CM</td>
</tr>
<tr>
<td>in SuperNode SE CM/SLM</td>
<td>Vol. 1, 3-85</td>
</tr>
<tr>
<td>NT9X12</td>
<td>in SuperNode CM</td>
</tr>
<tr>
<td>in SuperNode SE CM/SLM</td>
<td>Vol. 1, 3-85</td>
</tr>
<tr>
<td>in SuperNode SLM</td>
<td>Vol. 3, 3-137</td>
</tr>
<tr>
<td>NT9X13</td>
<td>in an ELPP LIM unit</td>
</tr>
<tr>
<td>in ENET 128k</td>
<td>Vol. 2, 9-49</td>
</tr>
<tr>
<td>in ENET 64k</td>
<td>Vol. 2, 9-49</td>
</tr>
<tr>
<td>in file processor</td>
<td>Vol. 1, 7-43</td>
</tr>
<tr>
<td>in LIM unit of LPP</td>
<td>Vol. 2, 3-89</td>
</tr>
<tr>
<td>in SuperNode CM</td>
<td>Vol. 1, 2-22</td>
</tr>
<tr>
<td>in SuperNode MS</td>
<td>Vol. 2, 6-39</td>
</tr>
<tr>
<td>in SuperNode SE 16k ENET</td>
<td>Vol. 1, 6-77</td>
</tr>
<tr>
<td>in SuperNode SE CM/SLM</td>
<td>Vol. 1, 3-85</td>
</tr>
<tr>
<td>in SuperNode SE ENI shelf</td>
<td>Vol. 1, 6-77</td>
</tr>
<tr>
<td>in SuperNode SE MS</td>
<td>Vol. 2, 7-25</td>
</tr>
<tr>
<td>NT9X14</td>
<td>in APU in LPP LIS</td>
</tr>
<tr>
<td>in file processor</td>
<td>Vol. 1, 7-43</td>
</tr>
<tr>
<td>in LIM unit of LPP</td>
<td>Vol. 2, 3-155</td>
</tr>
<tr>
<td>in SuperNode CM</td>
<td>Vol. 1, 2-22</td>
</tr>
<tr>
<td>in SuperNode MS</td>
<td>Vol. 2, 6-39</td>
</tr>
<tr>
<td>in SuperNode SE CM/SLM</td>
<td>Vol. 1, 3-85</td>
</tr>
</tbody>
</table>
NT9X15
 in LIM unit of ELPP Vol. 1, 5-48
 in LIM unit of LPP Vol. 2, 3-155
 in SuperNode MS Vol. 2, 6-39
 in SuperNode SE MS Vol. 2, 7-25

NT9X17
 in LIM unit of ELPP Vol. 1, 5-48
 in LIM unit of LPP Vol. 2, 3-155
 in SuperNode MS Vol. 2, 6-39
 in SuperNode SE MS Vol. 2, 7-25

NT9X20
 in SuperNode MS Vol. 2, 6-5

NT9X21
 in file processor Vol. 1, 7-43
 in SuperNode CM Vol. 1, 2-22
 in SuperNode SE CM/SLM Vol. 1, 3-85
 in SuperNode SLM Vol. 3, 3-137

NT9X22
 in SuperNode CM Vol. 1, 2-22
 in SuperNode SLM Vol. 3, 3-137

NT9X23
 in LIM unit of LPP Vol. 2, 3-155
 in SuperNode MS Vol. 2, 6-5
 in SuperNode SE MS Vol. 2, 7-5

NT9X25
 in SuperNode MS Vol. 2, 6-39
 in SuperNode SE MS Vol. 2, 7-25

NT9X26
 in ENET 128k Vol. 2, 9-49
 in ENET 64k Vol. 2, 9-49
 in file processor Vol. 1, 7-43
 in LIM unit of ELPP Vol. 1, 5-48
 in LIM unit of LPP Vol. 2, 3-155
 in SuperNode CM Vol. 1, 2-22
 in SuperNode MS Vol. 2, 6-39
 in SuperNode SE 16k ENET Vol. 1, 6-77
 in SuperNode SE CM/SLM Vol. 1, 3-85
 in SuperNode SE ENI shelf Vol. 1, 6-77
 in SuperNode SE MS Vol. 2, 7-25

NT9X27
 in superNode CM Vol. 1, 2-22
 in SuperNode SLM Vol. 3, 3-137

NT9X30
 in ENET 128k Vol. 2, 9-49
 in ENET 64k Vol. 2, 9-49
 in LIM unit of ELPP Vol. 1, 5-48
 in LIM unit of LPP Vol. 2, 3-155
 in LPP LIS Vol. 2, 3-100
 in SSLPP Vol. 3, 2-74
 in SuperNode CM Vol. 1, 2-22
 in SuperNode MS Vol. 2, 6-39
 in SuperNode SE 16k ENET Vol. 1, 6-53
 in SuperNode SE ENI shelf Vol. 1, 6-53
 in SuperNode SE LIS Vol. 2, 4-64
 in SuperNode SE MS Vol. 2, 7-25
 in SuperNode SLM Vol. 3, 3-137

