Publication history

December 2005
Standard release 12.02, supporting CSP22. Changes in this edition are as follows:

- In the chapter “Understanding the alarm system”, in the procedure for clearing the PEtrbl minor alarm, added a step to busy the PE circuit pack before returning it to service.

- In the chapter “Preventive maintenance”, in the information on SREx tests, added mention that the system will run a SREx test only if all communication paths to the message switches are functioning.

June 2005
Standard release 11.02, supporting CSP21. Changes in this edition are as follows:

- In the chapter “How to problem solve a MemLim alarm”, added information on the following topics:
 - the relationship between N+1 redundancy and triplex memory
 - how to interpret the output of the STORE ALL USAGE command

- In the chapter “Introduction to routine maintenance procedures”, added a procedure telling how to specify log throttling.

- In the chapter “Preventive maintenance”, in the information on SREx tests, corrected the default SREx schedule.
March 2005

Standard release 10.05, supporting CSP20. Changes in this edition are as follows:

- In the chapter “Introduction to routine maintenance procedures”, in the section “How to delete a volume on an XA-Core disk”, added a caution against deleting volumes whose names contain FIDB and F2DB.

- In the chapter “Introduction to recovery procedures”, in the section “How to perform a warm restart in an XA-Core”, added a caution that if the XA-Core is connected to a USP, then during a warm restart of the XA-Core, connectivity to the USP will be lost.

January 2005

Standard release 10.04, supporting CSP20. In the chapter “Introduction to trouble locating and clearing procedures”, in the section “How to perform a manual REx test on XA-Core”, deleted the following sentence: “Operating company personnel cannot perform a manual REx when the switch CPU occupancy is greater than 40%.”
December 2004

Standard release 10.02, supporting CSP20. Changes in this edition are as follows:

- Added material covering the NTLX17AA (HCMIC) circuit pack, which was added in this release. Changes are as follows:
 - In the chapter “Understanding the alarm system”, updated the alarm clearing procedures for the following XAC alarms: IOtrbl minor, MScomm critical, major, and minor, RIBkey major and minor, RTIF critical, major, and minor, SysBTh major and minor, and TOD critical, major, and minor.
 - In the chapter “Introduction to card replacement”, added a procedure for replacing the NTLX17AA, and added NTLX17AA to Table 2-1.
 - In the chapter “Introduction to routine maintenance procedures”, added a procedure for upgrading the firmware in the NTLX17AA.

- Added material covering the checking of hardware and firmware against baseline specifications. Changes are as follows:
 - In the chapter “Understanding the alarm system”, added a procedure for clearing the Baseln major alarm
 - In the chapter “Introduction to card replacement”, updated many of the procedures to say that one possible reason for doing a replacement is to satisfy hardware baseline requirements. In each such procedure, the affected parts are the introductory paragraphs, the flowchart, and step 1 of the procedure.
 - In the chapter “Introduction to trouble locating and clearing procedures”, added information stating that if certain XA-Core components fail to satisfy baseline requirements, the system will bypass SREX tests in some cases, or will bypass the IO class of tests in other cases.

- Throughout the document, updated the names of image files shown in illustrations. The names formerly ended with the characters _CM. They now end with the characters _XA.

- In the chapter “Understanding the alarm system”, in the procedure for clearing the RExSch minor alarm, in the illustration of the CAPACITY MAP level, removed the COMPLEX field because the complexity statistic has been deleted.
• In the chapter “Introduction to card replacement”, updated the procedure for replacing the HIOP circuit pack, to cover the NTLX04CA version.

• In the chapter “Introduction to recovery procedures”, added a procedure for totally powering down the switch.

• In the chapter “Introduction to routine maintenance procedures”, updated the procedure for creating a volume on an XA-Core disk.

• In the chapter “Introduction to routine maintenance procedures”, added procedures for adding, removing, and re-arranging ethernet links.

August 2003
Standard release 09.02, supporting CSP19. Changes in this edition are as follows:

• Deleted the section covering the IOHits minor alarm from the chapter titled “Understanding the alarm system”, and deleted the alarm from the table in the chapter titled “Problem isolation and correction”.

• Added sections covering the SysBTh minor and major alarms to the chapter titled “Understanding the alarm system”, and added the alarms to the table in the chapter titled “Problem isolation and correction”.

• In the section covering the RExSch minor alarm in the chapter titled “Understanding the alarm system”, updated the description of the alarm and updated the test in step 7 of the alarm-clearing procedure, so that it refers to values found in the CAPACITY MAP level.

• In the chapter “Understanding the alarm system”, updated the procedures for clearing AMDI alarms and ETHR alarms, to take into account the possibility that the links may be hosted by HIOP circuit packs.

• In the chapter “Introduction to card replacement”, updated the replacement procedures for the following circuit packs and packetlets: the NTLX04 circuit pack, the NTLX05 OC-3 two-port interface packetlet (CMIC), the NTLX06 disk packetlet, and the NTXL12 SIM circuit pack.
 — In the replacement procedure for the NTLX04 circuit pack, added steps that verify that the proper current DLL firmware load is listed in table XAFWLOAD.
 — In the replacement procedure for the NTLX05 OC-3 two-port interface packetlet (CMIC), corrected the cross-references in what were then steps 7 and 8.
— In the replacement procedure for the NTLX06 disk packlet, added instructions telling what to do if the replacement disk is not formatted.

— In the replacement procedure for the NTLX12 SIM circuit pack, changed the sequences of instructions for removing and reattaching alarm and power cables.

• In the chapter titled “Introduction to routine maintenance procedures”, added the procedure titled “How to delete a volume on an XA-Core disk”.

November 2002

Standard 08.03, supporting CSP18. Major changes in this edition are as follows.

• In the chapter “Introduction to card replacement”,
 — added mention of the NTLX07BA tape packlet
 — updated the replacement procedure for the tape packlet, to say that it is possible to replace an NTLX07AA with an NTLX07BA or vice versa

• In the chapter titled “Introduction to recovery procedures” updated the procedure titled “How to recover a dead XA-Core DMS switch” by adding instructions for customers whose systems use Network Time Protocol (NTP).

• In the chapter titled “Introduction to routine maintenance procedures”,
 — updated the procedure titled “Upgrading firmware on the occasion of a software upgrade”, by adding steps for upgrading the firmware in the IOP circuit pack that contains the disk packlet that has the volume that contains the new firmware files
 — updated the procedure titled “How to check and adjust the XA-Core TOD”, by instructing customers whose systems use Network Time Protocol (NTP) to verify the date and time before going into the NTPCI MAP level
 — updated the section titled “Selection of DAT tapes approved by Nortel Networks” to list the tapes that are recommended for use in the NTLX07BA tape packlet
October 2002

Standard 08.02, supporting CSP18. Major changes in this edition are as follows.

- In the chapter “Introduction to card replacement”,
 - added mentions of the following items: the NTLX02DA PE circuit pack, the NTLX06AC disk packlet, and the NTLX04BA HIOP circuit pack
 - updated the replacement procedure for the HIOP circuit pack, to say that it is possible to replace an NTLX04AA with an NTLX04BA
 - revised the replacement procedure for the disk packlet
- In the chapter titled “Introduction to trouble locating and clearing procedures” and in the chapter titled “Preventive maintenance”, added information that REx tests will run only if all RTIF terminals have been set to emulate VT100 terminals.

July 2002

Standard 07.04, supporting CSP17. This edition contains updated instructions for upgrading firmware.

March 2002

Standard 07.03, supporting CSP17. This edition contains corrections to cross references in the procedures in the chapter “Introduction to recovery procedures”.

February 2002

Standard 07.02, supporting CSP17. Major changes in this edition are as follows.

- Added the following chapters, which were formerly chapters in the XA-Core Maintenance Guide, 297-8991-511:
 - “Preventive maintenance”. (This chapter was named “Preventive maintenance methods” in 297-8991-511.)
 - “Problem isolation and correction”
 - “How to problem solve a MemLim alarm”
• In the chapter “Understanding the alarm system”, added the new Config alarm and the new IOHits alarm.

• In the chapter “Introduction to card replacement”, in the procedures for replacing circuit packs, added instructions to check for bent backplane pins before inserting the replacement circuit packs.

• In the chapter “Introduction to trouble locating and clearing procedures”, in the section “How to perform a manual REx test on XA-Core”, deleted the descriptions of the REx test classes and added a cross reference to the descriptions of the test classes in the new “Preventive maintenance” chapter.

• In the new chapter “Preventive maintenance”, in the description of the REx test classes, updated the rules by which IOP circuit packs are selected for testing.

• In the new chapter “Problem isolation and correction”, in the table of alarms and related logs and operational measurements, added entries for the Config and IOHits alarms.

November 2001
Standard 06.02, supporting CSP16

• In the chapter “Understanding the alarm system”, added the new RExFlt alarm. Also in this chapter, removed the sections on the Image major and Image minor alarms, and added a section on the Image critical alarm.

• In the chapter “Introduction to card replacement”, added information about 7+1 PE configuration. Also in this chapter, added a procedure for replacing the high-performance input/output processor (HIOP) circuit pack. Also in this chapter, updated the procedure for replacing the Ethernet packet.

• In the chapter “Introduction to routine maintenance procedures”, updated the procedure for checking and adjusting the time of day, to cover the use of Network Time Protocol as a timing reference. Also in this chapter, updated the procedure for upgrading firmware on an XA-Core component.

• Throughout the document, changed illustrations of the IO, RTIF, AMDI, and ETHR MAP levels to show the new screen format.
May 2001

Standard 05.03, supporting CSP15

• In the replacement instructions for the single-width and dual-width IOP circuit packs, removed the requirement that the replacement pack should have the same PEC suffix.

April 2001

Standard 05.02, supporting CSP15

• Revised instructions for clearing the LowPE critical alarm, to take into account the presence of three or more PE circuit packs.

• Revised illustrations of various MAP screens.

April 2001

Standard 05.01, supporting CSP15

• Added information about the 3+1 and 5+1 PE configurations, including procedures for upgrading and downgrading the PE configuration.

• Added procedures for upgrading and downgrading the number of Ethernet packlets in the XA-Core.

March 2001

Standard 04.03, supporting CSP14

• Content maintenance and revisions.

October 2000

Standard 04.02

• Content maintenance and revisions.
August 2000
Standard 04.01

- Added ETHR critical major, and minor alarm clearing procedures, and card replacement procedure for the NTLX09AA packlet. The Ethernet packlet is required to support trials for Succession Network IP solutions and is scheduled for general availability in CSP15.

- Updated card replacement procedures for all IOP packlets to support hot insertion of packlets when the IOP is an NTLX03AB or NTLX03BB.

- Added common routine procedure Selection of DAT tapes approved by Nortel Networks and added reference in procedure How to clean the XA-Core tape drive.

May 2000
Standard release 03.02

- Added AMDI critical and major alarm clearing procedures.

- Updated the IOtrbl alarm to include AMDI packlet information.

March 2000
Standard release 03.01

- Updated processor element (PE) and shared memory (SM) configurations.

- Added alarm clearing procedures for FWvers and FWsoak alarms and one routine procedure for firmware upgrade on an IOP, PE, and OC3.

November 1999
Standard release 02.02

- Added NTLX02CA processor element (PE) for CSP12.

August 1999
Standard release 02.01

- Updated release of the document for CSP12.

June 1999
Standard release 01.01

- First release of the document for CSP10.4.
2 Introduction to card replacement

Chapter summary 2-1
 Application information 2-1
 Common procedures 2-1
 Summary flowchart 2-1
 Step-action instructions 2-1
XA-Core hardware components 2-2
 C42 equipment cabinet 2-2
 XA-Core shelf module 2-5
 Circuit packs and packlets 2-7
Shelf layout 2-7
 Shelf layout 2-10
Addition, removal, and replacement of circuit packs and packlets 2-12
Light emitting diode (LED) interpretation 2-12
NT9X63 OC-3 two port interface paddleboard 2-17
NTLX02 PE circuit pack 2-33
NTLX03 single width IOP circuit pack 2-47
NTLX03 dual width IOP circuit pack 2-73
NTLX04 high performance input/output circuit pack 2-99
NTLX05 OC-3 CMIC two port interface packlet 2-113
NTLX05 OC-3 AMDI two port interface packlet 2-131
NTLX06 disk packlet 2-147
NTLX07 tape packlet 2-167
3 Introduction to recovery procedures

Introduction 3-1
 Application 3-1
 Interval 3-1
 Common procedures 3-1
 Action 3-1
How to boot an XA-Core in a DMS switch 3-3
Emergency power conservation restoration 3-9
Emergency power conservation shutdown 3-13
Emergency shutdown of the switch 3-19
How to perform a cold restart in an XA-Core 3-23
How to perform a reload restart in an XA-Core 3-29
How to perform a warm restart in an XA-Core 3-35
How to recover a dead XA-Core DMS switch 3-43

4 Introduction to routine maintenance procedures

Introduction 4-1
 Application 4-1
 Interval 4-1
 Common procedures 4-1
 Action 4-1
 Summary of XA-Core storage device commands and tasks 4-2
Routine maintenance schedule for XA-Core 4-7
Upgrading firmware on the occasion of a software upgrade 4-9
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade 4-17
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade 4-31
Upgrading IOP firmware on the occasion of a software upgrade 4-45
Upgrading HIOP firmware on the occasion of a software upgrade 4-71
Upgrading HCMIC firmware on the occasion of a software upgrade 4-91
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade 4-103
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade 4-117
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade 4-131
Loading current firmware into a newly installed XA-Core component 4-145
How to backup an XA-Core office image from disk to tape 4-151
How to change XA-Core REx test intensity 4-161
How to check and adjust the XA-Core TOD 4-167
How to clean the XA-Core tape drive 4-173
How to copy all files of an XA-Core disk volume to tape 4-185
How to create a test volume on XA-Core disks 4-195
How to create volumes on XA-Core disks 4-205
How to delete a volume on an XA-Core disk 4-215
How to perform XA-Core LED maintenance 4-221
How to record an XA-Core office image on a disk 4-229
How to replace XA-Core cooling unit air filters 4-245
How to restore an XA-Core office image from tape to disk 4-253
How to return an XA-Core circuit pack, packet, or assembly to Nortel Networks (Canada) 4-265
How to schedule automatic image taking for XA-Core 4-271
How to schedule tape drive maintenance in XA-Core 4-281
How to test wrist-strap grounding cords in XA-Core 4-283
Selection of DAT tapes approved by Nortel Networks 4-285
Adding, removing, or re-arranging ethernet links 4-287
Adding tuples to table CMIPADDR 4-295
Deleting tuples from table CMIPADDR 4-301
Changing tuples in table CMIPADDR 4-305
Establishing cable connections for new ethernet links 4-313
Removing cable connections for ethernet links 4-321
Moving the cable connections for existing ethernet links 4-329
Testing ethernet links 4-339
How to specify log throttling 4-343

5 Introduction to trouble locating and clearing procedures 5-1
 Introduction 5-1
 Application 5-1
 Interval 5-1
 Common procedures 5-1
 Action 5-1
 How to perform a manual REx test on XA-Core 5-3
 How to repair an XA-Core cooling unit 5-13

6 Preventive maintenance 6-1
 Routine maintenance 6-1
 Automatic maintenance 6-1
 Processor bus matcher 6-1
 Audits 6-1
 Routine exercise (REx) tests 6-2
 Indications of automatic test results 6-7
 System recovery controller (SRC) 6-7
 SRC activation 6-8
Contents

7 Problem isolation and correction 7-1
 Diagnostic tools 7-1
 Alarms 7-1
 DMSMON 7-3
 Log reports 7-3
 Maintenance manager’s morning report 7-3
 Operational measurements 7-4
 Alarm, log, and OM relationship 7-5
 Sherlock 7-7
 Switch performance monitoring system 7-7
 TRAPINFO 7-8

8 How to problem solve a MemLim alarm 8-1
 Background 8-1
 Some commonly used terms 8-1
 Addressable memory 8-2
 The software image 8-3
 Memory limits for XA-Core 8-4
 Limits imposed by software 8-4
 Limits imposed by hardware 8-5
 Store allocation 8-6
 MemLim algorithm 8-8
 Available-memory and store types 8-8
 Determining the MemLim alarm level 8-9
 Memory fragmentation 8-11
 XSMEMLIM diagnostic tools 8-11
 XSMEMLIM command 8-11
 STORE command 8-13
 Diagnosing a MemLim alarm 8-26
 Relationship between N+1 redundancy and triplex memory 8-26
 Background: N+1 redundancy for shared-memory circuit packs 8-27
 Background: memory allocation 8-27
 How N+1 sparing uses triplex memory 8-28
 Optionality related to triplex memory 8-30
About this document

When to use this document

This document is a source of information for the XA-Core product.

How to check the version and issue of this document

This document uses numbers, for example 01.01, to indicate the version and issue of the document.

The first two digits indicate the version. The version number increases with each update to support a new software release. For example, the first release of a document is 01.01. In the next software release cycle, the first release of the same document is 02.01.

The second two digits indicate the issue. The issue number increases with each revision when the document is released again in the same software release cycle. For example, the second release of a document in the same software release cycle is 01.02.

References in this document

The following documents are referred to in this document:

• *Switch Performance Monitoring System Application Guide*, 297-1001-330
• *Digital Switching Systems DMS-100 Family Maintenance Managers Morning Report*, 297-1001-535
• *DMS Family Commands Reference Manual*, 297-1001-822
• *Alarm Clearing and Performance Monitoring Procedures*, 297-8001-5431 to 297-8001-5434 (four volumes)
• *Recovery Procedures*, 297-8001-545 (North American market) or 297-9051-545 (International market)
• *Routine Maintenance Procedures*, 297-8001-546 (North American market) or 297-9051-546 (International market)
What precautionary messages mean

The types of precautionary messages used in Nortel Networks documents include attention boxes and danger, warning, and caution messages.

An attention box identifies information that is necessary for the proper performance of a procedure or task or the correct interpretation of information or data. Danger, warning, and caution messages indicate possible risks.

Examples of the precautionary messages follow.

ATTENTION
Information needed to perform a task

```
<table>
<thead>
<tr>
<th>ATTENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.</td>
</tr>
</tbody>
</table>
```

WARNING
Possibility of equipment damage

```
<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of equipment damage</td>
</tr>
<tr>
<td>Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.</td>
</tr>
</tbody>
</table>
```

CAUTION
Possibility of service interruption or degradation

```
<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of service</td>
</tr>
<tr>
<td>Do not repeat steps.</td>
</tr>
</tbody>
</table>
```
DANGER Possible risk of electrocution

Risk of electrocution
Do not touch the cabinet wiring. Connections with unshielded cabinet wiring can result in electric shock. Only qualified power maintenance personnel can perform the voltage measurements in step 3.

How commands, parameters, and responses are represented
Commands, parameters, and responses in this document conform to the following conventions.

Input prompt (>)
An input prompt (>) indicates that the information that follows is a command:

>BSY

Commands and fixed parameters
Commands and fixed parameters that are entered at a MAP terminal are shown in uppercase letters:

>BSY CTRL

Variables
Variables are shown in lowercase letters:

>BSY CTRL ctrl_no

The letters or numbers that the variable represents must be entered. Each variable is explained in a list that follows the command string.

Responses
Responses correspond to the MAP display and are shown in a different type:

FP 3 Busy CTRL 0: Command request has been submitted.

FP 3 Busy CTRL 0: Command passed.
The following excerpt from a procedure shows the command syntax used in this document:

Manually busy the CTRL on the inactive plane by typing:

\texttt{>BSY CTRL \texttt{ctrl_no}}

and pressing the enter key.

where

\texttt{ctrl_no} is the number of the CTRL (0 or 1)

\textit{Example of a MAP response:}

FP 3 Busy CTRL 0: Command request has been submitted.

FP 3 Busy CTRL 0: Command passed.

The following example from a procedure shows the command syntax used in this document:

\textbf{Procedure 1 How to clear an alarm}

\textit{At the MAP level}

1. Place the circuit pack (CP) in a manual busy (ManB) state. At the MAP level type
\texttt{>BSY <nn> <s>}

and press the Enter key

where

\texttt{<nn>} is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

\texttt{<s>} is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

\texttt{>BSY 7 r}

\textit{Example of system response:}

BSY 7 r completed

<table>
<thead>
<tr>
<th>If the CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not InSv</td>
<td>step 5</td>
</tr>
<tr>
<td>InSv</td>
<td>step 6</td>
</tr>
</tbody>
</table>
1 Understanding the alarm system

Introduction

This chapter describes the alarm clearing procedures on the DMS SuperNode (SN) and DMS SuperNode SE (SNSE) XA-Core (XAC).

Alarms notify you of problems or conditions that can change the performance or working state of the XA-Core system. Daily operation of XA-Core requires monitoring for alarms and checking that main switch functions continue without interruption. Alarms provide notification that a system hardware or software related event has occurred. Equipment faults cause reduced service and reliability. The XA-Core system provides alarm reporting, automatic diagnostics, and testing facilities to support maintenance and correct functioning of the switch.

There are three levels of XA-Core alarm severity: minor, major, and critical. XA-Core alarms indicate the following types of working conditions:

- equipment failure
- equipment state change
- equipment test notification
- equipment operating at degraded level
- equipment reached defined capacity level
- software errors
- loss of communication between subsystems

The DMS log utility (LOGUTIL) and alarm reporting system, form part of the XA-Core maintenance notification function. XA-Core log reports provide information about fault conditions or changes in the working state of XA-Core system components. Use the logs to help you to clear an alarm condition.

Alarm reporting system

The alarm reporting system integrates event detection and alarm notification functions. An alarm becomes active when a reduced service, reliability or test condition occurs in the XA-Core. The alarm remains active until a system
event or activity performed by operating company personnel clears the alarm condition. The alarm system includes audible notification and visual display through warning lights and the MAP terminal.

The form and sound of the audible notification can vary in each office. Audible indicators signal that one or more events have started an alarm. You must refer to the MAP or the logs to determine the source of the alarm condition. The MAP and alarm notification systems makes the period of time between alarm detection and analysis as short as possible. A quick response is important because the alarm event can reduce switch service or, in severe conditions, cause a switch outage.

The MAP terminal displays accurate information about alarm condition so that you can decide on an appropriate response. The MAP terminal displays alarm codes in the alarm banner and the subsystem status summary field (SSSF). The alarm banner displays alarm codes that indicate the effect of the alarm event on the XA-Core system. The SSSF displays alarm codes that indicate equipment faults or system states.

MAP alarm banner

The XA-Core system software monitors for equipment or software events or faults. For events that effect performance or redundancy, the XA-Core system raises and displays an appropriate system alarm in the MAP alarm banner. The MAP alarm banner displays alarm codes that indicate the effect of the alarm event on the XA-Core system. The figure (1-1) shows an example of a memory limit (MemLim) alarm with a critical severity level.

Figure 1-1 MAP alarm banner

The alarm banner displays the following information:

1. **DMS system headers**: The DMS headers permanently display a set of titles indicating the different switch DMS nodes. The XA-Core MAP system displays the DMS headers on all XA-Core MAP levels.

2. **Alarm status codes**: The alarm status codes indicate the system alarm status. The alarm status fields display the alarm status code under each of
the DMS headers. If there are multiple faults in a single switch system, the alarm status field displays the most important.

3. Alarm severity: The alarm severity field displays the severity of the alarm condition. Each DMS subsystem reports on critical, major and minor alarm conditions. If there are multiple faults in a single switch system, the alarm severity field displays the most important fault (see Figure 1-1 and Table 1-1). The alarm banner displays the alarm severity under the alarm indicator in XAC header.

The possible alarm severity conditions are as follows:

- blank (no alarm)
- blank (Minor alarm)
- M (Major alarm)
- C (Critical alarm)

The XA-Core alarm banner shows one active alarm at a time in the alarm status code field. The alarm banner displays the most important alarm (see the table that describes alarm banner codes). The RExTst, ImgTst and Split minor alarms override all major alarms. All critical alarms override the RExTst, ImgTst and Split alarms.

Alarm severity and event hierarchy

Equipment alarms and alarm severity codes indicate the effect that a fault or event has on a single piece of equipment. There are three types of alarm severities:

- **Critical alarm:** A critical alarm indicates a reduced service condition or complete loss of service. A critical alarm indicates that the system can no longer perform its design function. The alarm condition requires immediate correcting action so that the performance of the system can return to its design function. Examples of critical alarm conditions include the following:
 - a reduction in call processing capability
 - a reduction or full loss of system sanity
 - service reduction below an operating company defined threshold

- **Major alarm:** A major alarm indicates lost redundancy. The next fault of the same type, can cause a reduction or complete loss of service. There is no backup if another fault occurs on the active system. This alarm level can be generated when service decreases below an operating company defined threshold.

The XA-Core system classifies REx test (RExTst), Image test (ImgTst) and Split mode (Split) as the highest of all minor system alarms. The
RExTst alarm is higher in the alarm hierarchy than ImgTst and Split alarms. The MAP displays critical alarms related to OOS CPs or packlets.

- Minor alarm: A minor alarm indicates a small loss of redundancy. The next fault of the same type won’t cause degradation of service. Examples of minor alarm conditions include the following:
 - conditions that may lead to a major alarm if not corrected
 - one piece of a pool of equipment that has been taken out of service
 - service degradation that has fallen below an operating company defined threshold

The system assigns system alarm events into a hierarchy. The alarm event hierarchy determines the type of alarm codes displayed in the alarm banner and SSSF. The system uses the alarm event hierarchy to prevent alarm contention.

When more than one alarm applies to a single subsystem, the MAP alarm banner displays the highest order of the most severe alarm. The SSSF displays an alarm that applies to one or more subsystem. The SSSF displays the total number of OOS CPs or packlets in each of the subsystems.

Note: The Alarm MAP command helps operating company personnel to identify all outstanding XA-Core alarm conditions.

The following table provides the alarm status codes, the alarm severities, and reason descriptions.

<table>
<thead>
<tr>
<th>Alarm status code</th>
<th>Alarm severity</th>
<th>Alarm description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RExTst</td>
<td>(Minor)</td>
<td>The system is now performing a system or manually requested routine exercise test</td>
</tr>
<tr>
<td>ImgTst</td>
<td>(Minor)</td>
<td>System is testing the image to see if it can withstand a restart.</td>
</tr>
<tr>
<td>Split</td>
<td>(Minor)</td>
<td>Split mode indicates that the system is in preparation for a system load upgrade. The system is split into two parts. One part handles call processing, the other handles the installation of new operating system software.</td>
</tr>
<tr>
<td>Config</td>
<td>(Minor)</td>
<td>The system raises the Config alarm when some but not all of the PE circuit packs in the XA-Core are NTLX02DA models. This occurs during an upgrade to NTLX02DA PEs. The craftsperson changes one PE at a time. The alarm remains raised until all the PEs are NTLX02DA models.</td>
</tr>
</tbody>
</table>
Table 1-1 Alarm banner codes (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Alarm status code</th>
<th>Alarm severity</th>
<th>Alarm description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWvers</td>
<td>(Major)</td>
<td>The system raises the FWvers alarm when the firmware version of a field replaceable unit (FRU) and the firmware version recorded in table XAFWLOAD do not match.</td>
</tr>
<tr>
<td>MemLim</td>
<td>(Major)</td>
<td>The memory available for allocation by the XA-Core operating system has dropped below one or both of the major memory limit alarm thresholds. Insufficient memory resources are available to perform calculations and system-related functions.</td>
</tr>
<tr>
<td>MemLim</td>
<td>(Minor)</td>
<td>The memory available for allocation by the XA-Core operating system has dropped below one or both of the minor memory limit alarm thresholds.</td>
</tr>
<tr>
<td>LowPE</td>
<td>C (Critical)</td>
<td>Processor capacity is low. A reset is possible.</td>
</tr>
<tr>
<td>LowPE</td>
<td>M (Major)</td>
<td>Loss of processor capacity redundancy.</td>
</tr>
<tr>
<td>LowSM</td>
<td>M (Major)</td>
<td>Loss of memory capacity redundancy.</td>
</tr>
<tr>
<td>LowSM</td>
<td>(Minor)</td>
<td>Partial loss of memory capacity redundancy.</td>
</tr>
<tr>
<td>MScomm</td>
<td>C (Critical)</td>
<td>Loss of communication between MS and XA-Core. (Note that for this alarm, the MAP cannot display the status code and severity.)</td>
</tr>
<tr>
<td>MScomm</td>
<td>M (Major)</td>
<td>Loss of communication redundancy between MS and XA-Core.</td>
</tr>
<tr>
<td>MScomm</td>
<td>(Minor)</td>
<td>Partial loss of communication redundancy between message switch (MS) and XA-Core.</td>
</tr>
<tr>
<td>AMDI</td>
<td>C (Critical)</td>
<td>Loss of messaging to Multi-service Gateway 4000.</td>
</tr>
<tr>
<td>AMDI</td>
<td>M (Major)</td>
<td>Loss of messaging redundancy.</td>
</tr>
<tr>
<td>ETHR</td>
<td>C (Critical)</td>
<td>Loss of two Ethernet links in a two-link configuration or loss of four links in a four-link configuration, which prevents call origination at the call server, or loss of three links in a four-link configuration, which causes the system to function below engineered capacity.</td>
</tr>
<tr>
<td>ETHR</td>
<td>M (Major)</td>
<td>Loss of one Ethernet link in a two-link configuration, or loss of two links in a four-link configuration, which causes a loss of redundancy.</td>
</tr>
<tr>
<td>ETHR</td>
<td>(Minor)</td>
<td>Loss of one Ethernet link in a four-link configuration, which causes a loss of redundancy.</td>
</tr>
<tr>
<td>SysBTh</td>
<td>(Minor)</td>
<td>In the last 42 to 48 hours, a monitored component has gone through a number of SysB transitions (in-service to system-busy), and the number of transitions equals or exceeds the minor threshold value. Note that only one SysBTh alarm can be raised at any time, and a SysBTh major alarm overrides a SysBTh minor alarm.</td>
</tr>
</tbody>
</table>
Table 1-1 Alarm banner codes (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Alarm status code</th>
<th>Alarm severity</th>
<th>Alarm description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SysBTh</td>
<td>M (Major)</td>
<td>In the last 42 to 48 hours, a monitored component has gone through a number of SysB transitions (in-service to system-busy), and the number of transitions equals or exceeds the major threshold value. Note that only one SysBTh alarm can be arised at any time, and a SysBTh major alarm overrides a SysBTh minor alarm.</td>
</tr>
<tr>
<td>Image</td>
<td>M (Major)</td>
<td>XA-Core software load cannot withstand a restart.</td>
</tr>
<tr>
<td>Image</td>
<td>(Minor)</td>
<td>XA-Core Image test shows possible image faults, test aborted or the test was not run.</td>
</tr>
<tr>
<td>TOD</td>
<td>C (Critical)</td>
<td>There is no accurate TOD. XA-Core system has detected faults on all TOD clocks.</td>
</tr>
<tr>
<td>TOD</td>
<td>M (Major)</td>
<td>Total loss of redundancy for TOD.</td>
</tr>
<tr>
<td>TOD</td>
<td>(Minor)</td>
<td>Partial loss of time of day (TOD) redundancy.</td>
</tr>
<tr>
<td>XATrap</td>
<td>M (Major)</td>
<td>Trap rate is above threshold value.</td>
</tr>
<tr>
<td>DISK</td>
<td>(Minor)</td>
<td>The alarm indicates a disk access problem caused by a fault in an input/output processor (IOP) or disk packlet.</td>
</tr>
<tr>
<td>RTIF</td>
<td>C (Critical)</td>
<td>Access to all remote or local ports is not available.</td>
</tr>
<tr>
<td>RTIF</td>
<td>M (Major)</td>
<td>Access to two remote or local ports is not available.</td>
</tr>
<tr>
<td>RTIF</td>
<td>(Minor)</td>
<td>Access to one of the two remote or local ports is not available.</td>
</tr>
<tr>
<td>RExSch</td>
<td>(Minor)</td>
<td>Cancellation of more than two, daily system REx tests.</td>
</tr>
<tr>
<td>RExFlt</td>
<td>(Minor)</td>
<td>Indicates the failure of routine exercise tests (RExTst) that were conducted on one or more devices. The alarm remains up until all devices that failed the tests have been retested and have passed.</td>
</tr>
<tr>
<td>TAPE</td>
<td>(Minor)</td>
<td>An access problem between XA-Core and tape device caused by an OOS IOP or tape packet.</td>
</tr>
<tr>
<td>PEtbl</td>
<td>(Minor)</td>
<td>System software has detected a problem on one or more processor CPs. All PEs continue to be in service but at least one PE CP is in an IsTb state.</td>
</tr>
<tr>
<td>IOtbl</td>
<td>(Minor)</td>
<td>System software has detected a non-critical fault on one or more IOP or packet. All IOPs and packlets remain in service.</td>
</tr>
<tr>
<td>IOP</td>
<td>(Minor)</td>
<td>System software has detected a non-critical fault on one or more IOP or packet. All IOPs and packlets remain in service.</td>
</tr>
<tr>
<td>SMtbl</td>
<td>(Minor)</td>
<td>System software has detected a non-critical fault on one or more SM CP. All SMs CPs remain in service.</td>
</tr>
</tbody>
</table>
The subsystem status summary field (SSSF) displays the working status of the XA-Core equipment subsystems. The SSSF has three rows and four columns of fields that display the following information:

1. **Subsystem headers**: The subsystem headers permanently display a set of titles that describe the different XA-Core equipment subsystems.

2. **Hardware alarm codes**: The hardware alarm code fields display hardware alarms for each subsystem type. If there are multiple faults in a single CP/packlet type, the hardware alarm field displays the most important.

3. **OOS circuit pack/packet count**: The OOS CP/packet count fields display the total number of out-of-service CPs or packlets in each of the subsystems. The count can increase for each alarm condition. The count does not increase for non-critical device faults and trouble conditions.

Table 1-1 Alarm banner codes (Sheet 4 of 4)

<table>
<thead>
<tr>
<th>Alarm status code</th>
<th>Alarm severity</th>
<th>Alarm description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIBkey</td>
<td>M (Major)</td>
<td>Two RIBkeys remain connected.</td>
</tr>
<tr>
<td>RIBkey</td>
<td>(Minor)</td>
<td>A single retrofit inactive boot key (RIBkey) remains connected to the RTIF local port.</td>
</tr>
<tr>
<td>WgSlot</td>
<td>(Minor)</td>
<td>A CP is in a wrong, or un-provisionable slot. The slot does not contain the correct CP or packlet type.</td>
</tr>
<tr>
<td>FWsoak</td>
<td>(Minor)</td>
<td>The system raises the FWsoak alarm when the FRU is returned to service after loading new firmware. The system does not raise the alarm if the soak time for an FRU is set to zero in table XAFWLOAD.</td>
</tr>
</tbody>
</table>

MAP subsystem status summary field (SSSF)

The subsystem status summary field (SSSF) displays the working status of the XA-Core equipment subsystems. The SSSF has three rows and four columns of fields that display the following information:

1. **Subsystem headers**: The subsystem headers permanently display a set of titles that describe the different XA-Core equipment subsystems.

2. **Hardware alarm codes**: The hardware alarm code fields display hardware alarms for each subsystem type. If there are multiple faults in a single CP/packlet type, the hardware alarm field displays the most important.

3. **OOS circuit pack/packet count**: The OOS CP/packet count fields display the total number of out-of-service CPs or packlets in each of the subsystems. The count can increase for each alarm condition. The count does not increase for non-critical device faults and trouble conditions.

Figure 1-2 XA-Core MAP sub-system summary status field
The table below summarizes the SSSF hardware alarm codes for the SM, PE and IO subsystems.

Table 1-2 Fault/state conditions and SM, PE and IO SSSF alarms

<table>
<thead>
<tr>
<th>Fault/State</th>
<th>SM</th>
<th>PE</th>
<th>IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrectable fault</td>
<td>SMfl</td>
<td>PEfl</td>
<td>IOPfl</td>
</tr>
<tr>
<td>Inactive CP/packetlet</td>
<td>Splt</td>
<td>Splt</td>
<td>Splt</td>
</tr>
<tr>
<td>REx Test</td>
<td>RExTst</td>
<td>RExTst</td>
<td>RExTst</td>
</tr>
<tr>
<td>ManB CP</td>
<td>SM M</td>
<td>PE M</td>
<td>IOP M</td>
</tr>
<tr>
<td>CP trouble</td>
<td>SMtb</td>
<td>PEtb</td>
<td>IOPtb</td>
</tr>
<tr>
<td>Unprovisioned slot</td>
<td>badPEC</td>
<td>badPEC</td>
<td>badPEC</td>
</tr>
<tr>
<td>Unknown fault</td>
<td>SM ?</td>
<td>PE ?</td>
<td>IOP ?</td>
</tr>
<tr>
<td>Firmware fault</td>
<td>SMfw</td>
<td>PEfw</td>
<td>IOPfw</td>
</tr>
</tbody>
</table>

The table below summarizes the SSSF packlet (PKLT) hardware alarm codes. The PKLT field displays the alarm that matches the fault or state detected in a packet. The PKLT field displays only the packet alarm that matches the most critical hardware alarm.

Table 1-3 Fault/state conditions and PKLT SSSF alarms (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Fault/State</th>
<th>CMIC</th>
<th>TOD</th>
<th>LINK</th>
<th>RTIF</th>
<th>Local</th>
<th>AMDI</th>
<th>ETHR</th>
<th>Remote</th>
<th>DISK</th>
<th>TAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrectable fault</td>
<td>CMICfl</td>
<td>TODfl</td>
<td>LINKfl</td>
<td>RTIFfl</td>
<td>LocPfl</td>
<td>AMDIf</td>
<td>ETHRf</td>
<td>RemPfl</td>
<td>DISKf</td>
<td>TAPEfl</td>
</tr>
<tr>
<td>Inactive CP/packetlet</td>
<td>split</td>
</tr>
<tr>
<td>REx Test</td>
<td>RExTst</td>
</tr>
<tr>
<td>RIB Key not removed</td>
<td>RIBkey</td>
</tr>
<tr>
<td>CMIC Isolation</td>
<td>XAisol</td>
</tr>
<tr>
<td>TOD Isolation</td>
<td>TODflt</td>
</tr>
<tr>
<td>MS TOD fault</td>
<td>MSTOD</td>
</tr>
<tr>
<td>MS Isolation</td>
<td>MSisol</td>
</tr>
<tr>
<td>ManB packlet/link</td>
<td>CMIC M</td>
<td>LINK M</td>
<td>RTIF M</td>
<td>LocP M</td>
<td>AMDI M</td>
<td>ETHR M</td>
<td>RemP M</td>
<td>DISK M</td>
<td>TAPE M</td>
<td>TAPE M</td>
</tr>
</tbody>
</table>
Enabling and disabling of XA-Core alarms

You can enable or disable alarm notification by using the appropriate MAP Alarm_ command. The MAP terminal, warning lights and audible alarms notify operating company personnel of an event for enabled alarms.

The MAP or alarm notification system does not provide event notification for disabled alarms. The XA-Core software internally generates and records alarm events for all disabled alarms. The system records all alarm events for log generation, pegging OMs and updating internal data structures.

The Alarm_ command displays the current status of all enabled and disabled alarms to the MAP terminal.

Alarm enable MAP command

You can reset an alarm type by using the Alarm_ MAP command with the <enable> parameter. The command resets the alarm and allows event notification. A fault or maintenance event triggers an alarm (active alarm). An alarm does not have to be active to be enabled. Use the Alarm_ <enable> command from any MAP level.

Alarm disable MAP command

For maintenance or troubleshooting purposes, you can override the display of an existing alarm (system default or operating company personnel-selected). Disable any alarm by using the Alarm_ MAP command with the <disable> parameter. Use the Alarm_ <disable> command from any MAP level.
A disabled alarm does not remove the cause of the alarm. The reason for the alarm exists, but the alarm does not appear in the alarm banner. You can disable an inactive alarm.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term system degradation</td>
</tr>
<tr>
<td>If you disable an alarm for maintenance or troubleshooting and then fail to re-enable that alarm, a situation then exists in which the system could run in a degraded state, without issuing an alarm to call attention to the problem.</td>
</tr>
</tbody>
</table>

Alarm raised MAP command
You can find out which alarms are currently raised and whether those alarms are enabled or disabled by using Alarm_ MAP command with the <raised> parameter.

Alarms and log reports
Log reports are a primary source of information about the function of the XA-Core equipment and performance. Use the Logs with the alarm system. Log reports include the following information:

- severity of the log (represented by number of asterisks)
- type of log
- time and date
- suspected problem
- list of suspected faulty components

The LOGUTIL system outputs the appropriate log reports. Each alarm matches one or more logs. The MAP alarm banner displays XA-Core related alarms.

For lists of the logs that are related to each alarm, see Table 7-1, “Relations among alarms, logs, and OMs,” on page 7-5 in this document.
Alarm display

<table>
<thead>
<tr>
<th>XAC AMDI</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indication

An AMDI critical alarm code appears under the XAC header of the alarm banner. The alarm code indicates a ATM multi-node data interface (AMDI) critical alarm.

Meaning

All AMDI links in at least one group (as defined in table XAMDILNK) are out of service (OOS).

The following link states can contribute to an AMDI critical alarm:

- AMDI links are in ManBsy state
- AMDI links are in CBsy state
- AMDI links are in SysBsy state

Impact

A minimum of one AMDI link for each messaging group must be INSV to guarantee messaging to a Multi-service Gateway 4000 (MG4K). Without at least one INSV AMDI link for each messaging group, call origination cannot occur at the Call Server.

Common procedures

This procedure refers to the replacement procedures for the AMDI packlet, for the IOP circuit pack, and for the HIOP circuit pack.

Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

- What hardware handles AMDI links?
- Obtain logs
- Links ManB?
 - RTS links
 - OOS test passed?
 - RTS links
 - RTS successful?
 - Delete the excess datafill
 - Add links for redundancy
 - OOS test passed?
 - RTS links
 - RTS successful?
 - Delete the excess datafill
 - Add links for redundancy
 - Links SysB?
 - ManB the links, do OOS test
 - Excess datafill in table?
 - Too few links for redundancy?
 - Add links for redundancy
 - Delete the excess datafill
 - Excess datafill in table?
 - Too few links for redundancy?
 - Add links for redundancy
 - Delete the excess datafill
 - Links CBsy?
 - Excess datafill in table?
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure.
Use the step instructions that follow this flowchart to clear the alarm.
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure.
Use the step instructions that follow this flowchart to clear the alarm.
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. **Clean the fiber-optic components**
2. **Links state?**
 - **No problem found**
 - **Problem in far-end equipmt?**
 - **Problem found**
 - **Correct the problem**
 - **What hard-ware handles AMDI links?**
 - **AMDI packlets**
 - **HIOPs**
 - **Replace packlet**
 - **RTS links**
 - **RTS successful?**
 - **Y**
 - **Call next level of support**
 - **N**
 - **Clear the alarm**
 - **N**
 - **Clear the alarm**
4. **Alarm clear?**
 - **Y**
 - **N**
 - **Call next level of support**
5. **Different alarm?**
 - **Y**
 - **N**
 - **End**
Understanding the alarm system

How to clear an AMDI alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of equipment damage - electric static discharge (ESD)
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location

1. If you know the type of hardware that handles the AMDI links in the XA-Core, go to step 4. (The links can be handled either by Ethernet packetts or by HIOP circuit packs.) If you do not know the type of hardware, proceed to step 2.

2. Access the XA-Core AMDI MAP level by typing
 \texttt{MAPCI;MTC;XAC;AMDI}
 and pressing the Enter key.

3. Examine the AMDI MAP level. Determine whether the AMDI links connect to AMDI packetts or to HIOP circuit packs.
 The following examples show what the MAP level looks like in the two cases.
The following are sample MAP displays.

AMDI MAP level showing AMDI links connected to packlets

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI</td>
<td>Front: 11111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Tst_</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Typh:</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Slot:</td>
<td>Side:</td>
<td>Packet:</td>
<td>Status:</td>
<td>Port0:</td>
<td>Port1:</td>
<td>Link0:</td>
<td>Link1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Rear Lower</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Rear Lower</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Rear Lower</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Rear Lower</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>14:12 ></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If the “Packet” fields are blank, then the AMDI links connect to HIOP circuit packs.

AMDI MAP level showing AMDI links connected to HIOP circuit packs

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI</td>
<td>Front: 11111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Tst_</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>14:12 ></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the AMDI links are connected to</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI packlets</td>
<td>step 5</td>
</tr>
<tr>
<td>HIOP CPs</td>
<td>step 42</td>
</tr>
</tbody>
</table>

5 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.
 a Access the log utility feature. At the CI MAP level, type
 `>LOGUTIL`
 and press the Enter key.
 b Access the XA-Core logs. At the Logutil prompt type
 `>OPEN XAC`
 and press the Enter key.
 c Examine and record the appropriate log reports.
 d Exit from the log utility. At the Logutil prompt type
 `>QUIT`
 and press the Enter key.

<table>
<thead>
<tr>
<th>If the logs</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>do not indicate that the AMDI critical alarm condition is clear</td>
<td>step 6</td>
</tr>
<tr>
<td>indicate that the AMDI critical alarm condition is clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

6 Access the IO MAP level. At the MAP terminal, type
 `>MAPCI;MTC;XAC;IO`
 and press the Enter key.
XAC AMDI

critical (continued)

7. Examine the IO MAP level. Record the working state and location of each IOP CP.

 Note: The IO MAP level displays IOP CP and packet working states as follows:
 - an alarm code appears under the XAC header in the alarm banner
 - an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
 - a status indicator appears in the state field in the shelf layout area.
 - a status indicator appears in the equipment status field in the command interpreter output area.

 The following is a sample MAP display.

IO MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Front:** 111111111 **Rear:** 111111
- **SM PE IO PKLT:** 123456789012345678 46789012345
- **Sta:** .-.-.--.-..-..-.. **M:** .-..-.---.-..-..-.--
- **Dep:** 0 0 1 0
- **Typ:** * * * *
- **Slot:** Side: Status:
- **Upper:** Middle: Lower:
- **Front:** Tape: Disk.
- **Rear:** RTIF: CMIC.
- **AMDI:** XAC: IO:

8. Access the XA-Core AMDI MAP level by typing

 `MAPCI;MTC;XAC;AMDI`

 and pressing the Enter key.
Examine the AMDI MAP level. Record the working state and location of each AMDI packet.

Note: The AMDI MAP level can display alarms and status as follows:
- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

AMDI MAP level

<table>
<thead>
<tr>
<th>Slot</th>
<th>Side</th>
<th>Packet</th>
<th>Status</th>
<th>Port0</th>
<th>Port1</th>
<th>Link0</th>
<th>Link1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The information you gather in this step will be of use in step 10.
Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If more than one of the statements listed in the left-hand column is true, choose the first true one that you encounter.

<table>
<thead>
<tr>
<th>If the information from the logs, and from the IOP and AMDI MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI link is in a ManB state</td>
<td>step 11</td>
</tr>
<tr>
<td>AMDI link is in a SysB state</td>
<td>step 12</td>
</tr>
<tr>
<td>AMDI link is in a CBsy state</td>
<td>step 20</td>
</tr>
<tr>
<td>AMDI packet is in a ManB state</td>
<td>step 21</td>
</tr>
<tr>
<td>AMDI packet is in a SysB state</td>
<td>step 22</td>
</tr>
<tr>
<td>AMDI packet is in a CBsy state</td>
<td>step 26</td>
</tr>
<tr>
<td>IOP CP is in a ManB state</td>
<td>step 27</td>
</tr>
<tr>
<td>IOP CP is in a SysB state</td>
<td>step 29</td>
</tr>
<tr>
<td>none of the conditions listed above exists, but there is an AMDI alarm</td>
<td>step 34</td>
</tr>
<tr>
<td>there is no alarm and all CPs, all ports, and all links are InSv</td>
<td>step 79</td>
</tr>
</tbody>
</table>

Return the OOS AMDI links to service. Repeat this step for each ManB link.

At the AMDI MAP level type

\texttt{>RTS <nn> <s> <p> <link>}

and press the Enter key

where

\texttt{<nn>} is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

\texttt{<s>} is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

\texttt{<p>} is the position parameter value indicating the packet location, upper (u) or lower (l).

\texttt{<link>} is the parameter that defines the link on an OC-3 packet. The two possible values are link0 or link1.

Example of command use:

\texttt{RTS 14 r l link0}
Understanding the alarm system

Example of system response:

RTS 14 rear lower link0 passed

<table>
<thead>
<tr>
<th>If the AMDI links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 12</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 20</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
</tbody>
</table>

12 Manually busy the OOS AMDI links. Repeat this step for each SysB link. At the AMDI MAP level type

>BSY <nn> <s> <p> <link>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an OC-3 packlet. The two possible values are link0 or link1.

Example of command use:

>BSY 14 r l link0

Example of system response:

BSY 14 rear lower link0 complete

Note: If needed, use the Force option to place the link in a ManB state.

Refer to the XA-Core MAP commands documentation.

13 Perform an OOS test on the AMDI links. Repeat this step for each ManB AMDI link. At the AMDI MAP level type

>TST <nn> <s> <p> <link>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an OC-3 packlet. The two possible values are link0 or link1.
Example of command use:

>`TST 14 r l link0`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 14</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 15</td>
</tr>
</tbody>
</table>

14

Return the OOS AMDI links to service. Repeat this step for each ManB link.

At the AMDI MAP level type

>`RTS <nn> <s> <p> <link>`

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r).

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an OC-3 packlet. The two possible values are link0 or link1.

Example of command use:

`RTS 14 r l link0`

Example of system response:

RTS 14 rear lower link0 passed

<table>
<thead>
<tr>
<th>If the AMDI links</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are in an InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>are not in an InSv state</td>
<td>step 15</td>
</tr>
</tbody>
</table>

15

Perform the Cleaning fiber-optic components and assemblies procedure. Refer to the correct NTP.

<table>
<thead>
<tr>
<th>If the links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 16</td>
</tr>
</tbody>
</table>
16 Check the far-end equipment for problems. (Problems in the far-end equipment are outside the scope of this document.)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you find problems</td>
<td>step 17</td>
</tr>
<tr>
<td>you do not find problems</td>
<td>step 19</td>
</tr>
</tbody>
</table>

17 Correct problems in the far-end equipment.

18 Go to step 6 and proceed from there.

19 Replace the AMDI packlet to find out whether that makes it possible to return the AMDI links to service. Proceed as follows.

 a Replace the AMDI packlet. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.

 b Return the AMDI packlet to service. At the AMDI MAP level type

 >RTS <nn> <s> <p>

 and press the Enter key

 where

 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

 <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

 <p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

 Example of command use:

 >RTS 5 r l

 Example of system response:

 RTS 5 rear lower passed

 c Return the AMDI links to service. Repeat this step for each link. At the AMDI MAP level type

 >RTS <nn> <s> <p> <link>

 and press the Enter key

 where

 <nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

 <s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

 <p> is the position parameter value indicating the packet location, upper (u) or lower (l).

 <link> is the parameter that defines the link on an OC-3 packet. The two possible values are link0 or link1.
You were directed to this step because you found that an AMDI link was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an AMDI packlet.

You are at the AMDI MAP level, where the working state of the packet is displayed.

Select the next step as follows:

If the AMDI links

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>are in an InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>are not in an InSv state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

If the AMDI packet is

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 21</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 22</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 26</td>
</tr>
</tbody>
</table>

Return the OOS AMDI packlet to service. At the AMDI MAP level type

>`RTS <nn> <s> <p>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value indicating the packet location, upper (u) or lower (l).

Example of command use:

>`RTS 5 r l`

Example of system response:

RTS 5 rear lower passed

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 22</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
</tbody>
</table>
22 Manually busy the AMDI packet. At the AMDI MAP level type
>BSY <nn> <s> <p>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the
physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical
shelf - front (f) or rear (r)
<p> is the position parameter value indicating the packet location, upper (u)
or lower (l).
Example of command use:
>BSY 5 r l
Example of system response:
BSY 5 rear lower complete

Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the AMDI packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 23</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

23 Perform an OOS test on the ManB AMDI packet. At the AMDI MAP level type
>TST <nn> <s> <p>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the
physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical
shelf - front (f) or rear (r)
<p> is the position parameter value indicating the packet location, upper (u)
or lower (l).
Example of command use:
>TST 5 r l

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 24</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 25</td>
</tr>
</tbody>
</table>
24 Return the AMDI packet to service. At the AMDI MAP level type

```bash
>RTS <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value indicating the packet location, upper (u) or lower (l).

Example of command use:

```bash
>RTS 5 r l
```

Example of system response:

```bash
RTS 5 rear lower passed
```

If the AMDI packet is

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>CBsy state</td>
<td>step 26</td>
</tr>
<tr>
<td>Any state other than InSv or CBsy</td>
<td>step 25</td>
</tr>
</tbody>
</table>

25 Replace the AMDI packet. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.

If the AMDI packet is

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>SysB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

26 You were directed to this step because you found that an AMDI packet was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an IOP CP.

Proceed as follows.

a Access the IO MAP level. Type

```bash
>MAPCI;MTC;XAC;IO
```

and press the Enter key.
b Find out the working state of the IOP CP.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 28</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 30</td>
</tr>
</tbody>
</table>

27 Access the IO MAP level. At the MAP terminal, type

>`MAPCl;MTC;XAC;IO`

and press the Enter key.

28 Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

>`RTS <nn> <s>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>`RTS 4 r`

Example of system response:

`RTS 4 rear passed`

b Make sure that all related packlets are in service. Examine the IO MAP level to determine the packet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>not InSv</td>
<td>step 31</td>
</tr>
</tbody>
</table>

29 Access the IO MAP level. At the MAP terminal, type

>`MAPCl;MTC;XAC;IO`

and press the Enter key.

30 Manually busy the OOS IOP CP. At the IO MAP level type

>`BSY <nn> <s>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r

Example of system response:

BSY 4 rear complete

Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.

31 Perform an OOS test on the ManB IOP CP. At the IO MAP level type

>TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>TST 4 r

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 32</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 33</td>
</tr>
</tbody>
</table>

32 Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>RTS 4 r

Example of system response:

RTS 4 rear passed
b Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 33</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
</tbody>
</table>

33 Replace the IOP CP. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

34 If an AMDI alarm has been raised, but there is no evidence that any hardware or link is busy or defective, check whether there is excess datafill in table XAMDILNK. If a link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.

Note: The AMDI MAP level, which you accessed in step 8, lists the links that actually exist.

Proceed as follows

a Start the table editor and access table XAMDILNK. Type

>`TABLE XAMDILNK`

and press the Enter key.

Example of system response:

```
TABLE: XAMDILNK
```

b Display the contents of the table. Type

>`LIST ALL`

and press the Enter key

Example of system response:

<table>
<thead>
<tr>
<th>LINKNO</th>
<th>GROUP</th>
<th>SLOT</th>
<th>PACKLET</th>
<th>PORT</th>
<th>PROTOCOL</th>
<th>LOOPBACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>REAR</td>
<td>LOWER</td>
<td>0</td>
<td>SONET</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>14</td>
<td>REAR</td>
<td>LOWER</td>
<td>0</td>
<td>SONET</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>13</td>
<td>REAR</td>
<td>LOWER</td>
<td>0</td>
<td>SONET</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>REAR</td>
<td>LOWER</td>
<td>0</td>
<td>SONET</td>
</tr>
</tbody>
</table>
c Compare the datafill in the table to the AMDI links that exist in the system.

<table>
<thead>
<tr>
<th>If table XAMDILNK</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>contains excess datafill</td>
<td>step 35</td>
</tr>
<tr>
<td>does not contain excess datafill</td>
<td>step 38</td>
</tr>
</tbody>
</table>

35 Delete each tuple that specifies a link that does not actually exist.
For each tuple that needs to be deleted, proceed as follows.

a Use the POS command to move to the tuple that you want to delete. Type

>`POS <linkno>`

where

<linkno> is the link number, the leftmost field in the display
For example if link 4 does not exist, type

>`POS 4`

and press the Enter key.

Example of system response:

4 1 6 REAR LOWER 0 SONET AMDI06RL0

b Delete the tuple. Type

>`DEL`

and press the Enter key.

Example of system response:

TUPLE TO BE DELETED:
4 1 6 REAR LOWER 0 SONET AMDI06RL0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

c Confirm the deletion. type

>`Y`

and press the Enter key.

Example of system response:

TUPLE DELETED:
WRITTEN TO JOURNAL FILE AS JF NUMBER 543

36 Exit from the table editor. Type

>`QUIT`

and press the Enter key.

37 Go to step 6.
Check whether there are enough AMDI links to satisfy the system’s minimum redundancy requirements. The links must be in groups of two. If a link is in a group all by itself, then redundancy requirements are not satisfied.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>redundant links are missing</td>
<td>step 39</td>
</tr>
<tr>
<td>redundant links are not missing</td>
<td>step 78</td>
</tr>
</tbody>
</table>

If redundant links are missing, then to clear the alarm you must configure the necessary links in table XAMDILNK and install the links. After doing these things, resume at step 6.

Confirm that the alarm is clear. Examine the alarm banner on the AMDI MAP level.

<table>
<thead>
<tr>
<th>If the AMDI critical alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 41</td>
</tr>
<tr>
<td>not clear</td>
<td>step 78</td>
</tr>
<tr>
<td>clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

Perform the correct alarm clearing procedure. Alarm clearing procedures are in this document, in the chapter titled “Understanding the alarm system”. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 78</td>
</tr>
<tr>
<td>clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

a. Access the log utility feature. At the CI MAP level, type

```>LOGUTIL```

and press the Enter key.

b. Access the XA-Core logs. At the Logutil prompt type

```>OPEN XAC```

and press the Enter key.

c. Examine and record the appropriate log reports.
XAC AMDI critical (continued)

d Exit from the log utility. At the Logutil prompt type

>QUIT

and press the Enter key.

If the logs

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>do not indicate that the AMDI critical alarm condition is clear</td>
</tr>
<tr>
<td>indicate that the AMDI critical alarm condition is clear</td>
</tr>
</tbody>
</table>

43 Access the IO MAP level. At the MAP terminal, type

>MAPCI;MTC;XAC;IO

and press the Enter key.

44 Examine the IO MAP level. Record the working state of the system and the HIOP CPs. Also record the HIOP CP locations on the physical shelf, side and slot.

Note: The IO MAP can display alarms and status as follows:
- an IOP alarm appears under the XAC header in the alarm banner
- an equipment alarm under the PE header in the subsystem summary status field (SSSF)

The following is a sample MAP display.

IO MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Front: 111111111 | Rear: 111111 | SM | PE | IO | PKLT |
| 123456789012345678 | 456789012345 | . | . | . | . |

Sta: 0 0 0 0 0 0
Dep: Typ: * * *** ***

Slot: Side: Status: Upper: Middle: Lower:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Tape</td>
<td>Disk</td>
</tr>
<tr>
<td>Front</td>
<td>Tape</td>
<td>Disk</td>
</tr>
<tr>
<td>Rear</td>
<td>RTIF</td>
<td>CMIC</td>
</tr>
<tr>
<td>Rear</td>
<td>RTIF</td>
<td>ETHR</td>
</tr>
<tr>
<td>Rear</td>
<td>RTIF</td>
<td>ETHR</td>
</tr>
<tr>
<td>Rear</td>
<td>RTIF</td>
<td>CMIC</td>
</tr>
</tbody>
</table>

XAC: MS IOD Net PM CCS Lns Trks Ext APPL
XMAP0
Time 14:12

Note: The information you gather in this step will be of use in step 47.
45 Access the XA-Core AMDI MAP level by typing
\texttt{MAPCI;MTC;XAC;AMDI}
and pressing the Enter key.

46 Examine the AMDI MAP level.

\textit{Note:} The AMDI MAP level can display alarms and status as follows:

- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
XAC & MS & IGD & Net & PM & CCS & Lns & Trks & Ext & APPL \\
\hline
\hline
AMDI & & & & & & & & & \\
0 & Quit & & & & & & & & \\
2 & Sta: & & & & & & & & \\
3 & Dep: & & & & & & & & \\
4 & Typ: & & & & & & & & \\
5 & Slot: & & & & & & & & \\
6 & Tst_ & & & & & & & & \\
7 & Bsy_ & & & & & & & & \\
8 & RTS_ & & & & & & & & \\
9 & & & & & & & & & \\
10 & XAC: & & & & & & & & \\
11 & AMDI: & & & & & & & & \\
12 & & & & & & & & & \\
13 & & & & & & & & & \\
14 & & & & & & & & & \\
15 & & & & & & & & & \\
16 & & & & & & & & & \\
17 & & & & & & & & & \\
18 & & & & & & & & & \\
\hline
\end{tabular}
\caption{AMDI MAP level}
\end{table}

\textit{Note:} The information you gather in this step will be of use in step 47.
Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If more than one of the statements listed in the left-hand column is true, choose the first true one that you encounter.

<table>
<thead>
<tr>
<th>If the information from the logs, and from the IOP and AMDI MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI link is in a ManB state</td>
<td>step 48</td>
</tr>
<tr>
<td>AMDI link is in a SysB state</td>
<td>step 49</td>
</tr>
<tr>
<td>AMDI link is in a CBsy state</td>
<td>step 57</td>
</tr>
<tr>
<td>AMDI port is in a ManB state</td>
<td>step 58</td>
</tr>
<tr>
<td>AMDI port is in a SysB state</td>
<td>step 59</td>
</tr>
<tr>
<td>AMDI port in a CBsy state</td>
<td>step 62</td>
</tr>
<tr>
<td>HIOP CP is in a ManB state</td>
<td>step 63</td>
</tr>
<tr>
<td>HIOP CP is in a SysB state</td>
<td>step 65</td>
</tr>
<tr>
<td>none of the conditions listed above exists, but there is an AMDI alarm</td>
<td>step 70</td>
</tr>
<tr>
<td>there is no alarm and all CPs, all ports, and all links are InSv</td>
<td>step 79</td>
</tr>
</tbody>
</table>

Return the OOS AMDI links to service. Repeat this step for each ManB link. At the AMDI MAP level type

```
>RTS <nn> <s> <link>
```

and press the Enter key

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)
- `<link>` is the parameter that defines the link. The two possible values are link0 or link1.

Example of command use:

```
RTS 14 r link0
```
Example of system response:
RTS 14 rear link0 passed

<table>
<thead>
<tr>
<th>If the AMDI links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 49</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 57</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

49 Manually busy the OOS AMDI links. Repeat this step for each SysB link. At the AMDI MAP level type

>BSY <nn> <s> <link>
and press the Enter key
where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<link> is the parameter that defines the link. The two possible values are link0 or link1.

Example of command use:

>BSY 14 r link0

Example of system response:
BSY 14 rear link0 passed

Note: If needed, use the Force option to place the link in a ManB state. Refer to the XA-Core MAP commands documentation.
Perform an OOS test on the AMDI links. Repeat this step for each ManB AMDI link. At the AMDI MAP level type

>`TST <nn> <s> <link>

and press the Enter key

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
- `<link>` is the parameter that defines the link. The two possible values are link0 or link1.

Example of command use:

>`TST 14 r link0`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 51</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 52</td>
</tr>
</tbody>
</table>

Return the OOS AMDI links to service. Repeat this step for each ManB link. At the AMDI MAP level type

>`RTS <nn> <s> <link>

and press the Enter key

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)
- `<link>` is the parameter that defines the link. The two possible values are link0 or link1.

Example of command use:

`RTS 14 r link0`

Example of system response:

RTS 14 rear link0 passed

<table>
<thead>
<tr>
<th>If the AMDI links</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are in an InSv state</td>
<td>step 43</td>
</tr>
<tr>
<td>are not in an InSv state</td>
<td>step 52</td>
</tr>
</tbody>
</table>
Perform the Cleaning fiber-optic components and assemblies procedure. Refer to the correct NTP.

<table>
<thead>
<tr>
<th>If the links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 43</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 53</td>
</tr>
</tbody>
</table>

Check the far-end equipment for problems. (Problems in the far-end equipment are outside the scope of this document.)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you find problems</td>
<td>step 54</td>
</tr>
<tr>
<td>you do not find problems</td>
<td>step 56</td>
</tr>
</tbody>
</table>

Correct problems in the far-end equipment.

Go to step 43 and proceed from there.

Replace the HIOP CP to find out whether that makes it possible to return the AMDI links to service. Proceed as follows.

a Replace the HIOP CP. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.

b Return the HIOP CP to service. At the IO MAP level type

\[\text{\texttt{>RTS <nn> <s>}}\]

and press the Enter key

where

\(<\text{nn}>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

\(<\text{s}>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

\[\text{\texttt{>RTS 5 r}}\]

Example of system response:

RTS 5 rear passed

c Return the AMDI ports to service. Repeat this step for each port. At the AMDI MAP level type

\[\text{\texttt{>RTS <nn> <s> <port>}}\]

and press the Enter key

where

\(<\text{nn}>\) is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)

<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

RTS 5 r port0

Example of system response:
RTS 5 rear port0 passed

d Return the AMDI links to service. Repeat this step for each link. At the AMDI MAP level type

>RTS <nn> <s> <link>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)

<link> is the parameter that defines the link. The two possible values are link0 or link1.

Example of command use:

RTS 5 r link0

Example of system response:
RTS 5 rear link0 passed

If the AMDI links are in an InSv state step 43
If the AMDI links are not in an InSv state step 78

You were directed to this step because you found that an AMDI link was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is the AMDI port.

Select the next step as follows:

If the AMDI port is in a ManB state step 58
If the AMDI port is in a SysB state step 59
If the AMDI port is in a CBsy state step 62
58 Return the OOS AMDI ports to service. Repeat this step for each ManB port. At the AMDI MAP level type

>RTS <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)

<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

RTS 14 r port0

Example of system response:

RTS 14 rear port0 passed

<table>
<thead>
<tr>
<th>If the AMDI ports are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 59</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 62</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

59 Manually busy the OOS AMDI ports. Repeat this step for each SysB port. At the AMDI MAP level type

>BSY <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

>BSY 14 r port0

Example of system response:

BSY 14 rear port0 passed

Note: If needed, use the Force option to place the port in a ManB state. Refer to the XA-Core MAP commands documentation.
Perform an OOS test on the AMDI ports. Repeat this step for each ManB AMDI port. At the AMDI MAP level type

\texttt{\textgreater TST <nn> <s> <port>}

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

\texttt{\textgreater TST 14 r port0}

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 61</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 69</td>
</tr>
</tbody>
</table>

Return the OOS AMDI ports to service. Repeat this step for each ManB port. At the AMDI MAP level type

\texttt{\textgreater RTS <nn> <s> <port>}

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)

<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

\texttt{RTS 14 r port0}

\textit{Example of system response:}

RTS 14 rear port0 passed

<table>
<thead>
<tr>
<th>If the AMDI ports are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 69</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 43</td>
</tr>
</tbody>
</table>
You were directed to this step because you found that an AMDI port was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an HIOP CP.

Proceed as follows.

a. Access the IO MAP level. At the MAP terminal, type

 >MAPCI;MTC;XAC;IO

 and press the Enter key.

b. Find out the state of the HIOP CP.

c. Select the next step as follows:

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 64</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 66</td>
</tr>
</tbody>
</table>

Access the IO MAP level. At the MAP terminal, type

 >MAPCI;MTC;XAC;IO

 and press the Enter key.

Return the OOS HIOP CP to service. At the IO MAP level type

 >RTS <nn> <s>

 and press the Enter key

 where

 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

 <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

 >RTS 5 r

 Example of system response:

 RTS 5 rear passed

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 66</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 44</td>
</tr>
</tbody>
</table>

Access the IO MAP level. At the MAP terminal, type

 >MAPCI;MTC;XAC;IO

 and press the Enter key.
Manually busy the OOS HIOP CP. At the IO MAP level type

>`BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>`BSY 5 r

Example of system response:

BSY 5 rear complete

Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 67</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

Perform an OOS test on the ManB HIOP CP. At the IO MAP level type

>`TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>`TST 5 r

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 68</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 69</td>
</tr>
</tbody>
</table>
68 Return the HIOP CP to service. At the IO MAP level type
 >RTS <nn> <s>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the
 physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP location in the physical
 shelf - front (f) or rear (r)
 Example of command use:
 >RTS 5 r
 Example of system response:
 RTS 5 rear passed

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 69</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 44</td>
</tr>
</tbody>
</table>

69 Replace the HIOP CP. The replacement procedure is in this document, in the
chapter titled “Introduction to card replacement”. Return to this point when
complete.

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 44</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

70 If an AMDI alarm has been raised, but there is no evidence that any hardware,
port, or link is busy or defective, check whether there is excess datafill in table
XAMDILNK. If a link has been provisioned in the table but does not actually
exist, the system looks for the link, cannot find it, and raises an alarm.

 Note: The AMDI MAP level, which you accessed in step 45, lists the links
 that actually exist.

 Proceed as follows

 a Start the table editor and access table XAMDILNK. Type
 >TABLE XAMDILNK
 and press the Enter key.
 Example of system response:
 TABLE: XAMDILNK

b Display the contents of the table. Type
 >LIST ALL
 and press the Enter key
Example of system response:

Example of the contents of table XAMDILNK

<table>
<thead>
<tr>
<th>LINKNO</th>
<th>GROUP</th>
<th>SLOT</th>
<th>PACKLET</th>
<th>PORT</th>
<th>PROTOCOL</th>
<th>LOOPBACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>REAR</td>
<td>NONE</td>
<td>0</td>
<td>SONET</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>REAR</td>
<td>NONE</td>
<td>1</td>
<td>SONET</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>14</td>
<td>REAR</td>
<td>NONE</td>
<td>0</td>
<td>SONET</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>14</td>
<td>REAR</td>
<td>NONE</td>
<td>1</td>
<td>SONET</td>
</tr>
</tbody>
</table>

c Compare the datafill in the table to the AMDI links that exist in the system.

If table XAMDILNK Do
contains excess datafill step 71
does not contain excess datafill step 74

71 Delete each tuple that specifies a link that does not actually exist.
For each tuple that needs to be deleted, proceed as follows.
a Use the POS command to move to the tuple that you want to delete. Type
 >POS <linkno>
 where
 <linkno> is the link number, the leftmost field in the display
 For example if link 4 does not exist, type
 >POS 4
 and press the Enter key.
 Example of system response:
 4 1 14 REAR NONE 1 SONET AMDI14R1
b Delete the tuple. Type
 >DEL
 and press the Enter key.
 Example of system response:
 TUPLE TO BE DELETED:
 4 1 14 REAR NONE 1 SONET AMDI14R1
 ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
c Confirm the deletion. Type
 >Y
 and press the Enter key.
Understanding the alarm system

Example of system response:

TUPLE DELETED:
WRITTEN TO JOURNAL FILE AS JF NUMBER 543

72 Exit from the table editor. Type
>QUIT
and press the Enter key.

73 Go to step 43.

74 Check whether there are enough AMDI links to satisfy the system’s minimum redundancy requirements. The links must be in groups of two. If a link is in a group all by itself, then redundancy requirements are not satisfied.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>redundant links are missing</td>
<td>step 75</td>
</tr>
<tr>
<td>redundant links are not missing</td>
<td>step 78</td>
</tr>
</tbody>
</table>

75 If redundant links are missing, then to clear the alarm you must configure the necessary links in table XAMDILNK and install the links. After doing these things, resume at step 43.

76 Confirm that the alarm is clear. Examine the alarm banner on the AMDI MAP level.

<table>
<thead>
<tr>
<th>If the AMDI critical alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 77</td>
</tr>
<tr>
<td>not clear</td>
<td>step 78</td>
</tr>
<tr>
<td>clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

77 Perform the correct alarm clearing procedure. Alarm clearing procedures are in this document, in the chapter titled “Understanding the alarm system”. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 78</td>
</tr>
<tr>
<td>clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

78 Call the next level of support.

79 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Alarm display

<table>
<thead>
<tr>
<th>XAC</th>
<th>AMDI</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Indication

An AMDI major alarm code appears under the XAC header of the alarm banner. The alarm code indicates an ATM multi-node data interface (AMDI) major alarm.

Meaning

One AMDI link in at least one group (as defined in table XAMDILNK) is out of service (OOS).

The following link states can contribute to an AMDI major alarm:

- AMDI links are in ManBsy state
- AMDI links are in CBsy state
- AMDI links are in SysBsy state

Impact

A loss of AMDI link redundancy occurs. There is no loss of call origination at the Call Server.

Common procedures

This procedure refers to the replacement procedures for the AMDI packlet, for the IOP circuit pack, and for the HIOP circuit pack.

Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure.
Use the step instructions that follow this flowchart to clear the alarm.

1. Perform packlet OOS test
2. Packlet ManB?
 - Yes: Packlet SysB?
 - Yes: RTS packet
 - No: Packlet InSv?
 - Yes: OOS test passed?
 - Yes: RTS packet
 - No: Replace packlet
 - No: Replace packlet
 - No: Packlet InSv?
 - Yes: Perform packlet OOS test
 - No: Replace packlet
3. IOP ManB?
 - Yes: IOP SysB?
 - Yes: Perform IOP OOS test
 - No: IOP InSv?
 - Yes: Replace IOP CP
 - No: IOP InSv?
9. RTS IOP
 - Yes: RTS IOP
 - No: RTS IOP
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. Obtain logs
2. Links ManB?
 - Y: RTS links
 - N: Links SysB?
 - Y: ManB the links, do OOS test
 - N: OOS test passed?
 - Y: RTS links
 - N: RTS successful?
 - Y: OOS test passed?
 - Y: Replace HIOP
 - N: RTS Port
 - N: Port InSv?
 - Y: RTS Port
 - N: Port InSv?
 - Y: RTS Port
 - N: Delete the excess datafill
3. Links CBsy?
 - Y: Too few links for redundancy?
 - Y: Add links for redundancy
 - N: Excess datafill in table?
 - Y: Delete the excess datafill
 - N: N
4. Port ManB?
 - Y: OOS test passed?
 - Y: Replace HIOP
 - N: RTS Port
 - N: Port InSv?
 - Y: RTS Port
 - N: Port InSv?
 - Y: RTS Port
 - N: N
5. Port SysB?
 - Y: Perform Port OOS test
 - N: N
6. Port CBsy?
 - Y: N
 - N: N
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure.
Use the step instructions that follow this flowchart to clear the alarm.

1. HIOP ManB?
 - Y: RTS HIOP
 - N: HIOP SysB?
 - Y: Perform HIOP OOS test
 - N: HIOP InSv?
 - Y: OOS test passed?
 - N: Replace HIOP
 - Y: RTS HIOP
 - N: HIOP InSv?
 - Y: Replace HIOP
2. HIOP SysB?
 - Y: RTS HIOP
 - N: HIOP InSv?

This flowchart outlines the steps to clear an AMDI alarm, with decision points at each stage to guide the user through the process.
Summary of clearing an AMDI alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. Clean the fiber-optic components
2. Links state?
3. SYSB
4. Problem in far-end equipment?
5. No problem found
6. What hardware handles AMDI links?
7. HIOPs
8. Replace HIOP
9. RT errors
10. RTS packets
11. AMDI packets
12. HIOPs
13. What hardware handles AMDI links?
14. Replace packlet
15. Correct the problem
16. Alarm clear?
17. Y
18. Clear the alarm
19. N
20. Call next level of support
21. Different alarm?
22. Y
23. Clear the alarm
24. N
25. End
26. N
How to clear an AMDI alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of equipment damage - electric static discharge (ESD)
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location

1 If you know the type of hardware that handles the AMDI links in the XA-Core, go to step 4. (The links can be handled either by Ethernet packlets or by HIOP circuit packs.) If you do not know the type of hardware, proceed to step 2.

2 Access the XA-Core AMDI MAP level by typing
 MAPCI;MTC;XAC;AMDI
 and pressing the Enter key.

3 Examine the AMDI MAP level. Determine whether the AMDI links connect to AMDI packlets or to HIOP circuit packs.
 The following examples show what the MAP level looks like in the two cases.
The following are sample MAP displays.

AMDI MAP level showing AMDI links connected to packlets

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI</td>
<td>Front: 11111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tst_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bsy_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LoadFW_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Uneq_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Indicat_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Query_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>14:12</td>
<td>></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMDI MAP level showing AMDI links connected to HIOP circuit packs

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI</td>
<td>Front: 11111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tst_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bsy_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LoadFW_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Uneq_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Indicat_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Query_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>14:12</td>
<td>></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If the “Packlet” fields are blank, then the AMDI links connect to HIOP circuit packs.
4 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the AMDI links are connected to</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI packlets</td>
<td>step 5</td>
</tr>
<tr>
<td>HIOP CPs</td>
<td>step 42</td>
</tr>
</tbody>
</table>

5 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

 a. Access the log utility feature. At the CI MAP level, type

 >LOGUTIL
 and press the Enter key.

 b. Access the XA-Core logs. At the Logutil prompt type

 >OPEN XAC
 and press the Enter key.

 c. Examine and record the appropriate log reports.

 d. Exit from the log utility. At the Logutil prompt type

 >QUIT
 and press the Enter key.

<table>
<thead>
<tr>
<th>If the logs</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>do not indicate that the AMDI critical alarm condition is clear</td>
<td>step 6</td>
</tr>
<tr>
<td>indicate that the AMDI critical alarm condition is clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

6 Access the IO MAP level. At the MAP terminal, type

>MAPCI;MTC;XAC;IO
and press the Enter key.
7 Examine the IO MAP level. Record the working state and location of each IOP CP.

Note: The IO MAP level displays IOP CP and packet working states as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- a status indicator appears in the state field in the shelf layout area.
- a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

IO MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Note: The information you gather in this step will be of use in step 10.

8 Access the XA-Core AMDI MAP level by typing

MAPCI;MTC;XAC;AMDI

and pressing the Enter key.
Examine the AMDI MAP level. Record the working state and location of each AMDI packet.

Note: The AMDI MAP level can display alarms and status as follows:
- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

AMDI MAP level

```
<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI</td>
<td><em>C</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Front: 11111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>123456789012345678</td>
<td>45678901234567</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sta: ..-..-..-..-</td>
<td>..-..-..-..-..-</td>
<td>..-..-..-..-..-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dep: F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typ: ** **</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slot: Side: Packet: Status: Port0: Port1: Link0: Link1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 Tst_</td>
<td>Rear Lower</td>
<td>5</td>
<td>Rear Lower</td>
<td>6</td>
<td>Rear Lower</td>
<td>13</td>
<td>Rear Lower</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>7 Bsy_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 RIS_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 LoadFW_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 Ueq_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 Indicat_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 Query_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note:* The information you gather in this step will be of use in step 10.
Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If more than one of the statements listed in the left-hand column is true, choose the first true one that you encounter.

<table>
<thead>
<tr>
<th>If the information from the logs, and from the IOP and AMDI MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI link is in a ManB state</td>
<td>step 11</td>
</tr>
<tr>
<td>AMDI link is in a SysB state</td>
<td>step 12</td>
</tr>
<tr>
<td>AMDI link is in a CBsy state</td>
<td>step 20</td>
</tr>
<tr>
<td>AMDI packet is in a ManB state</td>
<td>step 21</td>
</tr>
<tr>
<td>AMDI packet is in a SysB state</td>
<td>step 22</td>
</tr>
<tr>
<td>AMDI packet is in a CBsy state</td>
<td>step 26</td>
</tr>
<tr>
<td>IOP CP is in a ManB state</td>
<td>step 27</td>
</tr>
<tr>
<td>IOP CP is in a SysB state</td>
<td>step 29</td>
</tr>
<tr>
<td>none of the conditions listed above exists, but there is an AMDI alarm</td>
<td>step 34</td>
</tr>
<tr>
<td>there is no alarm and all CPs, all ports, and all links are InSv</td>
<td>step 79</td>
</tr>
</tbody>
</table>

Return the OOS AMDI links to service. Repeat this step for each ManB link.

At the AMDI MAP level type

>RTS <nn> <s> <p> <link>

and press the Enter key

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r).
- `<p>` is the position parameter value indicating the packet location, upper (u) or lower (l).
- `<link>` is the parameter that defines the link on an OC-3 packet. The two possible values are link0 or link1.

Example of command use:

RTS 14 r l link0
Example of system response:
RTS 14 rear lower link0 passed

<table>
<thead>
<tr>
<th>If the AMDI links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 12</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 20</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
</tbody>
</table>

12 Manually busy the OOS AMDI links. Repeat this step for each SysB link. At the AMDI MAP level type

>BSY <nn> <s> <p> <link>

and press the Enter key

where

<n> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an OC-3 packlet. The two possible values are link0 or link1.

Example of command use:
>BSY 14 r l link0

Example of system response:
BSY 14 rear lower link0 complete

Note: If needed, use the Force option to place the link in a ManB state. Refer to the XA-Core MAP commands documentation.

13 Perform an OOS test on the AMDI links. Repeat this step for each ManB AMDI link. At the AMDI MAP level type

>TST <nn> <s> <p> <link>

and press the Enter key

where

<n> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an OC-3 packlet. The two possible values are link0 or link1.
Example of command use:

```markdown
>TST 14 r l link0
```

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 14</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 15</td>
</tr>
</tbody>
</table>

14

Return the OOS AMDI links to service. Repeat this step for each ManB link. At the AMDI MAP level type

```markdown
>RTS <nn> <s> <p> <link>
```

and press the Enter key

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value indicating the packet location, upper (u) or lower (l).
- `<link>` is the parameter that defines the link on an OC-3 packet. The two possible values are link0 or link1.

Example of command use:

```markdown
RTS 14 r l link0
```

*Example of system response:*

```
RTS 14 rear lower link0 passed
```

<table>
<thead>
<tr>
<th>If the AMDI links</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are in an InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>are not in an InSv state</td>
<td>step 15</td>
</tr>
</tbody>
</table>

15

Perform the Cleaning fiber-optic components and assemblies procedure. Refer to the correct NTP.

<table>
<thead>
<tr>
<th>If the links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 16</td>
</tr>
</tbody>
</table>
### Check the far-end equipment for problems. (Problems in the far-end equipment are outside the scope of this document.)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you find problems</td>
<td>step 17</td>
</tr>
<tr>
<td>you do not find problems</td>
<td>step 19</td>
</tr>
</tbody>
</table>

17 Correct problems in the far-end equipment.
18 Go to step 6 and proceed from there.
19 Replace the AMDI packlet to find out whether that makes it possible to return the AMDI links to service. Proceed as follows.
   a Replace the AMDI packlet. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.
   b Return the AMDI packlet to service. At the AMDI MAP level type

```
>RTS <nn> <s> <p>
```

and press the Enter key

where
- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value indicating the packlet location, upper (u) or lower (l).

Example of command use:

```
>RTS 5 r l
```

*Example of system response:*

RTS 5 rear lower passed

c Return the AMDI links to service. Repeat this step for each link. At the AMDI MAP level type

```
>RTS <nn> <s> <p> <link>
```

and press the Enter key

where
- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value indicating the packlet location, upper (u) or lower (l).
- `<link>` is the parameter that defines the link on an OC-3 packlet. The two possible values are link0 or link1.
Example of command use:

\texttt{RTS 5 r l link0}

\textit{Example of system response:}

\texttt{RTS 14 rear lower link0 passed}

<table>
<thead>
<tr>
<th>If the AMDI links</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are in an InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>are not in an InSv state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

20 You were directed to this step because you found that an AMDI link was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an AMDI packet.

You are at the AMDI MAP level, where the working state of the packet is displayed.

Select the next step as follows:

<table>
<thead>
<tr>
<th>If the AMDI packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 21</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 22</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 26</td>
</tr>
</tbody>
</table>

21 Return the OOS AMDI packet to service. At the AMDI MAP level type

\texttt{>RTS <nn> <s> <p>}

and press the Enter key

where

- \texttt{<nn>} is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- \texttt{<s>} is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
- \texttt{<p>} is the position parameter value indicating the packet location, upper (u) or lower (l).

Example of command use:

\texttt{>RTS 5 r l}

\textit{Example of system response:}

\texttt{RTS 5 rear lower passed}

<table>
<thead>
<tr>
<th>If the AMDI packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 22</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
</tbody>
</table>
Manually busy the AMDI packlet. At the AMDI MAP level type

>BSY <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

Example of command use:

>BSY 5 r l

Example of system response:

BSY 5 rear lower complete

**Note:** If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the AMDI packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 23</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

Perform an OOS test on the ManB AMDI packlet. At the AMDI MAP level type

>TST <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

Example of command use:

>TST 5 r l

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 24</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 25</td>
</tr>
</tbody>
</table>
Understanding the alarm system

XAC AMDI

major (continued)

24 Return the AMDI packet to service. At the AMDI MAP level type

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

Example of command use:

>RTS 5 r l

Example of system response:

RTS 5 rear lower passed

If the AMDI packet is Do

in an InSv state step 6

in a CBsy state step 26

in any state other than InSv or CBsy step 25

25 Replace the AMDI packet. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.

If the AMDI packet is Do

in an InSv state step 6

in a SysB state step 78

26 You were directed to this step because you found that an AMDI packet was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an IOP CP.

Proceed as follows.

a Access the IO MAP level. Type

>MAPCI;MTC;XAC;IO

and press the Enter key.
Find out the working state of the IOP CP.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 28</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 30</td>
</tr>
</tbody>
</table>

Access the IO MAP level. At the MAP terminal, type

```
>MAPCI;MTC;XAC;IO
```

and press the Enter key.

Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

```
>RTS <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>RTS 4 r
```

*Example of system response:*

```
RTS 4 rear passed
```

b Make sure that all related packlets are in service. Examine the IO MAP level to determine the packet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv</td>
<td>step 7</td>
</tr>
<tr>
<td>not InSv</td>
<td>step 31</td>
</tr>
</tbody>
</table>

Access the IO MAP level. At the MAP terminal, type

```
>MAPCI;MTC;XAC;IO
```

and press the Enter key.

Manually busy the OOS IOP CP. At the IO MAP level type

```
>BSY <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
XAC AMDI

major (continued)

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r

Example of system response:

BSY 4 rear complete

Note: If needed, use the Force option to place the CP in a ManB state.
Refer to the XA-Core MAP commands documentation.

Perform an OOS test on the ManB IOP CP. At the IO MAP level type

>TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>TST 4 r

If the OOS test passed step 32

did not pass step 33

Return the IOP CP to service. Make sure that all related packlets are also in service.

At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>RTS 4 r

Example of system response:

RTS 4 rear passed
Understanding the alarm system

**XAC AMDI major** (continued)

b Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 33</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
</tbody>
</table>

33 Replace the IOP CP. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 6</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

34 If an AMDI alarm has been raised, but there is no evidence that any hardware or link is busy or defective, check whether there is excess datafill in table XAMDILNK. If a link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.

**Note:** The AMDI MAP level, which you accessed in step 8, lists the links that actually exist.

Proceed as follows

a Start the table editor and access table XAMDILNK. Type

>`TABLE XAMDILNK`

and press the Enter key.

*Example of system response:*

`TABLE: XAMDILNK`

b Display the contents of the table. Type

>`LIST ALL`

and press the Enter key.

*Example of system response:*

**MAP display example for table XAMDILNK if OC-3 AMDI packlets are used**

<table>
<thead>
<tr>
<th>LINKNO</th>
<th>GROUP</th>
<th>SLOT</th>
<th>PACKLET</th>
<th>PORT</th>
<th>PROTOCOL</th>
<th>LOOPBACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>REAR</td>
<td>LOWER</td>
<td>0</td>
<td>SONET</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>14</td>
<td>REAR</td>
<td>LOWER</td>
<td>0</td>
<td>SONET</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>13</td>
<td>REAR</td>
<td>LOWER</td>
<td>0</td>
<td>SONET</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>REAR</td>
<td>LOWER</td>
<td>0</td>
<td>SONET</td>
</tr>
</tbody>
</table>
c  Compare the datafill in the table to the AMDI links that exist in the system.

<table>
<thead>
<tr>
<th>If table XAMDILNK</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>contains excess datafill</td>
<td>step 35</td>
</tr>
<tr>
<td>does not contain excess datafill</td>
<td>step 38</td>
</tr>
</tbody>
</table>

35  Delete each tuple that specifies a link that does not actually exist.
    For each tuple that needs to be deleted, proceed as follows.
    a  Use the POS command to move to the tuple that you want to delete. Type
        >POS <linkno>
        where
        <linkno> is the link number, the leftmost field in the display
        For example if link 4 does not exist, type
        >POS 4
        and press the Enter key.
        Example of system response:
        4 1 6 REAR LOWER 0 SONET AMDI06RL0
    b  Delete the tuple. Type
        >DEL
        and press the Enter key.
        Example of system response:
        TUPLE TO BE DELETED:
        4 1 6 REAR LOWER 0 SONET AMDI06RL0
        ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
    c  Confirm the deletion. type
        >Y
        and press the Enter key.
        Example of system response:
        TUPLE DELETED:
        WRITTEN TO JOURNAL FILE AS JF NUMBER 543
    
36  Exit from the table editor. Type
    >QUIT
    and press the Enter key.

37  Go to step 6.
38 Check whether there are enough AMDI links to satisfy the system’s minimum redundancy requirements. The links must be in groups of two. If a link is in a group all by itself, then redundancy requirements are not satisfied.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>redundant links are missing</td>
<td>step 39</td>
</tr>
<tr>
<td>redundant links are not missing</td>
<td>step 78</td>
</tr>
</tbody>
</table>

39 If redundant links are missing, then to clear the alarm you must configure the necessary links in table XAMDILNK and install the links. After doing these things, resume at step 6.

40 Confirm that the alarm is clear. Examine the alarm banner on the AMDI MAP level.

<table>
<thead>
<tr>
<th>If the AMDI critical alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 41</td>
</tr>
<tr>
<td>not clear</td>
<td>step 78</td>
</tr>
<tr>
<td>clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

41 Perform the correct alarm clearing procedure. Alarm clearing procedures are in this document, in the chapter titled “Understanding the alarm system”. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 78</td>
</tr>
<tr>
<td>clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

42 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type

>LOGUTIL

and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type

>OPEN XAC

and press the Enter key.

c Examine and record the appropriate log reports.
Exit from the log utility. At the Logutil prompt type

```
>QUIT
```

and press the Enter key.

<table>
<thead>
<tr>
<th>If the logs</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>do not indicate that the AMDI critical alarm condition is clear</td>
<td>step 43</td>
</tr>
<tr>
<td>indicate that the AMDI critical alarm condition is clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

Access the IO MAP level. At the MAP terminal, type

```
>MAPCI;MTC;XAC;IO
```

and press the Enter key

Examine the IO MAP level. Record the working state of the system and the HIOP CPs. Also record the HIOP CP locations on the physical shelf, side and slot.

**Note:** The IO MAP can display alarms and status as follows:
- an IOP alarm appears under the XAC header in the alarm banner
- an equipment alarm under the PE header in the subsystem summary status field (SSSF)

*The following is a sample MAP display.*

**Note:** The information you gather in this step will be of use in step 47.
Access the XA-Core AMDI MAP level by typing

`MAPCI;MTC;XAC;AMDI`

and pressing the Enter key.

Examine the AMDI MAP level.

**Note:** The AMDI MAP level can display alarms and status as follows:

- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>AMDI</td>
<td></td>
<td>Front: 11111111 Rear: 111111 SM PE IO PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XMAP0</td>
<td>Time 14:12 &gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The information you gather in this step will be of use in step 47.
XAC AMDI major (continued)

47 Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If more than one of the statements listed in the left-hand column is true, choose the first true one that you encounter.

<table>
<thead>
<tr>
<th>If the information from the logs, and from the IOP and AMDI MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI link is in a ManB state</td>
<td>step 48</td>
</tr>
<tr>
<td>AMDI link is in a SysB state</td>
<td>step 49</td>
</tr>
<tr>
<td>AMDI link is in a CBsy state</td>
<td>step 57</td>
</tr>
<tr>
<td>AMDI port is in a ManB state</td>
<td>step 58</td>
</tr>
<tr>
<td>AMDI port is in a SysB state</td>
<td>step 59</td>
</tr>
<tr>
<td>AMDI port in a CBsy state</td>
<td>step 62</td>
</tr>
<tr>
<td>HIOP CP is in a ManB state</td>
<td>step 63</td>
</tr>
<tr>
<td>HIOP CP is in a SysB state</td>
<td>step 65</td>
</tr>
<tr>
<td>none of the conditions listed above exists, but there is an AMDI alarm</td>
<td>step 70</td>
</tr>
<tr>
<td>there is no alarm and all CPs, all ports, and all links are InSv</td>
<td>step 79</td>
</tr>
</tbody>
</table>

48 Return the OOS AMDI links to service. Repeat this step for each ManB link. At the AMDI MAP level type

>`RTS <nn> <s> <link>`

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)

<link> is the parameter that defines the link. The two possible values are link0 or link1.

Example of command use:

`RTS 14 r link0`
Example of system response:
RTS 14 rear link0 passed

<table>
<thead>
<tr>
<th>If the AMDI links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 49</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 57</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

49 Manually busy the OOS AMDI links. Repeat this step for each SysB link. At the AMDI MAP level type

>`BSY <nn> <s> <link>`

and press the Enter key

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
- `<link>` is the parameter that defines the link. The two possible values are link0 or link1.

Example of command use:

>`BSY 14 r link0`

Example of system response:

BSY 14 rear link0 passed

**Note:** If needed, use the Force option to place the link in a ManB state. Refer to the XA-Core MAP commands documentation.
XAC AMDI
major (continued)

50. Perform an OOS test on the AMDI links. Repeat this step for each ManB AMDI link. At the AMDI MAP level type
   >TST <nn> <s> <link>
   and press the Enter key
   where
   <nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
   <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
   <link> is the parameter that defines the link. The two possible values are link0 or link1.
   Example of command use:
   >TST 14 r l link0

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 51</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 52</td>
</tr>
</tbody>
</table>

51. Return the OOS AMDI links to service. Repeat this step for each ManB link. At the AMDI MAP level type
   >RTS <nn> <s> <link>
   and press the Enter key
   where
   <nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
   <s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)
   <link> is the parameter that defines the link. The two possible values are link0 or link1.
   Example of command use:
   RTS 14 r link0

   Example of system response:
   RTS 14 rear link0 passed

<table>
<thead>
<tr>
<th>If the AMDI links</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are in an InSv state</td>
<td>step 43</td>
</tr>
<tr>
<td>are not in an InSv state</td>
<td>step 52</td>
</tr>
</tbody>
</table>
Perform the Cleaning fiber-optic components and assemblies procedure. Refer to the correct NTP.

<table>
<thead>
<tr>
<th>If the links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 43</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 53</td>
</tr>
</tbody>
</table>

Check the far-end equipment for problems. (Problems in the far-end equipment are outside the scope of this document.)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you find problems</td>
<td>step 54</td>
</tr>
<tr>
<td>you do not find problems</td>
<td>step 56</td>
</tr>
</tbody>
</table>

Correct problems in the far-end equipment.

Go to step 43 and proceed from there.

Replace the HIOP CP to find out whether that makes it possible to return the AMDI links to service. Proceed as follows.

a Replace the HIOP CP. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.

b Return the HIOP CP to service. At the IO MAP level type

```
>RTS <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>RTS 5 r
```

Example of system response:

RTS 5 rear passed

c Return the AMDI ports to service. Repeat this step for each port. At the AMDI MAP level type

```
>RTS <nn> <s> <port>
```

and press the Enter key

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
Understanding the alarm system

XAC AMDI

major (continued)

<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)

<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

RTS 5 r port0

Example of system response:

RTS 5 rear port0 passed

d Return the AMDI links to service. Repeat this step for each link. At the AMDI MAP level type

>RTS <nn> <s> <link>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)

<link> is the parameter that defines the link. The two possible values are link0 or link1.

Example of command use:

RTS 5 r link0

Example of system response:

RTS 5 rear link0 passed

If the AMDI links

Do

are in an InSv state step 43

are not in an InSv state step 78

57 You were directed to this step because you found that an AMDI link was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is the AMDI port.

Select the next step as follows:

If the AMDI port is

Do

in a ManB state step 58

in a SysB state step 59

in a CBsy state step 62
58  Return the OOS AMDI ports to service. Repeat this step for each ManB port. At the AMDI MAP level type

>RTS <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)

<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

RTS 14 r port0

Example of system response:

RTS 14 rear port0 passed

If the AMDI ports are           Do
in a SysB state                step 59
in a CBsy state               step 62
in an InSv state              step 43

59  Manually busy the OOS AMDI ports. Repeat this step for each SysB port. At the AMDI MAP level type

>BSY <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

>BSY 14 r port0

Example of system response:

BSY 14 rear port0 passed

Note: If needed, use the Force option to place the port in a ManB state.
Refer to the XA-Core MAP commands documentation.
XAC AMDI
major (continued)

60 Perform an OOS test on the AMDI ports. Repeat this step for each ManB AMDI port. At the AMDI MAP level type

> TST <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

> TST 14 r port0

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 61</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 69</td>
</tr>
</tbody>
</table>

61 Return the OOS AMDI ports to service. Repeat this step for each ManB port. At the AMDI MAP level type

> RTS <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
<s> is the side parameter value to indicate the CP in the physical shelf - front (f) or rear (r)
<port> is the parameter that defines the port. The two possible values are port0 or port1.

Example of command use:

RTS 14 r port0

Example of system response:

RTS 14 rear port0 passed

<table>
<thead>
<tr>
<th>If the AMDI ports are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 69</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 43</td>
</tr>
</tbody>
</table>
You were directed to this step because you found that an AMDI port was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an HIOP CP.

Proceed as follows.

a. Access the IO MAP level. At the MAP terminal, type

   ```
 >MAPCI;MTC;XAC;IO
   ```

   and press the Enter key

b. Find out the state of the HIOP CP.

c. Select the next step as follows:

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 64</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 66</td>
</tr>
</tbody>
</table>

Access the IO MAP level. At the MAP terminal, type

```
>MAPCI;MTC;XAC;IO
``` and press the Enter key

Return the OOS HIOP CP to service. At the IO MAP level type

```
>RTS <nn> <s>
``` and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>RTS 5 r
```  

Example of system response:

RTS 5 rear passed

Access the IO MAP level. At the MAP terminal, type

```
>MAPCI;MTC;XAC;IO
``` and press the Enter key.
Manually busy the OOS HIOP CP. At the IO MAP level type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 5 r

Example of system response:

BSY 5 rear complete

Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 67</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

Perform an OOS test on the ManB HIOP CP. At the IO MAP level type

>TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>TST 5 r

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 68</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 69</td>
</tr>
</tbody>
</table>
Return the HIOP CP to service. At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>RTS 5 r

*Example of system response:*

RTS 5 rear passed

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 69</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 44</td>
</tr>
</tbody>
</table>

Replace the HIOP CP. The replacement procedure is in this document, in the chapter titled “Introduction to card replacement”. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 44</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 78</td>
</tr>
</tbody>
</table>

If an AMDI alarm has been raised, but there is no evidence that any hardware, port, or link is busy or defective, check whether there is excess datafill in table XAMDILNK. If a link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.

*Note:* The AMDI MAP level, which you accessed in step 45, lists the links that actually exist.

Proceed as follows

a  Start the table editor and access table XAMDILNK. Type

>TABLE XAMDILNK

and press the Enter key.

*Example of system response:*

TABLE: XAMDILNK

b  Display the contents of the table. Type

>LIST ALL

and press the Enter key
Example of system response:

Example of the contents of table XAMDILNK

<table>
<thead>
<tr>
<th>LINKNO</th>
<th>GROUP</th>
<th>SLOT</th>
<th>PACKLET</th>
<th>PORT</th>
<th>PROTOCOL</th>
<th>LOOPBACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>NONE</td>
<td>0</td>
<td>SONET</td>
<td>AMDI05R0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>NONE</td>
<td>1</td>
<td>SONET</td>
<td>AMDI05R1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>14</td>
<td>NONE</td>
<td>0</td>
<td>SONET</td>
<td>AMDI14R0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>14</td>
<td>NONE</td>
<td>1</td>
<td>SONET</td>
<td>AMDI14R1</td>
</tr>
</tbody>
</table>

c  Compare the datafill in the table to the AMDI links that exist in the system.

If table XAMDILNK

Do

<table>
<thead>
<tr>
<th>Contains excess datafill</th>
<th>step 71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not contain excess datafill</td>
<td>step 74</td>
</tr>
</tbody>
</table>

71  Delete each tuple that specifies a link that does not actually exist.

For each tuple that needs to be deleted, proceed as follows.

a  Use the POS command to move to the tuple that you want to delete. Type

>POS <linkno>

where

<linkno> is the link number, the leftmost field in the display

For example if link 4 does not exist, type

>POS 4

and press the Enter key.

Example of system response:

4 1 14 REAR NONE 1 SONET AMDI14R1

b  Delete the tuple. Type

>DEL

and press the Enter key.