NT9X31
 in ENET 128k Vol. 2, 9-49
 in ENET 64k Vol. 2, 9-49
 in LIM unit of ELPP Vol. 1, 5-48
 in SSLPP Vol. 3, 2-74
 in SuperNode CM Vol. 1, 2-22
 in SuperNode MS Vol. 2, 6-39
 in SuperNode SE 16k ENET Vol. 1, 6-53
 in SuperNode SE ENI shelf Vol. 1, 6-53
 in SuperNode SE MS Vol. 2, 7-25

NT9X32
 in SuperNode MS Vol. 2, 6-39

NT9X35
 in ENET 128k Vol. 2, 9-15
 in ENET 64k Vol. 2, 9-15
 in LIM unit of ELPP Vol. 1, 5-48
 in SSLPP Vol. 3, 2-74
 in SuperNode CM Vol. 1, 2-22
 in SuperNode MS Vol. 2, 6-39
 in SuperNode SE 16k ENET Vol. 1, 6-7
 in SuperNode SE 32k ENET Vol. 1, 6-31
 in SuperNode SE ENI shelf Vol. 1, 6-7

NT9X36
 in ENET 128k Vol. 2, 9-49
 in ENET 64k Vol. 2, 9-49
 in SuperNode SE 16k ENET Vol. 1, 6-77
 in SuperNode SE ENI shelf Vol. 1, 6-77

NT9X40
 in ENET 128k Vol. 2, 9-15
 in ENET 64k Vol. 2, 9-15
 in SuperNode SE 16k ENET Vol. 1, 6-77
 in SuperNode SE 32k ENET Vol. 1, 6-31
 in SuperNode SE ENI shelf Vol. 1, 6-77

NT9X41
 in ENET 128k Vol. 2, 9-15
 in ENET 64k Vol. 2, 9-15
 in SuperNode SE 16k ENET Vol. 1, 6-7
 in SuperNode SE 32k ENET Vol. 1, 6-31
 in SuperNode SE ENI shelf Vol. 1, 6-7

NT9X44
 in SuperNode SE CM/SLM Vol. 1, 3-5
 in SuperNode SLM Vol. 3, 3-5

NT9X45
 in ENET 128k Vol. 2, 9-15
in ENET 64k Vol. 2, 9-15
in SuperNode SE 16k ENET Vol. 1, 6-7
in SuperNode SE 32k ENET Vol. 1, 6-31
in SuperNode SE ENI shelf Vol. 1, 6-7
NT9X46
in SuperNode SE CM/SLM Vol. 1, 3-27
in SuperNode SLM Vol. 3, 3-137
NT9X47
in SuperNode SLM Vol. 3, 3-137
NT9X49
in LIM unit of ELPP Vol. 1, 5-48
in LIM unit of LPP Vol. 2, 3-155
in SuperNode MS Vol. 2, 6-39
in SuperNode SE MS Vol. 2, 7-25
NT9X52
in LIM unit of ELPP Vol. 1, 5-48
in LIM unit of LPP Vol. 2, 3-155
in SuperNode MS Vol. 2, 6-39
in SuperNode SE MS Vol. 2, 7-25
NT9X54
in SuperNode MS Vol. 2, 6-5
in SuperNode SE MS Vol. 2, 7-5
NT9X62
in file processor Vol. 1, 7-43
in LIM unit of ELPP Vol. 1, 5-48
in SuperNode MS Vol. 2, 6-5
in SuperNode SE MS Vol. 1, 3-45
in SuperNode SE MS Vol. 2, 7-5
NT9X69
in SuperNode MS Vol. 2, 6-5
in SuperNode SE MS Vol. 2, 7-5
NT9X73
in LIM unit of ELPP Vol. 1, 5-48
in LIM unit of LPP Vol. 2, 3-155
in SuperNode SE MS Vol. 2, 7-25
NT9X74
in ELPP LIS Vol. 1, 5-9
in LPP LIS Vol. 2, 3-126
in SuperNode SE ENI shelf Vol. 2, 4-6
in SuperNode SE LIS Vol. 2, 4-6
NT9X76
in EIU in LPP LIS Vol. 2, 3-47
in EIU in SSLPP Vol. 3, 2-17
in EIU in SuperNode SE LIS Vol. 2, 4-13
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
NT9X77
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
NT9X78
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
NT9X79
in ELPP LIS Vol. 1, 5-9
in LIM unit of ELPP Vol. 1, 5-48
in LIM unit of LPP Vol. 2, 3-155
in LPP LIS Vol. 2, 3-36
in SuperNode SE ENI shelf Vol. 2, 4-6
in SuperNode SE LIS Vol. 2, 4-6
in SuperNode SE MS Vol. 2, 7-5
NT9X84
in EIU in LPP LIS Vol. 2, 3-47
NT9X85
in EIU in LPP LIS Vol. 2, 3-47
in EIU in SSLPP Vol. 3, 2-17
in EIU in SuperNode SE LIS Vol. 2, 4-13
NT9X86
in file processor Vol. 1, 7-43
in SuperNode SE CM/SLM Vol. 1, 3-85
NT9X87
in file processor Vol. 1, 7-43
NT9X88
in file processor Vol. 1, 7-43
NT9X89
in file processor Vol. 1, 7-6
NT9X90
in file processor Vol. 1, 7-18
NT9X91
in file processor Vol. 1, 7-33
in SuperNode SE CM/SLM Vol. 1, 3-67
NT9X96
in SSLPP Vol. 3, 2-7
NT9X98
in SSLPP Vol. 3, 2-7
NTAX74 Vol. 6, 1-281, Vol. 6, 1-292
in DTCI, PDTC Vol. 3, 8-147
Index