Example of system response:

TUPLE TO BE DELETED:
4 1 14 REAR NONE 1 SONET AMDI14R1
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

c  Confirm the deletion. Type

>Y

and press the Enter key.
Example of system response:

TUPLE DELETED:
WRITTEN TO JOURNAL FILE AS JF NUMBER 543

72 Exit from the table editor. Type
>QUIT
and press the Enter key.

73 Go to step 43.

74 Check whether there are enough AMDI links to satisfy the system's minimum redundancy requirements. The links must be in groups of two. If a link is in a group all by itself, then redundancy requirements are not satisfied.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>redundant links are missing</td>
<td>step 75</td>
</tr>
<tr>
<td>redundant links are not missing</td>
<td>step 78</td>
</tr>
</tbody>
</table>

75 If redundant links are missing, then to clear the alarm you must configure the necessary links in table XAMDILNK and install the links. After doing these things, resume at step 43.

76 Confirm that the alarm is clear. Examine the alarm banner on the AMDI MAP level.

<table>
<thead>
<tr>
<th>If the AMDI critical alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 77</td>
</tr>
<tr>
<td>not clear</td>
<td>step 78</td>
</tr>
<tr>
<td>clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

77 Perform the correct alarm clearing procedure. Alarm clearing procedures are in this document, in the chapter titled “Understanding the alarm system”. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 78</td>
</tr>
<tr>
<td>clear</td>
<td>step 79</td>
</tr>
</tbody>
</table>

78 Call the next level of support.

79 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
XAC Baseln major

Alarm display

<table>
<thead>
<tr>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baseln</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indication

A Baseln major alarm code appears under the XAC header of the alarm banner. The alarm code indicates baseline major alarm.

Meaning

The system raises the Baseln major alarm if the XA-Core shelf contains one or more field replaceable units (FRU) that are incompatible with the baseline specifications or incompatible with the exception-list information.

Baseline information and exception-list information for hardware is specified in table PECINV. Baseline information and exception-list information for firmware is specified in table FWINV.

Baseline information for an FRU defines the minimum hardware or firmware release and version that is necessary for reliable operation. Exception-list information defines hardware or firmware releases and versions that are at or above the specified baseline for an FRU, but that are not permitted.

For each FRU, it is permissible to use any hardware that is equal to or above the hardware baseline, unless the hardware has been specified as an exception in table PECINV. For each FRU that has downloadable firmware, it is permissible to use any firmware that is equal to or above the firmware baseline, unless the firmware has been specified as an exception in table FWINV.

Note: For more information on exceptions, see the information on tables FWINV and PECINV in the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.
The system raises the Baseln major alarm against an FRU for any of the following reasons.

- **Hardware-related reasons:**
  - The FRU itself is incompatible with the baseline information or incompatible with the exception-list information specified in table PECINV. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the *XA-Core Reference Manual*, 297-8991-810.
  - The PEC is not listed in table PECINV.

- **Firmware-related reasons:**
  - The FRU is one that has downloadable firmware, and the firmware is incompatible with the baseline information or incompatible with the exception-list information specified in table FWINV. For information on table FWINV, see the chapter titled “XA-Core data schema overview” in the *XA-Core Reference Manual*, 297-8991-810.
  - The FRU is one that has downloadable firmware, but the PEC is not listed in table FWINV.

In day-to-day operations, the Baseln major alarm will occur if you insert an FRU as a spare, and the system detects that the FRU is incompatible with the specified baseline information or incompatible with the specified exception-list information, or if you load an incorrect firmware version.

The XAC Baseln alarm does not survive a system restart. However, if the problem has not been corrected, the system re-raises the alarm within minutes after the restart.

**If the Baseln major alarm is raised following an ONP**

If the system goes through a release-to-release software upgrade, and if new firmware loads were distributed on the PM release tape for the upgrade, the system may raise the Baseln major alarm after the completion of the one-night process (ONP). If this occurs, do not try to clear the Baseln major alarm immediately. Instead, you should first upgrade the firmware as explained in the procedure titled “Upgrading firmware on the occasion of a software upgrade”, found in this document, in the chapter titled “Introduction to routine maintenance procedures”. If the Baseln major alarm is still raised after you have finished upgrading the firmware, that is the time when you should perform the procedure to clear the alarm.
Impact

There is no immediate change in subscriber service.

Common procedures

This procedure refers to the following procedures:

• the procedures for replacing circuit packs and packlets, found in this document, in the chapter titled “Introduction to card replacement”

• the procedure titled “Loading current firmware into a newly installed XA-Core component”, found in this document, in the chapter titled “Introduction to routine maintenance procedures”
The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing a Baseln alarm

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear a Baseln alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**WARNING**
Fiber cable damage
Handle the fiber optic cables with care. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface degrades fiber performance.

**CAUTION**
Loss of service
Do not repeat steps.
Understanding the alarm system

XAC Baseln major (continued)

At the MAP terminal

1. Access the XAC MAP level. Type 
   \texttt{>MAPCI NODISP;MTC;XAC}
   and press the Enter key.

2. Collect information using the QUERY SHELF command. Type 
   \texttt{>QUERY SHELF}
   and press the Enter key.

Example of system response

Output of the QUERY SHELF command

<table>
<thead>
<tr>
<th>Pos</th>
<th>Type</th>
<th>PEC+</th>
<th>HW</th>
<th>Rel</th>
<th>BL</th>
<th>OK</th>
<th>Serial Number</th>
<th>FW Vers.</th>
<th>Baseline OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>IOP</td>
<td>NTLX03BB</td>
<td>03</td>
<td>03</td>
<td>Y</td>
<td>NNTM6441DT9S XAIO01AK XAIO01AK</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>L</td>
<td>NTLX06AB</td>
<td>03</td>
<td>01</td>
<td>Y</td>
<td>NNTM172337RH n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>U Tape</td>
<td>NTLX07AA</td>
<td>01</td>
<td>01</td>
<td>Y</td>
<td>NNTM171P3XYN n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>12</td>
<td>01</td>
<td>Y</td>
<td>NNTM6441S0SC XAPE01AG XAPE01AG Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>09</td>
<td>01</td>
<td>Y</td>
<td>NNTM1715Y9RM XAPE01AG XAPE01AG Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM64429KMT n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>09</td>
<td>01</td>
<td>Y</td>
<td>NNTM17232BYJ n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM6441872W n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM6441HSGN n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM64419R85 N/A Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>01</td>
<td>01</td>
<td>Y</td>
<td>NNTM64416MHR XAPE01AG XAPE01AG Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>09</td>
<td>01</td>
<td>Y</td>
<td>NNTM1715Y9PS XAPE01AG XAPE01AG Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>IOP</td>
<td>NTLX03BB</td>
<td>04</td>
<td>03</td>
<td>Y</td>
<td>NNTM6441W1ST XAO01AK XAO01AK Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>L</td>
<td>NTLX06AB</td>
<td>03</td>
<td>01</td>
<td>Y</td>
<td>NNTM172337QG n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>U Tape</td>
<td>NTLX07AA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM64J001RX n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>R</td>
<td>IOP</td>
<td>NTLX17AA</td>
<td>00</td>
<td>01</td>
<td>N*</td>
<td>NNTM64427L1T XREC01DE XREC01CH Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM1723393C n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM17232BW7 n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>11</td>
<td>01</td>
<td>Y</td>
<td>NNTM6441SRVT n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM172338VM n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>SM</td>
<td>NTLX14CA</td>
<td>02</td>
<td>01</td>
<td>Y</td>
<td>NNTM172339XQ n/a Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>00</td>
<td>01</td>
<td>N*</td>
<td>NNTM64427L1N XREC01DE XREC01CH Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
FW: ROM version. HIOP adds DLL version on following line.
OK: Yes, No, IDPROM read fail, Unsupported. “*”=Investigate!
--HW vs. PECINV-- ----FW vs. FWINV----
The “OK” columns indicate whether the hardware and firmware are at or below baseline.

3  Select the next step as follows.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>there are FRUs that are below hardware baseline</td>
<td>step 4</td>
</tr>
<tr>
<td>there are no FRUs that are below hardware baseline</td>
<td>step 6</td>
</tr>
</tbody>
</table>

4  Perform the correct replacement procedures for the FRUs that are below baseline. Replace one FRU at a time. The replacement procedures are found in chapter 2 of this manual.

5  Go to step 1.

6  Select the next step as follows.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>there are FRUs that contain FW firmware that is below baseline</td>
<td>step 7</td>
</tr>
<tr>
<td>there are no FRUs that contain FW firmware that is below baseline</td>
<td>step 9</td>
</tr>
</tbody>
</table>

7  For each FRU that contains FW firmware that is below baseline, perform the procedure titled “Loading current firmware into a newly installed XA-Core component”, found in chapter 4 of this document. Install the firmware in one FRU at a time. Do not try to install firmware in multiple FRUs in parallel.

8  Go to step 1.

9  Select the next step as follows.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>there are any HIOP CPs that contain DLL firmware that is below baseline</td>
<td>step 10</td>
</tr>
<tr>
<td>there are no HIOP CPs that contain DLL firmware that is below baseline</td>
<td>step 12</td>
</tr>
</tbody>
</table>

10  Go to the IO MAP level. Type >IO
    and press the Enter key.
Perform the following steps for each HIOP circuit pack that contains DLL firmware that is below baseline.

**Note:** Perform the steps for one HIOP at a time. Do not try to perform the steps on multiple HIOPs in parallel.

**a** Manually busy the HIOP circuit pack. Type

```
>BSY <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>BSY 4 r
```

**Example of system response:**

```
BSY 4 rear complete
```

**Note:** If needed, use the Force option to place the circuit pack in a ManB state. Refer to the XA-Core MAP commands documentation.

**b** Return the HIOP circuit pack to service. Type

```
>RTS <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>RTS 4 r
```

**Example of system response:**

```
RTS 4 rear passed
```

**Note:** When the HIOP circuit pack returns to service, the system automatically loads the “current” DLL firmware load into the circuit pack.

You have completed this procedure.
Alarm display

A Config alarm code appears under the XAC header of the alarm banner. The alarm banner code indicates a Config minor alarm.

Meaning

This alarm means that an upgrade of the PE circuit packs is in progress. The PE circuit packs are being upgraded to NTLX02DA models from earlier models. (The NTLX02DA models can handle more traffic.) The craftsperson upgrades the circuit packs by replacing the earlier models one at a time. The alarm indicates that the XA-Core currently contains a mixture of PE circuit packs, one or more NTLX02DA models, and one or more earlier models.

The alarm remains raised until the craftsperson has upgraded all the PE circuit packs, so that all the PE circuit packs in the shelf are NTLX02DA models.

Impact

There is no change in subscriber service.

Common procedures

There are no common procedures.

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a Config minor alarm

How to clear a Config minor alarm

At the XA-Core shelf

1. Replace all remaining earlier-model PE circuit packs in the XA-Core with NTLX02DA circuit packs. For instructions, see installation method (IM) 65-6161, which is available from Nortel Networks.

2. You have completed this procedure.
Alarm display

<table>
<thead>
<tr>
<th>XAC DISK</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

Indication
A DISK alarm code appears under the XAC header of the alarm banner. The alarm banner code indicates a Disk minor alarm.

Meaning
The XA-Core cannot access a disk packet. One or more of the following conditions cause the Disk minor alarm:

- An XA-Core disk packet is system busy (SysB) or manual busy (ManB).
- An XA-Core input/output processor (IOP) circuit pack (CP) is SysB or ManB. The disk packet state is in a OOS CBsy state.

Impact
There is no change in subscriber service.

Common procedures
There are no common procedures.

Action
The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a Disk alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. Obtain logs

2. Disk packet SysB?
   - Y: ManB the Disk and perform an OOS test
   - N: Disk packet is CBsy?
     - Y: IOP is ManB?
       - Y: Return the IOP CP to service
         - RTS passed?
           - Y: ManB the IOP CP and perform an OOS test
             - 1
           - N: Call the next level of support
         - N: Call the next level of support
     - N: IOP CP is SysB?
       - Y: Return Disk packlet to service
         - RTS passed?
           - Y: 1
           - N: Replace the unit. Refer to the correct NTP.
         - N: Call the next level of support
       - N: Call the next level of support

3. Alarm clear?
   - Y: different alarm?
     - Y: End
     - N: Call next level of support
   - N: End
How to clear a Disk alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Do not repeat steps.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
At your current location

1 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

If the log indicates Do

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Disk minor alarm condition</td>
<td>step 2</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 17</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 19</td>
</tr>
</tbody>
</table>

2 Access the Disk MAP level. At the CI MAP level, type
   MAPCI;MTC;XAC;DISK
and press the Enter key.

3 Examine the Disk MAP level. Record the status of the disk packlets and the IOP CPs. Record the location of any out of service (OOS) CPs or packlets.

   **Note:** The Disk MAP level can display alarms and status as follows:
   - an alarm code appears under the XAC header in the alarm banner
   - an equipment alarm code appears under the PKLT header in the subsystem status summary field (SSSF)
   - status codes appear in the status field in the command interpreter output area

The following is a sample MAP display.
Disk MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISK</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Disk

0 Quit

2 Sta: -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 0 0 0 1

4 Typ: * *

6 Tst_

7 Bsy_

8 RTS_

9 Slot: Side: Packlet: Status:

17 Front Lower M

11 Format

12

13

14 Alarm_

15

16

17 Indicat_

18 Query_

If the MAP indicates

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 4</td>
</tr>
<tr>
<td>step 6</td>
</tr>
<tr>
<td>step 7</td>
</tr>
</tbody>
</table>

Manually busy the OOS Disk packet. At the Disk MAP level type

>BSY <nn> <s> <p>

and press the Enter key where

- <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
5 Perform an OOS test on the Disk packlet. At the Disk MAP level type.
\texttt{>TST <nn> <s> <p>}
and press the Enter key
where
\(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
\(<s>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
\(<p>\) is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).
Example of command:
\texttt{>TST 17 f l}
\textit{Example of system response:}
\texttt{TST 17 front lower passed}

\begin{tabular}{|c|c|}
\hline
\textbf{If the OOS test} & \textbf{Do} \\
\hline
passed & step 6 \\
\hline
did not pass & step 14 \\
\hline
\end{tabular}

6 Return the Disk packlet to service. At the Disk MAP level type
\texttt{>RTS <nn> <s> <p>}
and press the Enter key
where
\(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command:

>RTS 17 f l

Example of system response:

RTS 17 front lower passed

<table>
<thead>
<tr>
<th>If the Disk packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 4</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 7</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 16</td>
</tr>
</tbody>
</table>

7 Access the IO MAP level. At the Disk MAP level type
>IO
and press the Enter key.

8 Examine the IO MAP level. Record the working state and location of the OOS IOP CP.

Note: The IO MAP level displays IOP CP and packlet working states as follows:
- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- a status indicator appears in the state field in the shelf layout area.
- a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.
Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

    >RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command:

    >RTS 17 f

Example of system response:

    RTS 17 front passed
Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv and any related packlet is ManB</td>
<td>step 12</td>
</tr>
<tr>
<td>InSv and any related packlet is SysB</td>
<td>step 14</td>
</tr>
<tr>
<td>SysB and all related packlets are CBsy</td>
<td>step 15</td>
</tr>
<tr>
<td>InSv and all related packlets are InSv</td>
<td>step 16</td>
</tr>
</tbody>
</table>

**10** Manually busy the OOS IOP CP. At the IO MAP level type

>`BSY <nn> <s>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>`BSY 17 f`

*Example of system response:*

BSY 17 front complete

*Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.*

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 11</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 18</td>
</tr>
</tbody>
</table>

**11** Perform an OOS test on the ManB IOP CP. At the IO MAP level type

>`TST <nn> <s>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:

> TST 17 f

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 8</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 15</td>
</tr>
</tbody>
</table>

12 Access the correct packlet MAP level. Return the ManB packlet to service.

> RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command:

RTS 17 f l

Example of system response:

RTS 17 front lower passed

<table>
<thead>
<tr>
<th>If the packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 13</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 16</td>
</tr>
</tbody>
</table>

13 Perform the correct packlet OOS test procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the packlet OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>did not pass</td>
<td>step 14</td>
</tr>
<tr>
<td>passed</td>
<td>step 16</td>
</tr>
</tbody>
</table>

14 Perform the correct packlet replacement procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 16</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 18</td>
</tr>
</tbody>
</table>
Perform the correct IOP CP replacement procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 16</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 18</td>
</tr>
</tbody>
</table>

Confirm that the alarm is clear. Examine the alarm banner on the MAP screen.

<table>
<thead>
<tr>
<th>If the Disk minor alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 17</td>
</tr>
<tr>
<td>not clear</td>
<td>step 18</td>
</tr>
<tr>
<td>clear</td>
<td>step 19</td>
</tr>
</tbody>
</table>

Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 18</td>
</tr>
<tr>
<td>clear</td>
<td>step 19</td>
</tr>
</tbody>
</table>

Call the next level of support.

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Alarm display

<table>
<thead>
<tr>
<th>XAC ETHR</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>“C”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indication

An ETHR critical alarm code appears under the XAC header of the alarm banner. The alarm code indicates an Ethernet critical alarm.

Meaning

The conditions that contribute to an ETHR critical alarm are dependent on the link configuration in use.

The following port or link states can contribute to an ETHR critical alarm in a four link configuration:

- Three or more Ethernet ports or links are in ManBsy state
- Three or more Ethernet ports or links are in CBsy state
- Three or more Ethernet ports or links are in SysBsy state

The following port or link states can contribute to an ETHR critical alarm in a two link configuration:

- Two Ethernet ports or links are in ManBsy state
- Two Ethernet ports or links are in SysBsy state

Impact

In a four link configuration, a minimum of 2 Ethernet links must be in-service (INSV) to guarantee messaging to a Ethernet network. With only one link in-service the system functions below engineered capacity.

In a two link configuration, a minimum of one Ethernet link must be in-service to guarantee messaging to a Ethernet network.

Without at least one INSV Ethernet link, call origination cannot occur at the call server.
Common procedures

This procedure refers to the replacement procedures for the Ethernet packet, for the IOP circuit pack, and for the HIOP and HCMIC circuit packs, and to the procedures for deleting and changing tuples in table CMIPADDR. All procedures are in this document.

Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an ETHR critical alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. Obtain logs

2. What hardware handles Ethernet links? (HIOPs and/or HCMICs)
   - Y: ETHR link
     - ManB? (Ethr link or port SysB?)
       - Y: Return ETHR link to service
         - RTS passed?
           - Y: ETHR link Cbsy?
             - Y: Return ETHR link to service
               - RTS passed?
                 - Y: ETHR port Cbsy?
                   - Y: ETHR port Cbsy?
                     - Y: ETHR port Cbsy?
                       - N: ETHR port Cbsy?
                         - Y: ETHR port Cbsy?
                           - N: ETHR port Cbsy?
                             - Y: ETHR port Cbsy?
                               - N: ETHR port Cbsy?
                                 - Y: ETHR port Cbsy?
                                   - N: ETHR port Cbsy?
                                     - Y: ETHR port Cbsy?
                                       - N: ETHR port Cbsy?
                                         - Y: ETHR port Cbsy?
                                           - N: ETHR port Cbsy?
                                             - Y: ETHR port Cbsy?
                                               - N: ETHR port Cbsy?
                                                 - Y: ETHR port Cbsy?
                                                   - N: ETHR port Cbsy?
                                                     - Y: ETHR port Cbsy?
                                                       - N: ETHR port Cbsy?
                                                         - Y: ETHR port Cbsy?
                                                           - N: ETHR port Cbsy?
                                                             - Y: ETHR port Cbsy?
                                                               - N: ETHR port Cbsy?
                                                                 - Y: ETHR port Cbsy?
                                                                   - N: ETHR port Cbsy?
                                                                     - Y: ETHR port Cbsy?
                                                                       - N: ETHR port Cbsy?
                                                                         - Y: ETHR port Cbsy?
                                                                           - N: ETHR port Cbsy?
                                                                             - Y: ETHR port Cbsy?
                                                                               - N: ETHR port Cbsy?
                                                                                 - Y: ETHR port Cbsy?
                                                                                   - N: ETHR port Cbsy?
                                                                                  - Y: ETHR port Cbsy?
                                                                                    - N: ETHR port Cbsy?
                                                                                      - Y: ETHR port Cbsy?
                                                                                       - N: ETHR port Cbsy?
                                                                                         - Y: ETHR port Cbsy?
                                                                                           - N: ETHR port Cbsy?
                                                                                             - Y: ETHR port Cbsy?
                                                                                               - N: ETHR port Cbsy?
                                                                                                - Y: ETHR port Cbsy?
                                                                                                      - N: ETHR port Cbsy?
                                                                                                          - Y: ETHR port Cbsy?
                                                                                                               - N: ETHR port Cbsy?
                                                                                                                   - Y: ETHR port Cbsy?
                                                                                                                      - N: ETHR port Cbsy?
                                                                                                                                              - Y: ETHR port Cbsy?
                                                                                                                                                            - N: ETHR port Cbsy?
                                                                                                                                                               - Y: ETHR port Cbsy?
                                                                                                                                                                      - N: ETHR port Cbsy?
                                                                                                                                                                         - Y: ETHR port Cbsy?
                                                                                                                                                                           - N: ETHR port Cbsy?
                                                                                                                                                                              - Y: ETHR port Cbsy?
                                                                                                                                                                                 - N: ETHR port Cbsy?
                                                                                                                                                                                    - Y: ETHR port Cbsy?
                                                                                                                                                                                       - N: ETHR port Cbsy?
                                                                                                                                                                                          - Y: ETHR port Cbsy?
                                                                                                                                                                                            - N: ETHR port Cbsy?
                                                                                                                                                                                               - Y: ETHR port Cbsy?
                                                                                                                                                                                                  - N: ETHR port Cbsy?
                                                                                                                                                                                                     - Y: ETHR port Cbsy?
                                                                                                                                                                                                       - N: ETHR port Cbsy?
                                                                                                                                                                                                          - Y: ETHR port Cbsy?
                                                                                                                                                                                                             - N: ETHR port Cbsy?
                                                                                                                                                                                                               - Y: ETHR port Cbsy?
                                                                                                                                                                                                                 - N: ETHR port Cbsy?
                                                                                                                                                                                                                    - Y: ETHR port Cbsy?
                                                                                                                                                                                                                       - N: ETHR port Cbsy?
                                                                                                                                                                                                                           - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                             - N: ETHR port Cbsy?
                                                                                                                                                                                                                                               - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                   - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                           - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                               - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                   - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                     - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                         - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                             - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                    - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                  - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                      - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                          - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                              - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                  - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                      - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                  - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                  - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                      - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                              - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                 - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                                 - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                                     - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                                                - N: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                                                                                   - Y: ETHR port Cbsy?
                                                                                                                                                                                                                                                                                                                                                                                                         - N: ETHR port Cbsy?
Summary of clearing an ETHR critical alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.
Summary of clearing an ETHR critical alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. Obtain logs
2. ETHR link or port ManB?
   - Yes: Return ETHR link or port to service
   - No: ETHR link or port SysB?
     - Yes: ManB the port or link and perform an OOS test
       - Yes: OOS test passed?
         - Yes: Correct the link fault
         - No: N
     - No: Correct the link fault
       - No: State of the link?
         - INSV: Return ETHR link to service
         - SYSB: RTS passed?
           - Yes: Correct the link fault
           - No: N

3. ETHR link Cbsy?
   - Yes: Return ETHR link to service
   - No: ETHR port Cbsy?
     - Yes: Y
     - No: N

4. RTS passed?
   - Yes: Correct the link fault
   - No: N

Obtain logs

1-113

XA-Core Maintenance Manual
XAC ETHR critical (continued)

Summary of clearing an ETHR critical alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. **HIOP CP or HCMIC CP?**
   - **Y**: Return the CP to service
     - **Y**: RTS passed? → End
     - **N**: Call next level of support
   - **N**: ManB? → Step 33

2. **HIOP CP or HCMIC CP, SysB?**
   - **Y**: ManB the CP and perform an OOS test
     - **Y**: OOS test passed? → Replace the unit. Refer to the correct NTP.
     - **N**: RTS passed? → End
   - **N**: Datafill in table CMIPADDR is correct?
     - **Y**: Return the CP to service
       - **Y**: RTS passed? → Step 32
       - **N**: End
     - **N**: Call next level of support

3. **Correct the datafill in table CMIPADDR**
   - **Y**: Alarm clear? → Step 43
     - **Y**: different alarm? → Step 44
   - **N**: Call next level of support
   - **N**: End

4. **Different alarm?**
   - **Y**: Refer to the correct alarm clearing NTP
   - **N**: End

5. **End**
How to clear an ETHR critical alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
Risk of equipment damage - electric static discharge (ESD)
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

**At your current location**

1. If you know the type of hardware that handles the Ethernet links in the XA-Core, go to step 4. (The links can be handled either by Ethernet packetets or by HIOP circuit packs and/or HCMIC circuit packs. For more information on the hardware that can be involved, see “Rules governing ethernet links” in the section titled “Adding, removing, or re-arranging ethernet links” in chapter 4 of this document.) If you do not know the type of hardware, proceed to step 2.

2. Access the XA-Core ETHR MAP level by typing
   \texttt{MAPCI;MTC;XAC;ETHR}
   and pressing the Enter key.

3. Examine the ETHR MAP level. Determine whether the Ethernet links connect to Ethernet packetets or to HIOP circuit packs and/or HCMIC circuit packs.
If the “Packet” fields in the ETHR MAP level are blank, then the Ethernet links connect to circuit packs rather than packlets. If those circuit packs are in slots 4R and 15R, they are HCMICs; otherwise, they are HIOPs.

The following are sample MAP displays.

ETHR MAP level showing Ethernet links connected to packlets

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>C</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHR</td>
<td>Front: 111111111 Rear: 1111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LoadFW_</td>
<td>XAC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ETHR MAP level showing Ethernet links connected to HIOP circuit packs

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHR</td>
<td>Front: 111111111 Rear: 1111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LoadFW_</td>
<td>XAC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XMAP0

Time 14:12 >
Select the next step as follows.

<table>
<thead>
<tr>
<th>If the Ethernet links are connected to</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet packets</td>
<td>step 5</td>
</tr>
<tr>
<td>HIOP CPs and/or HCMIC CPs</td>
<td>step 28</td>
</tr>
</tbody>
</table>

Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

a. Access the log utility feature. At the CI MAP level, type

>`LOGUTIL`

and press the Enter key.

b. Access the XA-Core logs. At the Logutil prompt type

>`OPEN XAC`

and press the Enter key.

c. Examine and record the appropriate log reports.

d. Return to the CI MAP prompt. At the Logutil prompt type

>`QUIT`

and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the logs indicate an Ethernet packet fault</td>
<td>step 6</td>
</tr>
<tr>
<td>the logs indicate an Ethernet port or link fault</td>
<td>step 6</td>
</tr>
<tr>
<td>the logs indicate an IOP CP hardware fault</td>
<td>step 17</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, but there is an ETHR critical alarm</td>
<td>step 25</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, and if the ETHR critical alarm condition is clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>

Access the XA-Core ETHR MAP level by typing

`MAPCI;MTC;XAC;ETHR`

and pressing the Enter key.

Examine the ETHR MAP level. Record the location and status of the ETHR packlets.

*Note:* The ETHR MAP level can display alarms and status as follows:

- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
**XAC ETHR critical** (continued)

- a status indicator appears in the equipment status field in the command interpreter output area.

*The following is a sample MAP display.*

**ETHR MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td><em>C</em></td>
<td>Front: 1111111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td>.</td>
<td>123456789012345678</td>
<td>4567890123450</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sta: . . - - - - - - - - - - - - - - -</td>
<td>Dep: 00 FF</td>
<td>Typ: **</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Slot:</td>
<td>Side:</td>
<td>Packet:</td>
<td>Port:</td>
<td>Link:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Tst_</td>
<td>5</td>
<td>Rear</td>
<td>Lower</td>
<td>M</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>Bsy_</td>
<td>6</td>
<td>Rear</td>
<td>Lower</td>
<td>.</td>
<td>M</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS_</td>
<td>13</td>
<td>Rear</td>
<td>Lower</td>
<td>.</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Uniq_</td>
<td>14</td>
<td>Rear</td>
<td>Lower</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LoadFW_</td>
<td>XAC:</td>
<td>ETHR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
</tr>
</tbody>
</table>

*If the ETHR MAP level indicates* Do

- ETHR packet is in a ManB state: step 8
- ETHR packet is in a SysB state: step 9
- ETHR packet is in a CBsy state: step 14
- ETHR links or ports are in a ManB state: step 11
- ETHR links or ports are in a SysB state: step 12
- ETHR links are in a CBsy state: step 11
- ETHR ports are in a CBsy state: step 8
- no alarm and all CPs and all ports and links are InSv: step 53
8 Return the OOS packet to service. Repeat this step for each ManB packet. At the ETHR MAP level type

>RTS <nn> <s> <p>
and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

Example of command:

RTS 14 r l

Example of system response:

RTS 4 rear lower passed

---

If the ETHR packet is

<table>
<thead>
<tr>
<th>In a SysB state</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a CBsy state</td>
<td>step 9</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>

9 Manually busy the OOS ETHR packet. Repeat this step for each SysB packet. At the ETHR MAP level type

>BSY <nn> <s> <p>
and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

Example of command use:

>BSY 14 r l

Example of system response:

BSY 14 rear lower complete

---
Perform an OOS test on the ETHR packlet. Repeat this step for each ManB ETHR packlet. At the ETHR MAP level type

>`TST <nn> <s> <p>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

Example of command use:

>`TST 14 r l

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 21</td>
</tr>
</tbody>
</table>

Return the OOS ETHR links or ports to service. Repeat this step for each ManB link and then each ManB port as directed. At the ETHR MAP level type

>`RTS <nn> <s> <p> <link>

or

>`RTS <nn> <s> <p> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an Ethernet packlet.

<port> is the parameter that defines the port on an Ethernet packlet.

Example of command:

`RTS 14 r l link`
Example of system response:
RTS 14 rear lower link passed

<table>
<thead>
<tr>
<th>If the ETHR links or ports are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 12</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>

12 Manually busy the OOS ETHR ports or links. Repeat this step for each SysB link or port. At the ETHR MAP level type

>BSY <nn> <s> <p> <port>

or

>BSY <nn> <s> <p> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r).

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an Ethernet packet.

<port> is the parameter that defines the port on an Ethernet packet.

Example of command use:

>BSY 14 r l link

Example of system response:
BSY 14 rear lower link complete
XAC ETHR
critical (continued)

13 Perform an OOS test on the ETHR links or ports. Repeat this step for each ManB ETHR link or port. At the ETHR MAP level type

> TST <nn> <s> <p> <link>

or

> TST <nn> <s> <p> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an Ethernet packlet.

<port> is the parameter that defines the port on an Ethernet packlet.

Example of command use:

> TST 14 r l link

If the OOS test | Do
---|---
passed | step 7

14 Access the IO MAP level. At the ETHR MAP level type

> IO

and press the Enter key.

15 Examine the IO MAP level. Record the working state and location of the OOS IOP CP.

Note: The IO MAP level displays IOP CP and packlet working states as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- a status indicator appears in the state field in the shelf layout area.
- a status indicator appears in the equipment status field in the command interpreter output area.
The following is a sample MAP display.

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>C</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 Quit
1 Time 14:12
2 ...
3 ...
4 ...
5 ...
6 ...
7 ...
8 ...
9 ...
10 ...
11 ...
12 ...
13 ...
14 ...
15 ...
16 ...
17 ...
18 ...

If the IOP CP is in a ManB state
Do step 16
in a SysB state step 22
in an InSv state step 23

16 Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command:

>RTS 14 r
Example of system response:

RTS 4 rear passed

Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv and any related packet, ports or links</td>
<td>step 19</td>
</tr>
<tr>
<td>are ManB</td>
<td></td>
</tr>
<tr>
<td>InSv and any related packet, ports or links</td>
<td>step 7</td>
</tr>
<tr>
<td>are SysB</td>
<td></td>
</tr>
<tr>
<td>SysB and any related packet, ports or links</td>
<td>step 17</td>
</tr>
<tr>
<td>are CBsy</td>
<td></td>
</tr>
<tr>
<td>InSv and any related packlets, ports and</td>
<td>step 23</td>
</tr>
<tr>
<td>links are InSv</td>
<td></td>
</tr>
</tbody>
</table>

Manually busy the OOS IOP CP. At the IO MAP level type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 14 r

Example of system response:

BSY 4 rear complete

Perform an OOS test on the ManB IOP CP. At the IO MAP level type

>TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:

```
>TST 14 r
```

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 15</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 22</td>
</tr>
</tbody>
</table>

19 Access the correct MAP level. Return the ManB packet links or ports to service.

```
>RTS <nn> <s> <p>
```

or

```
>RTS <nn> <s> <p> <link>
```

or

```
>RTS <nn> <s> <p> <port>
```

and press the Enter key

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r).
- `<p>` is the position parameter value indicating the packet location, upper (u) or lower (l).
- `<link>` is the parameter that defines the link on an Ethernet packet.
- `<port>` is the parameter that defines the port on an Ethernet packet.

Example of command:

```
RTS 14 r l link
```

Example of system response:

```
RTS 14 rear lower link passed
```

<table>
<thead>
<tr>
<th>If the MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet packet or port is in a SysB state</td>
<td>step 21</td>
</tr>
<tr>
<td>Ethernet link is in a SysB state</td>
<td>step 20</td>
</tr>
<tr>
<td>Ethernet packet, port, and link are in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>
Perform the corrective link maintenance. Refer to the correct NTP. Return to this point when complete.

**If the links are**
- in a SysB state: step 21
- in an InSv state: step 23

Perform the correct packet replacement procedure. Refer to the replacement procedure in this document. Return to this point when complete.

**If the packet is**
- in an InSv state: step 23
- in a SysB state: step 52

Perform the correct IOP CP replacement procedure. Refer to the replacement procedure in this document. Return to this point when complete.

**If the IOP CP is**
- in an InSv state: step 23
- in a SysB state: step 52

Confirm that the alarm is clear. Examine the alarm banner on the ETHR MAP level.

**If the ETHR critical alarm is**
- changed to a different alarm: step 24
- not clear: step 52
- clear: step 53

Perform the correct alarm clearing procedure. Refer to the procedure in this document. Return to this point when complete.

**If the alarm is**
- not clear: step 52
- clear: step 53
If an ETHR alarm has been raised, but there is no evidence that any hardware or link is busy or defective, check whether there is excess datafill or erroneous datafill in table CMIPADDR.

- Excess datafill. If an ethernet link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.
- Erroneous datafill. If there is erroneous datafill, for example, as a result of a typing error when datafilling the table, that could cause an alarm.

Note: For a description of table CMIPADDR, see the chapter titled "XA-Core data schema overview" in the XA-Core Reference Manual, 297-8991-810.

Proceed as follows.

a Start the table editor and access table CMIPADDR. Type

```plaintext
>TABLE CMIPADDR
```
and press the ENTER key.

Example of system response:

```
TABLE: CMIPADDR
```

b Display the contents of the table. Type

```plaintext
>LIST ALL
```
and press the Enter key.

Example of system response:

```
MAP display example for table CMIPADDR

<table>
<thead>
<tr>
<th>KEY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMHST 0</td>
<td>HOST (10 40 14 108) 24 0</td>
</tr>
<tr>
<td>CMHST 1</td>
<td>HOST (10 40 14 109) 24 0</td>
</tr>
<tr>
<td>ETHRLNK 0</td>
<td>ETHR 5 REAR NONE (10 40 14 100) 24 (10 40 14 101) 24 (10 40 14 1) 0</td>
</tr>
<tr>
<td>ETHRLNK 1</td>
<td>ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0</td>
</tr>
<tr>
<td>ETHRLNK 2</td>
<td>ETHR 13 REAR NONE (10 40 14 104) 24 (10 40 14 105) 24 (10 40 14 3) 0</td>
</tr>
<tr>
<td>ETHRLNK 3</td>
<td>ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0</td>
</tr>
<tr>
<td>GATEWAY 0</td>
<td>GW (10 40 14 130) 0</td>
</tr>
</tbody>
</table>
```

c In the table, check the datafill in the tuples that begin with the word ETHRLNK. Each such tuple should correspond to an actual ethernet link.

- To check for excess datafill, compare the ETHRLNK tuples to the ethernet links that exist in the system.
- To check for erroneous datafill, compare the datafill in the ETHRLNK tuples to the IP addresses and netmask values found in the Network Specification Book for your office. To find the IP addresses and the netmask values, look in the section of the book titled “Communication Server Components”.

d If you find excess datafill or erroneous datafill, make note of the problem.
e Exit from the table editor. Type
   >QUIT
   and press the Enter key.

f Select the next step as follows:

<table>
<thead>
<tr>
<th>If you found</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>excess datafill</td>
<td>step 26</td>
</tr>
<tr>
<td>erroneous datafill</td>
<td>step 27</td>
</tr>
<tr>
<td>no problems with the datafill</td>
<td>step 52</td>
</tr>
</tbody>
</table>

26 Remove the tuple or tuples containing the excess datafill. For instructions, refer to the procedure titled “Deleting tuples from table CMIPADDR” in chapter 4 of this document. When complete, go to step 2 in this procedure and continue from there.

27 Correct the erroneous datafill. For instructions, refer to the procedure titled “Changing tuples in table CMIPADDR” in chapter 4 of this document. When complete, go to step 2 in this procedure and continue from there.

28 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type
   >LOGUTIL
   and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type
   >OPEN XAC
   and press the Enter key.

c Examine and record the appropriate log reports.

d Return to the CI MAP prompt. At the Logutil prompt type
   >QUIT
   and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the logs indicate an Ethernet port or link fault</td>
<td>step 29</td>
</tr>
<tr>
<td>the logs indicate an HIOP CP hardware fault or an HCMIC CP hardware fault</td>
<td>step 29</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, but there is an ETHR critical alarm</td>
<td>step 49</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, and if the ETHR critical alarm condition is clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>
Access the IO MAP level. At the MAP terminal, type

```plaintext
>MAPCI;MTC;XAC;IO
```

and press the Enter key.

Examine the IO MAP level. Record the working state of the system. Record the working states of the HIOP CP and/or HCMIC CPs. Also record the locations of the HIOP and/or HCMIC CPs on the physical shelf, side and slot.

**Note:** The IO MAP can display alarms and status as follows:

- an IOP alarm appears under the XAC header in the alarm banner
- an equipment alarm under the PE header in the subsystem summary status field (SSSF)

The following is a sample MAP display.

**Note:** The information you gather in this step will be of use in step 33.

Access the XA-Core ETHR MAP level by typing

```plaintext
MAPCI;MTC;XAC;ETHR
```

Examine the ETHR MAP level.

**Note:** The ETHR MAP level can display alarms and status as follows:

- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.
The following is a sample MAP display.

ETHR MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Note:** The information you gather in this step will be of use in step 33.

**33** Select the next step as follows.

<table>
<thead>
<tr>
<th>If the information from the IOP and ETHR MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an HIOP or HCMIC CP is in a ManB state</td>
<td>step 34</td>
</tr>
<tr>
<td>an HIOP or HCMIC CP is in a SysB state</td>
<td>step 36</td>
</tr>
<tr>
<td>ETHR links or ports are in a ManB state</td>
<td>step 41</td>
</tr>
<tr>
<td>ETHR links or ports are in a SysB state</td>
<td>step 42</td>
</tr>
<tr>
<td>ETHR links are in a CBsy state</td>
<td>step 41</td>
</tr>
<tr>
<td>ETHR ports are in a CBsy state</td>
<td>step 34</td>
</tr>
<tr>
<td>no alarm and all CPs and all ports and links are InSv</td>
<td>step 53</td>
</tr>
</tbody>
</table>

**34** Access the IO MAP level. At the MAP terminal, type

```
>MAPCI;MTC;XAC;IO
```

and press the Enter key.
35 Return the HIOP or HCMIC CP to service. At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>RTS 5 r

Example of system response:

RTS 5 rear passed

<table>
<thead>
<tr>
<th>If the CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 37</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 53</td>
</tr>
</tbody>
</table>

36 Access the IO MAP level. At the MAP terminal, type

>MAPCI;MTC;XAC;IO

and press the Enter key.

37 Manually busy the OOS CP. At the IO MAP level type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 5 r

Example of system response:

BSY 5 rear complete

Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.
Perform an OOS test on the ManB HIOP or HCMIC CP. At the IO MAP level type
\texttt{>TST <nn> <s>}
and press the Enter key
where
\(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
\(<s>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:
\texttt{>TST 5 r}

Return the HIOP or HCMIC CP to service. At the IO MAP level type
\texttt{>RTS <nn> <s>}
and press the Enter key
where
\(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
\(<s>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of system response:
\texttt{RTS 5 rear passed}

If the HIOP CP is
\begin{tabular}{|l|l|}
\hline
in a ManB state & step 38 \\
not in a ManB state & step 52 \\
\hline
\end{tabular}

If the OOS test
\begin{tabular}{|l|l|}
\hline
passed & step 39 \\
did not pass & step 40 \\
\hline
\end{tabular}

If the HIOP CP is
\begin{tabular}{|l|l|}
\hline
not in an InSv state & step 40 \\
in an InSv state & step 30 \\
\hline
\end{tabular}
Perform the procedure to replace the HIOP CP or the HCMIC CP. Refer to the replacement procedure in this document. Continue to step 30 when complete.

Return the OOS ETHR links or ports to service. Repeat this step for each ManB link and then each ManB port as directed. At the ETHR MAP level type

\[>\text{RTS } \langle \text{nn}\rangle \ <\text{s}> \ <\text{link}>>\]

or

\[>\text{RTS } \langle \text{nn}\rangle \ <\text{s}> \ <\text{port}>\]

and press the Enter key

where

\(<\text{nn}>\) is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

\(<\text{s}>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

\(<\text{link}>\) is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

\(<\text{port}>\) is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command:

\text{RTS 5 r link}

\text{Example of system response:}

RTS 5 rear link passed

<table>
<thead>
<tr>
<th>If the ETHR links or ports are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 42</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

Manually busy the OOS ETHR ports or links. Repeat this step for each SysB link or port. At the ETHR MAP level type

\[>\text{BSY } \langle \text{nn}\rangle \ <\text{s}> \ <\text{link}>>\]

or

\[>\text{BSY } \langle \text{nn}\rangle \ <\text{s}> \ <\text{port}>\]

and press the Enter key

where

\(<\text{nn}>\) is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

\(<\text{s}>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

\(<\text{link}>\) is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.
<port> is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command use:

>BSY 5 r link

Example of system response:

BSY 5 rear link complete

43 Perform an OOS test on the ETHR links or ports. Repeat this step for each ManB ETHR link or port. At the ETHR MAP level type

>TST <nn> <s> <link>

or

>TST <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<link> is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

<port> is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command use:

>TST 5 r link

If the OOS test

did not pass

did not pass

44 Access the correct MAP level. Return the ManB links or ports to service.

>RTS <nn> <s> <link>

or

>RTS <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Understanding the alarm system

**XAC ETHR**

**critical** (continued)

&lt;link&gt; is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

&lt;port&gt; is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command:

**RTS 5 r link**

_Example of system response:_

RTS 5 rear link passed

<table>
<thead>
<tr>
<th>If the MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet port is in a SysB state</td>
<td>step 46</td>
</tr>
<tr>
<td>Ethernet link is in a SysB state</td>
<td>step 45</td>
</tr>
<tr>
<td>Ethernet port and link are in an InSv state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

**45** Correct the link fault. Proceed as follows.

**a** Check whether the following events have occurred. If someone has turned off auto-negotiation at the far-end router and has then forced the far end to 100BT full duplex, then a duplex-mode mismatch has occurred. The mismatch has occurred because the HIOP or HCMIC CP has gone to 100BT half duplex. Such a mismatch causes the Ethernet link to go SysB.

If these events have not occurred, proceed to step 45b.

To recover from the mismatch, enable auto-negotiation at the far end. Alternatively, if it is not possible to enable auto-negotiation, configure the far end to half duplex mode. Then proceed to step 45b.

**b** Perform the corrective link maintenance. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 46</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

**46** Perform the procedure to replace the HIOP CP or the HCMIC CP. Refer to the replacement procedure in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a InSv state</td>
<td>step 47</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 52</td>
</tr>
</tbody>
</table>
XAC ETHR

critical (continued)

47 Confirm that the alarm is clear. Examine the alarm banner on the ETHR MAP level.

<table>
<thead>
<tr>
<th>If the ETHR critical alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 48</td>
</tr>
<tr>
<td>not clear</td>
<td>step 52</td>
</tr>
<tr>
<td>clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>

48 Perform the correct alarm clearing procedure. Refer to the procedure in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 52</td>
</tr>
<tr>
<td>clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>

49 If an ETHR alarm has been raised, but there is no evidence that any hardware or link is busy or defective, check whether there is excess datafill or erroneous datafill in table CMIPADDR.

- Excess datafill. If an ethernet link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.
- Erroneous datafill. If there is erroneous datafill, for example, as a result of a typing error when datafilling the table, that could cause an alarm.

Note: For a description of table CMIPADDR, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Proceed as follows.

a Start the table editor and access table CMIPADDR. Type

>TABLE CMIPADDR

and press the Enter key.

Example of system response:

TABLE: CMIPADDR

b Display the contents of the table. Type

>LIST ALL

and press the Enter key.
Example of system response:

MAP display example for table CMIPADDR

<table>
<thead>
<tr>
<th>KEY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMHOST 0</td>
<td>HOST (10 40 14 108) 24 0</td>
</tr>
<tr>
<td>CMHOST 1</td>
<td>HOST (10 40 14 109) 24 0</td>
</tr>
<tr>
<td>ETHRLNK 0</td>
<td>ETHR 5 REAR NONE (10 40 14 100) 24 (10 40 14 101) 24 (10 40 14 1) 0</td>
</tr>
<tr>
<td>ETHRLNK 1</td>
<td>ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0</td>
</tr>
<tr>
<td>ETHRLNK 2</td>
<td>ETHR 13 REAR NONE (10 40 14 104) 24 (10 40 14 105) 24 (10 40 14 3) 0</td>
</tr>
<tr>
<td>ETHRLNK 3</td>
<td>ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0</td>
</tr>
<tr>
<td>GATEWAY 0</td>
<td>GW (10 40 14 130) 0</td>
</tr>
</tbody>
</table>

c In the table, check the datafill in the tuples that begin with the word ETHRLNK. Each such tuple should correspond to an actual ethernet link.
   • To check for excess datafill, compare the ETHRLNK tuples to the ethernet links that exist in the system.
   • To check for erroneous datafill, compare the datafill in the ETHRLNK tuples to the IP addresses and netmask values found in the Network Specification Book for your office. To find the IP addresses and the netmask values, look in the section of the book titled “Communication Server Components”.

d If you find excess datafill or erroneous datafill, make note of the problem.

e Exit from the table editor. Type

>QUIT

and press the Enter key.

f Select the next step as follows:

<table>
<thead>
<tr>
<th>If you found</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>excess datafill</td>
<td>step 50</td>
</tr>
<tr>
<td>erroneous datafill</td>
<td>step 51</td>
</tr>
<tr>
<td>no problems with the datafill</td>
<td>step 52</td>
</tr>
</tbody>
</table>

50 Correct the erroneous datafill. For instructions, refer to the procedure titled “Changing tuples in table CMIPADDR” in chapter 4 of this document. When complete, go to step 29 in this procedure and continue from there.

51 Correct the erroneous datafill. For instructions, refer to the procedure titled “Changing tuples in table CMIPADDR” in chapter 4 of this document. When complete, go to step 29 in this procedure and continue from there.

52 Call the next level of support.

53 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
Alarm display

<table>
<thead>
<tr>
<th>XAC ETHR</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Indication

An ETHR major alarm code appears under the XAC header of the alarm banner. The alarm code indicates an Ethernet major alarm.

Meaning

The conditions that contribute to an ETHR major alarm are dependent on the link configuration in use.

The following port or link states can contribute to an ETHR major alarm in a four link configuration:

- Two Ethernet ports or links are in ManBsy state
- Two Ethernet ports or links are in CBsy state
- Two Ethernet ports or links are in SysBsy state

The following port or link states can contribute to an ETHR major alarm in a two link configuration:

- One Ethernet port or link is in ManBsy state
- One Ethernet port or link is in SysBsy state

Impact

A loss of Ethernet redundancy occurs. There is no loss of call origination at the Call Server.

Common procedures

This procedure refers to the replacement procedures for the Ethernet packlet, for the IOP circuit pack, and for the HIOP and HCMIC circuit packs, and to the procedures for deleting and changing tuples in table CMIPADDR. All procedures are in this document.
Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an ETHR major alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

- What hardware handles ethernet links? HiOPs and/or HCMICs
- Ethernet packets
- Obtain logs
- ETHR link ManB?
  - Y: Return ETHR link to service
  - N: ETHR port ManB?
    - Y: Return ETHR port to service
    - N: ETHR link or port SysB?
      - Y: ManB the port or link and perform an OOS test
      - N: ETHR link Cbsy?
        - Y: Return ETHR link to service
        - N: ETHR port Cbsy?
          - Y: 6
          - N: 5
Summary of clearing an ETHR major alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.
Summary of clearing an ETHR major alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. Obtain logs

2. **(N)** ETHR link or port ManB?
   - **(Y)** Return ETHR link or port to service
   - **(N)** ETHR link or port SysB?
     - **(Y)** ManB the port or link and perform an OOS test
       - **(N)** Correct the link fault
         - **(Y)** State of the link?
           - **(INSV)**
             - **(SYSB)**
               - **(43)**
             - **(33)**
               - **(N)**
               - **(41)**
         - **(44)**
     - **(N)**

3. **(42)** ETHR link Cbsy?
   - **(Y)**
   - **(N)** ETHR port Cbsy?
     - **(Y)**
     - **(N)**

4. **(44)** RTS passed?
   - **(N)**

5. **(43)**
Summary of clearing an ETHR major alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. **HIOP CP or HCMIC CP ManB?**
   - **Yes**: Return the CP to service
     - **RTS passed?**
       - **Yes**: End
       - **No**: Prepare the next level of support
   - **No**: Call next level of support

2. **HIOP CP or HCMIC CP SysB?**
   - **Yes**: ManB the CP and perform an OOS test
     - **OOS test passed?**
       - **Yes**: Return the CP to service
         - **RTS passed?**
           - **Yes**: End
           - **No**: Prepare the next level of support
       - **No**: Prepare the next level of support
   - **No**: Call next level of support

3. **Datafill in table CMIPADDR is correct?**
   - **Yes**: Correct the datafill in table CMIPADDR
   - **No**: Call next level of support

4. **Alarm clear?**
   - **Yes**: Different alarm?
     - **Yes**: Refer to the correct alarm clearing NTP
     - **No**: Prepare the next level of support
   - **No**: Different alarm?
     - **Yes**: Refer to the correct alarm clearing NTP
     - **No**: Prepare the next level of support

5. **End**
How to clear an ETHR major alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
Risk of equipment damage - electric static discharge (ESD)
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packetlets.