NTAX78 Vol. 6, 1-369
in DTCI Vol. 3, 8-31
NTBX01 Vol. 6, 1-381, Vol. 6, 1-390,
Vol. 6, 1-399, Vol. 6, 1-408, Vol. 6, 1-437
in DTCI, LGCI, LTCI Vol. 3, 8-147
in DTCO, LTCO, LGCO, PDTC, PLTC, PLGC Vol. 3, 8-147
NTBX01 in TMS Vol. 3, 4-30
NTBX02 Vol. 6, 1-443, Vol. 6, 1-456,
Vol. 6, 1-469, Vol. 6, 1-482, Vol. 6, 1-495
LGCI, PLGC Vol. 3, 8-115
LTCI, PLTC Vol. 3, 8-115
NTBX02 in TMS Vol. 3, 4-37
NTBX25
in LCME Vol. 2, 1-39
NTBX26 Vol. 6, 1-538, Vol. 6, 1-546,
Vol. 6, 1-554
in LCME Vol. 2, 1-39
NTBX27 Vol. 6, 1-562, Vol. 6, 1-570,
Vol. 6, 1-578
in LCME Vol. 2, 1-39
NTBX34 Vol. 6, 1-593, Vol. 6, 1-601,
Vol. 6, 1-611, Vol. 6, 1-621
in LCME Vol. 2, 1-31
NTBX35 Vol. 6, 1-630, Vol. 6, 1-638,
Vol. 6, 1-648, Vol. 6, 1-658
in LCME Vol. 2, 1-31
NTBX36 Vol. 6, 1-667, Vol. 6, 1-677,
Vol. 6, 1-687
in LCME Vol. 2, 1-13
NTBX71
in LCME Vol. 2, 1-62
NTBX72 Vol. 6, 1-697, Vol. 6, 1-706,
Vol. 6, 1-715, Vol. 6, 1-724
in LCME Vol. 2, 1-79
NTCX50
in PDTC Vol. 3, 8-19
NTDX15
in file processor Vol. 1, 7-43
in SuperNode SE CM/SLM Vol. 1, 3-67
NTDX16
in LPP LIS Vol. 2, 3-140
NTEX17 Vol. 6, 1-733, Vol. 6, 1-743,
Vol. 6, 1-753, Vol. 6, 1-763, Vol. 6, 1-773
in LCM Vol. 2, 1-39
NTEX20
in ELPP LIS Vol. 1, 5-9
in LPP LIS Vol. 2, 3-36
in SSLPP Vol. 3, 2-7
in SuperNode SE ENI shelf Vol. 2, 4-6
in SuperNode SE LIS Vol. 2, 4-6
NTEX22
in APU in LPP LIS Vol. 2, 3-9
in EIU in SSLPP Vol. 3, 2-17
in EIU in SuperNode SE LIS Vol. 2, 4-13
in FRIU in LPP LIS Vol. 2, 3-68
in FRIU in SSLPP Vol. 3, 2-29
in FRIU SuperNode SE LIS Vol. 2, 4-24
in HLIU in an ELPP LIS Vol. 1, 5-17
in HSLR in an ELPP LIS Vol. 1, 5-27
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
in NIU in LPP LIS Vol. 2, 3-82
in NIU in SSLPP Vol. 3, 2-57
in NIU in SuperNode SE LIS Vol. 2, 4-49
in VPU in LPP LIS Vol. 2, 3-168
in XLIU in LPP LIS Vol. 2, 3-177
in XLIU in SSLPP Vol. 3, 2-105
in XLIU in SuperNode SE LIS Vol. 2, 4-91
NTEX25
in APU in LPP LIS Vol. 2, 3-9
in EIU in SSLPP Vol. 3, 2-17
in EIU in SuperNode SE LIS Vol. 2, 4-49
in FRIU in LPP LIS Vol. 2, 3-68
in FRIU in SSLPP Vol. 3, 2-29
in FRIU SuperNode SE LIS Vol. 2, 4-24
in HLIU in an ELPP LIS Vol. 1, 5-17
in HSLR in an ELPP LIS Vol. 1, 5-27
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
in NIU in LPP LIS Vol. 2, 3-82
in NIU in SSLPP Vol. 3, 2-57
in NIU in SuperNode SE LIS Vol. 2, 4-49
NTEX26
in APU in LPP LIS Vol. 2, 3-9
in EIU in SSLPP Vol. 3, 2-17
in EIU in SuperNode SE LIS Vol. 2, 4-49
in FRIU in LPP LIS Vol. 2, 3-68
in FRIU in SSLPP Vol. 3, 2-29
in FRIU SuperNode SE LIS Vol. 2, 4-24
in HLIU in an ELPP LIS Vol. 1, 5-17
in HSLR in an ELPP LIS Vol. 1, 5-27
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
in NIU in LPP LIS Vol. 2, 3-82
in NIU in SSLPP Vol. 3, 2-57
in NIU in SuperNode SE LIS Vol. 2, 4-49
NTEX28
in APU in LPP LIS Vol. 2, 3-9
in EIU in SSLPP Vol. 3, 2-17
in EIU in SuperNode SE LIS Vol. 2, 4-49
in FRIU in LPP LIS Vol. 2, 3-68
in FRIU in SSLPP Vol. 3, 2-29
in FRIU SuperNode SE LIS Vol. 2, 4-24
in HLIU in an ELPP LIS Vol. 1, 5-17
in HSLR in an ELPP LIS Vol. 1, 5-27
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
NTEX30
in APU in LPP LIS Vol. 2, 3-9
in EIU in SSLPP Vol. 3, 2-17
in EIU in SuperNode SE LIS Vol. 2, 4-49
in FRIU in LPP LIS Vol. 2, 3-68
in FRIU in SSLPP Vol. 3, 2-29
in FRIU SuperNode SE LIS Vol. 2, 4-24
in HLIU in an ELPP LIS Vol. 1, 5-17
in HSLR in an ELPP LIS Vol. 1, 5-27
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
NTEX31
in APU in LPP LIS Vol. 2, 3-9
in EIU in SSLPP Vol. 3, 2-17
in EIU in SuperNode SE LIS Vol. 2, 4-49
in FRIU in LPP LIS Vol. 2, 3-68
in FRIU in SSLPP Vol. 3, 2-29
in FRIU SuperNode SE LIS Vol. 2, 4-24
in HLIU in an ELPP LIS Vol. 1, 5-17
in HSLR in an ELPP LIS Vol. 1, 5-27
in LIU7 in LPP LIS Vol. 2, 3-57
in LIU7 in SSLPP Vol. 3, 2-44
in LIU7 in SuperNode SE ENI shelf Vol. 2, 4-38
in LIU7 in SuperNode SE LIS Vol. 2, 4-38
NTEX54 Vol. 6, 1-783, Vol. 6, 1-800,
Vol. 6, 1-817, Vol. 6, 1-834, Vol. 6, 1-851
in LCM Vol. 2, 1-13