**CAUTION**
Loss of service
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packetlets or resources OOS.

*At your current location*

1. If you know the type of hardware that handles the Ethernet links in the XA-Core, go to step 4. (The links can be handled either by Ethernet packetlets or by HIOP circuit packs and/or HCMIC circuit packs. For more information on the hardware that can be involved, see “Rules governing ethernet links” in the section titled “Adding, removing, or re-arranging ethernet links” in chapter 4 of this document.) If you do not know the type of hardware, proceed to step 2.

2. Access the XA-Core ETHR MAP level by typing
   `MAPCI;MTC;XAC;ETHR`
   and pressing the Enter key.

3. Examine the ETHR MAP level. Determine whether the Ethernet links connect to Ethernet packetlets or to HIOP circuit packs and/or HCMIC circuit packs.
If the “Packlet” fields in the ETHR MAP level are blank, then the Ethernet links connect to circuit packs rather than packlets. If those circuit packs are in slots 4R and 15R, they are HCMICs; otherwise, they are HIOPs.

The following are sample MAP displays.

ETHR MAP level showing Ethernet links connected to packlets

<table>
<thead>
<tr>
<th>CHRISTOPHER</th>
<th>JOSEPH</th>
<th>NET</th>
<th>PM</th>
<th>CCS</th>
<th>LNS</th>
<th>TRKS</th>
<th>EXT</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>C</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHR</td>
<td>Front: 11111111 Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td>123456789012345678 456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>ETHR M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sta:</td>
<td>0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Dep:</td>
<td>FF F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Typ:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Slot:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Side:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Packet:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Port:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Link:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 LoadFW:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 XAC:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ETHR:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td>Time 14:12 &gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ETHR MAP level showing Ethernet links connected to HIOP circuit packs

<table>
<thead>
<tr>
<th>CHRISTOPHER</th>
<th>JOSEPH</th>
<th>NET</th>
<th>PM</th>
<th>CCS</th>
<th>LNS</th>
<th>TRKS</th>
<th>EXT</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>C</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHR</td>
<td>Front: 11111111 Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td>123456789012345678 456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>ETHR M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sta:</td>
<td>0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Dep:</td>
<td>FF F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Typ:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Slot:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Side:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Packet:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Port:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Link:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 LoadFW:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 XAC:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ETHR:</td>
<td>** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td>Time 14:12 &gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Select the next step as follows.

<table>
<thead>
<tr>
<th>If the Ethernet links are connected to</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet packetets</td>
<td>step 5</td>
</tr>
<tr>
<td>HIOP CPs and/or HCMIC CPs</td>
<td>step 28</td>
</tr>
</tbody>
</table>

Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

- **a** Access the log utility feature. At the CI MAP level, type
  
  `>LOGUTIL`  
  and press the Enter key.

- **b** Access the XA-Core logs. At the Logutil prompt type
  
  `>OPEN XAC`  
  and press the Enter key.

- **c** Examine and record the appropriate log reports.

- **d** Return to the CI MAP prompt. At the Logutil prompt type
  
  `>QUIT`  
  and press the Enter key.

Access the XA-Core ETHR MAP level by typing

`MAPCI;MTC;XAC;ETHR`

and pressing the Enter key.

Examine the ETHR MAP level. Record the location and status of the ETHR packetets.

**Note:** The ETHR MAP level can display alarms and status as follows:
- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
• a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

**ETHR MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>FM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

* C *

**Front:** 11111111  **Rear:** 111111  **SM**  **PE**  **IO**  **PKLT**

123456789012345678  4567890123450  0  0  0  1

**Sta:** . . . . . . . . . . . . . . . . . . . . . .

**Dep:** FF  FF

**Typ:**  **  **

**Slot:**  **  **  Side:**  **  **  Packet:**  **  **  Port:**  **  **  Link:**  **

5  Rear  Lower  M  C  C
6  Rear  Lower  .  M  C
7  Rear  Lower  .  .  S
8  Rear  Lower  I  .  .
9  Rear  Lower  I  .  .

**ETHR:**

**XAC:**

**ETHR:**

**ETHR:  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...**

If the ETHR MAP level indicates  Do

- ETHR packet is in a ManB state  step 8
- ETHR packet is in a SysB state  step 9
- ETHR packet is in a CBsy state  step 14
- ETHR links or ports are in a ManB state  step 11
- ETHR links or ports are in a SysB state  step 12
- ETHR links are in a CBsy state  step 11
- ETHR ports are in a CBsy state  step 8
- no alarm and all CPs and all ports and links are InSv  step 53
Return the OOS packlet to service. Repeat this step for each ManB packlet. At the ETHR MAP level type

```
>RTS <nn> <s> <p>
```

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value indicating the packlet location, upper (u) or lower (l).

Example of command:

```
RTS 14 r l
```

**Example of system response:**

```
RTS 4 rear lower passed
```

<table>
<thead>
<tr>
<th>If the ETHR packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 9</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 14</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>

Manually busy the OOS ETHR packlet. Repeat this step for each SysB packlet. At the ETHR MAP level type

```
>BSY <nn> <s> <p>
```

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value indicating the packlet location, upper (u) or lower (l).

Example of command use:

```
>BSY 14 r l
```

**Example of system response:**

```
BSY 14 rear lower complete
```
10 Perform an OOS test on the ETHR packet. Repeat this step for each ManB ETHR packet. At the ETHR MAP level type

> TST <nn> <s> <p>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

Example of command use:

> TST 14 r l

If the OOS test passed do 7

If the OOS test did not pass do 21

11 Return the OOS ETHR links or ports to service. Repeat this step for each ManB link and then each ManB port as directed. At the ETHR MAP level type

> RTS <nn> <s> <p> <link> or

> RTS <nn> <s> <p> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an Ethernet packet.

<port> is the parameter that defines the port on an Ethernet packet.

Example of command:

RTS 14 r l link
Example of system response:

RTS 14 rear lower link passed

<table>
<thead>
<tr>
<th>If the ETHR links or ports are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 12</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>

12 Manually busy the OOS ETHR ports or links. Repeat this step for each SysB link or port. At the ETHR MAP level type

>BSY <nn> <s> <p> <port>

or

>BSY <nn> <s> <p> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an Ethernet packet.

[port> is the parameter that defines the port on an Ethernet packet.

Example of command use:

>BSY 14 r l link

Example of system response:

BSY 14 rear lower link complete
Perform an OOS test on the ETHR links or ports. Repeat this step for each ManB ETHR link or port. At the ETHR MAP level type

\[ \text{TST } <\text{nn}> <\text{s}> <\text{p}> <\text{link}> \]

or

\[ \text{TST } <\text{nn}> <\text{s}> <\text{p}> <\text{port}> \]

and press the Enter key.

where

\(<\text{nn}>\) is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

\(<\text{s}>\) is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r).

\(<\text{p}>\) is the position parameter value indicating the packet location, upper (u) or lower (l).

\(<\text{link}>\) is the parameter that defines the link on an Ethernet packet.

\(<\text{port}>\) is the parameter that defines the port on an Ethernet packet.

Example of command use:

\[ \text{TST 14 r l link} \]

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 20</td>
</tr>
</tbody>
</table>

Access the IO MAP level. At the ETHR MAP level type

\[ \text{IO} \]

and press the Enter key.

Examine the IO MAP level. Record the working state and location of the OOS IOP CP.

**Note:** The IO MAP level displays IOP CP and packet working states as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- a status indicator appears in the state field in the shelf layout area.
- a status indicator appears in the equipment status field in the command interpreter output area.
The following is a sample MAP display.

If the IOP CP is in a ManB state do step 16
in a SysB state do step 22
in an InSv state do step 23

16 Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<ss> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command:

>RTS 14 r
Example of system response:

RTS 4 rear passed

Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv and any related packet, ports or links are ManB</td>
<td>step 19</td>
</tr>
<tr>
<td>InSv and any related packet, ports or links are SysB</td>
<td>step 7</td>
</tr>
<tr>
<td>SysB and any related packet, ports or links are CBsy</td>
<td>step 17</td>
</tr>
<tr>
<td>InSv and any related packlets, ports and links are InSv</td>
<td>step 23</td>
</tr>
</tbody>
</table>

17 Manually busy the OOS IOP CP. At the IO MAP level type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 14 r

Example of system response:

BSY 4 rear complete

18 Perform an OOS test on the ManB IOP CP. At the IO MAP level type

>TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:

\[ \text{TST} \ 14 \ r \]

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 15</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 22</td>
</tr>
</tbody>
</table>

Access the correct MAP level. Return the ManB packet links or ports to service.

\[ \text{RTS} \ <nn> \ <s> \ <p> \]  \\
\ or  \\
\[ \text{RTS} \ <nn> \ <s> \ <p> \ <link> \]  \\
\ or  \\
\[ \text{RTS} \ <nn> \ <s> \ <p> \ <port> \]

and press the Enter key

where

\(<nn>\) is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

\(<s>\) is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r).

\(<p>\) is the position parameter value indicating the packet location, upper (u) or lower (l).

\(<link>\) is the parameter that defines the link on an Ethernet packet.

\(<port>\) is the parameter that defines the port on an Ethernet packet.

Example of command:

\[ \text{RTS} \ 14 \ r \ l \ link \]

Example of system response:

\text{RTS} \ 14 \ rear \ lower \ link \ passed

<table>
<thead>
<tr>
<th>If the MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet packet or port is in a SysB state</td>
<td>step 21</td>
</tr>
<tr>
<td>Ethernet link is in a SysB state</td>
<td>step 20</td>
</tr>
<tr>
<td>Ethernet packet, port, and link are in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>

XA-Core Maintenance Manual
Perform the corrective link maintenance. Refer to the correct NTP. Return to this point when complete.

If the links are

<table>
<thead>
<tr>
<th>If the links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 21</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>

Perform the correct packet replacement procedure. Refer to the replacement procedure in this document. Return to this point when complete.

If the packet is

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 52</td>
</tr>
</tbody>
</table>

Perform the correct IOP CP replacement procedure. Refer to the replacement procedure in this document. Return to this point when complete.

If the IOP CP is

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 52</td>
</tr>
</tbody>
</table>

Confirm that the alarm is clear. Examine the alarm banner on the ETHR MAP level.

If the ETHR critical alarm is

<table>
<thead>
<tr>
<th>If the ETHR critical alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 24</td>
</tr>
<tr>
<td>not clear</td>
<td>step 52</td>
</tr>
<tr>
<td>clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>

Perform the correct alarm clearing procedure. Refer to the procedure in this document. Return to this point when complete.

If the alarm is

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 52</td>
</tr>
<tr>
<td>clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>
If an ETHR alarm has been raised, but there is no evidence that any hardware or link is busy or defective, check whether there is excess datafill or erroneous datafill in table CMIPADDR.

- Excess datafill. If an ethernet link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.
- Erroneous datafill. If there is erroneous datafill, for example, as a result of a typing error when datafilling the table, that could cause an alarm.

**Note:** For a description of table CMIPADDR, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Proceed as follows.

- **a** Start the table editor and access table CMIPADDR. Type
  
  `>TABLE CMIPADDR`
  
  and press the ENTER key.
  
  **Example of system response:**
  
  TABLE: CMIPADDR
  
- **b** Display the contents of the table. Type
  
  `>LIST ALL`
  
  and press the Enter key.
  
  **Example of system response:**
  
  MAP display example for table CMIPADDR

<table>
<thead>
<tr>
<th>KEY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMHOST 0 HOST (10 40 14 108) 24 0</td>
<td></td>
</tr>
<tr>
<td>CMHOST 1 HOST (10 40 14 109) 24 0</td>
<td></td>
</tr>
<tr>
<td>ETHRLNK 0 ETHR 5 REAR NONE (10 40 14 100) 24 (10 40 14 101) 24 (10 40 14 1) 0</td>
<td></td>
</tr>
<tr>
<td>ETHRLNK 1 ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0</td>
<td></td>
</tr>
<tr>
<td>ETHRLNK 2 ETHR 13 REAR NONE (10 40 14 104) 24 (10 40 14 105) 24 (10 40 14 3) 0</td>
<td></td>
</tr>
<tr>
<td>ETHRLNK 3 ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0</td>
<td></td>
</tr>
<tr>
<td>GATEWAY 0 GW (10 40 14 130) 0</td>
<td></td>
</tr>
</tbody>
</table>

- **c** In the table, check the datafill in the tuples that begin with the word ETHRLNK. Each such tuple should correspond to an actual ethernet link.
  
  - To check for excess datafill, compare the ETHRLNK tuples to the ethernet links that exist in the system.
  - To check for erroneous datafill, compare the datafill in the ETHRLNK tuples to the IP addresses and netmask values found in the Network Specification Book for your office. To find the IP addresses and the netmask values, look in the section of the book titled “Communication Server Components”.

- **d** If you find excess datafill or erroneous datafill, make note of the problem.
e Exit from the table editor. Type
   >QUIT
   and press the Enter key.

f Select the next step as follows

<table>
<thead>
<tr>
<th>If you found</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>excess datafill</td>
<td>step 26</td>
</tr>
<tr>
<td>erroneous datafill</td>
<td>step 27</td>
</tr>
<tr>
<td>no problems with the datafill</td>
<td>step 52</td>
</tr>
</tbody>
</table>

26 Remove the tuple or tuples containing the excess datafill. For instructions, refer to the procedure titled “Deleting tuples from table CMIPADDR” in chapter 4 of this document. When complete, go to step 2 in this procedure and continue from there.

27 Correct the erroneous datafill. For instructions, refer to the procedure titled “Changing tuples in table CMIPADDR” in chapter 4 of this document. When complete, go to step 2 in this procedure and continue from there.

28 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type
   >LOGUTIL
   and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type
   >OPEN XAC
   and press the Enter key.

c Examine and record the appropriate log reports.

d Return to the CI MAP prompt. At the Logutil prompt type
   >QUIT
   and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the logs indicate an Ethernet port or link fault</td>
<td>step 29</td>
</tr>
<tr>
<td>the logs indicate an HIOP CP hardware fault or an HCMIC CP hardware fault</td>
<td>step 29</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, but there is an ETHR major alarm</td>
<td>step 49</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, and if the ETHR major alarm condition is clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>
Access the IO MAP level. At the MAP terminal, type

```
>MAPCI;MTC;XAC;IO
```

and press the Enter key

Examine the IO MAP level. Record the working state of the system. Record the working states of the HIOP CP and/or HCMIC CPs. Also record the locations of the HIOP and/or HCMIC CPs on the physical shelf, side and slot.

**Note:** The IO MAP can display alarms and status as follows:

- an IOP alarm appears under the XAC header in the alarm banner
- an equipment alarm under the PE header in the subsystem summary status field (SSSF)

The following is a sample MAP display.

**Note:** The information you gather in this step will be of use in step 33.

Access the XA-Core ETHR MAP level by typing

```
MAPCI;MTC;XAC;ETHR
```

Examine the ETHR MAP level.

**Note:** The ETHR MAP level can display alarms and status as follows:

- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.
The following is a sample MAP display.

### ETHR MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td>Front: 11111111 Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The information you gather in this step will be of use in step 33.

33 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the information from the IOP and ETHR MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an HIOP or HCMIC CP is in a ManB state</td>
<td>step 34</td>
</tr>
<tr>
<td>an HIOP or HCMIC CP is in a SysB state</td>
<td>step 36</td>
</tr>
<tr>
<td>ETHR links or ports are in a ManB state</td>
<td>step 41</td>
</tr>
<tr>
<td>ETHR links or ports are in a SysB state</td>
<td>step 42</td>
</tr>
<tr>
<td>ETHR links are in a CBsy state</td>
<td>step 41</td>
</tr>
<tr>
<td>ETHR ports are in a CBsy state</td>
<td>step 34</td>
</tr>
<tr>
<td>no alarm and all CPs and all ports and links are InSv</td>
<td>step 53</td>
</tr>
</tbody>
</table>

34 Access the IO MAP level. At the MAP terminal, type

```plaintext
>MAPCI;MTC;XAC;IO
```

and press the Enter key.
35 Return the HIOP or HCMIC CP to service. At the IO MAP level type
>RTS <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:
>RTS 5 r

Example of system response:
RTS 5 rear passed

<table>
<thead>
<tr>
<th>If the CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 37</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 53</td>
</tr>
</tbody>
</table>

36 Access the IO MAP level. At the MAP terminal, type
>MAPCI;MTC;XAC;IO
and press the Enter key.

37 Manually busy the OOS CP. At the IO MAP level type
>BSY <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:
>BSY 5 r

Example of system response:
BSY 5 rear complete

Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.
Perform an OOS test on the ManB HIOP or HCMIC CP. At the IO MAP level type

> TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

> TST 5 r

Return the HIOP or HCMIC CP to service. At the IO MAP level type

> RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command:

> RTS 5 r

Example of system response:

RTS 5 rear passed

If the HIOP CP is

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 38</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 52</td>
</tr>
</tbody>
</table>

If the CP is

<table>
<thead>
<tr>
<th>If the CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 40</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 30</td>
</tr>
</tbody>
</table>
Perform the procedure to replace the HIOP CP or the HCMIC CP. Refer to the replacement procedure in this document. Continue to step 30 when complete.

Return the OOS ETHR links or ports to service. Repeat this step for each ManB link and then each ManB port as directed. At the ETHR MAP level type

\[
>\text{RTS} \ <nn> \ <s> \ <link>
\]

or

\[
>\text{RTS} \ <nn> \ <s> \ <port>
\]

and press the Enter key

where

\(<nn>\) is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

\(<s>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

\(<link>\) is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

\(<port>\) is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command:

\[
\text{RTS} \ 5 \ r \ \text{link}
\]

Example of system response:

RTS 5 rear link passed

If the ETHR links or ports are in a SysB state Do

- step 42

If the ETHR links or ports are in an InSv state Do

- step 47

Manually busy the OOS ETHR ports or links. Repeat this step for each SysB link or port. At the ETHR MAP level type

\[
>\text{BSY} \ <nn> \ <s> \ <link>
\]

or

\[
>\text{BSY} \ <nn> \ <s> \ <port>
\]

and press the Enter key

where

\(<nn>\) is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

\(<s>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

\(<link>\) is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.
<port> is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command use:

>BSY 5 r link

*Example of system response:*

BSY 5 rear link complete

Perform an OOS test on the ETHR links or ports. Repeat this step for each ManB ETHR link or port. At the ETHR MAP level type

>TST <nn> <s> <link>

or

>TST <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<link> is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

<port> is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command use:

>TST 5 r link

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 29</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 45</td>
</tr>
</tbody>
</table>

Access the correct MAP level. Return the ManB links or ports to service.

>RTS <nn> <s> <link>

or

>RTS <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
<link> is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

<port> is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command:

**RTS 5 r link**

*Example of system response:*

RTS 5 rear link passed

<table>
<thead>
<tr>
<th>If the MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet port is in a SysB state</td>
<td>step 46</td>
</tr>
<tr>
<td>Ethernet link is in a SysB state</td>
<td>step 45</td>
</tr>
<tr>
<td>Ethernet port and link are in an InSv state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

45 Correct the link fault. Proceed as follows.

a Check whether the following events have occurred. If someone has turned off auto-negotiation at the far-end router and has then forced the far end to 100BT full duplex, then a duplex-mode mismatch has occurred. The mismatch has occurred because the HIOP or HCMIC has gone to 100BT half duplex. Such a mismatch causes the Ethernet link to go SysB. If these events have not occurred, proceed to step 45b.

To recover from the mismatch, enable auto-negotiation at the far end. Alternatively, if it is not possible to enable auto-negotiation, configure the far end to half duplex mode. Then proceed to step 45b.

b Perform the corrective link maintenance. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 46</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

46 Perform the procedure to replace the HIOP CP or the HCMIC CP. Refer to the replacement procedure in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a InSv state</td>
<td>step 47</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 52</td>
</tr>
</tbody>
</table>
Confirm that the alarm is clear. Examine the alarm banner on the ETHR MAP level.

If the ETHR critical alarm is	Do
changed to a different alarm | step 48
not clear | step 52
clear | step 53

Perform the correct alarm clearing procedure. Refer to the procedure in this document. Return to this point when complete.

If the alarm is	Do
not clear | step 52
clear | step 53

If an ETHR alarm has been raised, but there is no evidence that any hardware or link is busy or defective, check whether there is excess datafill or erroneous datafill in table CMIPADDR.

- Excess datafill. If an ethernet link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.
- Erroneous datafill. If there is erroneous datafill, for example, as a result of a typing error when datafilling the table, that could cause an alarm.

**Note:** For a description of table CMIPADDR, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Proceed as follows.

a  Start the table editor and access table CMIPADDR. Type

>TABLE CMIPADDR

and press the Enter key.

*Example of system response:*

```
TABLE: CMIPADDR
```

b  Display the contents of the table. Type

>LIST ALL

and press the Enter key.
Example of system response:

MAP display example for table CMIPADDR

<table>
<thead>
<tr>
<th>KEY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMHOST 0</td>
<td>HOST (10 40 14 108) 24 0</td>
</tr>
<tr>
<td>CMHOST 1</td>
<td>HOST (10 40 14 109) 24 0</td>
</tr>
<tr>
<td>ETHRLNK 0</td>
<td>ETHR 5 REAR NONE (10 40 14 100) 24 (10 40 14 101) 24 (10 40 14 1) 0</td>
</tr>
<tr>
<td>ETHRLNK 1</td>
<td>ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0</td>
</tr>
<tr>
<td>ETHRLNK 2</td>
<td>ETHR 13 REAR NONE (10 40 14 104) 24 (10 40 14 105) 24 (10 40 14 3) 0</td>
</tr>
<tr>
<td>ETHRLNK 3</td>
<td>ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0</td>
</tr>
<tr>
<td>GATEWAY 0</td>
<td>GW (10 40 14 130) 0</td>
</tr>
</tbody>
</table>

c  In the table, check the datafill in the tuples that begin with the word ETHRLNK. Each such tuple should correspond to an actual ethernet link.
   • To check for excess datafill, compare the ETHRLNK tuples to the ethernet links that exist in the system.
   • To check for erroneous datafill, compare the datafill in the ETHRLNK tuples to the IP addresses and netmask values found in the Network Specification Book for your office. To find the IP addresses and the netmask values, look in the section of the book titled “Communication Server Components”.

d  If you find excess datafill or erroneous datafill, make note of the problem.

e  Exit from the table editor. Type
   
   >QUIT
   
   and press the Enter key.

f  Select the next step as follows:

<table>
<thead>
<tr>
<th>If you found</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>excess datafill</td>
<td>step 50</td>
</tr>
<tr>
<td>erroneous datafill</td>
<td>step 51</td>
</tr>
<tr>
<td>no problems with the datafill</td>
<td>step 52</td>
</tr>
</tbody>
</table>

50  Remove the tuple or tuples containing the excess datafill. For instructions, refer to the procedure titled “Deleting tuples from table CMIPADDR” in chapter 4 of this document. When complete, go to step 29 in this procedure and continue from there.

51  Correct the erroneous datafill. For instructions, refer to the procedure titled “Changing tuples in table CMIPADDR” in chapter 4 of this document. When complete, go to step 29 in this procedure and continue from there.

52  Call the next level of support.

53  You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Understanding the alarm system

Alarm display

<table>
<thead>
<tr>
<th>XAC ETHR</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

Indication
An ETHR minor alarm code appears under the XAC header of the alarm banner. The alarm code indicates an Ethernet minor alarm.

Meaning
An Ethernet minor alarm is only possible when using a four link configuration.

An Ethernet minor alarm cannot occur in a two link configuration.

The following port or link states can contribute to an ETHR minor alarm in a four link configuration:

- One Ethernet port or link is in ManBsy state.
- One Ethernet port or link is in CBsy state.
- One Ethernet port or link is in SysBsy state.

Impact
A loss of Ethernet redundancy occurs. There is no loss of call origination at the Call Server.

Common procedures
This procedure refers to the replacement procedures for the Ethernet packet, for the IOP circuit pack, and for the HIOP and HCMIC circuit packs, and to the procedures for deleting and changing tuples in table CMIPADDR. All procedures are in this document.

Action
The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an ETHR minor alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. What hardware handles ethernet links?
   - HiOPs and/or HCMICs

2. Obtain logs

3. ETHR link ManB?
   - Y: Return ETHR link to service
   - N: Return ETHR port to service

4. ETHR port ManB?
   - Y: Return ETHR port to service
   - N: ManB the port or link and perform an OOS test

5. ETHR link Cbsy?
   - Y: Return ETHR link to service
   - N: ETHR port Cbsy?

6. ETHR port Cbsy?
   - Y: ETHR link to Cbsy?
   - N: ETHR port Cbsy?

7. ETHR link or port SysB?
   - Y: ETHR link or port SysB?
   - N: ETHR link Cbsy?
Summary of clearing an ETHR minor alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.
Summary of clearing an ETHR minor alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. Obtain logs
2. ETHR link or port ManB?
   - Yes: Return ETHR link or port to service
   - No: ETHR link or port SysB?
3. Yes: ManB the port or link and perform an OOS test
4. No: Correct the link fault
5. ETHR link Cbsy?
   - Yes: Return ETHR link to service
   - No: ETHR port Cbsy?
   - Yes: RTS passed?
   - No: OOS test passed?
   - Yes: State of the link?
   - No: Correct the link fault

**Legend:**
- INSV
- SYSB
- RTS
- Cbsy
- N
- Y
Summary of clearing an ETHR minor alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. **HIOP CP or HCMIC CP ManB?**
   - **Yes:** Return the CP to service
   - **No:** ManB the CP and perform an OOS test

2. **HIOP CP or HCMIC CP SysB?**
   - **Yes:** Datafill in table CMIPADDR is correct?
     - **Yes:** Return the CP to service
     - **No:** Correct the datafill in table CMIPADDR
   - **No:** RTS passed?
     - **Yes:** End
     - **No:** RTS passed?

3. **RTS passed?**
   - **Yes:** Replace the unit. Refer to the correct NTP.
   - **No:** Call next level of support

4. **Alarm clear?**
   - **Yes:** different alarm?
     - **Yes:** Refer to the correct alarm clearing NTP
     - **No:** Call next level of support
   - **No:** End

5. **ManB?**
   - **Yes:** Correct the datafill in table CMIPADDR

6. **SysB?**
   - **Yes:** Correct the datafill in table CMIPADDR

7. **Datafill in table CMIPADDR is correct?**
   - **Yes:** RTS passed?
     - **Yes:** End
     - **No:** RTS passed?

8. **Return the CP to service**
   - **Yes:** RTS passed?
     - **Yes:** End
     - **No:** RTS passed?

9. **Refer to the correct NTP.**
   - **Yes:** End
   - **No:** Call next level of support
How to clear an ETHR minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
**Risk of equipment damage**
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
**Risk of equipment damage - electric static discharge (ESD)**
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packetets.

**CAUTION**
**Loss of service**
Manually busy one CP or packetet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packetets or resources OOS.

**At your current location**

1. If you know the type of hardware that handles the Ethernet links in the XA-Core, go to step 4. (The links can be handled either by Ethernet packetets or by HIOP circuit packets and/or HCMIC circuit packets. For more information on the hardware that can be involved, see “Rules governing ethernet links” in the section titled “Adding, removing, or re-arranging ethernet links” in chapter 4 of this document.) If you do not know the type of hardware, proceed to step 2.

2. Access the XA-Core ETHR MAP level by typing
   \[\text{MAPCI;MTC;XAC;ETHR}\]
   and pressing the Enter key.

3. Examine the ETHR MAP level. Determine whether the Ethernet links connect to Ethernet packetets or to HIOP circuit packets and/or HCMIC circuit packets.
If the “Packlet” fields in the ETHR MAP level are blank, then the Ethernet links connect to circuit packs rather than packetets. If those circuit packs are in slots 4R and 15R, they are HOMICs; otherwise, they are HIOPs.

The following are sample MAP displays.

**ETHR MAP level showing Ethernet links connected to packetets**

**ETHR MAP level showing Ethernet links connected to HIOP circuit packs**
4 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the Ethernet links are connected to</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet packlets</td>
<td>step 5</td>
</tr>
<tr>
<td>HIOP CPs and/or HCMIC CPs</td>
<td>step 28</td>
</tr>
</tbody>
</table>

5 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.

   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.

   c Examine and record the appropriate log reports.

   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the logs indicate an Ethernet packet fault</td>
<td>step 6</td>
</tr>
<tr>
<td>the logs indicate an Ethernet port or link fault</td>
<td>step 6</td>
</tr>
<tr>
<td>the logs indicate an IOP CP hardware fault</td>
<td>step 17</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, but there is an ETHR minor alarm</td>
<td>step 25</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, and if the ETHR minor alarm condition is clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>

6 Access the XA-Core ETHR MAP level by typing
   MAPCI;MTC;XAC;ETHR
   and pressing the Enter key.

7 Examine the ETHR MAP level. Record the location and status of the ETHR packlets.

   Note: The ETHR MAP level can display alarms and status as follows:
   • a system alarm code appears under the XAC header in the alarm banner.
   • an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
• a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

**ETHR MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>FM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>C</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sta:</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Dep:</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Typ:</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Slot:</td>
<td>Side:</td>
<td>Packet:</td>
<td>Port:</td>
<td>Link:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Tst:</td>
<td>5 Rear Lower M C C</td>
<td>6 Rear Lower . M C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Bsy:</td>
<td>13 Rear Lower . . S</td>
<td>14 Rear Lower I . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 RTS:</td>
<td>XAC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 LoadFW:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 XMAP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ETHR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Uneq:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Alarm:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Cntrs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Indicat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Query:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**If the ETHR MAP level indicates**        **Do**

ETHR packet is in a ManB state	step 8
ETHR packet is in a SysB state	step 9
ETHR packet is in a CBsy state	step 14
ETHR links or ports are in a ManB state	step 11
ETHR links or ports are in a SysB state	step 12
ETHR links are in a CBsy state	step 11
ETHR ports are in a CBsy state	step 8
no alarm and all CPs and all ports and links are InSv	step 53
XAC ETHR
minor (continued)

8. Return the OOS packet to service. Repeat this step for each ManB packet.
   At the ETHR MAP level type
   >RTS <nn> <s> <p>
   and press the Enter key
   where
   <nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to
   15 for the rear plane.
   <s> is the side parameter value to indicate the CP or packet location in the
   physical shelf - front (f) or rear (r)
   <p> is the position parameter value indicating the packet location, upper (u)
   or lower (l).
   Example of command:
   RTS 14 r l
   Example of system response:
   RTS 4 rear lower passed

<table>
<thead>
<tr>
<th>If the ETHR packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 9</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 14</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>

9. Manually busy the OOS ETHR packet. Repeat this step for each SysB packet.
   At the ETHR MAP level type
   >BSY <nn> <s> <p>
   and press the Enter key
   where
   <nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to
   15 for the rear plane.
   <s> is the side parameter value to indicate the CP or packet location in the
   physical shelf - front (f) or rear (r)
   <p> is the position parameter value indicating the packet location, upper (u)
   or lower (l).
   Example of command use:
   >BSY 14 r l
   Example of system response:
   BSY 14 rear lower complete
10 Perform an OOS test on the ETHR packet. Repeat this step for each ManB ETHR packet. At the ETHR MAP level type

```plaintext
>TST <nn> <s> <p>
```

and press the Enter key.

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r).
- `<p>` is the position parameter value indicating the packet location, upper (u) or lower (l).

Example of command use:

```plaintext
>TST 14 r l
```

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 21</td>
</tr>
</tbody>
</table>

11 Return the OOS ETHR links or ports to service. Repeat this step for each ManB link and then each ManB port as directed. At the ETHR MAP level type

```plaintext
>RTS <nn> <s> <p> <link>
```

or

```plaintext
>RTS <nn> <s> <p> <port>
```

and press the Enter key.

where

- `<nn>` is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r).
- `<p>` is the position parameter value indicating the packet location, upper (u) or lower (l).
- `<link>` is the parameter that defines the link on an Ethernet packet.
- `<port>` is the parameter that defines the port on an Ethernet packet.

Example of command:

```plaintext
RTS 14 r l link
```
Example of system response:
RTS 14 rear lower link passed

<table>
<thead>
<tr>
<th>If the ETHR links or ports are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 12</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
</tbody>
</table>

12
Manually busy the OOS ETHR ports or links. Repeat this step for each SysB link or port. At the ETHR MAP level type

>BSY <nn> <s> <p> <port>

or

>BSY <nn> <s> <p> <port>

and press the Enter key.

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r).

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an Ethernet packet.

<port> is the parameter that defines the port on an Ethernet packet.

Example of command use:

>BSY 14 r l link

Example of system response:
BSY 14 rear lower link complete
Perform an OOS test on the ETHR links or ports. Repeat this step for each ManB ETHR link or port. At the ETHR MAP level type

>`TST <nn> <s> <p> <link>

or

>`TST <nn> <s> <p> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packlet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an Ethernet packlet.

<port> is the parameter that defines the port on an Ethernet packlet.

Example of command use:

>`TST 14 r l link

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 20</td>
</tr>
</tbody>
</table>

Access the IO MAP level. At the ETHR MAP level type

>`IO

and press the Enter key.

Examine the IO MAP level. Record the working state and location of the OOS IOP CP.

Note: The IO MAP level displays IOP CP and packlet working states as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- a status indicator appears in the state field in the shelf layout area.
- a status indicator appears in the equipment status field in the command interpreter output area.
The following is a sample MAP display.

### IO MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (continued)

If the IOP CP is in a ManB state step 16
in a SysB state step 22
in an InSv state step 23

16 Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command:

>RTS 14 r
Example of system response:

RTS 4 rear passed

b  Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv and any related packlet, ports or links are ManB</td>
<td>step 19</td>
</tr>
<tr>
<td>InSv and any related packlet, ports or links are SysB</td>
<td>step 7</td>
</tr>
<tr>
<td>SysB and any related packlet, ports or links are CBsy</td>
<td>step 17</td>
</tr>
<tr>
<td>InSv and any related packlets, ports and links are InSv</td>
<td>step 23</td>
</tr>
</tbody>
</table>

17  Manually busy the OOS IOP CP. At the IO MAP level type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 14 r

Example of system response:

BSY 4 rear complete

18  Perform an OOS test on the ManB IOP CP. At the IO MAP level type

>TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:

>`TST 14 r`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 15</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 22</td>
</tr>
</tbody>
</table>

Access the correct MAP level. Return the ManB packet links or ports to service.

>`RTS <nn> <s> <p>`

* or *

>`RTS <nn> <s> <p> <link>`

* or *

>`RTS <nn> <s> <p> <port>`

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value indicating the packet location, upper (u) or lower (l).

<link> is the parameter that defines the link on an Ethernet packet.

<port> is the parameter that defines the port on an Ethernet packet.

Example of command:

`RTS 14 r l link`

*Example of system response:*

RTS 14 rear lower link passed

<table>
<thead>
<tr>
<th>If the MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet packet or port is in a SysB state</td>
<td>step 21</td>
</tr>
<tr>
<td>Ethernet link is in a SysB state</td>
<td>step 20</td>
</tr>
<tr>
<td>Ethernet packet, port, and link are in an InSv state</td>
<td>step 23</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td><strong>20</strong></td>
<td>Perform the corrective link maintenance. Refer to the correct NTP. Return to this point when complete.</td>
</tr>
<tr>
<td><strong>If the links are</strong></td>
<td><strong>Do</strong></td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 21</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
<tr>
<td><strong>21</strong></td>
<td>Perform the correct packet replacement procedure. Refer to the replacement procedure in this document. Return to this point when complete.</td>
</tr>
<tr>
<td><strong>If the packet is</strong></td>
<td><strong>Do</strong></td>
</tr>
<tr>
<td>in a InSv state</td>
<td>step 23</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 52</td>
</tr>
<tr>
<td><strong>22</strong></td>
<td>Perform the correct IOP CP replacement procedure. Refer to the replacement procedure in this document. Return to this point when complete.</td>
</tr>
<tr>
<td><strong>If the IOP CP is</strong></td>
<td><strong>Do</strong></td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 23</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 52</td>
</tr>
<tr>
<td><strong>23</strong></td>
<td>Confirm that the alarm is clear. Examine the alarm banner on the ETHR MAP level.</td>
</tr>
<tr>
<td><strong>If the ETHR critical alarm is</strong></td>
<td><strong>Do</strong></td>
</tr>
<tr>
<td>changed to a different alarm</td>
<td>step 24</td>
</tr>
<tr>
<td>not clear</td>
<td>step 52</td>
</tr>
<tr>
<td>clear</td>
<td>step 53</td>
</tr>
<tr>
<td><strong>24</strong></td>
<td>Perform the correct alarm clearing procedure. Refer to the procedure in this document. Return to this point when complete.</td>
</tr>
<tr>
<td><strong>If the alarm is</strong></td>
<td><strong>Do</strong></td>
</tr>
<tr>
<td>not clear</td>
<td>step 52</td>
</tr>
<tr>
<td>clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>
If an ETHR alarm has been raised, but there is no evidence that any hardware or link is busy or defective, check whether there is excess datafill or erroneous datafill in table CMIPADDR.

- Excess datafill. If an ethernet link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.
- Erroneous datafill. If there is erroneous datafill, for example, as a result of a typing error when datafilling the table, that could cause an alarm.

**Note:** For a description of table CMIPADDR, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Proceed as follows.

a. Start the table editor and access table CMIPADDR. Type

```plaintext
>TABLE CMIPADDR
```

and press the ENTER key.

*Example of system response:*

```
TABLE: CMIPADDR
```

b. Display the contents of the table. Type

```plaintext
>LIST ALL
```

and press the Enter key.

*Example of system response:*

```
MAP display example for table CMIPADDR
```

<table>
<thead>
<tr>
<th>KEY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMHOST 0</td>
<td>HOST (10 40 14 108) 24 0</td>
</tr>
<tr>
<td>CMHOST 1</td>
<td>HOST (10 40 14 109) 24 0</td>
</tr>
<tr>
<td>ETHRLNK 0</td>
<td>ETHR 5 REAR NONE (10 40 14 100) 24 (10 40 14 101) 24 (10 40 14 1) 0</td>
</tr>
<tr>
<td>ETHRLNK 1</td>
<td>ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0</td>
</tr>
<tr>
<td>ETHRLNK 2</td>
<td>ETHR 13 REAR NONE (10 40 14 104) 24 (10 40 14 105) 24 (10 40 14 3) 0</td>
</tr>
<tr>
<td>ETHRLNK 3</td>
<td>ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0</td>
</tr>
<tr>
<td>GATEWAY 0</td>
<td>GW (10 40 14 130) 0</td>
</tr>
</tbody>
</table>

In the table, check the datafill in the tuples that begin with the word ETHRLNK. Each such tuple should correspond to an actual ethernet link.

- To check for excess datafill, compare the ETHRLNK tuples to the ethernet links that exist in the system.
- To check for erroneous datafill, compare the datafill in the ETHRLNK tuples to the IP addresses and netmask values found in the Network Specification Book for your office. To find the IP addresses and the netmask values, look in the section of the book titled “Communication Server Components”.

d. If you find excess datafill or erroneous datafill, make note of the problem.
Exit from the table editor. Type
>QUIT
and press the Enter key.

Select the next step as follows

<table>
<thead>
<tr>
<th>If you found</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>excess datafill</td>
<td>step 26</td>
</tr>
<tr>
<td>erroneous datafill</td>
<td>step 27</td>
</tr>
<tr>
<td>no problems with the datafill</td>
<td>step 52</td>
</tr>
</tbody>
</table>

26 Remove the tuple or tuples containing the excess datafill. For instructions, refer to the procedure titled “Deleting tuples from table CMIPADDR” in chapter 4 of this document. When complete, go to step 2 in this procedure and continue from there.

27 Correct the erroneous datafill. For instructions, refer to the procedure titled “Changing tuples in table CMIPADDR” in chapter 4 of this document. When complete, go to step 2 in this procedure and continue from there.

28 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type
>LOGUTIL
and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type
>OPEN XAC
and press the Enter key.

c Examine and record the appropriate log reports.

d Return to the CI MAP prompt. At the Logutil prompt type
>QUIT
and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the logs indicate an Ethernet port or link fault</td>
<td>step 29</td>
</tr>
<tr>
<td>the logs indicate an HIOP CP hardware fault or an HCMIC CP hardware fault</td>
<td>step 29</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, but there is an ETHR major alarm</td>
<td>step 49</td>
</tr>
<tr>
<td>the logs indicate that none of the faults listed above exists, and if the ETHR minor alarm condition is clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>
Access the IO MAP level. At the MAP terminal, type

>MAPCI;MTC;XAC;IO

and press the Enter key

Examine the IO MAP level. Record the working state of the system. Record the working states of the HIOP CP and/or HCMIC CPs. Also record the locations of the HIOP and/or HCMIC CPs on the physical shelf, side and slot.

Note: The IO MAP can display alarms and status as follows:
- an IOP alarm appears under the XAC header in the alarm banner
- an equipment alarm under the PE header in the subsystem summary status field (SSSF)

The following is a sample MAP display.

Access the XA-Core ETHR MAP level by typing

MAPCI;MTC;XAC;ETHR

Examine the ETHR MAP level.

Note: The ETHR MAP level can display alarms and status as follows:
- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.
The following is a sample MAP display.

ETHR MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tst_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bsy_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LoadFW_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Uneq_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Cntrs_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Indicat_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Query_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>14:12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The information you gather in this step will be of use in step 33.

Select the next step as follows:

<table>
<thead>
<tr>
<th>If the information from the IOP and ETHR MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an HIOP or HCMIC CP is in a ManB state</td>
<td>step 34</td>
</tr>
<tr>
<td>an HIOP or HCMIC CP is in a SysB state</td>
<td>step 36</td>
</tr>
<tr>
<td>ETHR links or ports are in a ManB state</td>
<td>step 41</td>
</tr>
<tr>
<td>ETHR links or ports are in a SysB state</td>
<td>step 42</td>
</tr>
<tr>
<td>ETHR links are in a CBsy state</td>
<td>step 41</td>
</tr>
<tr>
<td>ETHR ports are in a CBsy state</td>
<td>step 34</td>
</tr>
<tr>
<td>no alarm and all CPs and all ports and links are InSv</td>
<td>step 53</td>
</tr>
</tbody>
</table>

34 Access the IO MAP level. At the MAP terminal, type

>MAPCI;MTC;XAC;IO

and press the Enter key
35 Return the HIOP or HCMIC CP to service. At the IO MAP level type
>RTS <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the
physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical
shelf - front (f) or rear (r)
Example of command use:
>RTS 5 r
Example of system response:
RTS 5 rear passed

If the CP is	Do
not in an InSv state | step 37
in an InSv state | step 53

36 Access the IO MAP level. At the MAP terminal, type
>MAPCI;MTC;XAC;IO
and press the Enter key.

37 Manually busy the OOS CP. At the IO MAP level type
>BSY <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the
physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical
shelf - front (f) or rear (r)
Example of command use:
>BSY 5 r
Example of system response:
BSY 5 rear complete

Note: If needed, use the Force option to place the CP in a ManB state.
Refer to the XA-Core MAP commands documentation.
Perform an OOS test on the ManB HIOP or HCMIC CP. At the IO MAP level type:

\( \text{TST } <\text{nn}> <\text{s}> \)

and press the Enter key

where

\(<\text{nn}>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
\(<\text{s}>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

\( \text{TST } 5 \text{ r} \)

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 39</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 40</td>
</tr>
</tbody>
</table>

Return the HIOP or HCMIC CP to service. At the IO MAP level type:

\( \text{RTS } <\text{nn}> <\text{s}> \)

and press the Enter key

where

\(<\text{nn}>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
\(<\text{s}>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command:

\( \text{RTS } 5 \text{ r} \)

Example of system response:

RTS 5 rear passed

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 40</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 30</td>
</tr>
</tbody>
</table>
Perform the procedure to replace the HIOP CP or the HCMIC CP. Refer to the replacement procedure in this document. Continue to step 30 when complete.

41 Return the OOS ETHR links or ports to service. Repeat this step for each ManB link and then each ManB port as directed. At the ETHR MAP level type

>RTS <nn> <s> <link>

or

>RTS <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<link> is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

<port> is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command:

RTS 5 r link

Example of system response:

RTS 5 rear link passed

<table>
<thead>
<tr>
<th>If the ETHR links or ports are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 42</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

Manually busy the OOS ETHR ports or links. Repeat this step for each SysB link or port. At the ETHR MAP level type

>BSY <nn> <s> <link>

or

>BSY <nn> <s> <port>

and press the Enter key

where

<nn> is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<link> is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.
<port> is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command use:

>`BSY 5 r link`

*Example of system response:*

`BSY 5 rear link complete`

43 Perform an OOS test on the ETHR links or ports. Repeat this step for each ManB ETHR link or port. At the ETHR MAP level type

>`TST <nn> <s> <link>`

or

>`TST <nn> <s> <port>`

and press the Enter key

*where*

*<nn>* is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

*<s>* is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

*<link>* is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

*<port>* is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command use:

>`TST 5 r link`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 29</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 45</td>
</tr>
</tbody>
</table>

44 Access the correct MAP level. Return the ManB links or ports to service.

>`RTS <nn> <s> <link>`

or

>`RTS <nn> <s> <port>`

and press the Enter key

*where*

*<nn>* is the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

*<s>* is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
XAC ETHR minor (continued)

<link> is the parameter that defines the Ethernet link on an HIOP or HCMIC CP.

/port> is the parameter that defines the Ethernet port on an HIOP or HCMIC CP.

Example of command:

RTS 5 r link

Example of system response:

RTS 5 rear link passed

<table>
<thead>
<tr>
<th>If the MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet port is in a SysB state</td>
<td>step 46</td>
</tr>
<tr>
<td>Ethernet link is in a SysB state</td>
<td>step 45</td>
</tr>
<tr>
<td>Ethernet port and link are in an InSv state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

45 Correct the link fault. Proceed as follows.

a Check whether the following events have occurred. If someone has turned off auto-negotiation at the far-end router and has then forced the far end to 100BT full duplex, then a duplex-mode mismatch has occurred. The mismatch has occurred because the HIOP or HCMIC CP has gone to 100BT half duplex. Such a mismatch causes the Ethernet link to go SysB.

If these events have not occurred, proceed to step 45b.

To recover from the mismatch, enable auto-negotiation at the far end. Alternatively, if it is not possible to enable auto-negotiation, configure the far end to half duplex mode. Then proceed to step 45b.

b Perform the corrective link maintenance. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the links are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 46</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

46 Perform the procedure to replace the HIOP CP or the HCMIC CP. Refer to the replacement procedure in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a InSv state</td>
<td>step 47</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 52</td>
</tr>
</tbody>
</table>
Confirm that the alarm is clear. Examine the alarm banner on the ETHR MAP level.

<table>
<thead>
<tr>
<th>If the ETHR critical alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 48</td>
</tr>
<tr>
<td>not clear</td>
<td>step 52</td>
</tr>
<tr>
<td>clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>

Perform the correct alarm clearing procedure. Refer to the procedure in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 52</td>
</tr>
<tr>
<td>clear</td>
<td>step 53</td>
</tr>
</tbody>
</table>

If an ETHR alarm has been raised, but there is no evidence that any hardware or link is busy or defective, check whether there is excess datafill or erroneous datafill in table CMIPADDR.

- Excess datafill. If an ethernet link has been provisioned in the table but does not actually exist, the system looks for the link, cannot find it, and raises an alarm.
- Erroneous datafill. If there is erroneous datafill, for example, as a result of a typing error when datafilling the table, that could cause an alarm.

**Note:** For a description of table CMIPADDR, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Proceed as follows.

**a** Start the table editor and access table CMIPADDR. Type

```
>TABLE CMIPADDR
```

and press the Enter key.

*Example of system response:*

```
TABLE: CMIPADDR
```

**b** Display the contents of the table. Type

```
>LIST ALL
```

and press the Enter key.
Example of system response:

**MAP display example for table CMIPADDR**

<table>
<thead>
<tr>
<th>KEY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMHOST 0</td>
<td>HOST (10 40 14 108) 24 0</td>
</tr>
<tr>
<td>CMHOST 1</td>
<td>HOST (10 40 14 109) 24 0</td>
</tr>
<tr>
<td>ETHRLNK 0</td>
<td>ETHR 5 REAR NONE (10 40 14 100) 24 (10 40 14 101) 24 (10 40 14 1) 0</td>
</tr>
<tr>
<td>ETHRLNK 1</td>
<td>ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0</td>
</tr>
<tr>
<td>ETHRLNK 2</td>
<td>ETHR 13 REAR NONE (10 40 14 104) 24 (10 40 14 105) 24 (10 40 14 3) 0</td>
</tr>
<tr>
<td>ETHRLNK 3</td>
<td>ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0</td>
</tr>
<tr>
<td>GATEWAY 0</td>
<td>GW (10 40 14 130) 0</td>
</tr>
</tbody>
</table>

c  In the table, check the datafill in the tuples that begin with the word ETHRLNK. Each such tuple should correspond to an actual ethernet link.
  
  - To check for excess datafill, compare the ETHRLNK tuples to the ethernet links that exist in the system.
  - To check for erroneous datafill, compare the datafill in the ETHRLNK tuples to the IP addresses and netmask values found in the Network Specification Book for your office. To find the IP addresses and the netmask values, look in the section of the book titled “Communication Server Components”.

d  If you find excess datafill or erroneous datafill, make note of the problem.

e  Exit from the table editor. Type

>QUIT

and press the Enter key.

f  Select the next step as follows:

<table>
<thead>
<tr>
<th>If you found</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>excess datafill</td>
<td>step 50</td>
</tr>
<tr>
<td>erroneous datafill</td>
<td>step 51</td>
</tr>
<tr>
<td>no problems with the datafill</td>
<td>step 52</td>
</tr>
</tbody>
</table>

50  Remove the tuple or tuples containing the excess datafill. For instructions, refer to the procedure titled “Deleting tuples from table CMIPADDR” in chapter 4 of this document. When complete, go to step 29 in this procedure and continue from there.

51  Correct the erroneous datafill. For instructions, refer to the procedure titled “Changing tuples in table CMIPADDR” in chapter 4 of this document. When complete, go to step 29 in this procedure and continue from there.

52  Call the next level of support.

53  You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
Alarm display

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FWsoak</td>
<td>.</td>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

**Indication**

The FWsoak alarm appears in the alarm banner of all MTC MAP levels under the XAC header. The command ALARM FWSOAK lists the field replaceable units (FRU) currently soaking firmware. The system raises the FWsoak alarm when the FRU is returned to service after loading new firmware. The system does not raise the alarm if the soak time for an FRU is set to zero in table XAFWLOAD.

**Meaning**

The FWsoak alarm indicates the firmware is being soaked on at least one FRU. The alarm clears when the soaking time expires. This alarm requires no action.

**Impact**

There is no immediate change in subscriber service.