DMS-100 Family NA100 Card Replacement Procedures Volume 2 of 7 LET0015 and up
Index

NTEX76
in HLIU in an ELPP LIS Vol. 1, 5-17

NTEX78
in HLIU in an ELPP LIS Vol. 1, 5-17

NTFX09
in XLIU in LPP LIS Vol. 2, 3-177
in XLIU in SSLPP Vol. 3, 2-105
in XLIU in SuperNode SE LIS Vol. 2, 4-91

NTFX10
in XLIU in LPP LIS Vol. 2, 3-177
in XLIU in SSLPP Vol. 3, 2-105
in XLIU in SuperNode SE LIS Vol. 2, 4-91

NTFX32AA
in an ISM Vol. 1, 9-92

NTFX42
in ISM Vol. 3, 6-27

NTFX43
in ISM Vol. 3, 6-69

NTMX45 Vol. 6, 1-898

NTMX71 Vol. 6, 1-908, Vol. 6, 1-932
Vol. 6, 1-940
in DTC, DTCI, IDTC, PDTC Vol. 3, 8-19
in ILGC, LGCI, LGCO PLGC Vol. 3, 8-19
in ILTC, LTC, LTCI, PLTC Vol. 3, 8-19

NTMX72 Vol. 6, 1-949, Vol. 6, 1-957,
Vol. 6, 1-966, Vol. 6, 1-975, Vol. 6, 1-984,
Vol. 6, 1-993

NTMX73 Vol. 7, 1-2, Vol. 7, 1-9, Vol. 7, 1-17,

NTMX74 Vol. 7, 1-60, Vol. 7, 1-69,
Vol. 7, 1-104

NTMX75 Vol. 7, 1-113, Vol. 7, 1-120,
Vol. 7, 1-153

NTMX76 Vol. 7, 1-168, Vol. 7, 1-175,
Vol. 7, 1-205
in DTC, DTCI, IDTC, DTCO, PDTC
Vol. 3, 8-31
in ILGC, LGCI, LGCO, PLGC
Vol. 3, 8-31
in ILTC, LTC, LTCI, LTICO, PLTC
Vol. 3, 8-31

NTMX77 Vol. 7, 1-221, Vol. 7, 1-234,
Vol. 7, 1-318
in DTC, DTCI, IDTC, DTCO, PDTC
Vol. 3, 8-147
in ILGC, LGC, LGCI, LGCO, PLGC
Vol. 3, 8-147
in ILTC, LTC, LTCI, LTICO, PLTC
Vol. 3, 8-147

NTMX77 in TMS Vol. 3, 4-48

NTMX79 Vol. 7, 1-333, Vol. 7, 1-343,
Vol. 7, 1-380

NTMX81 Vol. 7, 1-397, Vol. 7, 1-409,
Vol. 7, 1-421, Vol. 7, 1-592

NTMX82 Vol. 7, 1-465, Vol. 7, 1-476,
Vol. 7, 1-486, Vol. 7, 1-496

NTMX87 Vol. 7, 1-508, Vol. 7, 1-528,

NTMX97
in VPU in LPP LIS Vol. 2, 3-168

NTMX99
in VPU in LPP LIS Vol. 2, 3-168

NTNX62 in TPC Vol. 3, 5-7

NTNX63 in TPC Vol. 3, 5-12

NTNX64 in TPC Vol. 3, 5-17

NTNX65 in TPC Vol. 3, 5-22

NTNX66 in TPC Vol. 3, 5-27

NTNX68 in TPC Vol. 3, 5-33

NTOM36 keyboard Vol. 3, 5-40

NTOM90 in MP Vol. 3, 5-45

NTOM92 in MP Vol. 3, 5-52

NTRX41 Vol. 7, 1-630, Vol. 7, 1-635,

NTRX42 Vol. 7, 1-660, Vol. 7, 1-677,

NTRX43 Vol. 7, 1-778, Vol. 7, 1-785,
Vol. 7, 1-792, Vol. 7, 1-808

NTRX44 Vol. 7, 1-824, Vol. 7, 1-836,
Vol. 7, 1-858

NTRX66 Vol. 7, 1-896

NTSX06
in LTC, LTC, DTC, LGCI, and LTCI
Vol. 3, 8-147
card replacement procedures

NTBX01 Vol. 6, 1-374
cards
inserting Vol. 3, 9-156
removing Vol. 3, 9-156
M

Maintenance
 returning cards Vol. 3, 9-184

Media access control address
 DBIC provisioning Vol. 6, 1-785,
 Vol. 6, 1-797, Vol. 6, 1-802, Vol. 6, 1-814,
 Vol. 6, 1-819, Vol. 6, 1-831, Vol. 6, 1-836,
 Vol. 6, 1-848, Vol. 6, 1-853, Vol. 6, 1-865

N

NT0X10
card replacement procedures Vol. 4, 1-2,

NT0X91
card replacement procedures Vol. 4, 1-61

NT0X91AA
card replacement procedures Vol. 4, 1-49,
 Vol. 4, 1-90

NT0X91AE
card replacement procedures Vol. 4, 1-49,

NT1X76 in MTM
card replacement procedures Vol. 2, 5-2

NT2X06
card replacement procedures Vol. 4, 1-114,

NT2X09
card replacement procedures Vol. 4, 1-171,

NT2X10
card replacement procedures Vol. 4, 1-229,
 Vol. 4, 1-233, Vol. 4, 1-237, Vol. 4, 1-244,
 Vol. 4, 1-251, Vol. 4, 1-258

NT2X11
card replacement procedures Vol. 4, 1-265,

NT2X48
card replacement procedures Vol. 4, 1-316,
 Vol. 4, 1-321, Vol. 4, 1-326

NT2X55
card replacement procedures Vol. 4, 1-331

NT2X57
card replacement procedures Vol. 4, 1-338,

NT2X59
card replacement procedures Vol. 4, 1-383,

NT2X70
card replacement procedures Vol. 4, 1-434,
 Vol. 4, 1-441, Vol. 4, 1-464, Vol. 4, 1-478,
 Vol. 4, 1-517, Vol. 4, 1-526

NT2X70 in TMS
card replacement procedures Vol. 3, 4-8

NT2X70 in TPC
card replacement procedures Vol. 3, 5-2

NT2X90
card replacement procedures Vol. 4, 1-533,

NT3X04
card replacement procedures Vol. 4, 1-583

NT3X08AA in MTM
card replacement procedures Vol. 4, 1-583

NT3X09
card replacement procedures Vol. 4, 1-590,
 Vol. 4, 1-644

NT3X67 in MTM
card replacement procedures Vol. 2, 5-10

NT3X82
card replacement procedures Vol. 4, 1-653

NT3X83
card replacement procedures Vol. 4, 1-660

NT4X97
card replacement procedures Vol. 4, 1-668,
 Vol. 4, 1-673, Vol. 4, 1-680

NT4X98
card replacement procedures Vol. 4, 1-687,
 Vol. 4, 1-694

NT6X17
card replacement procedures Vol. 4, 1-703,
A-14 Index

NT6X18

NT6X19

NT6X20

NT6X21

NT6X27

NT6X30

NT6X36

NT6X40

NT6X41

NT6X42

NT6X44

NT6X45

NT6X47

NT6X48
 card replacement procedures Vol. 3, 8-72, Vol. 3, 8-82, Vol. 5, 1-208

NT6X50

NT6X51

NT6X52

NT6X53

NT6X54

NT6X60

NT6X69

NT6X69 in TMS
 card replacement procedures Vol. 3, 4-19

NT6X71

NT6X72
 card replacement procedures Vol. 5, 1-725

NT6X73
Index

NT6X74
- card replacement procedures Vol. 5, 1-755,
 Vol. 5, 1-761, Vol. 5, 1-775, Vol. 5, 1-782,