**Common procedures**

There are no common procedures.

**Action**

No action is required. The system automatically clears the alarm when the soak time expires.
This page is left blank intentionally.
Understanding the alarm system

XAC FWvers major

Alarm display

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWvers</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Indication

The FWvers alarm appears in the alarm banner of all MTC MAP levels under the XAC header. The FWvers alarm indicates there is a firmware mismatch. The FWvers alarm severity is major.

Meaning

When the system or operating company personnel issues the query card command, the system checks for a firmware mismatch. The system raises the FWvers alarm when the firmware version of the field replaceable unit (FRU) and the firmware version recorded in table XAFWLOAD do not match.

Impact

When the system raises this alarm, it generates log XAC330. When the system clears the alarm, it generates log XAC630. Use the information in these logs when performing this procedure.

Common procedures

This procedure does not refer to any common procedures.

Next level of maintenance

Repeat this procedure if it is not successful when you first perform the procedure.

A problem can occur that requires the help of the local maintenance personnel. Gather all important logs, reports, and system information (that is, product type and current software load) for analysis. The related logs, maintenance notes, and system information help make sure that the next level of maintenance and support can find the problem. More detail about logs appears in the Log Report Reference Manual, 297-8001-840 (North American market) or 297-9051-840 (International market).
XAC FWvers
major (continued)

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to clear the alarm.

Summary of clearing alarm XAC FWvers alarm

2

List all mismatches

FWvers alarms?

Passed?

Manually busy the affected card

Program the card with the current FW load.

Return the card to service

1 N

Contact next level of support

Y 2

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.
Clearing alarm XAC FWvers major

At your current location

1 To query FWvers alarms and list all mismatches, type
   >ALARM FWVERS
   and press the Enter key.
   Example of MAP response

<table>
<thead>
<tr>
<th>Cause</th>
<th>FRU/device</th>
<th>State</th>
<th>Slot</th>
<th>Side</th>
<th>Packlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW version mismatch</td>
<td>PE</td>
<td>InSv</td>
<td>4</td>
<td>front</td>
<td></td>
</tr>
<tr>
<td>FW version mismatch</td>
<td>IOP</td>
<td>InSv</td>
<td>2</td>
<td>front</td>
<td></td>
</tr>
<tr>
<td>FW version mismatch</td>
<td>IOP</td>
<td>InSv</td>
<td>17</td>
<td>front</td>
<td></td>
</tr>
<tr>
<td>FW version mismatch</td>
<td>CMIC</td>
<td>InSv</td>
<td>4</td>
<td>rear</td>
<td>lower</td>
</tr>
</tbody>
</table>

   If any FWvers alarms are listed
     Do step 2
   there are no FWvers alarms
     Do step 12

2 To access the table XAFWLOAD, type
   >TABLE XAFWLOAD
   and press the Enter key.
   Example of MAP response
   JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED
   TABLE: XAFWLOAD

3 To review the tuples in the table, type
   >LIST ALL
   and press the Enter key.
   Example of MAP response

   INDEX FRU PEC VERSION VOLUME FILE STATUS SOAK
   -----------------------------------------------
   1 PE NTLX02AA XAPE01AC F02LFWLOADS PEFW413 old 48
   2 PE NTLX02AA XAPE01AG F02LFWLOADS PEFW421 current 48
   3 PE NTLX02AA XAPE01BA F02LFWLOADS PEFW424 old 48
   4 IOP NTLX03AA XAIO01AA F02LFWLOADS ISEFW41 old 0
   5 IOP NTLX03AA XAIO01AC F02LFWLOADS ISEFW44 current 0
   6 CMIC NTLX05AA PK10CU10 F02LFWLOADS 0C3FW75 current 72

4 To query the card with an associated FWvers alarm, type
   >QUERY CARD <slot>
   and press the Enter key.
where

<slot> is the slot position of the card (for example, 4 Front)

For example, type

>QUERY CARD 4 f

Example of MAP response

Command Submitted.
Query 4 Front completed

Notes:
FW: ROM version. HIOP adds DLL version on following line.
OK: Yes, No, IDPROM read fail, Unsupported. **”=Investigate!
   --HW vs. PECINV--
   --FW vs. FWINV--
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers. Baseline OK
--- ----- ----- -- --- -- -- --- --- --- --- --- --- --
4F PE NTLX02DA 04 01 Y NNTM64422LVG XAPE02AE XAPE02AB Y
HW/SW Vintage: 01
Full ROM Version: XAPE02AE-01.4

Record the information.

5

To access the appropriate MAP level to program the FLASH with the current firmware version and clear the alarm, type

>MAPCI;MTC;XAC;map;<MAP_level>

and press the Enter key.

where

<MAP_level> is the name of the MAP level (for example, PE, IOP or CMIC)

Example of MAP response

XAC  MS  IOD APPL
FWvers . .
M

6

To manually busy the card, type

>BSY <slot> FORCE

or

>BSY <slot>

and press the Enter key.

where

<slot> is the slot position of the card (for example, 4 Front)

Note: If this command reduces redundancy, you must use the Force option.

Example of MAP response
Warning: Bsy command will take it out of service.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):
7 To confirm the action, type
>Y
and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the response is Command Submitted. Bsy 4 front completed</td>
<td>step 8</td>
</tr>
<tr>
<td>the response is Command Submitted. Bsy 4 front failed</td>
<td>step 11</td>
</tr>
</tbody>
</table>

8 To program the card with the current FW load, type
>LOADFW <slot> FILE CURRENT
and press the Enter key.

where
<slot> is the slot position of the card (for example, 4 Front)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the response is Command Submitted. LoadFW 4 front completed</td>
<td>step 9</td>
</tr>
<tr>
<td>the response is Command Submitted. LoadFW 4 front failed Volume nonexistent.</td>
<td>step 11</td>
</tr>
</tbody>
</table>

9 To return the card to service, type
>RTS <slot>
and press the Enter key.

where
<slot> is the slot position of the card (for example, 4 Front)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the response is Command Submitted. RTS 4 front passed</td>
<td>step 10</td>
</tr>
<tr>
<td>the response is Command Submitted. RTS 4 front failed</td>
<td>step 11</td>
</tr>
</tbody>
</table>
XAC FWvers

major (end)

10 To query all FWvers alarms and list all mismatches, type

>`ALARM FWVERS

and press the Enter key.

Example of MAP response

<table>
<thead>
<tr>
<th>Cause</th>
<th>FRU/device</th>
<th>State</th>
<th>Slot</th>
<th>Side</th>
<th>Packlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW version mismatch</td>
<td>IOP</td>
<td>InSv</td>
<td>2</td>
<td>front</td>
<td></td>
</tr>
<tr>
<td>FW version mismatch</td>
<td>IOP</td>
<td>InSv</td>
<td>17</td>
<td>front</td>
<td></td>
</tr>
<tr>
<td>FW version mismatch</td>
<td>CMIC</td>
<td>InSv</td>
<td>4</td>
<td>rear</td>
<td>lower</td>
</tr>
</tbody>
</table>

If

- any FWvers alarms are listed
- there are no FWvers alarms

Do

step 2

step 12

11 Contact your next level of support.

12 The procedure is complete.
Understanding the alarm system

**XAC Image critical**

### Alarm display

![Image critical alarm code][1]

#### Indication

An Image critical alarm code appears under the XAC header of the alarm banner. The alarm banner code indicates an image critical alarm.

#### Meaning

This alarm means that an image test was unsuccessful. In an image test, the switch splits into two sides, the active image and the inactive image. Then a restart is executed on the inactive image and some tests are executed on that image to verify that the software load is sane and that the switch could restart properly using the software load. The image critical alarm indicates that one or more of the tests has failed.

#### Impact

There is no immediate change in subscriber service. However, the sanity of the software load is in question and its ability to survive a restart is in question. If a restart were to occur on the switch, it is possible that the restart would not be successful.

If an image critical alarm is in effect, do not take an image. Do not set the autoload registered (ALR) image file in the image table of contents (ITOC) to an image that has failed an image test.

The image table of contents lists image files that can be used for restarts. There is a tuple for each image, with an index number at the beginning of the tuple. When the switch has to restart, the image file with the lowest number is used. If that image file fails to boot, then the switch tries the next image file.

#### Common procedures

There are no common procedures.
The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

### Summary of clearing an ImgTst minor alarm

1. Obtain XA-Core logs
2. Perform alarm-clearing procedure
3. Alarm cleared?
   - **Y**: End
   - **N**: Call the next level of support

### How to clear an ImgTst minor alarm

**ATTENTION**

Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.
At your current location

1. Collect information from the log report system. The log messages provide information about the source of the alarm.
   a. Access the log utility feature. At the CI MAP level, type
      ```
 >LOGUTIL
      ```
      and press the Enter key.
   b. Access the XA-Core logs. At the Logutil prompt type
      ```
 >OPEN XAC
      ```
      and press the Enter key.
   c. Examine and record the appropriate log reports.
   d. Return to the CI MAP prompt. At the Logutil prompt type
      ```
 >QUIT
      ```
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a different alarm condition</td>
<td>step 2</td>
</tr>
<tr>
<td>an Image critical alarm condition</td>
<td>step 3</td>
</tr>
<tr>
<td>the alarm condition is clear</td>
<td>step 4</td>
</tr>
</tbody>
</table>

2. Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 3</td>
</tr>
<tr>
<td>clear</td>
<td>step 4</td>
</tr>
</tbody>
</table>

3. Call the next level of support.

4. You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
Alarm display

Indication
An ImgTst minor alarm code appears under the XAC header of the alarm banner. The alarm code indicates an image test minor alarm.

Meaning
The XA-Core system is performing an image test on the XA-Core software load. The image test executes in response to the image test MAP command. The image test checks for correct software function and image restart capability.

Impact
Call processing capacity can be reduced.

Common procedures
There are no common procedures.
XAC ImgTst
minor (continued)

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing an ImgTst minor alarm

How to clear an XA-Core ImgTst minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**CAUTION**
Loss of service
Do not repeat steps.
At your current location

1. Examine the XACMtC MAP level. At the CI MAP prompt, type:
   
   >MAPCI;MTC;XAC;XACMTC

   and press the enter key.

   Note: The MAP can display an ImgTst alarm as follows:
   • an alarm code appears under the XAC header in the alarm banner.
   • an equipment status code appears in a status field in the shelf layout area.

   The following is a sample MAP display.

   XACMtC MAP level

   If the MAP indicates       Do
   an ImgTst alarm            step 2
   a different alarm          step 3
   no alarm and all CPs are in service  step 6
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Wait for the image test to end.</td>
</tr>
<tr>
<td></td>
<td><strong>If the ImgTst alarm is</strong></td>
</tr>
<tr>
<td></td>
<td>not clear</td>
</tr>
<tr>
<td></td>
<td>clear</td>
</tr>
<tr>
<td>3</td>
<td>Perform the correct alarm clearing procedure.</td>
</tr>
<tr>
<td></td>
<td><strong>If the alarm is</strong></td>
</tr>
<tr>
<td></td>
<td>not clear</td>
</tr>
<tr>
<td></td>
<td>clear</td>
</tr>
<tr>
<td>4</td>
<td>Record the result of the image test and note any errors.</td>
</tr>
<tr>
<td></td>
<td><strong>If the ImgTst shows there are</strong></td>
</tr>
<tr>
<td></td>
<td>errors</td>
</tr>
<tr>
<td></td>
<td>no errors</td>
</tr>
<tr>
<td>5</td>
<td>Call the next level of support.</td>
</tr>
<tr>
<td>6</td>
<td>You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.</td>
</tr>
</tbody>
</table>
Alarm display

Indication
An IOP alarm code appears under the XAC header of the alarm banner. The alarm code indicates the input/output processor (IOP) minor alarm.

An equipment alarm appears under the IO header in the subsystem summary status field (SSSF).

Meaning
The XA-Core has low IOP redundancy. An IOP minor alarm occurs for one or more of the following events:

- an uncorrectable fault in an HIOP or IOP circuit pack (CP)
- a manually busy (ManB) HIOP or IOP CP

Impact
There is no change in subscriber service.

Common procedures
There are no common procedures.

Action
The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a IOP minor alarm

This flowchart summarizes the procedure.
Use the instructions in the procedure that follows this flowchart to perform the procedure.

Examine the logs

Determine the status of the HIOP or IOP CP

Critical CP fault?

Y → ManB the CP and perform an OOS test

N → CP is ManB?

Y → Return the CP to service

N → Call the next level of support

End

Alarm clear?

Y → Perform correct alarm clearing procedure

N → Other alarm?

Y → Call the next level of support

N → AlarmEnd CP fault?

Y → OOS test passed?

N → RTS passed?

Y → Replace CP. Refer to the correct NTP.
How to clear an IOP minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Do not repeat steps.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
At your current location

1 Collect log information from the log report system. The log messages provide information about the source of the alarm.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

If the log indicates  Do

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>an IOP minor alarm condition</td>
<td>step 2</td>
</tr>
<tr>
<td>another alarm condition</td>
<td>step 10</td>
</tr>
<tr>
<td>that the IOP minor alarm condition is clear</td>
<td>step 12</td>
</tr>
</tbody>
</table>

2 Examine the IO MAP level. At the MAP terminal, type
   >MAPCI;MTC;XAC;IO
   and press the Enter key

3 Examine the IO MAP level. Record the working state of the system and the HIOP and IOP CPs. Also record the HIOP and IOP CP locations on the physical shelf, side and slot.

   Note: The IO MAP can display alarms and status as follows:
       • an IOP alarm appears under the XAC header in the alarm banner
       • an equipment alarm under the PE header in the subsystem summary status field (SSSF)

The following is a sample MAP display.
Understanding the alarm system

**XAC IOP minor** (continued)

**IO MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the IO MAP level indicates

<table>
<thead>
<tr>
<th>If the IO MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an HIOP or IOP CP is in a ManB state</td>
<td>step 4</td>
</tr>
<tr>
<td>an HIOP or IOP CP is in a SysB state</td>
<td>step 5</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 10</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
<td>step 9</td>
</tr>
</tbody>
</table>
At the XA-Core MAP

4 Return the HIOP or IOP CP to service. At the IO MAP level type

```
>RTS <nn> <s>
```
and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>RTS 2 f
```

*Example of system response:*

```
RTS 2 front passed
```

If the HIOP or IOP CP is	Do
not in an InSv state | step 5
in an InSv state | step 9

5 Manually busy the OOS HIOP or IOP CP. At the IO MAP level type

```
>BSY <nn> <s>
```
and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>BSY 2 f
```

*Example of system response:*

```
BSY 2 front complete
```

*Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.*

If the HIOP or IOP CP is	Do
in a ManB state | step 6
not in a ManB state | step 11

6 Perform an OOS test on the ManB HIOP or IOP CP. At the IO MAP level type
>TST <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:
> TST 2 f

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 8</td>
</tr>
</tbody>
</table>

7 Return the HIOP or IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type
> RTS <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command:
> RTS 2 f
Example of system response:
RTS 2 front passed

b Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the HIOP or IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 8</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 9</td>
</tr>
</tbody>
</table>

8 Perform the correct HIOP or IOP CP replacement procedure. Refer to the correct CP replacement NTP. Continue to step 9 when complete.
9  Confirm that the alarm is clear. Examine the IO MAP display.

<table>
<thead>
<tr>
<th>If the IOP minor alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 10</td>
</tr>
<tr>
<td>not clear</td>
<td>step 11</td>
</tr>
<tr>
<td>clear</td>
<td>step 12</td>
</tr>
</tbody>
</table>

10  Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 11</td>
</tr>
<tr>
<td>clear</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11  Call the next level of support.

12  You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
Alarm display

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOtrbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indication

An IOtrbl alarm code appears under the XAC header of the alarm banner. The alarm code indicates an input/output (IO) trouble minor alarm.

An “I” (in-service trouble code) appears in the state field in the shelf layout area. The indicator appears directly below the number that matches the location of the IOP or HIOP or HCMIC in the physical shelf slot.

The XA-Core MAP displays an IOtrbl alarm if there is a non-critical fault in an HIOP circuit pack (CP) or in an HCMIC circuit pack or in an IOP circuit pack and related packlets. The following equipment alarm codes can appear under the IO header in the subsystem status summary field (SSSF):

• IOPtb (input/output trouble)
• CMICtb (HCMIC circuit pack trouble or OC-3 two-port interface packlet trouble)
• LINKtb (CMIC link trouble)
• TODtb (time of day trouble)
• RTIFtb (reset terminal interface packlet trouble)
• LocPtb (local port trouble)
• RemPtb (remote port trouble)
• DISKtb (disk packlet trouble)
• TAPEnb (tape packlet trouble)
• AMDItb (AMDI packlet trouble)
• ETHRtb (Ethernet packlet trouble)

Meaning

The state of the IOP circuit pack, the HIOP circuit pack, or the HCMIC circuit pack has changed from in-service (InSv) to in-service trouble (IsTb). There is
a loss of a redundant power feed to the circuit pack or a non-critical fault in one or more of the following:

- IOP, HIOP, or HCMIC CP
- packlets
- local or remote RTIF ports
- Time of day signals (TODs)
- CMIC links
- AMDI links
- ethernet links

**Impact**

There is no change in subscriber service. To minimize service degradation, test or replace the IOP, HIOP, or HCMIC CP when call traffic is low.

**Common procedures**

This procedure refers to the replacement procedures for certain packlets and circuit packs. The procedures are in this document.

**Action**

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an IOtrbl minor alarm

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.

1. Call traffic volume on switch is high?
   - Yes: Wait until call traffic volume is low
   - No: Power feed failure?
     - Yes: Reset the correct SIM circuit breaker
     - No: Call traffic volume on switch is high?
6. Alarm clear?
   - Yes: End
   - No: Alarm clear?
     - Yes: Call the next level of support
     - No: IsTb errors?
       - Yes: Call the next level of support
       - No: Call traffic volume on switch is high?
         - Yes: Wait until call traffic volume is low
         - No: Replace IsTb CP or packlet Refer. to the correct NTP.
How to clear an IOtrbl minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Do not repeat steps.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
At your current location

1. Collect information from the XA-Core log report system. The log messages provide information about the source of the IOtrbl alarm.
   a. Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b. Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c. Examine and record the appropriate log reports.
   d. Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an IOtrbl minor condition</td>
<td>step 2</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 18</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 20</td>
</tr>
</tbody>
</table>

2. Examine the shelf interface modules (SIMs). Make sure that all circuit breakers are in the ON position. Make sure that the green LEDs are lit.

<table>
<thead>
<tr>
<th>If SIM circuit breakers are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in the OFF position and a red led is lit</td>
<td>step 3</td>
</tr>
<tr>
<td>in the ON position and green leds are lit</td>
<td>step 4</td>
</tr>
</tbody>
</table>

3. Set the shelf interface module (SIM) circuit breaker to the ON position (see the diagram in this step). Wait 30 sec.
Set circuit breaker on the SIM to the ON (1) position

If SIM circuit breaker
resets to the ON position  Do step 4

does not reset to the ON position  Do step 19

At the XA-Core MAP

4 Access the IO MAP level. At the XAC MAP level type
>IO
and press the Enter key.

5 Examine the IO MAP level. Record the status and location of the Is IsTb IOP CP, HIOP CP, or HCMIC CP.

Note: The IO MAP level can display alarms and status as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- an “I” (in-service trouble indicator) appears in the state field in the shelf layout area.
- an “I” (in-service trouble indicator) appears in the equipment status field in the command interpreter output area.
The following is a sample MAP display.

**IO MAP level, showing IOP CPs with packlets in slots 4 and 15**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOtrbl</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot</th>
<th>Side</th>
<th>Status</th>
<th>Upper</th>
<th>Middle</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Front</td>
<td>Disk</td>
<td>Tape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Front</td>
<td>Disk</td>
<td>Tape</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**IO MAP level, showing HCMIC CPs in slots 4 and 15 rear, and HIOP CPs in slots 5 and 14 rear**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOtrbl</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot</th>
<th>Side</th>
<th>Status</th>
<th>Upper</th>
<th>Middle</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Rear</td>
<td>RTIF</td>
<td>CTIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Rear</td>
<td>RTIF</td>
<td>CTIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot</th>
<th>Side</th>
<th>Status</th>
<th>Upper</th>
<th>Middle</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Rear</td>
<td>RTIF</td>
<td>CTIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Rear</td>
<td>RTIF</td>
<td>CTIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Time: 14:12*
### XAC IOtrbl

**minor** (continued)

<table>
<thead>
<tr>
<th>If the IO SSSF field indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an IOP, HIOP, or HCMIC CP is in an IsTb state (IOPtb)</td>
<td>step 6</td>
</tr>
<tr>
<td>a OC-3 two-port interface packet is in an IsTb state (CMICtb)</td>
<td>step 7</td>
</tr>
<tr>
<td>an RTIF packet is in an IsTb state (RTIFtb)</td>
<td>step 8</td>
</tr>
<tr>
<td>a Disk packet is in an IsTb state (DISKtb)</td>
<td>step 9</td>
</tr>
<tr>
<td>a Tape packet is in an IsTb state (TAPE)</td>
<td>step 10</td>
</tr>
<tr>
<td>an AMDI packet is in an ISTb state (AMDItb)</td>
<td>step 11</td>
</tr>
<tr>
<td>an Ethernet packet is in an ISTb state (ETHR)</td>
<td>step 12</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 18</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
<td>step 20</td>
</tr>
</tbody>
</table>

**6** Perform an in-service test on the IOP CP or the HIOP CP or the HCMIC CP.

**a** Wait until call traffic volume is low. At the IO MAP level, type

```
>TST <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>TST 2 f
```

**b** Examine the alarm banner and SSSF. Determine the result of the test.
Example of system response:
Tst 2 front passed

<table>
<thead>
<tr>
<th>If the</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP or HIOP or HCMIC CP changes to an OOS state</td>
<td>step 14</td>
</tr>
<tr>
<td>IsTb alarm is not clear</td>
<td>step 16</td>
</tr>
<tr>
<td>IsTb alarm is clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

7 Access the CMIC MAP level. At the IO MAP level type
>CMIC
and press the Enter key.
Examine the CMIC MAP level. Record the status and location of the IsTb OC-3 two-port interface packet.

Note: The CMIC MAP level can display alarms and status as follows:
- an alarm under the XAC header in the alarm banner
- an equipment alarm under the PKLT header of the subsystem status summary field (SSSF), indicating an OC-3 two port interface packet
- a status code appears under the Status, Link, Port, or TOD headers in the command interpreter output area

The following is a sample MAP display.
Understanding the alarm system

**XAC IOtrbl**

**minor (continued)**

### CMIC MAP level, showing data for CMIC packetts in slots 4 rear and 15 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOtrbl</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**CMIC**

- **Front:** 1111111111
- **Rear:** 1111111
- **SM** PE IO PKLT
- **Sta:** -.---.-.--.-.--.--.
- **Dep:** .--.--.--.--.--.
- **Typ:** **.*
- **Slot:** Side: Packlet: Status: Port0 Port1 Link0: Link1: TOD0 TOD1
- **4 Rear Lower** I . . . .
- **15 Rear Lower** . . . .

### CMIC MAP level, showing data for the CMIC sections of HIOP CPs in slots 4 rear and 15 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOtrbl</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**CMIC**

- **Front:** 1111111111
- **Rear:** 1111111
- **SM** PE IO PKLT
- **Sta:** -.---.-.--.-.--.--.
- **Dep:** .--.--.--.--.--.
- **Typ:** **.*
- **Slot:** Side: Packlet: Status: Port0 Port1 Link0: Link1: TOD0 TOD1
- **4 Rear** . . . .
- **15 Rear** . . . .

---

297-8991-510  Standard  12.02  December 2005
**XAC IOtrbl minor** (continued)

**a** Perform an in-service test on the OC-3 two-port interface packet. Wait until call traffic volume is low. At the CMIC MAP level, type

>`TST <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`TST 4 r l

*Example of system response:*

Tst 4 rear lower passed

**b** Examine the alarm banner and SSSF. Determine the result of the test.

<table>
<thead>
<tr>
<th>If the</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-3 two port interface packet changes to an OOS state</td>
<td>step 13</td>
</tr>
<tr>
<td>IsTb alarm is not clear</td>
<td>step 15</td>
</tr>
<tr>
<td>IsTb alarm is clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

**8** Access the RTIF MAP level. At the IO MAP level type

>`RTIF`

and press the Enter key

Examine the RTIF MAP level. Record the status and location of the IsTb RTIF packet.

*Note:* For an RTIF packet, the RTIF MAP level can display alarms and status as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- a status code appears under the Status, Link, or Port headers in the command interpreter output area

*The following is a sample MAP display.*
Perform an in-service test on the RTIF packet. At the RTIF MAP level, type

```
>TST <nn> <s> <p>
```

and press the Enter key.
Understanding the alarm system

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`TST 4 r u`

*Example of system response:*

`Tst 4 rear upper passed`

- Examine the alarm banner and SSSF. Determine the result of the test.

<table>
<thead>
<tr>
<th>If the</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIF packlet changes to an OOS state</td>
<td>step 13</td>
</tr>
<tr>
<td>lsTb alarm is not clear</td>
<td>step 15</td>
</tr>
<tr>
<td>lsTb alarm is clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

9 Access the Disk MAP level. At the IO MAP level type

>`DISK`

and press the Enter key.

Examine the Disk MAP level. Record the status and location of the lsTb Disk packlet.

*Note:* The Disk MAP level can display alarms and status as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- an “I” (in-service trouble indicator) appears in the equipment status field in the command interpreter output area.
The following is a sample MAP display.

**Disk MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOtrbl</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Disk

0 Quit
2
3
4
5
6 Tst_
7 Bsy_
8 RTS_
9
10 Format
11 Alarm_
12
13
14
15
16
17 Indicat_
18 Query_

XMAP0
Time 14:12 >

a) Perform an in-service test on the Disk packet. Wait until call traffic volume is low. At the Disk MAP level, type

> **TST** <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

> **TST** 2 f l

**Example of system response:**

Tst 2 front lower passed
Examine the alarm banner and SSSF. Determine the result of the test.

<table>
<thead>
<tr>
<th>If the</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk packet changes to an OOS state</td>
<td>step 13</td>
</tr>
<tr>
<td>IsTb alarm is not clear</td>
<td>step 15</td>
</tr>
<tr>
<td>IsTb alarm is clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

Access the Tape MAP level. At the IO MAP level type

`>TAPE`

and press the Enter key.

Examine the Tape MAP level. Record the status and location of the IsTb Tape packlet.

**Note:** The Tape MAP level can display alarms and status as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- an “I” (in-service trouble indicator) appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

![Tape MAP level](image-url)
a  Perform an in-service test on the Tape packlet. Wait until call traffic volume is low. At the Tape MAP level, type

   \texttt{>TST <nn> <s> <p>}

   and press the Enter key

where

   \(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
   \(<s>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
   \(<p>\) is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

   \texttt{>TST 2 f u}

   \textit{Example of system response:}

   Tst 2 front upper passed

b  Examine the alarm banner and SSSF. Determine the result of the test.

<table>
<thead>
<tr>
<th>If the</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape packlet changes to an OOS state</td>
<td>step 13</td>
</tr>
<tr>
<td>IsTb alarm is not clear</td>
<td>step 15</td>
</tr>
<tr>
<td>IsTb alarm is clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

11  Access the AMDI MAP level. At the IO MAP level type

   \texttt{>AMDI}

   and press the Enter key.

Examine the AMDI MAP level. Record the status and location of the IsTb AMDI packlet.

   \textit{Note:} For an AMDI packlet, the AMDI MAP level can display alarms and status as follows:
   \begin{itemize}
   \item an alarm code appears under the XAC header in the alarm banner
   \item an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
   \item an "I" (in-service trouble indicator) appears in the equipment status, link or TOD fields in the command interpreter output area.
   \end{itemize}
The following is a sample MAP display.

**AMDI MAP level, showing data for AMDI packlets in slots 5 rear, 6 rear, 13 rear, and 14, rear**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOtrbl</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>AMDI</td>
<td>Front: 111111111 Rear: 111111111 SM PE IO PKLT</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>0 Quit</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>XMAP0</td>
</tr>
<tr>
<td>2</td>
<td>Time 14:12</td>
<td>&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**AMDI MAP level, showing data for the AMDI sections of HIOP CPs in slots 5 rear and 14 rear**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
</tr>
<tr>
<td>AMDI</td>
<td>Front: 111111111 Rear: 111111111 SM PE IO PKLT</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>0 Quit</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>XMAP0</td>
</tr>
<tr>
<td>2</td>
<td>Time 14:12</td>
<td>&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Perform an in-service test on the AMDI packlet. Wait until call traffic volume is low. At the AMDI MAP level, type

>`TST <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`TST 4 r l

Example of system response:

Tst 4 rear lower passed

Examine the alarm banner and SSSF. Determine the result of the test.

If the IsTb alarm is not clear step 15

IsTb alarm is clear step 17

Access the ETHR MAP level. At the IO MAP level type

>`ETHR

and press the Enter key.

Examine the ETHR MAP level. Record the status and location of the IsTb ETHR packlet.

Note: For an Ethernet packet, the ETHR MAP level can display alarms and status as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- an “I” (in-service trouble indicator) appears in the equipment status, port or link fields in the command interpreter output area.

The following is a sample MAP display.
ETHR MAP level, showing data for Ethernet packlets in slots 5 rear, 6 rear, 13 rear, and 14 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOtrbl</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**ETHR**

0 Quit
2 Sta: . . . . . . . . . .
3 Dep: . . . . . . . . . .
4 Typ: * . . . . . . . .
5 Slot: Side: Packet: Port: Link:
   5 Rear Lower I . . .
   6 Rear Lower I . . .
   13 Rear Lower I . . .
   14 Rear Lower I . . .

XAC: ETHR:

0 Quit
2 . . . . . . . .
3 . . . . . . . .
4 . . . . . . . .
5 . . . . . . . .
6 . . . . . . . .
7 . . . . . . . .
8 . . . . . . . .
9 . . . . . . . .
10 LoadFW_ . . . . . .
11 . . . . . . . .
12 . . . . . . . .
13 . . . . . . . .
14 . . . . . . . .
15 . . . . . . . .
16 . . . . . . . .
17 Indicat_ . . . . . .
18 Query_ . . . . . .

XMAP0

Time 14:12 >

ETHR MAP level, showing data for the ETHR sections of HIOP CPs in slots 5 rear and 14 rears

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>. .</td>
</tr>
</tbody>
</table>

**ETHR**

0 Quit
2 Sta: . . . . . . . . . .
3 Dep: . . . . . . . . . .
4 Typ: * . . . . . . . .
5 Slot: Side: Packet: Port: Link:
   5 Rear Lower I . . .
   6 Rear Lower I . . .
   14 Rear Lower I . . .

XAC: ETHR:

0 Quit
2 . . . . . . . .
3 . . . . . . . .
4 . . . . . . . .
5 . . . . . . . .
6 . . . . . . . .
7 . . . . . . . .
8 . . . . . . . .
9 . . . . . . . .
10 LoadFW_ . . . . . .
11 . . . . . . . .
12 . . . . . . . .
13 . . . . . . . .
14 . . . . . . . .
15 . . . . . . . .
16 . . . . . . . .
17 Indicat_ . . . . . .
18 Query_ . . . . . .

XMAP0

Time 14:12 >
a  Perform an in-service test on the ethernet packlet. Wait until call traffic volume is low. At the ETHR MAP level, type

$>TST \ <nn> \ <s> \ <p>$

and press the Enter key

where

$<nn>$ is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18 for the front plane, 4 to 15 for the rear plane.

$<s>$ is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

$<p>$ is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

$>TST \ 4 \ r \ l$

Example of system response:

Tst 4 rear lower passed

b  Examine the alarm banner and SSSF. Determine the result of the test.

<table>
<thead>
<tr>
<th>If the</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet packet changes to an OOS state</td>
<td>step 13</td>
</tr>
<tr>
<td>IsTb alarm is not clear</td>
<td>step 15</td>
</tr>
<tr>
<td>IsTb alarm is clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

13  Replace the OOS packlet immediately. Refer to the correct replacement procedure located in this document. Continue to step 17 when complete.

14  Replace the OOS CP immediately. Refer to the correct replacement procedure located in this document. Continue to step 17 when complete.

15  Wait until call traffic volume is low. Replace the IsTb packet. Refer to the correct replacement procedure. Continue to step 17 when complete.

16  Wait until call traffic volume is low. Replace the IsTb CP. Refer to the correct replacement procedure. Continue to step 17 when complete.

17  Confirm that the alarm is clear. Examine the IO MAP level.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to another alarm</td>
<td>step 18</td>
</tr>
<tr>
<td>not clear</td>
<td>step 19</td>
</tr>
<tr>
<td>clear</td>
<td>step 20</td>
</tr>
</tbody>
</table>
18 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 19</td>
</tr>
<tr>
<td>clear</td>
<td>step 20</td>
</tr>
</tbody>
</table>

19 Call the next level of support.

20 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
This page is left blank intentionally.
Understanding the alarm system

XAC LowPE critical

**Alarm display**

<table>
<thead>
<tr>
<th>XAC LowPE “C”</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

**Indication**

A LowPE critical alarm code appears under the XAC header of the alarm banner. Audible alarms provide notice of a critical processor element (PE) condition. If all PE capacity has been lost, the reset terminal interface (RTIF) provides reboot messages.

The CP and packlet red LEDs light for a short period of time. If the CPs and packlets return to service, the green LEDs light. If the reboot is successful, XA-Core displays a restart reload message on the MAP terminal.

An ACTIVE message and CI prompt displayed on the MAP terminal indicates a successful reboot and restart reload.

**Meaning**

The amount of PE capacity that has been lost is so large that the PE capacity that remains available is below the engineered capacity. In CSP16 this means that more than one PE CP is out of service.

One or more of the following conditions cause the LowPE major alarm:

- a critical fault in multiple PE circuit packs (CPs) cause InSv PE CPs to go OOS
- a critical fault in a PE CP causes an InSv PE CP to go OOS while a PE CP is manually busy (ManB)

**Impact**

The impact depends on whether any PE capacity remains available.

*If some PE capacity remains available*

If some PE capacity remains available, there is a degradation in service.
### XAC LowPE critical (continued)

**If no PE capacity remains available**

If no PE capacity remains available, the switch is in an outage condition. Call processing has stopped and there is no processing redundancy. Internal switch operations cannot receive processing instructions. An XA-Core reboot and restart reload begins automatically.

The reboot sequence begins and the operating software tries to return the XA-Core processors to service. If the reboot is successful, XA-Core displays a restart reload message on the MAP terminal. A reload restart simulates a reload of the current software load from disk or tape. The restart reload messages indicate that the system is performing restart self tests.

A restart reload initializes the system software and runs tests on all hardware. The tests are done before and after loading the Interface software files. XA-Core maintenance software tests all subsystem hardware during a restart. The tests cause the red LED on circuit packs (CPs) to light. When the tests are complete, the green LEDs are lit. The red LEDs on damaged, or inactive CPs or packlets remain lit. An ACTIVE message displayed on the MAP indicates a successful reload and restart.

**Note 1:** A restart disables the MAP system. you cannot use the MAP system to determine the source of the fault. Use the RTIF terminal to monitor the reboot and restart reload process. You can use the MAP system if the restart is successful.

**Note 2:** If the restart is not successful, the system repeats the reboot procedure.

**Note 3:** If the restart reload is successful, all manual busy (ManB) CPs automatically return to service.

### Common procedures

There are no common procedures.

### Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a LowPE critical alarm

1. Have all PEs been lost?
   - Y: See instructions for troubleshooting LowPE major alarm.
   - N: Wait for XA-Core reboot and restart to complete.

2. XA-Core restart successful?
   - Y: Call the next level of support.
   - N: Determine the status of the PE CPs.

3. Are any of the PE CPs SysB?
   - Y: Perform correct alarm clearing procedure.
   - N: Other alarm?
     - Y: Alarm clear?
       - Y: RTS passed?
         - Y: Replace PE CP. Refer to the correct NTP.
         - N: Call the next level of support.
     - N: Call the next level of support.

4. Are there any remaining PEs that are SysB?
   - Y: Return the PE CP to service.
   - N: OOS test passed?
     - Y: Return the PE CP to service.
     - N: Call the next level of support.

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear a LowPE critical alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
*Risk of equipment damage*
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
*Risk of equipment damage - electric static discharge (ESD)*
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
*Loss of service*
Do not repeat steps.

**At your current location**

1. Check how many PEs are out of service.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>all PEs are out of service</td>
<td>step 2</td>
</tr>
<tr>
<td>some but not all PEs are out of service</td>
<td>troubleshoot each of the OOS PEs by following the instructions for troubleshooting a LowPE major alarm</td>
</tr>
</tbody>
</table>

2. Wait for the XA-Core to execute a system reboot and restart reload. Look at the RTIF screen. The RTIF screen displays boot and reload messages.
Look at the CI MAP level. Wait for the ACTIVE message to appear on the MAP terminal. When the ACTIVE message appears, the system is ready for command entry.

<table>
<thead>
<tr>
<th>If the XA-Core restart is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 3</td>
</tr>
<tr>
<td>not successful and continues to execute the restart repeatedly</td>
<td>step 12</td>
</tr>
</tbody>
</table>

3. Access the PE MAP level. At the MAP terminal, type 

>MAPCI;MTC;XAC;PE

and press the Enter key.

4. Examine the PE MAP level. Record the location and status of the PE CPs. Identify the location of any trouble PE CPs.

   **Note:** The PE MAP level displays alarms and status as follows:
   - a system alarm code appears under the XAC header in the alarm banner
   - an equipment alarm code appears under the PE header in the subsystem status summary field (SSSF)
   - an equipment status code appears in the Status field in the shelf layout area.

   The following is a sample MAP display.
XAC LowPE

critical (continued)

<table>
<thead>
<tr>
<th>If the MAP indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a LowPE alarm and one or more</td>
<td>step 5</td>
</tr>
<tr>
<td>PE CPs are SysB</td>
<td></td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 11</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
<td>step 13</td>
</tr>
</tbody>
</table>

5  Manually busy the OOS PE CP. At the PE MAP level type

>`BSY <nn> <s>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>`BSY 4 f`

*Example of system response:*

BSY 4 front complete

6  Perform an OOS test on the ManB PE CP. At the PE MAP level type

>`TST <nn> <s>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>`TST 4 f`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 8</td>
</tr>
</tbody>
</table>
7  Return the PE to service. At the PE MAP level type
   \texttt{>RTS <nn> <s>}
   and press the Enter key
   where
   \(<nn>\) is the slot number parameter value to indicate the number of the
   physical shelf slot - 1 to 18
   \(<s>\) is the side parameter value to indicate the CP or packet location in the
   physical shelf - front (f) or rear (r)
   Example of command use:
   \texttt{>RTS 4 f}
   \textit{Example of system response:}
   RTS 4 front passed

   \begin{center}
   \begin{tabular}{ll}
   If the PE CP is & Do \\
   \hline
   in a SysB state & step 12 \\
   in an InSv state & step 9 \\
   \hline
   \end{tabular}
   \end{center}

8  Perform the PE CP replacement procedure. Refer to the correct NTP. Return
to this point when complete.

9  Check whether there are any PEs that are still SysB.

   \begin{center}
   \begin{tabular}{ll}
   If & Do \\
   \hline
   there is another PE that is SysB & step 5 \\
   no more PEs are SysB & step 10 \\
   \hline
   \end{tabular}
   \end{center}

10 Confirm that the alarm is clear. Examine the PE MAP level.

   \begin{center}
   \begin{tabular}{ll}
   If the alarm is & Do \\
   \hline
   changed to a different alarm & step 11 \\
   not clear & step 12 \\
   clear & step 13 \\
   \hline
   \end{tabular}
   \end{center}
### XAC LowPE

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.</td>
</tr>
<tr>
<td>12</td>
<td>Call the next level of support.</td>
</tr>
<tr>
<td>13</td>
<td>You have completed this procedure.</td>
</tr>
</tbody>
</table>

#### If the alarm is not clear, do step 12.

#### If the alarm is clear, do step 13.
Understanding the alarm system

XAC LowPE major

Alarm display

<table>
<thead>
<tr>
<th>XAC LowPE M</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

Indication

A LowPE major alarm code appears under the XAC header of the alarm banner. The alarm code indicates a processor element (PE) major alarm.

Meaning

The amount of PE capacity that has been lost is so large that all redundant capacity is absent. In CSP16 this means that one PE CP is out of service. One or more of the following conditions cause the LowPE major alarm:

- a critical fault in a PE circuit pack (CP) causes an InSv PE CP to go OOS
- undetectable, invalid, or uninitialized PE CP
- wrong CP type
- manually busy (ManB) PE CP

Impact

There is no immediate change in subscriber service. A restart can occur if the remaining PEs cannot manage the volume of call traffic or internal processes.

Common procedures

There are no common procedures.

Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a LowPE major alarm

1. Critical CP fault?
   - Y: Call the next level of support
   - N: Undetectable CP?

2. Undetectable CP?
   - Y: Call the next level of support
   - N: Wrong CP type?

3. Wrong CP type?
   - Y: CP is manually busy?
     - Y: Call the next level of support
     - N: Call the next level of support
   - N: Call the next level of support

4. CP is manually busy?
   - Y: Call the next level of support
   - N: Perform correct alarm clearing procedure

5. Perform correct alarm clearing procedure
   - Y: Other alarm?
     - Y: Alarm clear?
       - Y: RTS passed?
         - Y: Return the PE CP to service
         - N: Replace PE CP. Refer to the correct NTP.
       - N: Other alarm?
         - Y: Alarm clear?
           - Y: RTS passed?
             - Y: Return the PE CP to service
             - N: Replace PE CP. Refer to the correct NTP.
           - N: Other alarm?
             - Y: Call the next level of support
             - N: Call the next level of support

This flowchart summarizes the procedure. Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear a LowPE major alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of equipment damage - electric static discharge (ESD)
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Do not repeat steps.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets, or resources OOS.
**XAC LowPE major (continued)**

**At your current location**

1. Collect information from the XA-Core log report system. The log messages provide information about the source of the LowPE alarm.
   a. Access the log utility feature. At the CI MAP level, type
      ```
 >LOGUTIL
      ```
      and press the Enter key.
   b. Access the XA-Core logs. At the Logutil prompt, type
      ```
 >OPEN XAC
      ```
      and press the Enter key.
   c. Examine and record the appropriate log reports.
   d. Return to the CI MAP prompt. At the Logutil prompt, type
      ```
 >QUIT
      ```
      and press the Enter key.

2. Access the PE MAP level. At the MAP terminal, type
   ```
 >MAPCI;MTC;XAC;PE
   ```
   and press the Enter key.

3. Examine the PE MAP level. Record the location and status of the PE CPs. Identify the location of any trouble PE CPs.

   **Note:** The PE MAP level displays alarms and status as follows:
   - A system alarm code appears under the XAC header in the alarm banner.
   - An equipment alarm code appears under the PE header in the subsystem status summary field (SSSF).
   - An equipment status code appears in the Status field in the shelf layout area.

   *The following is a sample MAP display.*
Understanding the alarm system

1-255

XAC LowPE major (continued)

PE MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LowPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PE MAP level

Time 14:12 >

If the MAP indicates	Do

a LowPE alarm and a PE CP is in a SysB state | step 4

a LowPE alarm and a PE CP is in a SysB state | step 5

a different alarm condition | step 9

no alarm and all CPs are in service | step 11

4 Manually busy the OOS PE CP. At the PE MAP level type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 f
Example of system response:
BSY 4 front complete

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the PE CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 5</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 10</td>
</tr>
</tbody>
</table>

5 Perform an OOS test on the ManB PE CP. At the PE MAP level type
>TST <nn> <s>
and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:
>TST 4 f

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 6</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 7</td>
</tr>
</tbody>
</table>

6 Return the PE to service. At the PE MAP level type
>RTS <nn> <s>
and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:
>RTS 4 f
Example of system response:

RTS 4 front passed

<table>
<thead>
<tr>
<th>If the PE CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 7</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 8</td>
</tr>
</tbody>
</table>

**At the XA-Core physical shelf**

7 Perform the PE CP replacement procedure. Refer to the correct CP replacement procedure in this document. Return to this point when complete.

**At the XA-Core MAP terminal**

8 Confirm that the alarm is clear. Examine the PE MAP level.

<table>
<thead>
<tr>
<th>If the LowPE alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 9</td>
</tr>
<tr>
<td>not clear</td>
<td>step 10</td>
</tr>
<tr>
<td>clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

9 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 10</td>
</tr>
<tr>
<td>clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 Call the next level of support.

11 You have completed this procedure.
This page is left blank intentionally.
Understanding the alarm system

**XAC LowSM major**

### Alarm display

<table>
<thead>
<tr>
<th>XAC LowSM</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

### Indication

A LowSM major alarm code appears under the XAC header of the alarm banner. The alarm code indicates the shared memory (SM) major alarm.

### Meaning

The XA-Core has lost shared memory redundancy and is now in a Simplex working state. A LowSM major alarm can occur from one or more of the following events:

- a critical fault in one or more SM circuit packs (CPs)
- manually busy (ManB) SM CP

### Impact

There is no immediate change in subscriber service. Shared memory redundancy is not available and the system cannot support another critical fault in an SM CP. A restart can occur if another SM CP changes state to out-of-service.

### Common procedures

There are no common procedures.

### Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a LowSM major alarm

This flowchart summarizes the procedure. Use the instructions in the steps that follow this flowchart to clear the alarm.

1. Critical CP fault?
   - Y: Call the next level of support
   - N: Undetectable CP?
     - Y: Call the next level of support
     - N: Wrong CP type?
       - Y: Call the next level of support
       - N: CP is manually busy?
         - Y: Call the next level of support
         - N: Perform correct alarm clearing procedure

2. Undetectable CP?
   - Y: Call the next level of support
   - N: Wrong CP type?
     - Y: Call the next level of support
     - N: CP is manually busy?
       - Y: Call the next level of support
       - N: Perform correct alarm clearing procedure

3. CP is manually busy?
   - Y: Return the SM CP to service
   - N: OOS test passed?
     - Y: Return the SM CP to service
     - N: RTG passed?
       - Y: Replace SM CP. Refer to the correct NTP.
       - N: Other alarm?
         - Y: Call the next level of support
         - N: Perform correct alarm clearing procedure

4. Alarm clear?
   - Y: RTS passed?
     - Y: Replace SM CP. Refer to the correct NTP.
     - N: Other alarm?
       - Y: Call the next level of support
       - N: Perform correct alarm clearing procedure

5. End
How to clear a LowSM major alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Do not repeat steps.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
XAC LowSM major (continued)

At your current location

1  Collect information from the XA-Core log report system. The log messages provide information about the source of the LowSM alarm.
   a  Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b  Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c  Examine and record the appropriate log reports.
   d  Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a LowSM major alarm condition</td>
<td>step 2</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 9</td>
</tr>
<tr>
<td>that the LowSM major alarm condition is clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

2  Access the XA-Core SM MAP level. At the CI MAP level prompt type

>MAPCI;MTC;XAC;SM

and press the Enter key.
3 Examine the XA-Core SM MAP level. Record the location and status of the SM CPs. Identify the location of the trouble SM CP.

**Note:** The SM MAP can display alarms as follows:
- a system alarm code appears under the XAC header in the alarm banner
- a system alarm code appears under the XAC header in the alarm banner
- an equipment status code appears in the status field in the shelf layout area.

The following is a sample MAP display.

---

*SM MAP level*

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LowSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SM

0	Quit	123456789012345678	4567890123456	SMfl . . . . . .
2				
3		Front: 11111111	Rear: 1111111	SM PE IO PKLT
4				
5		Sta: -.----..-.S--.-..-	.--S-------.	2 0 0 0 0
6	Tst_			
7	Bsy_			
8	RTS_			
9				
10				
11				
12				
13				
14	Alarm_			
15				
16	Trnsl_			
17	Indicat_			
18	Query_			

SM MAP:

If the MAP indicates

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a LowSM alarm and one or more SM CPs are in a SysB state step 4</td>
</tr>
<tr>
<td>a LowSM alarm and one or more SM CPs are in a ManB state step 6</td>
</tr>
<tr>
<td>a different alarm condition step 9</td>
</tr>
<tr>
<td>no alarm and all CPs are in service step 11</td>
</tr>
</tbody>
</table>

4 Manually busy the OOS SM CP. At the SM MAP level type

---
>BSY <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:
>BSY 7 r
Example of system response:
BSY 7 rear complete

Perform an OOS test on the ManB SM CP. At the SM MAP level type
>TST <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:
>TST 7 r

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 6</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 7</td>
</tr>
</tbody>
</table>

Return the ManB SM CP to service. At the SM MAP level type
>RTS <nn> <s>
and press the Enter key.
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:
>RTS 7 r
Example of system response:
RTS 7 rear passed

If the SM CP is
in a SysB state step 7
in an InSv state step 8

At the XA-Core physical shelf
7 Perform the SM CP replacement procedure. Refer to the correct CP replacement procedure in this document. Return to this point when complete.

At the XA-Core MAP terminal
8 Confirm that the alarm is clear. Examine the SM MAP level display.

If the LowSM alarm is
changed to a different alarm step 9
not clear step 10
clear step 11

9 Perform the correct alarm clearing procedure. Refer to the correct NTP located in this document. Return to this point when complete.

If the alarm is
not clear step 10
clear step 11

10 Call the next level of support.
11 You have completed this procedure.
This page is left blank intentionally.
**XAC LowSM minor**

**Alarm display**

<table>
<thead>
<tr>
<th>XAC LowSM</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

**Indication**

A LowSM minor code appears under the XAC header of the alarm banner. The alarm code indicates a shared memory (SM) minor alarm.

An equipment alarm appears under the SM heading in the subsystem status summary field (SSSF).

**Meaning**

The XA-Core memory redundancy is partially lost but shared memory synchronization is in full duplex. A LowSM minor alarm can occur from one or more of the following events:

- an SM circuit pack (CP) is out-of-service (OOS)
- a manually busy (ManB) SM CP

**Impact**

There is no immediate change in subscriber service.

**Common procedures**

There are no common procedures.

**Action**

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a LowSM minor alarm

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.

Examine the logs

Determine the working state of the SM CP

Critical CP fault?

Y

ManB the SM CP and perform an OOS test

OOS test passed?

Y

Replace SM CP. Refer to the correct NTP.

N

N

CP is manually busy?

Y

Call the next level of support

N

N

Call the next level of support

Return the SM CP to service

RTS passed?

Y

Perform correct alarm clearing procedure

N

N

Alarm clear?

Y

Other alarm?