NT6X75
- card replacement procedures Vol. 5, 1-817,

NT6X76
- card replacement procedures Vol. 5, 1-845,

NT6X78
- card replacement procedures Vol. 5, 1-876,
 Vol. 5, 1-905, Vol. 5, 1-912, Vol. 5, 1-919,

NT6X80
- card replacement procedures Vol. 5, 1-951,
 Vol. 5, 1-981

NT6X85
- card replacement procedures Vol. 6, 1-2,
 Vol. 6, 1-13, Vol. 6, 1-24

NT6X86
- card replacement procedures Vol. 6, 1-30,
 Vol. 6, 1-39

NT6X87
- card replacement procedures Vol. 6, 1-48,
 Vol. 6, 1-56

NT6X92
- card replacement procedures Vol. 6, 1-64,
 Vol. 6, 1-71, Vol. 6, 1-79, Vol. 6, 1-87,
 Vol. 6, 1-95, Vol. 6, 1-104, Vol. 6, 1-112,
 Vol. 6, 1-118, Vol. 6, 1-125, Vol. 6, 1-140,
 Vol. 6, 1-243

NT6X99
- card replacement procedures Vol. 6, 1-146,
 Vol. 6, 1-150, Vol. 6, 1-154, Vol. 6, 1-158,
 Vol. 6, 1-162, Vol. 6, 1-170, Vol. 6, 1-178,
 Vol. 6, 1-186

NT6XSeries in TMS
- card replacement procedures Vol. 3, 4-17

NT7X05
- card replacement procedures Vol. 6, 1-190,
 Vol. 6, 1-198, Vol. 6, 1-207, Vol. 6, 1-234,
 Vol. 6, 1-252

NT8X02
- card replacement procedures Vol. 6, 1-261,
 Vol. 6, 1-265

NT8X18
- card replacement procedures Vol. 6, 1-270

NTAX74
- card replacement procedures Vol. 6, 1-281,
 Vol. 6, 1-292, Vol. 6, 1-303, Vol. 6, 1-315,
 Vol. 6, 1-327, Vol. 6, 1-337, Vol. 6, 1-347

NTAX78
- card replacement procedures Vol. 6, 1-355,
 Vol. 6, 1-362, Vol. 6, 1-369

NTBX01
- card replacement procedures Vol. 6, 1-374,
 Vol. 6, 1-381, Vol. 6, 1-390, Vol. 6, 1-399,
 Vol. 6, 1-408, Vol. 6, 1-417, Vol. 6, 1-423,
 Vol. 6, 1-430, Vol. 6, 1-437

NTBX01 in TMS
- card replacement procedures Vol. 3, 4-30

NTBX02
- card replacement procedures Vol. 6, 1-443,
 Vol. 6, 1-456, Vol. 6, 1-469, Vol. 6, 1-482,
 Vol. 6, 1-495, Vol. 6, 1-508, Vol. 6, 1-515,
 Vol. 6, 1-523

NTBX02 in TMS
- card replacement procedures Vol. 3, 4-37

NTBX26
- card replacement procedures Vol. 6, 1-538,
 Vol. 6, 1-546, Vol. 6, 1-554

NTBX27
- card replacement procedures Vol. 6, 1-562,
 Vol. 6, 1-570, Vol. 6, 1-578, Vol. 6, 1-586

NTBX34
- card replacement procedures Vol. 6, 1-593,
 Vol. 6, 1-601, Vol. 6, 1-611, Vol. 6, 1-621

NTBX35
- card replacement procedures Vol. 6, 1-630,
 Vol. 6, 1-638, Vol. 6, 1-648, Vol. 6, 1-658

NTBX36
- card replacement procedures Vol. 6, 1-667,
 Vol. 6, 1-677, Vol. 6, 1-687

NTBX72
- card replacement procedures Vol. 6, 1-697,
 Vol. 6, 1-706, Vol. 6, 1-715, Vol. 6, 1-724
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NTEX54</td>
<td>card replacement procedures Vol. 6, 1-783, Vol. 6, 1-800, Vol. 6, 1-817, Vol. 6, 1-834, Vol. 6, 1-851</td>
</tr>
<tr>
<td>NTMX45</td>
<td>card replacement procedures Vol. 6, 1-898</td>
</tr>
<tr>
<td>NTMX71</td>
<td>Back plane cards in an XPM Vol. 3, 8-19</td>
</tr>
<tr>
<td>NTMX77</td>
<td>card replacement procedures Vol. 3, 4-48</td>
</tr>
<tr>
<td>NTNX62</td>
<td>card replacement procedures Vol. 3, 5-7</td>
</tr>
<tr>
<td>NTNX63</td>
<td>card replacement procedures Vol. 3, 5-12</td>
</tr>
<tr>
<td>NTNX64</td>
<td>card replacement procedures Vol. 3, 5-17</td>
</tr>
<tr>
<td>NTNX65</td>
<td>card replacement procedures Vol. 3, 5-22</td>
</tr>
<tr>
<td>NTNX66</td>
<td>card replacement procedures Vol. 3, 5-27</td>
</tr>
<tr>
<td>NTNX68</td>
<td>card replacement procedures Vol. 3, 5-33</td>
</tr>
<tr>
<td>NTOM36</td>
<td>card replacement procedures Vol. 3, 5-40</td>
</tr>
<tr>
<td>NTOM90</td>
<td>card replacement procedures Vol. 3, 5-45</td>
</tr>
<tr>
<td>NTOM92</td>
<td>card replacement procedures Vol. 3, 5-52</td>
</tr>
</tbody>
</table>
Index