Y

Perform correct alarm clearing procedure

N

Call the next level of support

1

2

1

2

2
How to clear a LowSM minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Do not repeat steps.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
At the MAP terminal

1  Collect log information from the log report system. The log messages provide information about the source of the LowSM alarm.
   a  Access the log utility feature. At the CI MAP level, type
       >LOGUTIL
       and press the Enter key.
   b  Access the XA-Core logs. At the Logutil prompt type
       >OPEN XAC
       and press the Enter key.
   c  Examine and record the appropriate log reports.
   d  Return to the CI MAP prompt. At the Logutil prompt type
       >QUIT
       and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a LowSM minor alarm condition</td>
<td>step 2</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 11</td>
</tr>
<tr>
<td>that the LowSM minor alarm</td>
<td>step 13</td>
</tr>
<tr>
<td>condition is clear</td>
<td></td>
</tr>
</tbody>
</table>

2  Access the SM MAP. At the MAP terminal, type
   >MAPCI;MTC;XAC;SM
   and press the Enter key
3 Examine the SM MAP level. Record the location and status of the SM CPs. Identify the location of the trouble SM.

**Note:** The SM MAP can display alarms and status as follows:

- a system alarm code appears under the XAC header in the alarm banner
- an equipment status code appears in the status field in the shelf layout area
- an equipment alarm code appears under the SM header in the subsystem status summary field (SSSF)

*The following is a sample MAP display.*

**SM MAP level**

```
XAC | MS | IOD | Net | PM | CCS | Lns | Trks | Ext | APPL
---|----|-----|-----|----|-----|-----|------|-----|-----
LowSM | . | . | . | . | . | . | . | . | .

SM | XMAP0 | Time 14:12
---|-------|-------
0 | Quit |
2 | . |
3 | |
4 | |
5 | |
6 | Tst_ |
7 | . |
8 | . |
9 | . |
10 | . |
11 | SM |
12 | 1536 |
13 | |
14 | Alarm_|
15 | . |
16 | Trnsl_|
17 | . |
18 | Query_|

Front: 111111111 Rear: 111111 SM PE IO PKLT
123456789012345678 456789012345 SM M . . .
Sta: -.------.----.-.-------. 1 0 0 0
Dep: ** ** **
Typ: *
Physical: 1536 Useable: 1536 Available: 960
SYNC State: duplex
SM:
```

<table>
<thead>
<tr>
<th>If the SM MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an SM CP is in a ManB state</td>
<td>step 4</td>
</tr>
<tr>
<td>an SM CP is in a SysB state</td>
<td>step 5</td>
</tr>
<tr>
<td>split, RExTst</td>
<td>step 8</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 11</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
<td>step 13</td>
</tr>
</tbody>
</table>
4 Return the SM CP to service. At the SM MAP level type
   >RTS <nn> <s>
   and press the Enter key.
   where
   <nn> is the slot number parameter value to indicate the number of the
   physical shelf slot - 1 to 18
   <s> is the side parameter value to indicate the CP or packet location in the
   physical shelf - front (f) or rear (r)
   Example of command use:
   >RTS 7 r
   Example of system response:
   RTS 7 rear passed

<table>
<thead>
<tr>
<th>If the SM CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 5</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 10</td>
</tr>
</tbody>
</table>

5 Manually busy the OOS SM CP. At the SM MAP level type
   >BSY <nn> <s>
   and press the Enter key
   where
   <nn> is the slot number parameter value to indicate the number of the
   physical shelf slot - 1 to 18
   <s> is the side parameter value to indicate the CP or packet location in the
   physical shelf - front (f) or rear (r)
   Example of command use:
   >BSY 7 r
   Example of system response:
   BSY 7 rear complete
   *Note: If needed, use the Force option to place the CP in a ManB state.
   Refer to the XA-Core MAP commands documentation.*

<table>
<thead>
<tr>
<th>If the SM CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 6</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 12</td>
</tr>
</tbody>
</table>

6 Perform an OOS test on the ManB SM CP. At the SM MAP level type
   >TST <nn> <s>
and press the Enter key
where

\(<\text{nn}>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

\(<s>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

\(>\text{TST} \ 7 \ r\)

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 9</td>
</tr>
</tbody>
</table>

7 Return the SM CP to service. At the SM MAP level type

\(>\text{RTS} \ <\text{nn}> \ <s>\)

and press the Enter key
where

\(<\text{nn}>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

\(<s>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command:

\(>\text{RTS} \ 7 \ r\)

Example of system response:

\(\text{RTS} \ 7 \ \text{rear} \ \text{passed}\)

<table>
<thead>
<tr>
<th>If the SM CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 9</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 10</td>
</tr>
</tbody>
</table>

8 Wait for the image test, upgrade or \(\text{RExTst}\) to complete. Continue when the system process is complete.

<table>
<thead>
<tr>
<th>If the SM MAP level shows</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the system process is successful</td>
<td>step 10</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 11</td>
</tr>
<tr>
<td>the system process is not successful</td>
<td>step 12</td>
</tr>
</tbody>
</table>
XAC LowSM minor (end)

9 Perform the SM CP replacement procedure. Refer to the correct replacement procedure. Return to this point when complete.

10 Confirm that the LowSM minor alarm is clear. Examine the SM MAP level.

<table>
<thead>
<tr>
<th>If the LowSM minor alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 11</td>
</tr>
<tr>
<td>not clear</td>
<td>step 12</td>
</tr>
<tr>
<td>clear</td>
<td>step 13</td>
</tr>
</tbody>
</table>

11 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 12</td>
</tr>
<tr>
<td>clear</td>
<td>step 13</td>
</tr>
</tbody>
</table>

12 Call the next level of support.

13 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
Understanding the alarm system

1-275

XAC MemLim major

Alarm display

<table>
<thead>
<tr>
<th>XAC MemLim</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

Indication

A MemLim alarm code appears under the XAC header of the alarm banner. The alarm code indicates the memory limit major alarm.

Meaning

The memory available for allocation by the XA-Core operating system has dropped below one or both of the major memory limit alarm thresholds. The alarm indicates that there are not enough memory resources to perform calculations or system related functions. The MemLim alarm does not indicate a fault in any hardware.

Note: For a detailed description of the algorithm by which the system determines the MemLim alarm level, see the section titled “Determining the MemLim alarm level” in the chapter titled “How to problem solve a MemLim alarm” in this document.

Impact

There is no change to subscriber service. The XA-Core operating software cancels some internal switch processes such as testing and reporting.

Common procedures

There are no common procedures.

Action

Use the instructions in the step-action procedure to clear the alarm.
How to clear a MemLim major alarm

**ATTENTION**

Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**At the XA-Core MAP**

1. Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.
   - **Note:** Due to the refresh rate for MemLim alarm information, the user may experience some delay between the event that triggered the alarm to the change in the alarm condition.
   - **a** Access the log utility feature. At the CI MAP level, type
     ```
 >LOGUTIL
     ```
     and press the Enter key.
   - **b** Access the XA-Core logs. At the Logutil prompt type
     ```
 >OPEN XAC
     ```
     and press the Enter key.
   - **c** Examine and record the appropriate log reports.
   - **d** Return to the CI MAP prompt. At the Logutil prompt type
     ```
 >QUIT
     ```
     and press the Enter key.

2. Access the XA-Core SM MAP level. At the CI MAP level, type
   ```
 >MAPCI;MTC;XAC;SM
   ```
   and press the Enter key.

3. Examine the SM MAP level. Record the amount of available memory.
   - **Note:** The SM MAP level can display alarms and status as follows:
     - The MAP displays a MemLim alarm code under the XAC header in the alarm banner.
     - The MAP displays the amount of physical, usable and available memory in the command output area.
   
   *The following is a sample MAP display.*
SM MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemLim</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>SM</td>
<td>Front: 111111111 Rear: 111111 SM PE IO PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>123456789012345678 456789012345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sta ...--....-.- .. .--.....---.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dep: Type: ***** ****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Physical: 3840 Usable: 3840 Available: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SYNC State: duplex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the MAP indicates

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a different alarm</td>
</tr>
<tr>
<td>a MemLim alarm</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
</tr>
</tbody>
</table>

Perform the correct alarm clearing procedure as described in this document. Return to this point when complete.

If the alarm is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
</tr>
<tr>
<td>clear</td>
</tr>
</tbody>
</table>

Collect further information on memory limits using the XSMEMLIM command.

a At the CI prompt, type

> XSMEMLIM

and press the Enter key.
Examine and record the displayed memory statistics.

<table>
<thead>
<tr>
<th>Available memory</th>
<th>Alarm status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical data-store is less than 512 kilobytes.</td>
<td>DS major</td>
</tr>
<tr>
<td>Data-store is less than 32768 kilobytes.</td>
<td>DS minor</td>
</tr>
<tr>
<td>Critical program store is less than 64 kilobytes.</td>
<td>PS major</td>
</tr>
<tr>
<td>Program store is less than 8192 kilobytes.</td>
<td>PS minor</td>
</tr>
</tbody>
</table>

6. Contact the next level of support.

7. You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
Understanding the alarm system

**XAC MemLim minor**

**Alarm display**

<table>
<thead>
<tr>
<th>XAC MemLim</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

**Indication**

A MemLim alarm code appears under the XAC header of the alarm banner. The alarm code indicates the memory limit minor alarm.

**Meaning**

The memory available for allocation by the XA-Core operating system has dropped below one or both of the minor memory limit alarm thresholds. The MemLim alarm does not indicate a fault in any hardware.

*Note:* For a detailed description of the algorithm by which the system determines the MemLim alarm level, see the section titled “Determining the MemLim alarm level” in the chapter titled “How to problem solve a MemLim alarm” in this document.

**Impact**

There is no change to subscriber service. The XA-Core operating software cancels some internal switch processes such as testing and reporting.

**Common procedures**

There are no common procedures.

**Action**

Use the instructions in the step-action procedure to clear the alarm.
XAC MemLim
minor (continued)

How to clear a MemLim minor alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

At the XA-Core MAP
1 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.
   a Access the log utility feature. At the CI MAP level, type >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type >QUIT
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a MemLim minor condition</td>
<td>step 3</td>
</tr>
<tr>
<td>another alarm condition</td>
<td>step 4</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 6</td>
</tr>
</tbody>
</table>

2 Access the XA-Core SM MAP level. At the CI MAP level, type >MAPCI;MTC;XAC;SM
and press the Enter key.

3 Examine the SM MAP level. Record the amount of available memory.

   Note: The SM MAP level can display alarms and status as follows:
   • The MAP displays a MemLim alarm code under the XAC header in the alarm banner
   • The MAP displays the amount of physical, usable and available memory in the command output area. The MemLim condition indicates that the amount of available memory is 10% of the amount of usable memory.

   The following is a sample MAP display.
SM MAP level

If the MAP indicates                Do
a different alarm                   step 4
a MemLim alarm                     step 5
no alarm and all CPs are in service step 6

4 Perform the correct alarm clearing procedure as described in this document.
   Return to this point when complete.

If the alarm is                      Do
not clear                           step 5
clear                               step 6

5 Call the next level of support.

6 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
Understanding the alarm system

**Alarm display**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

**Indication**

There is no MAP alarm code under the XAC header to indicate a critical XA-Core/message switch (MS) communication alarm. Audible alarms provide notice of an outage. The local reset terminal interface (RTIF) provides status information on the progress of a software restart or system reboot.

*Note:* The events that cause an MScomm critical alarm make it impossible for the MAP to display alarm codes. The XA-Core has lost all avenues of communication with the message switch. None of the MAP interfaces is available.

The CP and packlet red LEDs light for a short period of time. If the CPs and packlets return to service, the green LEDs light. If the reboot is successful, XA-Core displays a restart reload message on the MAP terminal.

An ACTIVE message and CI prompt displayed on the MAP terminal indicates a successful reboot and restart reload.

**Meaning**

There is no communication between the XA-Core and MS. The OC-3 two-port interfaces, the physical links or the MS cannot provide communication service because of one or more of the following.

- If the XA-Core is equipped with OC-3 two port interface packlets, the status of the packlets is a combination of system busy (SysB), out of service (OOS) CBsy or ManB.
- If the XA-Core is equipped with HCMIC circuit packs, the status of the circuit packs is a combination of system busy (SysB), out of service (OOS) CBsy or ManB.
- OC-3 two-port interface paddleboard status is a combination of SysB and ManB.
- MS port circuit packs (CPs) are SysB.
• There is damage to ports on the XA-Core CMIC hardware (HCMIC circuit packs or OC-3 two-port interface packlets) or to ports on the OC-3 two-port interface paddleboards in the message switch.

• There is damage to fiber optic cables.

• Fiber optic cables are disconnected.

Impact

There is a change in subscriber service. Subscriber service has stopped and a system restart sequence begins. The system restart sequence tries to establish communication with the MS and return the XA-Core to service. A restart reload initializes the system software and runs tests on all hardware. The tests are done before and after loading the Interface software files.

XA-Core maintenance software tests all subsystem hardware during a restart. The tests cause the red LED on circuit packs (CPs) and packlets to light. When the tests are complete, the green LEDs are lit. The red LEDs on damaged, or inactive CPs or packlets remain lit. An ACTIVE message displayed on the MAP indicates a successful reload and restart.

The type of system restart depends on the severity and type of communication fault. The types of system restarts are as follows:

• Restart warm: A restart warm de-allocates and clears temporary memory storage. A restart warm does not cause an outage for existing calls. The system records and saves current call event information. The system does not allow new call processing.

• Restart cold: A restart cold process has more serious effects on system operation than a restart warm. A restart cold de-allocates and clears temporary memory storage. A restart cold can cause an outage in existing calls if the system requires the ports that the calls are using. The system does not record and save call event information. The system does not allow new call processing.

• Restart reload: A restart reload has more serious effects on system operation than the restart warm and restart cold processes. A reload restart simulates a reload of the current software into the switch. A reload restart initializes the system software and runs tests on all hardware. A reload restart causes an outage in existing calls and does not allow new call processing.

The restart process begins with a restart warm. If the restart warm fails, a restart cold begins. If the restart cold fails, a restart reload begins. If all restart
processes do not restore communication service to the MS, the XA-Core performs a system reboot.

If a restart process restores MS communication, the XA-Core MAP displays reload/restart messages on the MAP terminal. An ACTIVE message displayed on the MAP indicates a successful restart. All CPs and packlets that were in a manually busy (ManB) state before the restart, automatically return to service.

**Note 1:** A restart disables the MAP system. you cannot use the MAP system to determine the source of the fault. Use the RTIF terminal to monitor the reboot and restart reload process. You can use the MAP system if the restart is successful.

**Note 2:** If the restart is not successful, the system repeats the reboot procedure.

**Note 3:** If the restart reload is successful, all manual busy (ManB) CPs automatically return to service.

**Common procedures**

This procedure refers to the replacement procedure for the HCMIC circuit pack and the replacement procedure for the OC-3 two port interface packlet. The procedures are in this document.

**Action**

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an MScomm critical alarm

This flowchart summarizes the alarm clearing procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear an MScomm critical alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

WARNING
Fiber cable damage
Handle the fiber optic cables with care. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface degrades fiber performance.

CAUTION
Loss of service
Do not repeat steps.
**CAUTION**

*Loss of service*
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packets or resources OOS.

**At the XA-Core physical shell**

1. Select the next step as follows:

<table>
<thead>
<tr>
<th>If the CMIC hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 2</td>
</tr>
<tr>
<td>OC-3 two port interface packlets</td>
<td>step 16</td>
</tr>
</tbody>
</table>

2. Examine the fiber optic cable connections. Make sure that the fiber optic connectors fit correctly into the OC-3 ports in the HCMIC circuit packs in the XA-Core and into the OC-3 ports in the OC-3 two port interface paddleboards in the message switch. Use the following diagrams to check the link connections.

**XA-Core and MS fiber optic cable connections (SuperNode)**

- **XA-Core OC-3 interface 1**
  - Slot 4 rear (HCMIC circuit pack or CMIC packet)
  - Port 1
  - Port 0

- **XA-Core OC-3 interface 2**
  - Slot 15 rear (HCMIC circuit pack or CMIC packet)
  - Port 1
  - Port 0

*Legend:* □ Receive terminal □ Transmit terminal
XA-Core and MS fiber optic cable connections (SuperNode SE)

**Legend:**
- □ Receive terminal
- □ Transmit terminal

### XA-Core OC-3 interface 1
Slot 4 rear (HCMIC circuit pack or CMIC packet)

- Port 1 ➔ Port 1 ➔ MS 1, slot 4
- Port 0 ➔ Port 0

### XA-Core OC-3 interface 2
Slot 15 rear (HCMIC circuit pack or CMIC packet)

- Port 1 ➔ Port 1 ➔ MS 0, slot 4
- Port 0 ➔ Port 0

<table>
<thead>
<tr>
<th>If the fiber optic cables are correctly inserted</th>
<th>Do: step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>not correctly inserted</td>
<td>step 4</td>
</tr>
</tbody>
</table>
3 Examine the fiber optic cables. Make sure that there is no damage to the fiber optic cables.

**Paired fiber optic cable connectors**

<table>
<thead>
<tr>
<th>If the OC-3 fiber optic cables are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>visibly damaged</td>
<td>step 4</td>
</tr>
<tr>
<td>not visibly damaged but you suspect a fault in an HCMIC circuit pack or in an OC-3 two port interface paddleboard</td>
<td>step 5</td>
</tr>
<tr>
<td>not visibly damaged and you do not suspect a fault in an HCMIC circuit pack or in an OC-3 two port interface paddleboard</td>
<td>step 8</td>
</tr>
</tbody>
</table>

4 Disconnect the fiber optic cables from the HCMIC circuit pack and from the OC-3 two port interface paddleboard.

a Hold the connector by the receptacle body only.
b Carefully pull the fiber optic connectors away from the port receptacles.
c Cover the ends of the fiber optic cable with dust caps.
d Place the fiber optic cables in a safe location away from the physical shelf.
Disconnect the fiber optic cables from the OC-3 ports on the HCMIC circuit pack
Disconnect the OC-3 fiber optic cables from the ports on the OC-3 two port interface paddleboard

<table>
<thead>
<tr>
<th>If you are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replacing the HCMIC circuit pack or the OC-3 two port interface paddleboard</td>
<td>step 5</td>
</tr>
<tr>
<td>replacing the fiber optic cables</td>
<td>step 6</td>
</tr>
<tr>
<td>reconnecting the fiber optic cables to the correct port receptacles</td>
<td>step 7</td>
</tr>
</tbody>
</table>

5 Perform the correct procedure for replacing the HCMIC circuit pack or the OC-3 two port interface paddleboard. Continue to step 8 when complete.

6 Obtain the correct new fiber optic cables.

7 Connect the correct fiber optic cables to the correct ports on the HCMIC circuit pack and to the correct ports on the OC-3 two port interface paddleboard.
   a Hold the fiber optic cable connectors by the body only.
   b Remove the dust caps from the fiber optic cables. Clean the tips of the fiber optic cables. Use the recommended cleaning methods.
   c Carefully insert the connectors into the correct port receptacles.
Connect the fiber optic cables to the OC-3 ports on the HCMIC circuit pack.
Connect the fiber optic cables to the ports on the OC-3 two port interface paddleboard.

8 Examine the RTIF display. The RTIF display provides information on the progress of the restart or system reboot. Wait for the XA-Core system software to execute and complete a system restart. Wait for the ACTIVE message to appear on the MAP terminal display. When the ACTIVE message and CI prompt appear, the system is ready for command entry.

<table>
<thead>
<tr>
<th>If the XA-Core restart is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 9</td>
</tr>
<tr>
<td>unsuccessful and continues to execute the restart repeatedly</td>
<td>step 32</td>
</tr>
</tbody>
</table>

9 Collect log information from the log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type

>`LOGUTIL`

and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type

>`OPEN XAC`

and press the Enter key.

c Examine and record the appropriate log reports.
d  Return to the CI MAP prompt. At the logutil prompt type
  >QUIT
  and press the Enter key.

<table>
<thead>
<tr>
<th>If the logs indicate</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>all alarm events are clear</td>
<td>step 10</td>
</tr>
<tr>
<td>a different alarm event</td>
<td>step 31</td>
</tr>
</tbody>
</table>

10  Access the XA-Core XAC MAP level. At the CI prompt, type
  >MAPCI;MTC;XAC
  and press the Enter key.

11  Examine the XAC MAP level. Record the location and status of any trouble CPs.

  Note: The XAC MAP level can display alarms as follows:
  • an alarm under the XAC header in the alarm banner
  • equipment alarms under the headers in the subsystem status summary field (SSSF)

The following is a sample MAP display.

**XAC MAP level**

```
XAC MS IOD Net PM CCS Lns Trks Ext APPL

XAC
0 Quit
2 Card_
3 XACMtc
4 SM
5 PE
6 IO
7 CMIC
8 RTIF
9 Disk
10 Tape
11
12
13
14 Alarm_
15
16
17 Indicat_
18 Query_
XMAP0
Time 14:12 >
```

Front: 1111111111 Rear: 111111  SM  PE  IO  PKLT

Sta: -.----..--...- .---.-------. 0 0 0 0

Dep:
Return the out-of-service (OOS) equipment to service. Access the appropriate MAP level.

Return the OOC CP or packlet to service. At the MAP level, type

>`RTS <nn> <s>`

or

>`RTS <nn> <s> <p>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet position in an input/output processor (IOP) circuit pack - upper (u) or lower (l)

Example of command use:

>`RTS 4 r l`

If the equipment is not returned to service, step 13

If the equipment is returned to service, step 33

Manually busy the OOS CP or packlet. At the appropriate MAP level, type

>`BSY <nn> <s>`

or

>`BSY <nn> <s> <p>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the
physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet position in an
input/output processor (IOP) circuit pack - upper (u) or lower (l)
Example of command use:

>BSY 4 f

Note: If this command reduces redundancy and produces a major alarm,
you must use the Force option.

<table>
<thead>
<tr>
<th>If the CP or packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 14</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 32</td>
</tr>
</tbody>
</table>

14 Perform an OOS test on the ManB CP or packlet. At the appropriate MAP
level, type

>TST <nn> <s>

or

>TST <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in
the physical shelf - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the
physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet position in an
input/output processor (IOP) circuit pack - upper (u) or lower (l)
Example of command use:

>TST 4 r l

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 15</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 30</td>
</tr>
</tbody>
</table>

15 Return the ManB CP or packlet to service. At the appropriate MAP level, type

RTS <nn> <s>

or

RTS <nn> <s> <p>

and press the Enter key

where
<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet position in an input/output processor (IOP) circuit pack - upper (u) or lower (l)

Example of command use:

>RTS 4 r l

Example of system response:

RTS 4 rear lower passed

<table>
<thead>
<tr>
<th>If the CP or packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not InSv</td>
<td>step 32</td>
</tr>
<tr>
<td>InSv</td>
<td>step 33</td>
</tr>
</tbody>
</table>

16

Examine the fiber optic cable connections. Make sure that the fiber optic connectors fit correctly into the OC-3 ports in the OC-3 two port interface packlets in the XA-Core and into the OC-3 ports in the OC-3 two port interface paddleboards in the message switch. Use the following diagrams to check the link connections.

**XA-Core and MS fiber optic cable connections (SuperNode)**

```
<table>
<thead>
<tr>
<th>XA-Core OC-3 interface 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 4 rear (HCMIC circuit pack or CMIC packet)</td>
</tr>
<tr>
<td>Port 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>XA-Core OC-3 interface 2</td>
</tr>
<tr>
<td>Slot 15 rear (HCMIC circuit pack or CMIC packet)</td>
</tr>
<tr>
<td>Port 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Legend: Receive terminal</td>
</tr>
</tbody>
</table>
```
XA-Core and MS fiber optic cable connections (SuperNode SE)

**Legend:**

- □ Receive terminal
- □ Transmit terminal

If the fiber optic cables are correctly inserted, step 17.

If the fiber optic cables are not correctly inserted, step 18.

---

**XA-Core OC-3 interface 1**

Slot 4 rear
(HCMIC circuit pack or CMIC packet)

Port 1

Port 0

Port 1

Port 0

MS 1, slot 4

---

**XA-Core OC-3 interface 2**

Slot 15 rear
(HCMIC circuit pack or CMIC packet)

Port 1

Port 0

Port 1

Port 0

MS 0, slot 4
17 Examine the fiber optic cables. Make sure that there is no damage to the fiber optic cables.

**Paired fiber optic cable connectors**

If the OC-3 fiber optic cables are visibly damaged

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 18</td>
</tr>
</tbody>
</table>

If the OC-3 fiber optic cables are not visibly damaged but you suspect a fault in an OC-3 two port interface packlet or in an OC-3 two port interface paddleboard

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 19</td>
</tr>
</tbody>
</table>

If the OC-3 fiber optic cables are not visibly damaged and you do not suspect a fault in an OC-3 two-port interface packlet or in an OC-3 two port interface paddleboard

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 22</td>
</tr>
</tbody>
</table>

18 Disconnect the fiber optic cables from the OC-3 two port interface packlet and from the OC-3 two port interface paddleboard.

a  Hold the connector by the receptacle body only.

b  Carefully pull the fiber optic connectors away from the port receptacles.

c  Cover the ends of the fiber optic cable with dust caps.

d  Place the fiber optic cables in a safe location away from the physical shelf.
Disconnect the fiber optic cables from the OC-3 two port interface packet ports

Disconnect the OC-3 fiber optic cables from the OC-3 two port interface paddleboard ports
Perform the correct procedure for replacing the OC-3 two-port interface packlet or the OC-3 two port interface paddleboard. Continue to step 22 when complete.

Obtain the correct new fiber optic cables.

Connect the correct fiber optic cables to the correct ports on the OC-3 two port interface packlet and to the correct ports on the OC-3 two port interface paddleboard.

- Hold the fiber optic cable connectors by the body only.
- Remove the dust caps from the fiber optic cables. Clean the tips of the fiber optic cables. Use the recommended cleaning methods.
- Carefully insert the connectors into the correct port receptacles.

Connect the fiber optic cables to the OC-3 two port interface packlet ports.
Connect the fiber optic cables to the OC-3 two port interface paddleboard ports

**At the XA-Core MAP**

22 Examine the RTIF display. The RTIF display provides information on the progress of the restart or system reboot. Wait for the XA-Core system software to execute and complete a system restart. Wait for the ACTIVE message to appear on the MAP terminal display. When the ACTIVE message and CI prompt appear, the system is ready for command entry.

<table>
<thead>
<tr>
<th>If the XA-Core restart is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 23</td>
</tr>
<tr>
<td>unsuccessful and continues to execute the restart repeatedly</td>
<td>step 32</td>
</tr>
</tbody>
</table>

23 Collect log information from the log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type

>LOGUTIL

and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type

>OPEN XAC

and press the Enter key.

c Examine and record the appropriate log reports.
XAC MScomm critical (continued)

24 Access the XA-Core XAC MAP level. At the CI prompt, type
   >MAPCI;MTC;XAC
   and press the Enter key.

25 Examine the XAC MAP level. Record the location and status of any trouble CPs.
   
   **Note:** The XAC MAP level can display alarms as follows:
   - an alarm under the XAC header in the alarm banner
   - equipment alarms under the headers in the subsystem status summary field (SSSF)

The following is a sample MAP display.

XAC MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Front: 1111111111 Rear: 111111 SM PE IO PKLT
- Sta: ---.----..--.----..- .--.-------. 0 0 0 0
- Dep: 123456789012345678 456789012345 . . . .

XMAP0

Time 14:12 >
If the MAP level indicates	Do
a CP or packlet is ManB | step 28
a CP or packlet is SysB | step 27
an alarm related to one or more CP or packlet | step 31
no alarm and all CPs and packlets are in service | step 33

26

Return the out-of-service (OOS) equipment to service. Access the appropriate MAP level.

Return the OOC CP or packlet to service. At the MAP level, type

>RTS <nn> <s>

or

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet position in an input/output processor (IOP) circuit pack - upper (u) or lower (l)

Example of command use:

>RTS 4 r l

If the equipment is	Do
not returned to service | step 27
returned to service | step 33

27

Manually busy the OOS CP or packlet. At the appropriate MAP level, type

>BSY <nn> <s>

or

>BSY <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet position in an input/output processor (IOP) circuit pack - upper (u) or lower (l)

Example of command use:

>BSY 4 f

*Note:* If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the CP or packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 28</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 32</td>
</tr>
</tbody>
</table>

28 Perform an OOS test on the ManB CP or packet. At the appropriate MAP level, type

>TST <nn> <s>

or

>TST <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet position in an input/output processor (IOP) circuit pack - upper (u) or lower (l)

Example of command use:

>TST 4 r l

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 29</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 30</td>
</tr>
</tbody>
</table>

29 Return the ManB CP or packet to service. At the appropriate MAP level, type

RTS <nn> <s>

or

RTS <nn> <s> <p>

and press the Enter key

where
<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet position in an input/output processor (IOP) circuit pack - upper (u) or lower (l)

Example of command use:

>RTS 4 r l

Example of system response:

RTS 4 rear lower passed

If the CP or packlet is	Do
not InSv | step 32
InSv | step 33

At your current location

30  Perform the correct CP or packlet replacement procedure. Return to this point when complete.

If the CP or packlet is	Do
not returned to service | step 32
returned to service | step 33

31  Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

If the alarm is	Do
not clear | step 32
clear | step 33

32  Call the next level of support.
33  You have completed this procedure.
This page is left blank intentionally.
Alarm display

<table>
<thead>
<tr>
<th>XAC MScomm M</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

Indication

An MScomm major alarm code appears under the XAC header of the alarm banner. The alarm code indicates a message switch (MS) communication major alarm.

Meaning

The system raises the MScomm major alarm if either of the following things is wrong with the CMIC links between the XA-Core and the message switch (MS):

- lack of redundancy of CMIC links
- misconfigured CMIC links

Lack of redundancy of CMIC links

There is no communication link redundancy between the XA-Core and the message switch (MS). There is a communication service outage for a single XA-Core and MS link. The reason for the outage is one of the following:

- There is an article of CMIC hardware in the XA-Core shelf (that is, an HCMIC circuit pack or an OC-3 two port interface packlet) whose working state is either system busy (SysB), out of service (OOS) CBsy, or ManB.
- There is an OC-3 two port interface paddleboard in the message switch (MS) whose working state is either SysB or ManB.
- An MS port circuit pack (CP) is SysB or ManB.
- One of the fiber optic cables is damaged.
- One of the fiber optic cables is disconnected.

Misconfigured CMIC links

The CMIC links between the XA-Core and the message switch (MS) are misconfigured if they do not conform to the configurations shown in the following figures. The system raises the MScomm major alarm if the links are misconfigured, regardless of whether they are in service.
XA-COM and MS fiber optic cable connections (SuperNode)

Legend:

- Receive terminal
- Transmit terminal

XA-COM OC-3 interface 1

Slot 4 rear (HCMIC circuit pack or CMIC packet)

Port 1

Port 0

Port 1

Port 0

MS 1, slot 25

MS 1, slot 24

XA-COM OC-3 interface 2

Slot 15 rear (HCMIC circuit pack or CMIC packet)

Port 1

Port 0

Port 1

Port 0

MS 0, slot 25

MS 0, slot 24

Legend:  

- Receive terminal  
- Transmit terminal

XA-COM and MS fiber optic cable connections (SuperNode SE)

Legend:  

- Receive terminal  
- Transmit terminal

XA-COM OC-3 interface 1

Slot 4 rear (HCMIC circuit pack or CMIC packet)

Port 1

Port 0

Port 1

Port 0

MS 1, slot 4

XA-COM OC-3 interface 2

Slot 15 rear (HCMIC circuit pack or CMIC packet)

Port 1

Port 0

Port 1

Port 0

MS 0, slot 4

297-8991-510 Standard 12.02 December 2005
Impact

There is no immediate change in subscriber service. There is a risk of a system restart if another failure occurs on one of the following:

- HCMIC circuit pack
- OC-3 two port interface packlet
- OC-3 fiber optic cables
- MS port CP
- OC-3 two port interface paddleboard

Common procedures

This procedure refers to the replacement procedure for the HCMIC circuit pack, the replacement procedure for the IOP circuit pack, and the replacement procedure for the OC-3 two port interface packlet. The procedures are in this document.

Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an MScomm major alarm

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.

1. If Port/Link is SysB?
   - Yes: Check link and message switch, correct problems
     - End
   - No: Port/Link is CBsy?
     - Yes: Check packlet, replace if necessary
     - No: Packlet is ManB or SysB?
       - Yes: Check packlet, replace if necessary
       - No: Packlet is CBsy?
         - Yes: Check IOP CP, replace if necessary
         - No: IOP CP is ManB or SysB?
           - Yes: Check IOP CP, replace if necessary
           - No: Other alarm?
             - Yes: Clear the alarm
             - No: HCMIC CPs
               - Yes: HCMIC CPs or CMIC packlets
                 - No: CMIC packlets
                   - Yes: Collect information
                     - No: End
This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.

Summary of clearing an MScomm major alarm (continued)

1. Collect information
2. Link is SysB?
   - Y: Check link and message switch, correct problems
   - N: Link is CBsy?
     - Y: Check port, replace HCMIC CP if necessary
     - N: Port is ManB or SysB?
       - Y: Port is CBsy?
         - Y: Check HCMIC CP, replace if necessary
         - N: HCMIC CP is ManB or SysB?
           - Y: Other alarm?
             - Y: Clear the alarm
             - N: End
           - N: Other alarm?
             - Y: Clear the alarm
             - N: End
     - N: Port is CBsy?
       - Y: Check HCMIC CP, replace if necessary
       - N: End
3. Other alarm? (continued)
How to clear an MScomm major alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

WARNING
Fiber cable damage
Handle the fiber optic cables with care. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface degrades fiber performance.

CAUTION
Loss of service
Do not repeat steps.
CAUTION
Loss of service
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packets or resources OOS.

At the MAP terminal
1 Select the next step as follows:

<table>
<thead>
<tr>
<th>If the CMIC hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 2</td>
</tr>
<tr>
<td>OC-3 two port interface packet</td>
<td>step 33</td>
</tr>
</tbody>
</table>

At the MAP terminal
2 Collect information from XA-Core the log report system. The log messages provide information about the source of the alarm.
   a Access the log utility feature. At the CI MAP level, type
      `>LOGUTIL` and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      `>OPEN XAC` and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the logutil prompt type
      `>QUIT` and press the Enter key.

3 Select the next step as follows:

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an MScomm major alarm condition</td>
<td>step 4</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 62</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 64</td>
</tr>
</tbody>
</table>

4 If you are not at the IO MAP level, access that level. Type
   `>IO` and press the Enter key.
5 Examine the IO MAP level. Record the location and status of the HCMIC circuit packs.

   The following is a sample MAP display.

**IO MAP level**

<table>
<thead>
<tr>
<th>Slot</th>
<th>Side</th>
<th>Status</th>
<th>Upper</th>
<th>Middle</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Front</td>
<td>Disk</td>
<td>Tape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Front</td>
<td>Disk</td>
<td>Tape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear</td>
<td>M</td>
<td>RTIF</td>
<td>ETHR</td>
<td>CMIC</td>
</tr>
<tr>
<td>15</td>
<td>Rear</td>
<td>RTIF</td>
<td>ETHR</td>
<td>CMIC</td>
<td></td>
</tr>
</tbody>
</table>

6 Access the XA-Core CMIC MAP level. Type

>CMIC

and press the Enter key.

7 Examine the CMIC MAP level. Record the location and particulars of any CMIC problems.

   **Note:** The CMIC MAP level can display alarms and status as follows:
   
   • an alarm under the XAC header in the alarm banner
   • an equipment alarm under the PKLT header of the subsystem status summary field (SSSF), indicating an OC-3 two port interface packet
   • a status code under the Status, Link, Port, or TOD header in the command interpreter output area
The following is a sample MAP display.

CMIC MAP level

Access the XA-Core IO MAP level. Type

```
>IO
```

and press the Enter key.

Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If multiple statements in the left-hand column are true, choose the first true one that you encounter.

<table>
<thead>
<tr>
<th>If the information from the logs, and from the IO and CMIC MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-3 link is in a SysB state</td>
<td>step 26</td>
</tr>
<tr>
<td>OC-3 link is in a CBsy state</td>
<td>step 10</td>
</tr>
<tr>
<td>OC-3 port is in a ManB state</td>
<td>step 11</td>
</tr>
<tr>
<td>OC-3 port is in a SysB state</td>
<td>step 13</td>
</tr>
<tr>
<td>OC-3 port is in a CBsy state</td>
<td>step 18</td>
</tr>
<tr>
<td>HCMIC circuit pack is in a ManB state</td>
<td>step 20</td>
</tr>
</tbody>
</table>

---

XA-Core Maintenance Manual
You were directed to this step because you found that an OC-3 link was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an OC-3 port.

Proceed as follows.

a. Access the CMIC MAP level. Type
   
   >CMIC
   
   and press the Enter key.

b. Select the next step as follows:

<table>
<thead>
<tr>
<th>If the OC-3 port is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 11</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 13</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 18</td>
</tr>
</tbody>
</table>

If you are not at the CMIC MAP level, access that level. Type

>CMIC

and press the Enter key.

Return the OC-3 port to service. Type

RTS <nn> <s> <port>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)

<port> is port0 or port1

Example of command use:

>RTS 4 r port0
Example of system response:
RTS 4 rear port0 passed

<table>
<thead>
<tr>
<th>If the OC-3 port is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 14</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 3</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 18</td>
</tr>
</tbody>
</table>

13 If you are not at the CMIC MAP level, access that level. Type
>CMIC
and press the Enter key.

14 Manually busy the OC-3 port. Type
>BSY <nn> <s> <port>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
<s> is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)
<port> is port0 or port1
Example of command use:
>BSY 4 r port0

Note: If needed, use the Force option to place the port in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the OC-3 port is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 15</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 63</td>
</tr>
</tbody>
</table>

15 Perform an OOS test on the OC-3 port. Type
>TST <nn> <s> <port>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
<port> is port0 or port1
Example of command use:

`>TST 4 r port0`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passes</td>
<td>step 16</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 17</td>
</tr>
</tbody>
</table>

Return the OC-3 port to service. Type

`RTS <nn> <s> <port>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
- `<s>` is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)
- `<port>` is port0 or port1

Example of command use:

`>RTS 4 r port0`

Example of system response:

`RTS 4 rear port0 passed`

<table>
<thead>
<tr>
<th>If the OC-3 port is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 3</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 17</td>
</tr>
</tbody>
</table>

Perform the procedure for replacing the HCMIC circuit pack. The procedure is found in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 3</td>
</tr>
<tr>
<td>not in an InSv state</td>
<td>step 63</td>
</tr>
</tbody>
</table>

You were directed to this step because you found that an OC-3 port was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an HCMIC circuit pack.

Proceed as follows.

a. If you are not at the IO MAP level, access that level. Type

   `>IO`

   and press the Enter key.
### Understanding the alarm system

#### XAC MScomm major

Select the next step as follows:

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 20</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 22</td>
</tr>
</tbody>
</table>

**19** If you are not at the IO MAP level, access that level. Type

```plaintext
>IO
```

and press the Enter key.

**20** Return the HCMIC circuit pack to service. Type

```plaintext
RTS <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
- `<s>` is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)

Example of command use:

```plaintext
>RTS 4 r
```

*Example of system response:*

```plaintext
RTS 4 rear passed
```

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 22</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 3</td>
</tr>
</tbody>
</table>

**21** If you are not at the IO MAP level, access that level. Type

```plaintext
>IO
```

and press the Enter key.

**22** Manually busy the HCMIC circuit pack. Type

```plaintext
>BSY <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
- `<s>` is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)
Example of command use:

>`BSY 4 r`

*Note:* If needed, use the Force option to place the circuit pack in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 23</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 63</td>
</tr>
</tbody>
</table>

**23**

Perform an OOS test on the HCMIC circuit pack. Type

>`TST <nn> <s>`

and press the Enter key

*<nn>* is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

*<s>* is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)

Example of command use:

>`TST 4 r`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 24</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 25</td>
</tr>
</tbody>
</table>

**24**

Return the HCMIC circuit pack to service. Type

>`RTS <nn> <s>`

and press the Enter key

*<nn>* is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

*<s>* is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)

Example of command use:

>`RTS 4 r`

*Example of system response:*

RTS 4 rear passed
Perform the procedure for replacing the HCMIC circuit pack. The procedure is found in this document. Return to this point when complete.

**If the HCMIC circuit pack is** | **Do**
---|---
in an InSv state | step 3
not in an InSv state | step 25

**At the XA-Core shelf**

26 Examine the fiber optic cables and connectors.

**Note:** You were directed to this step because you found that an OC-3 link was in the SysB state. This indicates that there may be a problem with the link. In the following steps you will check for possible link problems: misconfiguration, damaged or disconnected links, and problems in the MS.

Proceed as follows.

a Check that the CMIC links are configured properly, that is, that the link connections fit into the correct OC-3 interface ports. The proper configurations for SuperNode and SuperNode SE are shown in the diagrams found under the heading “Meaning” at the beginning of this section.

b Look for visible signs that the cables are damaged or disconnected.

27 Select the next step as follows:

**If you find** | **Do**
---|---
a misconfigured link | step 28
a damaged link | step 28
a disconnected link | step 30
no signs of misconfiguration, damage, or disconnection | step 31
Proceed as follows.

a. If you are not at the IO MAP level, access that level. Type
   \texttt{>IO}
   and press the Enter key.

b. MainB the HCMIC circuit pack that the cable connects to. Type
   \texttt{>BSY <nn> <s>}
   and press the Enter key
   where
   \(<nn>\) is the slot number parameter value to indicate the number of the slot
   in the physical shelf - 1 to 18
   \(<s>\) is the side parameter value to indicate the circuit pack location in the
   physical shelf - front (f) or rear (r)
   Example of command use:
   \[>BSY 4 \text{ r}\]
   \textbf{Note}: If needed, use the Force option to place the circuit pack in a
   MainB state. refer to the XA-Core MAP commands documentation.

c. Disconnect the fiber optic cable from the HCMIC circuit pack and from the
   OC-3 two port interface paddleboard. Carefully pull the fiber optic
   connector away from the receptacle. Hold the connector by the body only.

d. Cover the ends of the fiber optic cable with dust caps.

e. Place the fiber optic cable in a safe location away from the physical shelf.
Disconnect the fiber optic cables from the OC-3 ports on the HCMIC circuit pack.
Disconnect the OC-3 fiber optic cables from the ports on the OC-3 two port interface paddleboard.

If you are replacing a fiber optic cable, do step 29.

If you are re-connecting an existing fiber optic cable, do step 30.

29 Obtain a replacement cable.
Connect the fiber optic cable to the proper ports on the HCMIC circuit pack in the XA-Core shelf, and to the proper ports on the OC-3 two port interface paddleboard. Follow the connection diagrams found under the heading “Meaning” at the beginning of this section.

Proceed as follows.

a  Hold the fiber optic cable connector by the body only.
b  Remove the dust caps from the ends of the fiber optic cable.
c  Clean the tips of the fiber optic cable. Use the correct fiber optic cleaning procedure.
d  Carefully insert the connector into the correct receptacle.
e  Return the HCMIC circuit pack to service. At the IO MAP level, type

\[
\text{RTS } <\text{nn}> \ <\text{s}>
\]

and press the Enter key

where

\(<\text{nn}>\) is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

\(<\text{s}>\) is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)

Example of command use:

\[>\text{RTS 4 } \text{r}\]

Example of system response:

\[
\text{RTS 4 rear passed}
\]
Connect the fiber optic cables to the OC-3 ports on the HCMIC circuit pack.
Connect the fiber optic cables to the ports on the OC-3 two port interface paddleboard.

At the MS MAP terminal

31 Examine the MS MAP. Proceed as follows.
   a Access the MS MAP level. Type
      `>MS`
      and press the Enter key.
   b Access the MS Shelf MAP level. The Shelf MAP level displays the status of all CPs in the shelf. At the MS MAP level, type
      `>SHELF`
      and press the Enter key.
   c Access the MS Card MAP level for the OC-3 two port interface paddleboards. The card MAP level displays the status of the OC-3 two port interface paddleboards. At the MS MAP level, type
      `>CARD <nn>`
      and press the Enter key
      where
      `<nn>` is the slot number parameter value to indicate the number of the MS physical shelf slot - 1 to 26
      Example of command:
      `>CARD 24`
   d Record the status of all the OC-3 two port interface paddleboards as shown on the MAP screen.
Select the next step as follows:

<table>
<thead>
<tr>
<th>If the MS Card MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-3 two port interface paddleboard ports are OOS</td>
<td>step 32</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 62</td>
</tr>
<tr>
<td>no faults or alarms</td>
<td>step 3</td>
</tr>
</tbody>
</table>

Perform the replacement procedure for the MS CP. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 62</td>
</tr>
<tr>
<td>not clear</td>
<td>step 63</td>
</tr>
<tr>
<td>clear</td>
<td>step 3</td>
</tr>
</tbody>
</table>
At the MAP terminal

33 Collect information from XA-Core the log report system. The log messages provide information about the source of the alarm.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the logutil prompt type
      >QUIT
      and press the Enter key.

34 Select the next step as follows:

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an MScomm major alarm condition</td>
<td>step 35</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 62</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 64</td>
</tr>
</tbody>
</table>

35 If you are not at the CMIC MAP level, access that level. Type

>CMIC

and press the Enter key.

36 Examine the CMIC MAP level. Record the location and status of the OC-3 two port interface packet.

   Note: The CMIC MAP level can display alarms and status as follows:
   • an alarm under the XAC header in the alarm banner
   • an equipment alarm under the PKLT header of the subsystem status summary field (SSSF), indicating an OC-3 two port interface packet
   • a status code under the Status, Link, Port, or TOD header in the command interpreter output area
The following is a sample MAP display.

### CMIC MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMc</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**Front**: 11111111  **Rear**: 111111  **SM**: PE  **IO**: PKLT

**Sta:** -.-----.-.-----.-  **Dep:** F--.--.--.--  **Typ:** * " "  **Slot**: Side: Packlet: Status: Port0 Port1 Link0: Link1: TOD0 TOD1

| 4 | Rear | C | C | C | C |
| 15 | Rear | . | . | . | . | . |

**Note**: The interface does not display separate information for ports and links on an OC-3 two port interface packet. The status of the local port and link are displayed under the “Link0” heading; the status of the remote port and link are displayed under the “Link1” heading.
The following is a sample MAP display.

### IO MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front: 1111111111</th>
<th>Rear: 111111</th>
<th>SM</th>
<th>PE</th>
<th>IO</th>
<th>PKLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>CMICfl</td>
</tr>
</tbody>
</table>

**Sta:** .---.--.--.-- . . . . .
**Dep:** . . . . . . . . . . . .
**Typ:** * * * *
**Slot:** . . . . . . . . . . . .
**Side:** . . . . . . . . . . . .
**Status:** . . . . . . . . . . . .
**Upper:** . . . . . . . . . . . .
**Middle:** . . . . . . . . . . . .
**Lower:** . . . . . . . . . . . .

<table>
<thead>
<tr>
<th>2</th>
<th>Front . . . . . . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Front . . . . . . . .</td>
</tr>
<tr>
<td>4</td>
<td>Rear . . . . . . . .</td>
</tr>
<tr>
<td>15</td>
<td>Rear . . . . . . . .</td>
</tr>
</tbody>
</table>

**XAC:** IO:

**MScomm:** . . . . . . . . . . . .

**Time:** 14:12

### Instructions

39 Access the CMIC MAP level. Type>

>CMIC

and press the Enter key.

40 Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If multiple statements in the left-hand column are true, choose the first true one that you encounter.

<table>
<thead>
<tr>
<th>If the information from the logs, and from the IO and CMIC MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-3 port/link is in a SysB state (See the note in step 38.)</td>
<td>step 55</td>
</tr>
<tr>
<td>OC-3 port/link is in a CBsy state (See the note in step 38.)</td>
<td>step 41</td>
</tr>
<tr>
<td>OC-3 two port interface packet is in a ManB state</td>
<td>step 42</td>
</tr>
<tr>
<td>OC-3 two port interface packet is in a SysB state</td>
<td>step 43</td>
</tr>
<tr>
<td>OC-3 two port interface packet is in a CBsy state</td>
<td>step 47</td>
</tr>
</tbody>
</table>
You were directed to this step because you found that an OC-3 port-and-link combination was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an OC-3 two port interface packet.

You are at the CMIC MAP level, where the working state of the OC-3 two port interface packet is displayed.

Select the next step as follows:

<table>
<thead>
<tr>
<th>If the information from the logs, and from the IO and CMIC MAP levels indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP circuit pack is in a ManB state</td>
<td>step 48</td>
</tr>
<tr>
<td>IOP circuit pack is in a SysB state</td>
<td>step 51</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 62</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
<td>step 64</td>
</tr>
</tbody>
</table>

If the OC-3 two port interface packet is

<table>
<thead>
<tr>
<th>If the OC-3 two port interface packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 42</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 43</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 47</td>
</tr>
</tbody>
</table>

Return the OC-3 two port interface packet to service. Type

```
RTS <nn> <s> <p>
```

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

```
>RTS 4 r l
```

Example of system response:

RTS 4 rear lower passed
Understanding the alarm system

XAC MScomm
major (continued)

If the OC-3 two port interface packlet is | Do
---|---
in a SysB state | step 43
in a CBsy state | step 47
in an InSv state | step 34

43 Manually busy the OOS OC-3 two port interface packlet. Type

\texttt{>BSY <nn> <s> <p>}

and press the Enter key

where

\(<nn>\) is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

\(<s>\) is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)

\(<p>\) is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\texttt{>BSY 4 r l}

*Note:* If needed, use the Force option to place the circuit pack in a ManB state. Refer to the XA-Core MAP commands documentation.

If the OC-3 two port interface packlet is | Do
---|---
in a ManB state | step 44
not in a ManB state | step 63

44 Perform an OOS test on the OC-3 two port interface packlet. Type

\texttt{>TST <nn> <s> <p>}

and press the Enter key

where

\(<nn>\) is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

\(<s>\) is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)

\(<p>\) is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\texttt{>TST 4 r l}
45 Return the OC-3 two port interface packet to service. Type
\textbf{RTS <nn> <s> <p>}
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the slot in
the physical shelf - 1 to 18
<s> is the side parameter value to indicate the packet location in the physical
shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packet location in an
input/output processor (IOP) - upper (u) or lower (l)
Example of command use:
\textgreater\textbf{RTS 4 r l}

\textit{Example of system response:}
RTS 4 rear lower passed

46 Perform the procedure for replacing the OC-3 two port interface packet. The
procedure is found in this document. Return to this point when complete.

47 You were directed to this step because you found that an OC-3 two port
interface packet was in the CBsy state. This indicates that there may be a
problem with the next highest entity in the hierarchy, which is an IOP CP.
Proceed as follows.
a Access the IO MAP level. Type
\textgreater\textbf{IO}
and press the Enter key.
Find out the working state of the IOP CP, and select the next step as follows:

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 49</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 51</td>
</tr>
</tbody>
</table>

48 If you are not at the IO MAP level, access that level. Type

>IO

and press the Enter key.

49 Return the IOP circuit pack to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

\[ \text{RTS} \ <nn> \ <s> \]

and press the Enter key

where

\(<nn>\) is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

\(<s>\) is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)

Example of command use:

>RTS 4 r

Example of system response:

RTS 4 rear passed

b Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet status.

<table>
<thead>
<tr>
<th>If the IOP circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 34</td>
</tr>
<tr>
<td>not in an InSv state</td>
<td>step 52</td>
</tr>
</tbody>
</table>

50 If you are not at the IO MAP level, access that level. Type

>IO

and press the Enter key.

51 Manually busy the OOS IOP circuit pack. Type

>BSY \ <nn> \ <s> 

and press the Enter key
where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r

Note: If needed, use the Force option to place the circuit pack in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the IOP circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 52</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 63</td>
</tr>
</tbody>
</table>

52 Perform an OOS test on the ManB IOP circuit pack. Type

>TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>TST 4 r

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 53</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 54</td>
</tr>
</tbody>
</table>

53 Return the IOP circuit pack to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)
Example of command use:

>`RTS 4 r`

*Example of system response:*

> RTS 4 rear passed

**b** Make sure that all related packlets are in service. Examine the IO MAP level to determine the packet status.

<table>
<thead>
<tr>
<th>If the IOP circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 34</td>
</tr>
<tr>
<td>not in an InSv state</td>
<td>step 54</td>
</tr>
</tbody>
</table>

**54** Perform the procedure for replacing the IOP circuit pack. The procedure is found in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the OC-3 two port interface packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 34</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 63</td>
</tr>
</tbody>
</table>

**At the XA-Core shelf**

**55** Examine the fiber optic cables and connectors.

*Note:* You were directed to this step because you found that an OC-3 link was in the SysB state. This indicates that there may be a problem with the link. In the following steps you will check for possible link problems: misconfiguration, damaged or disconnected links, and problems in the MS. Proceed as follows.

**a** Check that the CMIC links are configured properly, that is, that the link connections fit into the correct OC-3 interface ports. The proper configurations for SuperNode and SuperNode SE are shown in the diagrams found under the heading “Meaning” at the beginning of this section.

**b** Look for visible signs that the cables are damaged or disconnected.

**56** Select the next step as follows:

<table>
<thead>
<tr>
<th>If you find</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a misconfigured link</td>
<td>step 57</td>
</tr>
<tr>
<td>a damaged link</td>
<td>step 57</td>
</tr>
<tr>
<td>a disconnected link</td>
<td>step 59</td>
</tr>
<tr>
<td>no signs of misconfiguration, damage, or disconnection</td>
<td>step 60</td>
</tr>
</tbody>
</table>
Proceed as follows.

a. If you are not at the CMIC MAP level, access that level. Type
   >CMIC
   and press the Enter key.

b. ManB the OC-3 two port interface packlet that the cable connects to. Type
   >BSY <nn> <s> <p>
   and press the Enter key.

   where
   
   <nn> is the slot number parameter value to indicate the number of the slot
   in the physical shelf - 1 to 18
   
   <s> is the side parameter value to indicate the packlet location in the
   physical shelf - front (f) or rear (r)

   Example of command use:
   
   >BSY 4 r l

   Note: If needed, use the Force option to place the circuit pack in a
   ManB state. Refer to the XA-Core MAP commands documentation.

c. Disconnect the fiber optic cable from the OC-3 two port interface packlet
   and from the OC-3 two port interface paddleboard. Carefully pull the fiber
   optic connector away from the receptacle. Hold the connector by the body
   only.

d. Cover the ends of the fiber optic cable with dust caps.

e. Place the fiber optic cable in a safe location away from the physical shelf.
 Disconnect the fiber optic cables from the OC-3 two port interface packet ports

 Disconnect the OC-3 fiber optic cables from the OC-3 two port interface paddleboard ports
Obtain a replacement cable.

Connect the fiber optic cable to the proper ports on the OC-3 two port interface packlet in the XA-Core shelf, and to the proper ports on the OC-3 two port interface paddleboard. Follow the connection diagrams found under the heading "Meaning" at the beginning of this section.

Proceed as follows.

a. Hold the fiber optic cable connector by the body only.

b. Remove the dust caps from the ends of the fiber optic cable.

c. Clean the tips of the fiber optic cable. Use the correct fiber optic cleaning procedure.

d. Carefully insert the connector into the correct receptacle.

e. Return the OC-3 two port interface packlet to service. At the CMIC MAP level, type

   \texttt{RTS \textless nn\textgreater \textless s\textgreater \textless p\textgreater}

   and press the Enter key

   where

   \(<\text{nn}\textgreater\) is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

   \(<\text{s}\textgreater\) is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)

   \(<\text{p}\textgreater\) is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

   Example of command use:

   \texttt{>RTS 4 r}

   \textit{Example of system response:}

   \texttt{RTS 4 rear passed}
Connect the fiber optic cables to the OC-3 two port interface packet ports

At the MS MAP terminal

Examine the MS MAP. Proceed as follows.

a Access the MS MAP level. Type

>MS

and press the Enter key.
b Access the MS Shelf MAP level. The Shelf MAP level displays the status of all CPs in the shelf. At the MS MAP level, type
>SHelf
and press the Enter key.

c Access the MS Card MAP level for the OC-3 two port interface paddleboards. The card MAP level displays the status of the OC-3 two port interface paddleboards. At the MS MAP level, type
>CARD <nn>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the MS physical shelf slot - 1 to 26
Example of command:
>CARD 24

d Record the status of all the OC-3 two port interface paddleboards as shown on the MAP screen.

The following is a sample MAP display.

MS Card MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MS 0 Quit
MS 1
MS 2
MS 3
MS 4
MS 5
MS 6 Tst_
MS 7 Bsy_
MS 8 RTS_
MS 9
MS 10 LoadMS_
MS 11
MS 12 SwMast
MS 13 Shelf
MS 14 QueryMS
MS 15
MS 16
MS 17 InterMS_
MS 18 Clock

Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0 . M Free . - -
MS 1 . Slave F - -

Shelf 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Card 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Chain MS 0 .. . . . . . . . . . . . . . . . . . . . . . . .
MS 1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Card 24 CMIC Interface Card Port: 0
MS 0 . S
MS 1 . S

XMAP0
Time 14:12 >
Select the next step as follows:

<table>
<thead>
<tr>
<th>If the MS Card MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-3 two port interface paddleboard ports are OOS</td>
<td>step 61</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 62</td>
</tr>
<tr>
<td>no faults or alarms</td>
<td>step 34</td>
</tr>
</tbody>
</table>

61 Perform the replacement procedure for the MS CP. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 62</td>
</tr>
<tr>
<td>not clear</td>
<td>step 63</td>
</tr>
<tr>
<td>clear</td>
<td>step 34</td>
</tr>
</tbody>
</table>

At the MAP terminal

62 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 63</td>
</tr>
<tr>
<td>clear</td>
<td>step 34</td>
</tr>
</tbody>
</table>

63 Call the next level of support.

64 You have completed this procedure.
This page is left blank intentionally.
Alarm display

An MScomm message appears under the XAC header of the alarm banner. The message indicates an XA-Core/message switch (MS) communication minor alarm.

Meaning

Communication link redundancy between the XA-Core and the MS is partially lost. A single physical link cannot provide communication service. One or more of the following conditions will cause the MScomm minor alarm:

- A single port on an HCMIC circuit pack or on an OC-3 two port interface packet is out of service (SysB or CBsy).
- A single port on an OC-3 two port interface paddleboard is out of service (SysB, CBsy, or ManB).
- A fiber optic cable is damaged or disconnected.

Impact

There is no immediate change to subscriber service. To minimize service degradation, wait until call traffic is low to test or replace equipment.

Common procedures

This procedure refers to the replacement procedure for the HCMIC circuit pack and the replacement procedure for the OC-3 two port interface packet. The procedures are in this document.

Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an MScomm minor alarm

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.

1. Obtain logs
2. Source of alarm at the MS?
   - Y: Refer to the correct alarm clearing NTP
   - N: OC-3 port fault on HCMIC CP or CMIC packet?
     - Y: ManB the CP or packet and perform OOS test
     - N: Optic cable disconnected or damaged?
       - Y: Reconnect or replace cable
       - N: Other alarm?
         - Y: Refer to the correct alarm clearing NTP
         - N: Contact next level of support
           1. Alarm cleared?
              - Y: OOS test passed?
                - Y: Replace the unit. Refer to the correct NTP.
                - N: Other alarm?
                  - Y: Refer to the correct alarm clearing NTP
                  - N: Contact next level of support
                  2. End
             - N: Contact next level of support
Understanding the alarm system

XAC MScomm minor (continued)

How to clear an MScomm minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**WARNING**
Fiber cable damage
Handle the fiber optic cables with care. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface degrades fiber performance.

**CAUTION**
Loss of service
Do not repeat steps.
XAC MScomm minor (continued)

At the XA-Core MAP

1. Select the next step as follows:

<table>
<thead>
<tr>
<th>If the CMIC hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 2</td>
</tr>
<tr>
<td>OC-3 two port interface packetts</td>
<td>step 25</td>
</tr>
</tbody>
</table>

2. Collect information from XA-Core the log report system. The log messages provide information about the source of the alarm.

   a. Access the log utility feature. At the CI MAP level, type
      
      >LOGUTIL
      
      and press the Enter key.

   b. Access the XA-Core logs. At the Logutil prompt type
      
      >OPEN XAC
      
      and press the Enter key.

   c. Examine and record the appropriate log reports.

   d. Return to the CI MAP prompt. At the logutil prompt type
      
      >QUIT
      
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the logs indicate an</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>XA-Core MScomm minor condition</td>
<td>step 3</td>
</tr>
<tr>
<td>MS or different alarm condition</td>
<td>step 43</td>
</tr>
<tr>
<td>MScomm minor condition is clear</td>
<td>step 45</td>
</tr>
</tbody>
</table>

3. Access the XA-Core IO MAP level. At the CI prompt, type
   
   >MAPCI;MTC;IO
   
   and press the Enter key.

4. Examine the IO MAP level. Record the location and status of the HCMIC circuit packs.

CAUTION
Loss of service
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packetts or resources OOS.

CAUTION
Loss of service
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packetts or resources OOS.
5 Access the XA-Core CMIC MAP level. Type

>MAPCI;MTC;CMIC

and press the Enter key.

6 Examine the CMIC MAP level. Record the location and status of the problem. This indicates the location of the HCMIC circuit pack.

**Note:** The CMIC MAP level can display alarms and status as follows:

- an alarm under the XAC header in the alarm banner
- an equipment alarm under the PKLT header of the subsystem status summary field (SSSF), indicating an OC-3 two port interface packet
- a status code under the Status, Link, Port, or TOD header in the command interpreter output area

*The following is a sample MAP display.*

```
CMIC MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MScomm</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

CMIC

0 Quit
2 123456789012345678 456789012345
3 0 0 0 0
4 Dep: F
5 Typ: *
6 Slot: Side: Packlet: Status: Port0 Port1 Link0: Link1: TOD0 TOD1
7 RTS_ 4 Rear . . . S . .
8 15 Rear
9
10
11
12 Uneq_
13 Route_
14 Alarm_
15
16 Trnsl_
17 Indicat_
18 Query_

XMAP0
Time 14:12 >
```
7 Access the IO MAP level. Type

>IO

and press the Enter key.

8 Manually busy the OOS HCMIC circuit pack. Type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r

Example of system response:

BSY 4 rear complete

Note: If needed, use the Force option to place the circuit pack in a ManB state. refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the MAP indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a single link is OOS SysB and the status of the HCMIC circuit pack is IsTb</td>
<td>step 7</td>
</tr>
<tr>
<td>a single link is OOS CBsy and the status of the HCMIC circuit pack is InSv</td>
<td>step 14</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 43</td>
</tr>
<tr>
<td>no alarm and all links, CPs, and packlets are in service</td>
<td>step 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 9</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 44</td>
</tr>
</tbody>
</table>
9 Perform an OOS test on the HCMIC circuit pack. Type
   \texttt{>TST <nn> <s>}
   and press the Enter key
where
\(<\text{nn}>\) is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
\(<\text{s}>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:
   \texttt{>TST 4 r}
Record the result of the OOS test.
10 Access the XA-Core CMIC MAP level. Type
   \texttt{>MAPCI;MTC;CMIC}
   and press the Enter key.
11 Examine the CMIC MAP level. Record the status of the links.
12 Select the next step as follows, based on the result of the OOS test performed in step 9, the status of the OC-3 links as observed in step 11, and the status of the HCMIC CP::

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the OOS test passed and all the</td>
<td>step 13</td>
</tr>
<tr>
<td>OC-3 links are InSv</td>
<td></td>
</tr>
<tr>
<td>there is a link failure and the status</td>
<td>step 23</td>
</tr>
<tr>
<td>of the HCMIC is IsTb</td>
<td></td>
</tr>
<tr>
<td>OOS test did not pass</td>
<td>step 23</td>
</tr>
</tbody>
</table>
13 Return the HCMIC circuit pack to service. Type
   \texttt{RTS <nn> <s>}
   and press the Enter key
where
\(<\text{nn}>\) is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
\(<\text{s}>\) is the side parameter value to indicate the circuit pack location in the physical shelf - front (f) or rear (r)
Example of command use:
   \texttt{>RTS 4 r}
Example of system response:

RTS 4 rear passed

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 23</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 42</td>
</tr>
</tbody>
</table>

At the MS MAP

14 Access the MS MAP level. Type
   >MS
   and press the Enter key.

15 Access the MS Shelf MAP level. The Shelf MAP level displays the status of all CPs in the shelf. At the MS MAP level, type
   >SHELF
   and press the Enter key.

16 Access the MS Card MAP level for the OC-3 two port interface paddleboards. The card MAP level displays the status of the OC-3 two port interface paddleboards. At the MS MAP level, type
   >CARD <nn>
   and press the Enter key
   where
   <nn> is the slot number parameter value to indicate the number of the MS physical shelf slot - 1 to 26
   Example of command:
   >CARD 24

17 Record the status of all the OC-3 two port interface paddleboards as shown on the MAP screen.
The following is a sample MAP display.

### MS Card MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Message Switch**

<table>
<thead>
<tr>
<th>Shelf 0</th>
<th>Inter-MS Link 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Clock**

<table>
<thead>
<tr>
<th>Shelf 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6</td>
</tr>
</tbody>
</table>

**Chain**

<table>
<thead>
<tr>
<th>Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0</td>
</tr>
<tr>
<td>MS 1</td>
</tr>
</tbody>
</table>

**Card 24 CMIC Interface Card**

<table>
<thead>
<tr>
<th>Port: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0</td>
</tr>
<tr>
<td>MS 1</td>
</tr>
</tbody>
</table>

**MS 0**

- **M Free**
- **Slave**

**MS 1**

- **22**
- **22**

**XMAP0**

Time 14:12 >

18 Examine the MS Card MAP level.

<table>
<thead>
<tr>
<th>If the MS MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an OC-3 two port interface paddleboard is OOS (ManB)</td>
<td>step 19</td>
</tr>
<tr>
<td>an OC-3 two port interface paddleboard is OOS (SysB)</td>
<td>step 20</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 43</td>
</tr>
<tr>
<td>all OC-3 two-port interface paddleboard ports are InSv</td>
<td>step 45</td>
</tr>
</tbody>
</table>

19 Determine the reason why the OC-3 two port interface paddleboard is in a ManB state. If there are no maintenance activities in progress, return the OC-3 two port interface paddleboard port to service. Type

RTS <ms_.#>

and press the Enter key

where

<ms_.#> is the number of the message switch
Example of command:

>`RTS 0`

<table>
<thead>
<tr>
<th>If the MS MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the OC-3 two port interface paddleboard is InSv and a port is SysB</td>
<td>step 20</td>
</tr>
<tr>
<td>the OC-3 two port interface paddleboard is not InSv</td>
<td>step 24</td>
</tr>
</tbody>
</table>

20 Test the suspect message switch port. At the MS Card MAP level, type

>`TST <ms_#> <port_#>`

and press the Enter key

where

<ms_#> is the number of the message switch

<port_#> is the number of the message switch port

Example of command use:

>`TST 1 0`

<table>
<thead>
<tr>
<th>If the MS port test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>fails and the link is OOS</td>
<td>step 21</td>
</tr>
<tr>
<td>passes and all links are InSv</td>
<td>step 42</td>
</tr>
</tbody>
</table>

At the MS shelf

21 Replace the fiber optic cable with one that matches the OOS link. Disconnect the fiber optic cable from the OC-3 two port interface packet, and disconnect it from the OC-3 two port interface paddleboard. Wait until call processing volume is low.

a Carefully pull the fiber optic connector away from the port receptacles. Hold the connector by the body only.

b Cover the ends of the fiber optic cable with dust caps.

c Place the fiber optic cable in a safe location away from the physical shelf.
Disconnect the fiber optic cables from the OC-3 ports on the HCMIC circuit pack.
Disconnect the OC-3 fiber optic cables from the ports on the OC-3 two port interface paddleboard.

22 Connect the replacement fiber optic cable to the correct port. (See the link configuration diagrams in this step.)
   a Hold the fiber optic cable connector by the body only.
   b Remove the dust caps from the ends of the fiber optic cable.
   c Clean the tips of the fiber optic cables. Use the correct fiber optic cleaning procedure.
   d Carefully insert the connectors into the correct receptacles.
Connect the fiber optic cables to the OC-3 ports on the HCMIC circuit pack
Connect the fiber optic cables to the ports on the OC-3 two port interface paddleboard

**XA-Core and MS fiber optic cable connections (SuperNode)**

**XA-Core OC-3 interface 1**

Slot 4 rear (HCMIC circuit pack or CMIC packlet)

- Port 1
- Port 0

MS 1, slot 25

**XA-Core OC-3 interface 2**

Slot 15 rear (HCMIC circuit pack or CMIC packlet)

- Port 1
- Port 0

MS 0, slot 25

**Legend:**

- Receive terminal
- Transmit terminal
XA-Core and MS fiber optic cable connections (SuperNode SE)

**Legend:** □ Receive terminal □ Transmit terminal

If the MS Card MAP level shows that the link is

- InSv: step 42
- not InSv: step 24

**At the XA-Core and MS shelves**

**23** Perform the replacement procedure for the HCMIC circuit pack. Wait until call processing volume is low. Refer to the replacement procedure in this NTP. Return to this point when complete.

If the replacement is

- successful: step 42
- not successful: step 44
XAC MScomm minor (continued)

24 Perform the replacement procedure for the OC-3 two port interface paddleboard. Wait until call processing volume is low. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the replacement is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 42</td>
</tr>
<tr>
<td>not successful</td>
<td>step 44</td>
</tr>
</tbody>
</table>

At the XA-Core MAP

25 Collect information from XA-Core the log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type

>`LOGUTIL
and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type

>`OPEN XAC
and press the Enter key.

c Examine and record the appropriate log reports.

d Return to the CI MAP prompt. At the logutil prompt type

>`QUIT
and press the Enter key.

<table>
<thead>
<tr>
<th>If the logs indicate an alarm condition</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>XA-Core MScomm minor condition</td>
<td>step 26</td>
</tr>
<tr>
<td>MS or different alarm condition</td>
<td>step 43</td>
</tr>
<tr>
<td>MScomm minor condition is clear</td>
<td>step 45</td>
</tr>
</tbody>
</table>

26 Access the XA-Core CMIC MAP level. At the CI prompt, type

>`MAPCI;MTC;CMIC
and press the Enter key.

27 Examine the CMIC MAP level. Record the location and status of the OC-3 two port interface packet.

Note: The CMIC MAP level can display alarms and status as follows:

- an alarm under the XAC header in the alarm banner
- an equipment alarm under the PKLT header of the subsystem status summary field (SSSF), indicating an OC-3 two port interface packet
- a status code under the Status, Link, Port, or TOD header in the command interpreter output area
The following is a sample MAP display.

If the MAP indicates

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>A single link is OOS SysB and the status of the OC-3 two port interface packlet is IsTb</td>
</tr>
<tr>
<td>31</td>
<td>A single link is OOS CBsy and the status of the OC-3 two port interface packlet is InSv</td>
</tr>
<tr>
<td>43</td>
<td>A different alarm condition</td>
</tr>
<tr>
<td>45</td>
<td>No alarm and all links, CPs, and packlets are in service</td>
</tr>
</tbody>
</table>

Manually busy the OOS OC-3 two port interface packlet. Type

```
>BSY <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
XAC MScomm
minor (continued)

<s> is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>BSY 4 r l

Example of system response:

BSY 4 rear lower complete

Note: If needed, use the Force option to place the circuit pack in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the OC-3 two port interface packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 29</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 44</td>
</tr>
</tbody>
</table>

Perform an OOS test on the OC-3 two port interface packlet. Type

>TST <nn> <s> <p>

and press the Enter key

<nn> is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18
<s> is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>TST 4 r l

<table>
<thead>
<tr>
<th>If the CMIC MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the OOS test passed and all the links are InSv</td>
<td>step 30</td>
</tr>
<tr>
<td>a link failure and the OC-3 status is IsTb</td>
<td>step 40</td>
</tr>
<tr>
<td>the OOS test did not pass and the OC-3 status is OOS</td>
<td>step 40</td>
</tr>
</tbody>
</table>
Return the OC-3 two port interface packlet to service. Type

\texttt{RTS <nn> <s> <p>}

and press the Enter key

where

\(<\text{nn}>\) is the slot number parameter value to indicate the number of the slot in the physical shelf - 1 to 18

\(<\text{s}>\) is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)

\(<\text{p}>\) is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\texttt{>RTS 4 r l}

\textit{Example of system response:}

\texttt{RTS 4 rear lower passed}

\begin{tabular}{|l|l|}
\hline
\textbf{If the OC-3 two port interface} & \textbf{Do} \\
\textbf{packlet is} & \\
\hline
not in an InSv state & step 40 \\
in an InSv state & step 42 \\
\hline
\end{tabular}

\textbf{At the MS MAP}

Access the MS MAP level. Type

\texttt{>MS}

and press the Enter key.

Access the MS Shelf MAP level. The Shelf MAP level displays the status of all CPs in the shelf. At the MS MAP level, type

\texttt{>SHELF}

and press the Enter key.

Access the MS Card MAP level for the OC-3 two port interface paddleboards. The card MAP level displays the status of the OC-3 two port interface paddleboards. At the MS MAP level, type

\texttt{>CARD <nn>}

and press the Enter key

where

\(<\text{nn}>\) is the slot number parameter value to indicate the number of the MS physical shelf slot - 1 to 26

Example of command:

\texttt{>CARD 24}
Record the status of all the OC-3 two port interface paddleboards as shown on the MAP screen.

The following is a sample MAP display.

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MS Card MAP level

Examine the MS Card MAP level.

If the MS MAP level indicates

<table>
<thead>
<tr>
<th></th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an OC-3 two port interface paddleboard is OOS (ManB)</td>
<td>step 36</td>
</tr>
<tr>
<td>an OC-3 two port interface paddleboard is OOS (SysB)</td>
<td>step 37</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 43</td>
</tr>
<tr>
<td>all OC-3 two-port interface paddleboard ports are InSv</td>
<td>step 45</td>
</tr>
</tbody>
</table>

Determine the reason why the OC-3 two port interface paddleboard is in a ManB state. If there are no maintenance activities in progress, return the OC-3 two port interface paddleboard port to service. Type

RTS <ms_#>

and press the Enter key

where

<ms_#> is the number of the message switch
Example of command:

`>RTS 0`

<table>
<thead>
<tr>
<th>If the MS MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the OC-3 two port interface</td>
<td>step 37</td>
</tr>
<tr>
<td>paddleboard is InSv and a port</td>
<td></td>
</tr>
<tr>
<td>SysB</td>
<td></td>
</tr>
<tr>
<td>the OC-3 two port interface</td>
<td>step 41</td>
</tr>
<tr>
<td>paddleboard is not InSv</td>
<td></td>
</tr>
</tbody>
</table>

37. Test the suspect message switch port. At the MS Card MAP level, type `>TST <ms_#> <port_#>` and press the Enter key where

- `<ms_#>` is the number of the message switch
- `<port_#>` is the number of the message switch port

Example of command use:

`>TST 1 0`

<table>
<thead>
<tr>
<th>If the MS port test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>fails and the link is OOS</td>
<td>step 38</td>
</tr>
<tr>
<td>passes and all links are InSv</td>
<td>step 42</td>
</tr>
</tbody>
</table>

At the XA-Core shelf

38. Replace the fiber optic cable with one that matches the OOS link. Disconnect the fiber optic cable from the OC-3 two port interface packet, and disconnect it from the OC-3 two port interface paddleboard. Wait until call processing volume is low.

   a. Carefully pull the fiber optic connector away from the port receptacles. Hold the connector by the body only.

   b. Cover the ends of the fiber optic cable with dust caps.

   c. Place the fiber optic cable in a safe location away from the physical shelf.
Disconnect the fiber optic cables from the OC-3 two port interface packlet ports

Disconnect the OC-3 fiber optic cables from the OC-3 two port interface paddleboard ports

39 Connect the replacement fiber optic cable to the correct port. (See the link configuration diagrams in this step.)
   a Hold the fiber optic cable connector by the body only.
b  Remove the dust caps from the ends of the fiber optic cable.

c  Clean the tips of the fiber optic cables. Use the correct fiber optic cleaning procedure.

d  Carefully insert the connectors into the correct receptacles.

Connect the fiber optic cables to the OC-3 two port interface packlet ports

Connect the fiber optic cables to the OC-3 two port interface paddleboard ports
XAC MScomm
minor (continued)

XA-Core and MS fiber optic cable connections (SuperNode)

Legend:  
- Receive terminal  
- Transmit terminal

XA-Core and MS fiber optic cable connections (SuperNode SE)

Legend:  
- Receive terminal  
- Transmit terminal
### If the MS Card MAP level shows that the link is

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv</td>
<td>step 42</td>
</tr>
<tr>
<td>not InSv</td>
<td>step 41</td>
</tr>
</tbody>
</table>

### At the XA-Core and MS shelves

40  Perform the replacement procedure for the OC-3 two port interface packlet. Wait until call processing volume is low. Refer to the replacement procedure in this NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the replacement is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 42</td>
</tr>
<tr>
<td>not successful</td>
<td>step 44</td>
</tr>
</tbody>
</table>

41  Perform the replacement procedure for the OC-3 two port interface paddleboard. Wait until call processing volume is low. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the replacement is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 42</td>
</tr>
<tr>
<td>not successful</td>
<td>step 44</td>
</tr>
</tbody>
</table>
At the XA-Core MAP

42 Confirm that the alarm is clear. Examine the alarm banner on the CMIC MAP level.

<table>
<thead>
<tr>
<th>If the CMIC MAP indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a different alarm</td>
<td>step 43</td>
</tr>
<tr>
<td>the alarm is not clear</td>
<td>step 44</td>
</tr>
<tr>
<td>the alarm is clear</td>
<td>step 45</td>
</tr>
</tbody>
</table>

43 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 44</td>
</tr>
<tr>
<td>clear</td>
<td>step 45</td>
</tr>
</tbody>
</table>

44 Call the next level of support.

45 You have completed this procedure.
**Alarm display**

A PEtrbl minor alarm code appears under the XAC header of the alarm banner. The alarm code indicates a processor element (PE) trouble minor alarm.

An “I” (in-service trouble indicator) appears in the state field in the shelf layout area. The indicator appears directly below the number that matches the circuit pack (CP) location in the physical shelf slot.

**Meaning**

The state of the PE CP has changed from in-service (InSv) to in-service trouble (IsTb). The state change indicates a non-critical fault on a PE CP.

**Impact**

There is no change in subscriber service. To minimize service degradation, test or replace the PE CP when call traffic is low.

**Common procedures**

There are no common procedures.

**Action**

Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a PEtrbl minor alarm

- Obtain latest log report
- Determine the location of the IsTb PE CP
- Call traffic volume on switch is high? (Y/N)
  - Y: Wait until call. traffic volume is low.
  - N: Perform InSv test on IsTb PE CP
- Critical errors? (Y/N)
  - Y: Replace PE CP. Refer to the correct NTP.
  - N: Call traffic volume on switch is high? (Y/N)
    - Y: Wait until call. traffic volume is low.
    - N: Replace PE CP. Refer to the correct NTP.
- Alarm clear? (Y/N)
  - Y: End
  - N: Call the next level of support

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear a PEtrbl minor alarm

**WARNING**

*Risk of static electricity damage*
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**

*Loss of service*
Do not repeat steps.

**CAUTION**

*Loss of service*
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
XAC PEtrbl
minor (continued)

At your current location

1 Collect information from the XA-Core log report system. The log messages provide information about the source of the PEtrbl alarm.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a PEtrbl minor condition</td>
<td>step 4</td>
</tr>
<tr>
<td>another alarm condition</td>
<td>step 12</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 14</td>
</tr>
</tbody>
</table>

2 Examine the shelf interface modules (SIMs). Make sure that all circuit breakers are in the ON position. Make sure that the green LEDs are lit.

<table>
<thead>
<tr>
<th>If SIM circuit breakers are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in the OFF position and a red led is lit</td>
<td>step 3</td>
</tr>
<tr>
<td>in the ON position and green leds are lit</td>
<td>step 4</td>
</tr>
</tbody>
</table>

3 Set the shelf interface module (SIM) circuit breaker to the ON position (see the diagram in this step). Wait 30 sec.
Set circuit breaker on the SIM to the ON (1) position

<table>
<thead>
<tr>
<th>If SIM circuit breaker</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>resets to the ON position</td>
<td>step 4</td>
</tr>
<tr>
<td>does not reset to the ON position</td>
<td>step 13</td>
</tr>
</tbody>
</table>

4 Access the PE MAP level. At the CI MAP level, type

>MAPCl;MTC;XAC;PE

and press the Enter key.

5 Examine the PE MAP level. Record the location of the IsTb PE CP.

**Note:** The PE MAP level displays alarms and PE working states as follows:

- a system alarm code appears under the XAC header in the alarm banner
- an equipment alarm codes appears under the PE header in the subsystem status summary field (SSSF)
- an “I” (in-service trouble indicator) appears in the state field in the shelf layout area.
When traffic call volume is low, perform an in-service test on the IsTb PE CP. At the PE MAP level type

```
> TST <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

```
> TST 4 f
```
Example of system response:

Tst 4 front failed.

<table>
<thead>
<tr>
<th>If the InSv test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 7</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 10</td>
</tr>
</tbody>
</table>

7 Manually busy the PE CP. At the PE MAP level type

>`BSY <nn> <s>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>`BSY 4 f`

Example of system response:

BSY 4 front complete

**Note:** If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the PE CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 13</td>
</tr>
</tbody>
</table>

8 Return the PE CP to service. At the PE MAP level type

>`RTS <nn> <s>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command:

>`RTS 4 f`
Example of system response:
RTS 4 front passed

<table>
<thead>
<tr>
<th>If the PE CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 9</td>
</tr>
<tr>
<td>in an InSv state and the IsTb alarm is active</td>
<td>step 10</td>
</tr>
<tr>
<td>in an InSv state and the IsTb alarm is clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

At the XA-Core physical shelf

9 Perform the PE CP replacement procedure immediately. Refer to the correct replacement procedure located in this document. Continue to step 11 when complete.

10 Wait until call traffic volume is low. Perform the PE CP replacement procedure. Refer to the correct replacement procedure located in this document. Return to this point when complete.

11 Confirm that the alarm is clear. Examine the PE MAP screen.

<table>
<thead>
<tr>
<th>If the PEtrbl minor alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to different alarm</td>
<td>step 12</td>
</tr>
<tr>
<td>not clear</td>
<td>step 13</td>
</tr>
<tr>
<td>clear</td>
<td>step 14</td>
</tr>
</tbody>
</table>

12 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 13</td>
</tr>
<tr>
<td>clear</td>
<td>step 14</td>
</tr>
</tbody>
</table>

13 Call the next level of support.

14 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
Alarm display

A RExFlt minor alarm code appears under the XAC header of the alarm banner. The alarm code indicates that during routine exercise tests, the tests run on one or more devices failed. This alarm displays until all the devices that failed are retested and pass.

Meaning

The RExFlt minor alarm indicates that during routine exercise tests (RExTst), one or more of the devices failed. The device alarms clear after the devices come back into service. The RExFlt alarm ensures that the test failures will be noticed.

The RExFlt minor alarm is displayed until all devices that failed exerciser tests are retested in a subsequent REx test and pass.

Impact

There is no change in subscriber service.

Common procedures

There are no common procedures.

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a RExFlt minor alarm

1. Start

2. Run RExTst again

3. RExFlt alarm cleared?
   - Y: End
   - N: Obtain the log reports

4. Troubleshoot the devices that failed

5. Run RExTst again

6. RExFlt alarm cleared?
   - Y: End
   - N: Call next level of support
How to clear a RExFlt minor alarm

**At the XA-Core MAP terminal**

1. Run the RExTst again. At the CI MAP level, type
   ```bash
 >MAPCI;MTC;XAC;XACMTC;REXTST RUN ALL
   ```
   and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the RExFlt minor alarm is still</td>
<td>step 2</td>
</tr>
<tr>
<td>displayed after the RExTst has completed</td>
<td></td>
</tr>
<tr>
<td>the RExFlt minor alarm disappears</td>
<td>step 6</td>
</tr>
</tbody>
</table>

2. Collect information from the XA-Core log report system. Log XAC415 is the routine exercise report. It indicates which devices passed the exerciser tests, and which ones failed.

3. Troubleshoot each device that failed an exerciser test. Return to this point when complete.

4. Run the RExTst again. At the CI MAP level, type
   ```bash
 >MAPCI;MTC;XAC;XACMTC;REXTST RUN ALL
   ```
   and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the RExFlt minor alarm is still</td>
<td>step 5</td>
</tr>
<tr>
<td>displayed after the RExTst has completed</td>
<td></td>
</tr>
<tr>
<td>the RExFlt minor alarm disappears</td>
<td>step 6</td>
</tr>
</tbody>
</table>

5. Call the next level of support.

6. You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
This page is left blank intentionally.
Understanding the alarm system

**XAC RExSch minor**

**Alarm display**

<table>
<thead>
<tr>
<th>XAC RExSch</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

**Indication**

A RExSch minor alarm code appears under the XAC header of the alarm banner. The alarm code indicates a routine exercise (REx) schedule minor alarm.

**Meaning**

The RExSch minor alarm indicates that the system is not performing daily system REx (SREx) tests.

Each day, maintenance system software starts the REx test at the start time specified in the NODEREXCONTROL office parameter. The default start time is 1:30 AM (system time), but you can update NODEREXCONTROL to specify a start time of your choosing. If call volume or call-processing capacity utilization is high at the start time of the system REx test, the system places critical REx test requests in a queue. The maintenance software continues to perform REx tests on non-critical subsystems. When the tests on non-critical components are complete, the maintenance software again tries to perform the critical tests. If call volume or call-processing capacity utilization is low, the system can complete the critical REx tests.

The system maintains two counters that can trigger the raising of the RExSch minor alarm.

- One counter counts consecutive days during which conditions prevent the system from trying to run the daily system REx (SREx) test. When this counter reaches seven, it triggers the RExSch minor alarm.

- Another counter counts consecutive days during which the system cancels the daily system REx (SREx) test for a specified reason. When this counter reaches two, it triggers the RExSch minor alarm.

The RExSch alarm notifies operating company personnel that the system is not performing the REx test maintenance function.
The system must perform a system REx test to clear the RExSch minor alarm. On such an occasion it resets the counters to zero. Note that a manual REx test will not clear the RExSch minor alarm, and will not reset the counters.

Any one of the following conditions will prevent the system from trying to run the daily system REx test. On each such occasion the system increments the counter that triggers the alarm when it reaches seven.

- Field ENABLED in the XACORE_REX_TEST tuple in table REXSCHED has been set to N.
- Field REXON in tuple NODEREXCONTROL in table OFCVAR is set to N.
- Call-processing capacity utilization is equal to or greater than 40%.

Any one of the following reasons will cause the system to cancel the daily system REx test. On each such occasion the system increments the counter that triggers the alarm when it reaches two.

- XACORE_REX_TEST tuple values are not correct (in table RExSched).
- The system fails the REx pre-test check.
- Insufficient time has elapsed between the last restart and the system REx test.
- A circuit pack (CP) is out of service (OOS).
- A memory-mismatch condition or a processor-trap condition exists.
- Inability to contact system software.
- The object ID used to trigger the system REx test is wrong.
- A dump is in progress.
- An error counter has exceeded its threshold.
- A SysBTh alarm is raised, due to the PE group of the SM group.
- A system REx test that is in progress is aborted. (Examples of events that can abort the test are: you enter the REXTST TERMINATE command; a circuit pack goes out of service during the test.)
- The System REx test takes longer to run than the time allotted for it.

**Impact**

There is no change in subscriber service.
Common procedures

There are no common procedures.

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing a RExSch minor alarm

```
<table>
<thead>
<tr>
<th>Obtain latest log report</th>
</tr>
</thead>
<tbody>
<tr>
<td>REx test enabled?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>REx aborted?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Call the next level of support</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Time from last restart & REx is insufficient?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Wait until next REx test period</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>OOS CP?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Replace or return CP to service</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Can't contact system software</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Call the next level of support</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Other alarm?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Perform correct alarm clearing procedure</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Alarm clear?</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>End</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Call the next level of support</td>
</tr>
<tr>
<td>This flowchart summarizes the procedure.</td>
</tr>
<tr>
<td>Use the instructions in the steps that follow this flowchart to clear the alarm.</td>
</tr>
</tbody>
</table>
```
XAC RExSch
minor (continued)

How to clear a RExSch minor alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

At your current location
1 Collect information from the XA-Core log report system. The log messages provide information about the source of the RExSch alarm.
   a Access the log utility feature. At the CI MAP level, type >LOGUTIL and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type >OPEN XAC and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type >QUIT and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a RExSch minor alarm condition because the REx test is not enabled</td>
<td>step 2</td>
</tr>
<tr>
<td>a RExSch minor alarm condition because the REx pre-check failed</td>
<td>step 7</td>
</tr>
<tr>
<td>a RExSch minor alarm condition because a CP or packet is OOS</td>
<td>step 8</td>
</tr>
<tr>
<td>a RExSch minor alarm condition because the time between the last restart and REx is insufficient (less than 1 day)</td>
<td>step 11</td>
</tr>
<tr>
<td>another alarm condition</td>
<td>step 13</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 15</td>
</tr>
</tbody>
</table>

2 Access the XACMtc MAP level. At the CI MAP level, type >MAPCI;MTC;XAC;XACMTC and press the Enter key.
3 Examine the XACMtc MAP level. Record the results and date of the last run REx test. Record the location of any OOS CPs or packlets.

**Note:** The XACMtc MAP level displays the RExSch alarm code under the XAC header in the alarm banner.

The following is a sample MAP display.

**XACMtc MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RExSch</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

| XACMtc | | | | | | | | | |
| 0 Quit | | | | | | | | | |
| 3 | | | | | | | | | |
| 2 | | | | | | | | | |
| 1 | | | | | | | | | |
| 0 | | | | | | | | | |
| 3 | | | | | | | | | |
| 2 | | | | | | | | | |
| 1 | | | | | | | | | |
| 0 | | | | | | | | | |
| 2 | | | | | | | | | |
| 1 | | | | | | | | | |
| 0 | | | | | | | | | |
| 4 | | | | | | | | | |
| 5 | | | | | | | | | |
| 6 | | | | | | | | | |
| 7 | | | | | | | | | |
| 8 | | | | | | | | | |
| 9 | | | | | | | | | |
| 10 | | | | | | | | | |
| 11 Image | | | | | | | | | |
| 12 RExTst_ | | | | | | | | | |
| 13 RExInt_ | | | | | | | | | |
| 14 Alarm_ | | | | | | | | | |
| 15 | | | | | | | | | |
| 16 | | | | | | | | | |
| 17 Indicat_ | | | | | | | | | |
| 18 Query_ | | | | | | | | | |

XMAP0

Time 14:12

If the MAP indicates

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a RExSch minor alarm and all CPs and packetets are InSv</td>
</tr>
<tr>
<td>a RExSch minor alarm and a CP or packet is OOS</td>
</tr>
<tr>
<td>a different alarm</td>
</tr>
<tr>
<td>no alarm</td>
</tr>
</tbody>
</table>

4 Access and examine the REXSCHED table.

**a** Display the CI MAP level prompt. At the XACMtc MAP level, type

>QUIT ALL

and press the Enter key.

**b** Access the REXSCHED table. At the CI MAP level prompt type
XAC RExSch

minor (continued)

>TABLE REXSCHED
and press the Enter key.

c List all of the system REx test schedule tuples. At the CI MAP prompt type

>LIST ALL
and press the Enter key.

The CI MAP level displays the system REx schedule tuples for the message switch (MS) and the XA-Core. Examine the field values in the XACORE_REX_TEST tuple (see the example system response in this step)

Example of system response:

```
TOP
REXTSTIDENABLEPERIODPARALLELDAYSDSBL
--

MS_REX_TESTY11NONE
XACORE_REX_TESTY11NONE
BOTTOM
```

Note 1: The Enable field enables or disables the ability of the REx controller to run system REx tests. The Enable field can have a value of Y (Yes) or N (No).

Note 2: The Period field controls the daily interval between system REx tests. The Period field can have a value of 1 - 7. A Period field value of 1 tells the REx controller to run the REx test one time each day. A Period field value of 2 tells the REx controller to run the system REx test one time every second day. A Period field value of 3 tells the REx controller to run the system REx test one time every third day.

Note 3: The Parallel field value controls the number of parallel REx tests to run. A Parallel field value of 1 tells the REx controller to run serial system REx tests. A Parallel field value of 2 tells the REx controller to run parallel system REx tests.

Note 4: The DAYSDSBL field value controls the day to disable a regular, system REx test. The DAYSDSBL field values are MON, TUE, WED, THU, FRI, SAT, SUN, ALL, NONE.

5 Make sure that all XACORE_REX_TEST field values match those in the REXSCHED table example in 4.

<table>
<thead>
<tr>
<th>If the tuple field values are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not the same</td>
<td>step 6</td>
</tr>
<tr>
<td>the same</td>
<td>step 7</td>
</tr>
</tbody>
</table>

6 Change the XACORE_REX_TEST field values to match those in the example in c.

a Edit the XACORE_REX_TEST table. At the CI MAP prompt type
Understanding the alarm system

XAC RExSch

XACORE_REX_TEST

and press the Enter key.

Example of system response:

XACORE_REX_TESTY11NONE

b At the CI MAP prompt type

>CHA

and press the Enter key.

Example of system response:

ENTER Y TO CONTINUE PROCESSING OR N TO QUIT

c At the CI MAP prompt type

>Y (to continue with the edit process)

and press the Enter key. The MAP displays the current Enable field value.

Example of system response:

ENABLE: Y/N

d Make sure the Enable field value is correct. If the Enable field has a
current value of Y (Yes), press the Enter key to accept.
If the Enable field has a current value of N (No), type

>Y

and press the Enter key. The MAP displays the current Period field value.

Example of system response:

PERIOD: 1

e Make sure the Period field value is correct. If the Period field has a current
value of 1, press the Enter key to accept.
If the Period field has a current value of 2, type

>1

and press the Enter key. The MAP displays the current Parallel field
value.

Example of system response:

PARALLEL: 1

f Make sure the Parallel field value is correct. If the Parallel field has a
current value of 1, press the Enter key to accept.
If the current Parallel field value is set to 2, type

>1
and press the Enter key. The MAP displays the edit changes and a prompt to confirm, reject or edit the changes.

Example of system response:
TUPLE TO BE CHANGED:
MS_REX_TESTY11NONE
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

If the changes to the MS_REX_TEST tuple match the values shown in this step, type

>Y

and press the Enter key.

Go to the CAPACITY MAP level and check on the call-processing capacity-utilization value. At the CI MAP prompt, type

>MAPCI;MTC;CAPACITY

and press the Enter key.

The following is a sample MAP display.

Capacity MAP level

<table>
<thead>
<tr>
<th>XACM</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

CATMP/HR UTIL ENGCATMP MAXCATMP ENGLEVEL COVRLD

120000  75  160000  200000  BELOW  OFF

CMICOVRLD PESC
OFF  NO

Observe the value of the call-processing capacity--utilization, whose heading is UTIL. In the sample, the value is 75, indicating 75%.
If the MAP indicates  
the call-processing capacity-utilization value is less than 50%  
the call-processing capacity-utilization value is greater than or equal to 50%  
no alarm  

<table>
<thead>
<tr>
<th>If CPs and packlets are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 9</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 10</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 11</td>
</tr>
</tbody>
</table>

8 Make sure that all CPs and packlets are in an InSv state.

9 Return ManB CPs or packlets to service.

a Display the MAP level appropriate to the ManB CP or packet type
b Return the ManB CP or packet to service. At the correct MAP level type

>`RTS <nn> <s>` (if a CP is ManB)
or
>`RTS <nn> <s> <p>` (if a packet is ManB)

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:
>`RTS 2 f` (for a CP)
or
>`RTS 2 f l` (for a packet)
Example of system response:
RTS 2 front lower passed

<table>
<thead>
<tr>
<th>If the CP is or packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 10</td>
</tr>
<tr>
<td>in an IsTb state</td>
<td>step 13</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 12</td>
</tr>
</tbody>
</table>

10 Perform the correct CP or packlet replacement procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the CP or packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv</td>
<td>step 11</td>
</tr>
<tr>
<td>not InSv</td>
<td>step 14</td>
</tr>
</tbody>
</table>

11 Wait until the system performs the next scheduled REx test.

<table>
<thead>
<tr>
<th>If the system</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>performs the REx test</td>
<td>step 12</td>
</tr>
<tr>
<td>does not perform the REx test</td>
<td>step 14</td>
</tr>
</tbody>
</table>

12 Confirm that the alarm is clear. Examine the XACMtc MAP level.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to another alarm</td>
<td>step 13</td>
</tr>
<tr>
<td>not clear</td>
<td>step 14</td>
</tr>
<tr>
<td>clear</td>
<td>step 15</td>
</tr>
</tbody>
</table>

13 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>step 11</td>
</tr>
<tr>
<td>not clear</td>
<td>step 14</td>
</tr>
</tbody>
</table>

14 Call the next level of support.

15 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
Alarm display

A RExTst minor alarm code appears under the XAC header of the alarm banner. The alarm code provides notification that the XA-Core software is performing REx tests.

Meaning

The RExTst alarm tells operating company personnel that a REx test is in progress. The purpose of a REx test is to make sure that XA-Core system components are functioning correctly.

By default, the XA-Core system automatically performs a REx test as follows:
- a daily, base, in-service (InSv) tests on all circuit packs in all subsystems
- a full, out-of-service (OOS) test on one circuit pack in each subsystem each week
- an Image test each day

Impact

The REx test performs both InSv and OOS tests on selected circuit packs (CPs). The REx test takes a period of time to complete. There is no immediately change to subscriber service. There can be a reduction in device redundancy during testing.

The RExTst alarm is the highest priority of all XA-Core alarms. The RExTst alarm masks other alarms related to out-of-service (OOS) CP states. If a REx test reduces device redundancy, a major or critical alarm can occur.

A restart can occur if the XA-Core cannot communicate with the following XA-Core equipment:
- single remaining Core-MS Interconnect (CMIC) interface
- single remaining PE
Common procedures

There are no common procedures.

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing a RExTst minor alarm

Determine if REx test passed

REx test passed?

Alarm cleared?

Contact next level of support

End

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear a RExTst minor alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

CAUTION
Loss of service
Do not repeat steps.

At your current location

1. Collect information from the log report system. The log messages provide information about the source of the LowSM alarm.
   a. Access the log utility feature. At the CI MAP level, type >LOGUTIL and press the Enter key.
   b. Access the XA-Core logs. At the Logutil prompt type >OPEN XAC and press the Enter key.
   c. Examine and record the appropriate log reports.
**XAC RExTst**

**minor** (continued)

1. Return to the CI MAP prompt. At the Logutil prompt type
   
   >QUIT
   
   and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>REx started condition</td>
<td>step 2</td>
</tr>
<tr>
<td>another alarm event</td>
<td>step 6</td>
</tr>
<tr>
<td>the RExTst summary report</td>
<td>step 8</td>
</tr>
</tbody>
</table>

2. Access the XA-Core maintenance (XACMtc) MAP level. At the CI MAP level type
   
   MAPCI;MTC;XAC;XACMTC
   
   and press the Enter key.

3. Examine the XACMtc MAP level.

   **Note:** The XACMtc MAP displays a RExTst alarm under the XAC header in the alarm banner

   *The following is a sample MAP display.*

**XACMtc MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RExTst</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>XACMtc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 14:12 &gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If the XA-Core XACMtc MAP indicates

- a RExTst alarm: step 4
- a different alarm: step 6
- not accessible: step 7

4 Examine the MAP command interpreter output area. The MAP output area displays the subsystem now under test. Allow the REx test to complete.

If the MAP indicates

- errors on completion of the REx test or the REx test terminated: step 5
- a different alarm: step 6
- successful completion of the REx test, no alarm and all CPs and packlets are in service: step 8

5 Determine the reason for the REx test interruption or errors.

If the cause for REx test error is

- related to a trap rate threshold, clock, or subsystem equipment fault: step 6
- not indicated: step 7

6 Perform the correct alarm clearing procedure. Refer to the correct alarm clearing NTP. Return to this point when complete.

If the alarm is

- not clear: step 7
- clear: step 8

7 Call the next level of support.

8 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
Understanding the alarm system

**XAC RIBkey major**

### Alarm display

<table>
<thead>
<tr>
<th>XAC</th>
<th>RIBkey M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Indication

A retrofit inactive boot key (RIBkey) major alarm code appears under the XAC header of the alarm banner. The alarm code indicates a RIBkey major alarm.

### Meaning

The RIBkey major alarm indicates that both RTIF local ports have RIBkey devices attached.

A RIBkey is a device that is connected to a local RTIF port on the XA-Core. (The RTIF local port is on an HCMIC circuit pack or on an RTIF packlet.) RIBkeys are installation tools used during an upgrade or cut-over process to an XA-Core system. Installation personnel remove the RIBkeys on completion of switch of activity (SWact) and when the XA-Core is in-service.