NTRX54
NTRX66
card replacement procedures Vol. 7, 1-896
NTTR46
card replacement procedures Vol. 7, 1-902
NTTR47
card replacement procedures Vol. 7, 1-908
NTTR60
card replacement procedures Vol. 7, 1-914
NTTR66
card replacement procedures Vol. 7, 1-921
NTTR67
card replacement procedures Vol. 7, 1-927
NTTR70
card replacement procedures Vol. 7, 1-934
NTTR87
card replacement procedures Vol. 7, 1-952
NTTR70
removing MP from service (integrated) card replacement common procedures Vol. 3, 9-150
returning cards Vol. 3, 9-184
S
shelf layouts
application processor cabinet
APC cabinet layout Vol. 1, 7-3
file processor shelf Vol. 1, 7-4
storage device shelf Vol. 1, 7-5
common peripheral controller equipment frame
CPCE frame layout Vol. 3, 8-4
DTC with 2 NT6X45's Vol. 3, 8-8
international XPMs with 2 NT6X45's Vol. 3, 8-14
international XPMs with 3 NT6X45's Vol. 3, 8-15
international XPMs with NTMX77 Vol. 3, 8-13
ISDN XPMs with 2 NT6X45's Vol. 3, 8-12
ISDN XPMs with NTMX77 Vol. 3, 8-11
LGC with 2 NT6X45's Vol. 3, 8-9
LGC with NTMX77 Vol. 3, 8-6
LTC with 2 NT6X45's Vol. 3, 8-10
LTC with NTMX77 Vol. 3, 8-7
PCM30 XPMs with 2 NT6X45's Vol. 3, 8-18
PCM30 XPMs with NTMX77 Vol. 3, 8-16, Vol. 3, 8-17
dual plane combined core cabinet
DPCC cabinet layout Vol. 2, 6-3, Vol. 3, 3-3
SuperNode message switch shelf Vol. 2, 6-4
SuperNode system load module shelf Vol. 3, 3-4
enhanced link peripheral processor
ELPP cabinet layout Vol. 1, 5-4
link interface module showing LMS units Vol. 1, 5-6
link interface shelf common fill Vol. 1, 5-7
link interface shelf for DL IU Vol. 1, 5-8
triple F-bus configuration in ELPP cabinet Vol. 1, 5-5
enhanced multipurpose cabinet
EMC cabinet layout Vol. 3, 2-4
single shelf link peripheral processor, 2-slot ASUs Vol. 3, 2-6
single shelf link peripheral processor, ASU common fill Vol. 3, 2-5

P
placing MP in service (integrated)
card replacement common procedures Vol. 3, 5-57
placing MP in service (standalone)
card replacement common procedures Vol. 3, 9-145

R
removing MP from service (integrated)
card replacement common procedures Vol. 3, 5-62
fiber link peripheral processor (SuperNode)
link interface module showing LMS units
Vol. 2, 3-6
host ISDN XPMs Vol. 3, 8-3
host XPMs Vol. 3, 8-3
input/output equipment frame
 input/output controller shelf Vol. 1, 9-5
 remote oscillator shelf Vol. 3, 1-4
 single disk drive unit shelf Vol. 1, 9-6
ISDN XPMs (host) Vol. 3, 8-3
line concentrating equipment frame
 enhanced line concentrating module Vol. 2, 1-9
 ISDN LCE frame layout Vol. 2, 1-5
 ISDN line concentrating equipment frame Vol. 2, 1-3, Vol. 3, 7-3
 LCM line drawer Vol. 2, 1-7
 LCME line drawer Vol. 2, 1-10
 LCMI line drawer (international) Vol. 2, 1-8
 line concentrating module Vol. 2, 1-6, Vol. 3, 7-4
line module equipment frame
 line drawer layout (metal) Vol. 2, 2-8, Vol. 2, 11-8
 line drawer layout (plastic) Vol. 2, 2-7, Vol. 2, 11-7
 line drawer shelf Vol. 2, 2-6, Vol. 2, 11-6
 LME frame layout Vol. 2, 11-4
link peripheral processor (SuperNode)
 application processor unit Vol. 2, 3-8
 CCS7 link interface unit (2-slot, channelized) Vol. 2, 3-8
 CCS7 link interface unit (2-slot, non-channelized) Vol. 2, 3-8
 Ethernet interface unit (2-slot) Vol. 2, 3-8
 frame relay interface unit Vol. 2, 3-8
 link interface module showing LMS units Vol. 2, 3-5
 link interface shelf common fill, 2-slot ASUs Vol. 2, 3-7
 link interface shelf for 2-slot ASUs Vol. 2, 3-8
 LPP cabinet layout Vol. 2, 3-4
 network interface unit Vol. 2, 3-8
voice processor unit Vol. 2, 3-8
X.25 link interface unit Vol. 2, 3-8
message switch and buffer equipment frame
 CCS6 signaling terminal array Vol. 2, 8-8
 CCS6 signaling terminal controller array Vol. 2, 8-9
 CCS7 signaling terminal array Vol. 2, 8-11
 CCS7 signaling terminal group Vol. 2, 8-10
 MS6E frame layout Vol. 2, 8-4
 MS7E frame layout Vol. 2, 8-6
 ST6E frame layout Vol. 2, 8-5
 ST7E frame layout Vol. 2, 8-7
network equipment frames
 ENET 128K frame layout Vol. 2, 9-8
 ENET 64K frame layout Vol. 2, 9-7
 ENET shelf Vol. 2, 9-14
 NT0X48 NET crosspoint shelf Vol. 2, 9-10
 NT0X48 NET frame layout Vol. 2, 9-4
 NT0X48 NET interface shelf Vol. 2, 9-9
 NT5X13 NETC crosspoint shelf Vol. 2, 9-12
 NT5X13 NETC frame layout Vol. 2, 9-5
 NT5X13 NETC interface shelf Vol. 2, 9-11
 NT8X11 DSN frame layout Vol. 2, 9-6
 NX8X11 DSN shelf Vol. 2, 9-13
office alarm unit Vol. 2, 10-3
single core cabinet
 enhanced network and interface shelf Vol. 1, 6-5, Vol. 1, 6-6
 SuperNode SE computing module/system load module Vol. 1, 3-4
 SuperNode SE link interface shelf, 2-slot ASUs Vol. 2, 4-5
 SuperNode SE link interface shelf, ASU common fill Vol. 2, 4-4
 SuperNode SE message switch shelf Vol. 2, 7-4
SuperNode SE 16K ENET Vol. 1, 6-5
SuperNode SE 16k ENET Vol. 1, 6-3
SuperNode SE 32k Vol. 1, 6-4
trunk module equipment frame
 digital recorded announcement machine with NT0X70 processor Vol. 3, 6-9
 digital recorded announcement machine with NT4X65 processor Vol. 3, 6-10
 integrated service module with NTFX42 processor Vol. 3, 6-12
 integrated service module with single-card PMs Vol. 3, 6-13
maintenance trunk module with NT0X70 processor Vol. 3, 6-7
maintenance trunk module with NT4X65 processor Vol. 3, 6-8
office alarm unit with NT0X70 processor Vol. 2, 10-5
office alarm unit with NT4X65 processor Vol. 2, 10-6
service trunk module Vol. 3, 6-11
TME frame layout Vol. 2, 10-4, Vol. 3, 6-4
trunk module with NT0X70 processor Vol. 3, 6-5
trunk module with NT4X65 processor Vol. 3, 6-6
XPMs (host) Vol. 3, 8-3

Star Remote System
Star Module

T

TMS shelf layouts
 card replacement common procedures Vol. 3, 4-2
DMS-100 Family
North American DMS-100
Card Replacement Procedures
Volume 2 of 7

Product Documentation - Dept. 3423
Nortel Networks
P.O. Box 13010
RTP, NC 27709-3010
Telephone: 1-877-662-5669
email: cits@nortelnetworks.com

Copyright © 1996-2001 Nortel Networks,
All Rights Reserved

NORTEL NETWORKS CONFIDENTIAL: The information contained herein is the property of Nortel Networks and is strictly confidential. Except as expressly authorized in writing by Nortel Networks, the holder shall keep all information contained herein confidential, shall disclose the information only to its employees with a need to know, and shall protect the information, in whole or in part, from disclosure and dissemination to third parties with the same degree of care it uses to protect its own confidential information, but with no less than reasonable care. Except as expressly authorized in writing by Nortel Networks, the holder is granted no rights to use the information contained herein.

Information is subject to change without notice. Nortel Networks reserves the right to make changes in design or components as progress in engineering and manufacturing may warrant. Changes or modification to the DMS-100 without the express consent of Nortel Networks may void its warranty and void the user's authority to operate the equipment.

Nortel Networks, the Nortel Networks logo, the Globemark, How the World Shares Ideas, Unified Networks, DMS, DMS-100, Helmsman, MAP, Meridian, Nortel, Northern Telecom, NT, Supernode, and TOPS are trademarks of Nortel Networks.

Publication number: 297-8021-547
Product release: LET0015 and up
Document release: Standard 14.02
Date: May 2001
Printed in the United States of America