### Impact

There is no immediate change in subscriber service. The XA-Core is in service after the switch activity (SWact) process is complete. The MAP displays the RIBkey major alarm. If the RIBkey devices remain installed and if an XA-Core reboot occurs, the system cannot process calls.

### Common procedures

There are no common procedures.

### Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a RIBkey major alarm

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear a RIBkey major alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
*Risk of equipment damage*
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
*Risk of equipment damage - electric static discharge (ESD)*
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**WARNING**
*Terminal cable connector damage*
Exercise care in handling cables. Do not bend the cable pin connectors.

**CAUTION**
*Loss of service*
Do not repeat steps.
At the XA-Core MAP

1 Collect information from the XA-Core log report system. The log messages provide information about the source of the RIBkey alarm.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

2 Determine from office records or from maintenance or installation personnel that the XA-Core installation process is complete.

3 Access the XA-Core RTIF MAP. At the CI MAP level type
   >MAPCI;MTC;XAC;RTIF
   and press the Enter key.
4 Examine the RTIF MAP level. Record the working state of the system. If the RTIF links are supported by RTIF packlets, the “Packlet” fields will contain values, for example, “Upper”. If the RTIF links are supported by the RTIF sections of HOMIC circuit packs, the “Packlet” fields will be blank. Record the displayed information about RTIF ports, and record the slot location of the RTIF hardware, and, if the RTIF hardware is RTIF packlets, record the packlet positions.

Note: The RTIF MAP level can display alarms as follows:

- a RIBkey major alarm under the XAC header in the alarm banner
- an equipment alarm under the PKLT header of the subsystem status summary field (SSSF)
- a RIBkey notification appears under the Local Port header in the command interpreter output area

The following are sample MAP displays.

RTIF MAP level, showing data for RTIF packlets in positions 4 rear, upper, and 15 rear, upper

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIBkey</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**RTIF**

Front: 111111111111 Rear: 111111 SM PE IO PKLT

123456789012345678 456789012345 . . . RIBkey

Sta: -.-.--..-..-.-..- .--.-------. 0 0 0 0

Dep: * *

Typ: * *

Slot: Side: Packlet: Status Port0: Port1 Link0 Link1:

4 Rear Upper . RIBkey .

15 Rear Upper . RIBkey .

XMAP0

Time 14:12 >
XAC RIBkey
major (continued)

RTIF MAP level, showing data for the RTIF sections of HCMIC CPs in slots 4 rear and 15 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IGD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>RIBkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTIF</td>
<td>Front: 111111111</td>
<td>Rear: 1111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tst_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bsy_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Uneq_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Indicat_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Query_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 14:12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the MAP indicates Do

- a RIBkey major alarm step 5
- a different alarm step 9
- no alarm and all CPs are in service step 11

At the XA-Core physical shelf

5 Disconnect the terminal cable from the RIBkey device. Perform this step for all items of RTIF hardware (HCMIC circuit packs or RTIF packlets).
   a Unscrew the cable connector from the RIBkey receptacle
   b Hold the cable connector by the body only
   c Carefully pull the cable connector away from the RIBkey device
   d Place the remote terminal cable in a safe location away from the physical shelf

6 Disconnect the RIBkey device from the RTIF ports (see the diagrams in this step). Perform this step for all items of RTIF hardware (HCMIC circuit packs or RTIF packlets).
   a Unscrew the RIBkey from the RTIF port receptacle
   b Hold the RIBkey device by the body only
   c Carefully pull the RIBkey device away from the RTIF port receptacle
Unscrew the RIBkey connector

Remove the RIBkey device from the RTIF port receptacle
XAC RIBkey
major (continued)

7  Connect the terminal cables to the RTIF port receptacles. Perform this step for all items of RTIF hardware (HCMIC circuit packs or RTIF packetets).
   a  Hold the terminal connector by the body only.
   b  Carefully push the connector into the RTIF port receptacle.
   c  Screw the terminal connector into the RTIF port connector.

RTIF port receptacles
Connect the terminal cable to the RTIF port receptacle

**At the XA-Core MAP**

8  Confirm that the alarm is clear. Examine the alarm banner on the RTIF MAP level.

<table>
<thead>
<tr>
<th>If the RIBkey alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to another alarm</td>
<td>step 9</td>
</tr>
<tr>
<td>not clear</td>
<td>step 10</td>
</tr>
<tr>
<td>clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

9  Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 10</td>
</tr>
<tr>
<td>clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10  Call the next level of support.

11  You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
This page is left blank intentionally.
Alarm display

<table>
<thead>
<tr>
<th>XAC RIBkey</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

**Indication**

A retrofit inactive boot key (RIBkey) minor alarm code appears under the XAC header of the alarm banner. The alarm code indicates a RIBkey minor alarm.

**Meaning**

The RIBkey minor alarm indicates that a single RTIF local port has a RIBkey device attached.

A RIBkey is a device that is connected to a local RTIF port on the XA-Core. (The RTIF local port is on an HCMIC circuit pack or on an RTIF packlet.) RIBkeys are installation tools used during an upgrade or cut-over process to an XA-Core system. Installation personnel remove the RIBkeys on completion of switch of activity (SWact) and when the XA-Core is in-service.

**Impact**

There is no immediate change in subscriber service. The XA-Core is in service after the switch activity (SWact) process is complete. The MAP displays the RIBkey minor alarm. If one RIBkey device remains installed, another RTIF goes SysB and an XA-Core reboot occurs, the system cannot process calls.

**Common procedures**

There are no common procedures.

**Action**

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a RIBkey minor alarm

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear a RIBkey minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
Risk of equipment damage - electric static discharge (ESD)
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**WARNING**
Terminal cable connector damage
Exercise care in handling cables. Do not bend the cable pin connectors.

**CAUTION**
Loss of service
Do not repeat steps.
XAC RIBkey
minor (continued)

**At the XA-Core MAP**

1. Collect information from the XA-Core log report system. The log messages provide information about the source of the RIBkey alarm.
   a. Access the log utility feature. At the CI MAP level, type 
   
   >LOGUTIL
   
   and press the Enter key.
   b. Access the XA-Core logs. At the Logutil prompt type
   
   >OPEN XAC
   
   and press the Enter key.
   c. Examine and record the appropriate log reports.
   d. Return to the CI MAP prompt. At the Logutil prompt type
   
   >QUIT
   
   and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a RIBKey minor alarm condition</td>
<td>step 2</td>
</tr>
<tr>
<td>another alarm condition</td>
<td>step 9</td>
</tr>
<tr>
<td>that the RIBkey minor alarm condition is clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

2. Determine from office records or from maintenance or installation personnel that the XA-Core installation process is complete.

<table>
<thead>
<tr>
<th>If the XA-Core installation process is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete</td>
<td>step 3</td>
</tr>
<tr>
<td>incomplete</td>
<td>step 10</td>
</tr>
</tbody>
</table>

3. Access the XA-Core RTIF MAP. At the CI MAP level type

>MAPCI;MTC;XAC;RTIF

and press the Enter key.
4 Examine the RTIF MAP level. Record the working state of the system. If the RTIF links are supported by RTIF packlets, the “Packlet” fields will contain values, for example, “Upper”. If the RTIF links are supported by the RTIF sections of HCMIC circuit packs, the “Packlet” fields will be blank. Record the displayed information about RTIF ports, and record the slot location of the RTIF hardware, and, if the RTIF hardware is RTIF packlets, record the packlet positions.

Note: The RTIF MAP level can display alarms as follows:

- a RIBkey minor alarm under the XAC header in the alarm banner
- an equipment alarm under the PKLT header of the subsystem status summary field (SSSF)
- a RIBkey notification appears under the Local Port header in the command interpreter output area

The following are sample MAP displays.

RTIF MAP level, showing data for RTIF packlets in positions 4 rear, upper, and 15 rear, upper

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIBkey</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTIF</th>
<th>Front: 1111111111</th>
<th>Rear: 1111111</th>
<th>SM</th>
<th>PE</th>
<th>IO</th>
<th>PKLT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>RIBkey</td>
</tr>
</tbody>
</table>

| Sta: | .--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--..
XAC RIBkey minor (continued)

RTIF MAP level, showing data for the RTIF sections of HCMIC CPs in slots 4 rear and 15 rear

If the MAP indicates               Do

a RIBkey minor alarm            step 5
a different alarm              step 9
no alarm and all CPs are in service step 11

At the XA-Core physical shelf

5 Disconnect the terminal cable from the RIBkey device.
   a Unscrew the cable connector from the RIBkey receptacle.
   b Hold the cable connector by the body only.
   c Carefully pull the cable connector away from the RIBkey device.
   d Place the remote terminal cable in a safe location away from the physical shelf.

6 Disconnect the RIBkey device from the RTIF local port (see the diagrams in this step).
   a Unscrew the RIBkey from the RTIF local port receptacle.
   b Hold the RIBkey device by the body only.
   c Carefully pull the RIBkey device away from the RTIF local port receptacle.
Unscrew the RIBkey connector

Remove the RIBkey device from the RTIF port receptacle
XAC RIBkey
minor (continued)

7 Connect the terminal cable to the RTIF local port.
   a Hold the terminal connector by the body only.
   b Carefully push the terminal connector into of the receptacle.
   c Screw the terminal connector into the RTIF port connector.

RTIF port receptacles
Connect the terminal cable to the RTIF port receptacle

At the XA-Core MAP

8 Confirm that the alarm is clear. Examine the alarm banner on the RTIF MAP level.

<table>
<thead>
<tr>
<th>If the RIBkey alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to another alarm</td>
<td>step 9</td>
</tr>
<tr>
<td>not clear</td>
<td>step 10</td>
</tr>
<tr>
<td>clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

9 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 10</td>
</tr>
<tr>
<td>clear</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 Call the next level of support.

11 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
This page is left blank intentionally.
**Alarm display**

An RTIF critical alarm code appears under the XAC header of the alarm banner. The alarm code indicates a reset terminal interface (RTIF) critical alarm.

**Meaning**

All local ports are out-of-service (OOS). The following conditions cause an RTIF critical alarm:

- If the XA-Core is equipped with RTIF packlets, each RTIF packlet is busy. The packlets can be in different busy states. For example, it is possible for one to be ManB and the other to be SysB.
- If the XA-Core is equipped with HCMIC circuit packs, each HCMIC circuit pack is busy. The HCMIC circuit packs can be in different busy states. For example, it is possible for one to be ManB and the other to be SysB.
- Each RTIF local port is busy. The ports can be in different busy states. For example, it is possible for one to be SysB and the other to be CBsy.

**Impact**

There is no change in subscriber service.

**Common procedures**

This procedure refers to the replacement procedure for the HCMIC circuit pack, the replacement procedure for the IOP circuit pack, and the replacement procedure for the RTIF packlet. The procedures are in this document.

**Action**

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an RTIF critical alarm

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.
Summary of clearing an RTIF critical alarm (continued)

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear an RTIF critical alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
Risk of equipment damage - electric static discharge (ESD)
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location
1 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the RTIF hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 3</td>
</tr>
<tr>
<td>RTIF packlets</td>
<td>step 24</td>
</tr>
</tbody>
</table>
2 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an RTIF major alarm condition</td>
<td>step 3</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 42</td>
</tr>
<tr>
<td>that the RTIF major alarm condition is clear</td>
<td>step 44</td>
</tr>
</tbody>
</table>

3 If you are not already at the IO MAP level, access that level. Type
   MAPCI;MTC;XAC;IO
   and press the Enter key.
XAC RTIF

(continued)

4 Examine the IO MAP level. Record the location and status of the HCMIC circuit packs.

*The following is a sample MAP display.*

**IO MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>M</td>
<td>Front: 11111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td>12345678901234567</td>
<td>456789012345</td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>Sta: -I- .-..-..-..-..- M--.-------.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Typ: * * * *</td>
<td>* * * *</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Slot: Side: Status:</td>
<td>Upper:</td>
<td>Middle:</td>
<td>Lower:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Front</td>
<td>Disk</td>
<td>Tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Front</td>
<td>Disk</td>
<td>Tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear</td>
<td>RTIF</td>
<td>ETHR</td>
<td>CMIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Rear</td>
<td>RTIF</td>
<td>ETHR</td>
<td>CMIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAC</td>
<td>XAC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTIF</td>
<td>IO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>14:12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 If you are not already at the RTIF MAP level, access that level. Type

`MAPCI;MTC;XAC;RTIF`

and press the Enter key.

6 Examine the RTIF MAP level. Record the status of the RTIF ports and links.

*Note:* The RTIF MAP level displays working states as follows:

- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.

*The following is a sample MAP display.*
Access the XA-Core IO MAP level. Type

>IO

and press the Enter key.

Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If more than one of the statements listed in the left-hand column is true, choose the first true one that you encounter:

<table>
<thead>
<tr>
<th>If the information from the logs, and from IO and RTIF MAP levels indicate</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIF port is in a ManB state</td>
<td>step 9</td>
</tr>
<tr>
<td>RTIF port is in a SysB state</td>
<td>step 11</td>
</tr>
<tr>
<td>RTIF port is in a CBsy state</td>
<td>step 16</td>
</tr>
<tr>
<td>HCMIC circuit pack is in a ManB state</td>
<td>step 17</td>
</tr>
<tr>
<td>HCMIC circuit pack is in a SysB state</td>
<td>step 19</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 42</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
<td>step 44</td>
</tr>
</tbody>
</table>
**XAC RTIF critical (continued)**

9. If you are not at the RTIF MAP level, access that level. Type
   \textgreater RTIF
   and press the Enter key.

10. Return the RTIF port to service. Type
    \textgreater RTS <nn> <s> <port>
    and press the Enter key.
    where
    \(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
    \(<s>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
    \(<port>\) is port0 or port1
    Example of command use:
    \textgreater RTS 4 r port0
    \textit{Example of system response:}
    RTS 4 rear port0 passed

<table>
<thead>
<tr>
<th>If the RTIF port is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 11</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 3</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 16</td>
</tr>
</tbody>
</table>

11. If you are not at the RTIF MAP level, access that level. Type
   \textgreater RTIF
   and press the Enter key.

12. Manually busy the RTIF port. Type
    \textgreater BSY <nn> <s> <port>
    and press the Enter key.
    where
    \(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
    \(<s>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
    \(<port>\) is port0 or port1
    Example of command use:
    \textgreater BSY 4 r port0
    \textit{Example of system response:}
    BSY 4 rear port0 complete
**Note:** If needed, use the Force option to place the port in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the RTIF port is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 13</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

### 13
Perform an OOS test on the RTIF port. Type

```
>TST <nn> <s> <port>
```

and press the Enter key.

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
- `<port>` is port0 or port1

Example of command use:

```
>TST 4 r port0
```

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 14</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 15</td>
</tr>
</tbody>
</table>

### 14
Return the RTIF port to service. Type

```
>RTS <nn> <s> <port>
```

and press the Enter key.

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
- `<port>` is port0 or port1

Example of command use:

```
>RTS 4 r port0
```
**Example of system response:**

RTS 4 rear port0 passed

---

**If the RTIF port is** | **Do**
---|---
in an InSv state | step 3
not in an InSv state | step 15

**Perform the procedure for replacing the HCMIC circuit pack. The procedure is found in this document. Return to this point when complete.**

**If the HCMIC circuit pack is** | **Do**
in an InSv state | step 3
not in an InSv state | step 43

**You were directed to this step because you found that an RTIF port was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an HCMIC circuit pack. Proceed as follows**

- **a** If you are not at the IO MAP level, go to that level. Type
  >IO
  and press the Enter key.

- **b** Select the next step as follows:

**If the HCMIC circuit pack is** | **Do**
in a ManB state | step 18
in a SysB state | step 20

**If you are not at the IO MAP level, access that level. Type**

>IO

and press the Enter key.

**Return the HCMIC circuit pack to service. Type**

>RTS <nn> <s>

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

**Example of command use:**

>RTS 4 r
Example of system response:

RTS 4 rear passed

<table>
<thead>
<tr>
<th>If the IO MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the HCMIC circuit pack is SysB</td>
<td>step 20</td>
</tr>
<tr>
<td>the HCMIC circuit pack is InSv</td>
<td>step 3</td>
</tr>
</tbody>
</table>

19 If you are not at the IO MAP level, access that level. Type
>IO
and press the Enter key.

20 Manually busy the HCMIC circuit pack. Type
>BSY <nn> <s>
and press the Enter key

where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:
>BSY 4 r

Example of system response:
BSY 4 rear complete

Note: If needed, use the Force option to place the circuit pack in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 21</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

21 Perform an OOS test on the HCMIC circuit pack. Type
>TST <nn> <s>
and press the Enter key

where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:

> TST 4 r

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 22</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 23</td>
</tr>
</tbody>
</table>

22 Return the HCMIC circuit pack to service. Type

> RTS <nn> <s>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

> RTS 4 r

*Example of system response:*

RTS 4 rear passed

If the HCMIC circuit pack is

<table>
<thead>
<tr>
<th>in an InSv state</th>
<th>step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>in any state other than InSv</td>
<td>step 23</td>
</tr>
</tbody>
</table>

23 Perform the procedure for replacing the HCMIC circuit pack. The procedure is found in this document. Return to this point when complete.

If the HCMIC circuit pack is

<table>
<thead>
<tr>
<th>in an InSv state</th>
<th>step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

24 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type

> LOGUTIL

and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type

> OPEN XAC

and press the Enter key.

c Examine and record the appropriate log reports.
Return to the CI MAP prompt. At the Logutil prompt type

```
>QUIT
```

and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an RTIF major alarm condition</td>
<td>step 25</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 42</td>
</tr>
<tr>
<td>that the RTIF major alarm condition is clear</td>
<td>step 44</td>
</tr>
</tbody>
</table>

If you are not already at the RTIF MAP level, access that level. Type

```
MAPCI;MTC;XAC;RTIF
```

and press the Enter key.

Examine the RTIF MAP level. Record the location and status of the RTIF packlets and IOP CPs. Record the status of the local/remote RTIF ports.

**Note:** The RTIF MAP level displays working states as follows:

- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

### RTIF MAP level, showing data for RTIF packlets in slots 4 rear and 15 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTIF</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td>Time 14:12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Front: 111111111 | Rear: 1111111

Sta:---......... | Dep:00001

Typ:* *

Slot: Side: Packet: Status Port0: Port1 Link0 Link1:

| 6 | Tst_ | Rear | Upper | S | C | C |
| 7 | Bsy_ | Rear | Upper | . | . |   |
| 8 | RTS_ | Rear | Upper | . | . |   |
Note: For an RTIF packet, information about the local RTIF port and link appears in the “Port0” field, and information about the remote port and link appears in the “Port1” field.

27 Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If more than one of the statements listed in the left-hand column is true, choose the first true one that you encounter.

<table>
<thead>
<tr>
<th>If the RTIF MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIF port/link is in a CBsy state (See the note below this table.)</td>
<td>step 28</td>
</tr>
<tr>
<td>RTIF packet is in a ManB state</td>
<td>step 29</td>
</tr>
<tr>
<td>RTIF packet is in a SysB state</td>
<td>step 30</td>
</tr>
<tr>
<td>RTIF packet is in a CBsy state</td>
<td>step 34</td>
</tr>
<tr>
<td>IOP CP is in a ManB state</td>
<td>step 35</td>
</tr>
<tr>
<td>IOP CP is in a SysB state</td>
<td>step 37</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 42</td>
</tr>
<tr>
<td>no alarm and all CPs and packlets are InSv</td>
<td>step 44</td>
</tr>
</tbody>
</table>

Note: On an RTIF packet, the interface does not separate the local port and the link, nor does it separate the remote port and link.

28 You were directed to this step because you found that an RTIF port-and-link combination was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an RTIF packet. You are at the RTIF MAP level, where the working state of the RTIF packet is displayed.

Select the next step as follows:

<table>
<thead>
<tr>
<th>If the RTIF packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 29</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 30</td>
</tr>
<tr>
<td>in a a CBsy state</td>
<td>step 34</td>
</tr>
</tbody>
</table>

29 Return the RTIF packet to service. Type
>RTS <nn> <s> <p>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18.
Understanding the alarm system

XAC RTIF

<\textit{s}> is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)

<\textit{p}> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\texttt{>RTS 4 r l}

\textit{Example of system response:}

RTS 4 rear lower passed

<table>
<thead>
<tr>
<th>If the RTIF MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the RTIF packlet is SysB</td>
<td>step 30</td>
</tr>
<tr>
<td>the RTIF packlet is CBsy</td>
<td>step 34</td>
</tr>
<tr>
<td>the RTIF packlet is InSv</td>
<td>step 25</td>
</tr>
</tbody>
</table>

30 Manually busy the RTIF packlet. Type

\texttt{>BSY <nn> <s> <p>}

and press the Enter key

where

<\textit{nn}> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<\textit{s}> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<\textit{p}> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\texttt{>BSY 4 r u}

\textit{Example of system response:}

BSY 4 rear upper complete

\textbf{Note:} If needed, use the Force option to place the packlet in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 31</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

31 Perform an OOS test on the RTIF packlet. Type

\texttt{>TST <nn> <s> <p>}

and press the Enter key
XAC RTIF

(continued)

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>TST 4 r u

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 32</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 33</td>
</tr>
</tbody>
</table>

32 Return the RTIF packlet to service. At the RTIF MAP level type

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command:

RTS 4 r u

Example of system response:

RTS 4 rear upper passed

<table>
<thead>
<tr>
<th>If the RTIF packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a InSv state</td>
<td>step 25</td>
</tr>
<tr>
<td>in any state other than InSv</td>
<td>step 33</td>
</tr>
</tbody>
</table>

33 Perform the procedure for replacing the RTIF packlet. The procedure is found in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the RTIF packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 25</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>
You were directed to this step because you found that an RTIF packlet was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an IOP CP. Proceed as follows.

a. Access the IO MAP level. Type
   \texttt{>MAPCI;MTC;XAC;IO}
   and press the Enter key.

b. Find out the working state of the IOP CP.

\begin{tabular}{|l|l|}
\hline
If the IOP CP is & Do \\
\hline
in a ManB state & step 36 \\
in a SysB state & step 38 \\
\hline
\end{tabular}

If you are not already at the IO MAP level, access the IO MAP level. Type
\texttt{>MAPCI;MTC;XAC;IO}
and press the Enter key.

Return the IOP CP to service. Make sure that all related packlets are also in service.

a. At the IO MAP level type
   \texttt{>RTS <nn> <s>}
   and press the Enter key
   where
   \(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
   \(<s>\) is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
   Example of command:
   \texttt{>RTS 4 r}
   \textit{Example of system response:}
   RTS 4 rear passed

b. Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet status.

\begin{tabular}{|l|l|}
\hline
If the IOP CP is & Do \\
\hline
InSv & step 25 \\
not InSv & step 38 \\
\hline
\end{tabular}
XAC RTIF critical (continued)

37 If you are not already at the IO MAP level, access the IO MAP level. Type 
>MAPCI;MTC;XAC;IO 
and press the Enter key.

38 Manually busy the OOS IOP CP. At the IO MAP level type 
>BSY <nn> <s> 
and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r 

Example of system response:

BSY 4 rear complete 

Note: If needed, use the Force option to place the CP in a ManB state. 
Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the IO CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 39</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

39 Perform an OOS test on the ManB IOP CP. At the IO MAP level type 
>TST <nn> <s> 

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>TST 4 r 

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 40</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 41</td>
</tr>
</tbody>
</table>
40 Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>RTS 4 r

Example of system response:

RTS 4 rear passed

b Make sure that all related packlets are in service. Examine the IO MAP level to determine the packet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 41</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 25</td>
</tr>
</tbody>
</table>

41 Perform the procedure for replacing the IOP circuit pack. The procedure is found in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the IOP circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 25</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

42 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 43</td>
</tr>
<tr>
<td>clear</td>
<td>step 44</td>
</tr>
</tbody>
</table>

43 Call the next level of support.

44 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Understanding the alarm system

**XAC RTIF major**

### Alarm display

The XAC RTIF major alarm code appears under the XAC header of the alarm banner. The alarm code indicates a reset terminal interface (RTIF) major alarm.

#### Indication

An RTIF major alarm code appears under the XAC header of the alarm banner. The alarm code indicates a reset terminal interface (RTIF) major alarm.

#### Meaning

One of the following conditions cause an RTIF major alarm:

- a single RTIF local port is out-of-service (OOS)
- all RTIF remote ports are out-of-service (OOS)
- one HCMIC circuit pack is in a ManB or SysB state
- one RTIF packlet is in a ManB, SysB, or CBsy state

#### Impact

There is no change in subscriber service.

#### Common procedures

This procedure refers to the replacement procedure for the HCMIC circuit pack, the replacement procedure for the IOP circuit pack, and the replacement procedure for the RTIF packlet. The procedures are in this document.

#### Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
XAC RTIF
major (continued)

Summary of clearing an RTIF major alarm

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.

- HCMIC CPs or RTIF packlets?
  - RTIF packlets
    - Collect information
    - Problem with an RTIF port?
      - Y: Test the port, replace RTIF packlet if necessary
      - N: Problem with an RTIF packlet?
        - Y: Test the packlet, replace if necessary
        - N: Problem with an IOP circuit pack?
          - Y: Check IOP CP, replace if necessary
          - N: Other alarm?
            - Y: Clear the alarm
            - N: End

- HCMIC CPs

End
Summary of clearing an RTIF major alarm (continued)

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.

1. Collect information
2. Problem with an RTIF port?
   - Y: Test the port, replace HCMIC CP if necessary
   - N: Problem with an HCMIC CP?
     - Y: Test the HCMIC, CP, replace if necessary
     - N: Other alarm?
       - Y: Clear the alarm
       - N: End
How to clear an RTIF major alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

WARNING
Risk of equipment damage - electric static discharge (ESD)
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location
1 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the RTIF hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 3</td>
</tr>
<tr>
<td>RTIF packlets</td>
<td>step 24</td>
</tr>
</tbody>
</table>
2 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.
   a  Access the log utility feature. At the CI MAP level, type
       >LOGUTIL
       and press the Enter key.
   b  Access the XA-Core logs. At the Logutil prompt type
       >OPEN XAC
       and press the Enter key.
   c  Examine and record the appropriate log reports.
   d  Return to the CI MAP prompt. At the Logutil prompt type
       >QUIT
       and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an RTIF major alarm condition</td>
<td>step 3</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 42</td>
</tr>
<tr>
<td>that the RTIF major alarm condition is</td>
<td>step 44</td>
</tr>
<tr>
<td>clear</td>
<td></td>
</tr>
</tbody>
</table>

3 If you are not already at the IO MAP level, access that level. Type
   MAPCI;MTC;XAC;IO
   and press the Enter key.
Examine the IO MAP level. Record the location and status of the HCMIC circuit packs.

*The following is a sample MAP display.*

**IO MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>IO</td>
<td>Front: 11111111</td>
<td>Rear: 11111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
</tr>
<tr>
<td>Typ:</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Slot:</td>
<td>Side:</td>
<td>Status:</td>
<td>Upper:</td>
<td>Middle:</td>
<td>Lower:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Front</td>
<td>I</td>
<td>Disk</td>
<td>Tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Front</td>
<td>.</td>
<td>Disk</td>
<td>Tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rear</td>
<td>M</td>
<td>RTIF</td>
<td>ETHR</td>
<td>CMIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear</td>
<td>.</td>
<td>RTIF</td>
<td>ETHR</td>
<td>CMIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>XAC:</td>
<td>IO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you are not already at the RTIF MAP level, access that level. Type **MAPC;MTC;XAC;RTIF** and press the Enter key.

Examine the RTIF MAP level. Record the status of the RTIF ports and links.

*Note:* The RTIF MAP level displays working states as follows:

- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.

*The following is a sample MAP display.*
RTIF MAP level, showing data for the RTIF sections of HCMIC CPs in slots 4 rear and 15 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTIF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTIF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Front: 111111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sta: .---.---.---.---</td>
<td>.---.---.---.---</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Typ: *</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Slot: Side: Packlet: Status</td>
<td>Port0: Port1</td>
<td>Link0</td>
<td>Link1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear</td>
<td>C</td>
<td>C</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Rear</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7  Access the XA-Core IO MAP level. Type
   >IO
   and press the Enter key.

8  Select the next step as follows. Read down the left-hand column until you find
   the first statement that is true, and go to the step shown in the right-hand
   column. If more than one of the statements listed in the left-hand column is
   true, choose the first true one that you encounter:

   **If the information from the logs, and from IO and RTIF MAP levels indicate**

   **Do**

   - RTIF port is in a ManB state  step 9
   - RTIF port is in a SysB state  step 11
   - RTIF port is in a CBsy state  step 16
   - HCMIC circuit pack is in a ManB state  step 17
   - HCMIC circuit pack is in a SysB state  step 19
   - a different alarm  step 42
   - no alarm and all CPs are in service  step 44

XA-Core Maintenance Manual
If you are not at the RTIF MAP level, access that level. Type

>RTIF

and press the Enter key.

Return the RTIF port to service. Type

>RTS <nn> <s> <port>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<port> is port0 or port1

Example of command use:

>RTS 4 r port0

Example of system response:

RTS 4 rear port0 passed

If the RTIF port is in a SysB state step 11
If the RTIF port is in an InSv state step 3
If the RTIF port is in a CBsy state step 16

Manually busy the RTIF port. Type

>BSY <nn> <s> <port>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<port> is port0 or port1

Example of command use:

>BSY 4 r port0

Example of system response:

BSY 4 rear port0 complete
**Note:** If needed, use the Force option to place the port in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the RTIF port is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 13</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

13 Perform an OOS test on the RTIF port. Type

> TST <nn> <s> <port>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<port> is port0 or port1

Example of command use:

> TST 4 r port0

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 14</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 15</td>
</tr>
</tbody>
</table>

14 Return the RTIF port to service. Type

> RTS <nn> <s> <port>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

<port> is port0 or port1

Example of command use:

> RTS 4 r port0
Example of system response:
RTS 4 rear port0 passed

<table>
<thead>
<tr>
<th>If the RTIF port is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 3</td>
</tr>
<tr>
<td>not in an InSv state</td>
<td>step 15</td>
</tr>
</tbody>
</table>

15 Perform the procedure for replacing the HCMIC circuit pack. The procedure is found in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 3</td>
</tr>
<tr>
<td>not in an InSv state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

16 You were directed to this step because you found that an RTIF port was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an HCMIC circuit pack.
Proceed as follows
- a If you are not at the IO MAP level, go to that level Type >IO
  and press the Enter key.
- b Select the next step as follows:

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 18</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 20</td>
</tr>
</tbody>
</table>

17 If you are not at the IO MAP level, access that level. Type >IO
and press the Enter key.

18 Return the HCMIC circuit pack to service. Type >RTS <nn> <s>
and press the Enter key.
where
- <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:
>RTS 4 r
Example of system response:
RTS 4 rear passed

<table>
<thead>
<tr>
<th>If the IO MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the HCMIC circuit pack is SysB</td>
<td>step 20</td>
</tr>
<tr>
<td>the HCMIC circuit pack is InSv</td>
<td>step 3</td>
</tr>
</tbody>
</table>

19 If you are not at the IO MAP level, access that level. Type
>IO
and press the Enter key.

20 Manually busy the HCMIC circuit pack. Type
>BSY <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:
>BSY 4 r

Example of system response:
BSY 4 rear complete

Note: If needed, use the Force option to place the circuit pack in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 21</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

21 Perform an OOS test on the HCMIC circuit pack. Type
>TST <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:

> TST 4 r

If the OOS test

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
</tr>
<tr>
<td>did not pass</td>
</tr>
</tbody>
</table>

22 Return the HCMIC circuit pack to service. Type

> RTS <nn> <s>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

> RTS 4 r

Example of system response:

- RTS 4 rear passed

23 Perform the procedure for replacing the HCMIC circuit pack. The procedure is found in this document. Return to this point when complete.

If the HCMIC circuit pack is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
</tr>
<tr>
<td>in any state other than InSv</td>
</tr>
</tbody>
</table>

24 Collect information from the XA-Core log report system. The log messages provide information about the source of the alarm.

a Access the log utility feature. At the CI MAP level, type

> LOGUTIL

and press the Enter key.

b Access the XA-Core logs. At the Logutil prompt type

> OPEN XAC

and press the Enter key.

c Examine and record the appropriate log reports.
Understanding the alarm system

1-453

XAC RTIF major (continued)

Return to the CI MAP prompt. At the Logutil prompt type

>QUIT

and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an RTIF major alarm condition</td>
<td>step 25</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 42</td>
</tr>
<tr>
<td>that the RTIF major alarm condition is clear</td>
<td>step 44</td>
</tr>
</tbody>
</table>

If you are not already at the RTIF MAP level, access that level. Type

MAPCI;MTC;XAC;RTIF

and press the Enter key.

Examine the RTIF MAP level. Record the location and status of the RTIF packlets and IOP CPs. Record the status of the local/remote RTIF ports.

Note: The RTIF MAP level displays working states as follows:
- a system alarm code appears under the XAC header in the alarm banner.
- an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).
- a status indicator appears in the equipment status field in the command interpreter output area.

The following is a sample MAP display.

**RTIF MAP level, showing data for RTIF packlets in slots 4 rear and 15 rear**
Note: For an RTIF packet, information about the local RTIF port and link appears in the “Port0” field, and information about the remote port and link appears in the “Port1” field.

Select the next step as follows. Read down the left-hand column until you find the first statement that is true, and go to the step shown in the right-hand column. If more than one of the statements listed in the left-hand column is true, choose the first true one that you encounter.

### If the RTIF MAP level indicates  Do

- RTIF port/link is in a CBsy state (See the note below this table.)  
  - step 28
- RTIF packet is in a ManB state  
  - step 29
- RTIF packet is in a SysB state  
  - step 30
- RTIF packet is in a CBsy state  
  - step 34
- IOP CP is in a ManB state  
  - step 35
- IOP CP is in a SysB state  
  - step 37
- a different alarm  
  - step 42
- no alarm and all CPs and packlets are InSv  
  - step 44

Note: On an RTIF packet, the interface does not separate the local port and the link, nor does it separate the remote port and link.

You were directed to this step because you found that an RTIF port-and-link combination was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an RTIF packet.

You are at the RTIF MAP level, where the working state of the RTIF packet is displayed.

Select the next step as follows:

### If the RTIF packet is  Do

- in a ManB state  
  - step 29
- in a SysB state  
  - step 30
- in a a CBsy state  
  - step 34

Return the RTIF packet to service. Type

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:
>RTS 4 r l

Example of system response:
RTS 4 rear lower passed

<table>
<thead>
<tr>
<th>If the RTIF MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the RTIF packlet is SysB</td>
<td>step 30</td>
</tr>
<tr>
<td>the RTIF packlet is CBsy</td>
<td>step 34</td>
</tr>
<tr>
<td>the RTIF packlet is InSv</td>
<td>step 25</td>
</tr>
</tbody>
</table>

30 Manually busy the RTIF packlet. Type
>BSY <nn> <s> <p>
and press the Enter key

Note: If needed, use the Force option to place the packlet in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 31</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

31 Perform an OOS test on the RTIF packlet. Type
>TST <nn> <s> <p>
and press the Enter key
where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

```
>TST 4 r u
```

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 32</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 33</td>
</tr>
</tbody>
</table>

32 Return the RTIF packlet to service. At the RTIF MAP level type

```
>RTS <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command:

```
RTS 4 r u
```

Example of system response:

```
RTS 4 rear upper passed
```

<table>
<thead>
<tr>
<th>If the RTIF packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a InSv state</td>
<td>step 25</td>
</tr>
<tr>
<td>in any state other than InSv</td>
<td>step 33</td>
</tr>
</tbody>
</table>

33 Perform the procedure for replacing the RTIF packlet. The procedure is found in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the RTIF packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 25</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>
You were directed to this step because you found that an RTIF packlet was in the CBsy state. This indicates that there may be a problem with the next highest entity in the hierarchy, which is an IOP CP.

Proceed as follows.

a. Access the IO MAP level. Type
   >MAPCI;MTC;XAC;IO
   and press the Enter key.

b. Find out the working state of the IOP CP.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 36</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 38</td>
</tr>
</tbody>
</table>

If you are not already at the IO MAP level, access the IO MAP level. Type

>MAPCI;MTC;XAC;IO

and press the Enter key.

Return the IOP CP to service. Make sure that all related packlets are also in service.

a. At the IO MAP level type
   >RTS <nn> <s>
   and press the Enter key

   where
   <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
   <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

   Example of command:
   >RTS 4 r

   Example of system response:
   RTS 4 rear passed

b. Make sure that all related packlets are in service. Examine the IO MAP level to determine the packet status.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv</td>
<td>step 25</td>
</tr>
<tr>
<td>not InSv</td>
<td>step 38</td>
</tr>
</tbody>
</table>
If you are not already at the IO MAP level, access the IO MAP level. Type

`>MAPCI;MTC;XAC;IO`

and press the Enter key.

Manually busy the OOS IOP CP. At the IO MAP level type

`>BSY <nn> <s>`

and press the Enter key

where

`<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

`<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

`>BSY 4 r`

Example of system response:

`BSY 4 rear complete`

Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.

If the IO CP is | Do
---|---
in a ManB state | step 39
not in a ManB state | step 43

Perform an OOS test on the ManB IOP CP. At the IO MAP level type

`>TST <nn> <s>`

and press the Enter key

where

`<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

`<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

`>TST 4 r`

If the OOS test | Do
---|---
passed | step 40
did not pass | step 41
40 Return the IOP CP to service. Make sure that all related packlets are also in service.

   a At the IO MAP level type
      \texttt{>RTS \langle nn \rangle \ <s>}
      and press the Enter key
      where
      \texttt{\langle nn \rangle} is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
      \texttt{\langle s \rangle} is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
      Example of command use:
      \texttt{>RTS 4 r}
      \texttt{Example of system response:}
      \texttt{RTS 4 rear passed}

   b Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in an InSv state</td>
<td>step 41</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 25</td>
</tr>
</tbody>
</table>

41 Perform the procedure for replacing the IOP circuit pack. The procedure is found in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the IOP circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 25</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 43</td>
</tr>
</tbody>
</table>

42 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 43</td>
</tr>
<tr>
<td>clear</td>
<td>step 44</td>
</tr>
</tbody>
</table>

43 Call the next level of support.

44 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Understanding the alarm system

XAC RTIF minor

Alarm display

<table>
<thead>
<tr>
<th>XAC RTIF</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

Indication
An RTIF message appears under the XAC header of the alarm banner. The message indicates a remote terminal interface (RTIF) minor alarm.

Meaning
A single RTIF local or remote port is out-of-service (OOS).

Impact
There is no change in subscriber service.

Common procedures
This procedure refers to the replacement procedure for the HCMIC circuit pack and the replacement procedure for the RTIF packlet. The procedures are in this document.

Action
The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an RTIF minor alarm

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.

Faulty RTIF port?

Y

Perform an OOS test on the RTIF hardware

N

Call the next level of support

OOS test passed?

Y

Perform an OOS test on the RTIF hardware

N

Replace the RTIF packlet or the HCMIC CP

Alarm cleared?

Y

End

N

Changed to other alarm?

Y

Call the next level of support

N

Perform the alarm clearing procedure
How to clear an RTIF minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Do not repeat steps.

**CAUTION**
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
At your current location

1 Collect log information from the log report system. The log messages provide information about the source of the alarm.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

2 Examine the RTIF MAP level. At the MAP terminal, type
   MAPCI;MTC;XAC;RTIF
   and press the Enter key.

3 Examine the RTIF MAP level. Record the working state of the system and the RTIF packlets. Also record the RTIF packlet location on the physical shelf, side and slot.

   Note: The RTIF MAP level can display alarms as follows:
   • an RTIF minor alarm code appears under the XAC header in the alarm banner.
   • an equipment alarm code appears under the PKLT header of the subsystem status summary field (SSSF).

If the log indicates | Do
---|---
an RTIF minor alarm condition | step 2
a different alarm condition | step 16
that the RTIF minor alarm condition is clear | step 18
The following is a sample MAP display.

RTIF MAP level, showing data for RTIF packets in slots 4 rear and 15 rear

```
XAC MS IOD Net PM CCS Lns Trks Ext APPL
RTIF

RTIF Front: 11111111 Rear: 111111 SM PE IO PKLT
0 Quit
1 Sts:
2 Dep:
3 Typ: *
4 Slot: Side: Packet: Status Port0: Port1 Link0 Link1:
5 6 Tst_ 7 Basy_ 8 RTS_ 9 10 11 12 Uneq_ 13 14 Alarm_ 15 16 17 Indicat_ 18 Query_
15 Rear Upper . . .
16 Rear Upper . . .
```

RTIF MAP level, showing data for the RTIF sections of HCMIC CPs in slots 4 rear and 15 rear

```
XAC MS IOD Net PM CCS Lns Trks Ext APPL
RTIF

RTIF Front: 11111111 Rear: 111111 SM PE IO PKLT
0 Quit
1 Sts:
2 Dep:
3 Typ: *
4 Slot: Side: Packet: Status Port0: Port1 Link0 Link1:
5 6 Tst_ 7 Basy_ 8 RTS_ 9 10 11 12 Uneq_ 13 14 Alarm_ 15 16 17 Indicat_ 18 Query_
15 Rear Upper . . .
16 Rear Upper . . .
```
4 Select the next step as follows.

If the RTIF MAP level indicates Do

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>an RTIF minor alarm</td>
<td>step 11</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 16</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
<td>step 18</td>
</tr>
</tbody>
</table>

5 Access the IO MAP level. Type

>IO

and press the Enter key.

6 Manually busy the HCMIC circuit pack. Type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r

Example of system response:

BSY 4 rear complete

Note: If needed, use the Force option to place the circuit pack in a ManB state. Refer to the XA-Core MAP commands documentation.

7 Perform an OOS test on the HCMIC circuit pack. Type

>TST <nn> <s>

and press the Enter key
where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

> TST 4 r

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 8</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 9</td>
</tr>
</tbody>
</table>

8

Return the HCMIC circuit pack to service. Type

> RTS <nn> <s>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

> RTS 4 r

*Example of system response:*

RTS 4 rear passed

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 15</td>
</tr>
<tr>
<td>in any state other than InSv</td>
<td>step 9</td>
</tr>
</tbody>
</table>

9

Perform the procedure for replacing the HCMIC circuit pack. The procedure is found in this document. Return to this point when complete.

10

Go to step 15.

11

Manually busy the RTIF packlet. At the RTIF MAP level type

> BSY <nn> <s> <p>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
XAC RTIF

minor (continued)

<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command use:

>`BSY 4 r u`

*Example of system response:*

`BSY 4 rear upper complete`

*Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.*

<table>
<thead>
<tr>
<th>If the RTIF packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 12</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>

Perform an OOS test on the ManB RTIF packlet. At the RTIF MAP level type

>`TST <nn> <s> <p>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command use:

>`TST 4 r u`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 13</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 14</td>
</tr>
</tbody>
</table>
Return the RTIF packlet to service. At the RTIF MAP level type

```
>RTS <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command:

```
>RTS 4 r u
```

Example of system response:

RTS 4 rear upper passed

### If the RTIF packlet is

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 14</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 15</td>
</tr>
</tbody>
</table>

### If the RTIF alarm is

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to different alarm</td>
<td>step 16</td>
</tr>
<tr>
<td>not clear</td>
<td>step 17</td>
</tr>
<tr>
<td>clear</td>
<td>step 18</td>
</tr>
</tbody>
</table>

### If the alarm is

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 17</td>
</tr>
<tr>
<td>clear</td>
<td>step 18</td>
</tr>
</tbody>
</table>

Call the next level of support.

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
This page is left blank intentionally.
Alarm display

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMtrbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Indication**

An SMtrbl alarm code appears under the XAC header of the alarm banner. The alarm code indicates a shared memory (SM) trouble minor alarm.

An “I” (in-service trouble indicator) appears in the state field in the shelf layout area. The indicator appears directly below the number that matches the circuit pack (CP) location in the physical shelf slot.

**Meaning**

The state of the SM CP has changed from in-service (InSv) to in-service trouble (IsTb). The state change indicates a non-critical fault on an SM CP.

**Impact**

There is no change in subscriber service. To minimize service degradation, test or replace the SM CP when call traffic is low.

**Common procedures**

There are no common procedures.

**Action**

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
XAC SMtrbl minor (continued)

Summary of clearing an SMtrbl minor alarm

Obtain latest log report

Determine the location of the IsTb SM CP

Call traffic volume on switch is high?

Y

Wait until call traffic volume is low

N

Perform InSv test on IsTb SM CP

Critical errors?

Y

Replace SM CP. Refer to the correct NTP.

N

Call traffic volume on switch is high?

Y

Wait until call traffic volume is low

N

Replace SM CP. Refer to the correct NTP.

Alarm clear?

N

Call the next level of support

Y

End

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear an SMtrbl minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
**Risk of static electricity damage**
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
**Loss of service**
Do not repeat steps.

**CAUTION**
**Loss of service**
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
**At the XA-Core MAP**

1. Collect information from the XA-Core log report system. The log messages provide information about the source of the SMtrbl alarm.
   - **a** Access the log utility feature. At the CI MAP level, type
     >LOGUTIL
     and press the Enter key.
   - **b** Access the XA-Core logs. At the Logutil prompt type
     >OPEN XAC
     and press the Enter key.
   - **c** Examine and record the appropriate log reports.
   - **d** Return to the CI MAP prompt. At the Logutil prompt type
     >QUIT
     and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an SMtrbl minor condition</td>
<td>step 2</td>
</tr>
<tr>
<td>another alarm condition</td>
<td>step 10</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 12</td>
</tr>
</tbody>
</table>

2. Examine the shelf interface modules (SIMs). Make sure that all circuit breakers are in the ON position. Make sure that the green LEDs are lit.

<table>
<thead>
<tr>
<th>If SIM circuit breakers are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in the OFF position and a red led is lit</td>
<td>step 3</td>
</tr>
<tr>
<td>in the ON position and green leds are lit</td>
<td>step 4</td>
</tr>
</tbody>
</table>

3. Set the shelf interface module (SIM) circuit breaker to the ON position (see the diagram in this step). Wait 30 sec.
Set circuit breaker on the SIM to the ON (1) position

<table>
<thead>
<tr>
<th>If SIM circuit breaker</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>resets to the ON position</td>
<td>step 4</td>
</tr>
<tr>
<td>does not reset to the ON position</td>
<td>step 11</td>
</tr>
</tbody>
</table>

4 Access the SM MAP level. At the CI MAP level type

```
MAPCI;MTC;XAC;SM
```
and press the Enter key.

5 Examine the SM MAP level. Record the location of the IsTb SM CP.

**Note:** The SM MAP level displays alarms and SM working states as follows:

- a system alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the SM header in the subsystem status summary field (SSSF)
- an “I” (in-service trouble indicator) appears in the state field in the shelf layout area.

*The following is a sample MAP display.*
XAC SMtrbl

minor (continued)

SM MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IGD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMtrbl</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

SM Map level:

- Front: 1111111111
- Rear: 111111
- SM: PE IO PKLT
- 123456789012345678
- 456789012345
- SMtb
- .
- .
- 0 0 0 0
- Sta: .......--.--.-. .--I-------.
- Dep: ** ** *
- Typ: *
- Physical: 1920
- Useable: 1920
- Available: 960
- SM: .
- 0
- Quit
- 2
- 3
- 4
- 5
- 6 Tst_
- 7 Bsy_
- 8 RTS_
- 9
- 10
- 11
- 12
- 13
- 14 Alarm_
- 15
- 16 Trnsl_
- 17 Indicat_
- 18 Query_

If the SM MAP level indicates

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an SM CP is in an IsTb state</td>
</tr>
<tr>
<td>a different alarm</td>
</tr>
<tr>
<td>no alarm and all CPs are in service</td>
</tr>
</tbody>
</table>

Perform an in-service test on the IsTb SM CP. Wait until traffic call volume is low. At the SM MAP level type

`>TST <nn> <s>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

`>TST 7 r`
Example of system response:
Tst 7 rear failed.

<table>
<thead>
<tr>
<th>If the test shows the SM CP has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical errors</td>
<td>step 7</td>
</tr>
<tr>
<td>non-critical errors</td>
<td>step 8</td>
</tr>
<tr>
<td>no errors</td>
<td>step 9</td>
</tr>
</tbody>
</table>

At the XA-Core physical shelf
7 Perform the SM CP replacement procedure immediately. Refer to the correct replacement procedure. Continue to 9 when complete.
8 Wait until call traffic volume is low. Perform the SM CP replacement procedure. Refer to the correct replacement procedure located in this document. Return to this point when complete.

At the SM MAP level
9 Confirm that the alarm is clear. Examine the SM MAP level.

<table>
<thead>
<tr>
<th>If the SMtrbl minor alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 10</td>
</tr>
<tr>
<td>not clear</td>
<td>step 11</td>
</tr>
<tr>
<td>clear</td>
<td>step 12</td>
</tr>
</tbody>
</table>

10 Perform the correct alarm clearing procedure in this document. Refer to the correct alarm clearing procedure in this document. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 11</td>
</tr>
<tr>
<td>clear</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11 Call the next level of support.
12 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Alarm display

![Alarm display diagram]

Indication

A Split alarm code appears under the XAC header of the alarm banner. The alarm code indicates that the state of the system is now in split mode.

Meaning

There is an upgrade to the operating system software in progress. Maintenance software has configured processor and shared memory to allow two images to run at the same time. One part of the XA-Core switch continues to process call traffic. The remaining part of the system is ready to receive, or is receiving new operating software. You can access all MAP levels for the subsystems that are processing calls.

Impact

There is no change to subscriber service.

Common procedures

There are no common procedures.

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a Split minor alarm

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.

Complete the upgrade

Exit Split mode

Split alarm clear?

Y

End

N

Contact the next level of support
How to clear a Split minor alarm

ATTENTION
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

At the XA-Core MAP
1. Collect information from the XA-Core log report system. The log messages provide more information about the split mode.
   a. Access the log utility feature. At the CI MAP level, type
      \texttt{>LOGUTIL}
      and press the Enter key.
   b. Access the XA-Core logs. At the Logutil prompt type
      \texttt{>OPEN XAC}
      and press the Enter key.
   c. Examine and record the appropriate log reports.
   d. Return to the CI MAP prompt. At the Logutil prompt type
      \texttt{>QUIT}
      and press the Enter key.

If the log indicates | Do
---|---
a Split minor condition | step 2
another alarm condition | step 5
that the alarm condition is clear | step 7

2. Access the XAC MAP level. At the CI MAP level type
   \texttt{>MAPCI;MTC;XAC}
   and press the Enter key.

3. Examine the XAC MAP level. Record the working state of the system (refer to the XAC MAP level example shown in this step).

   \textbf{Note:} The XAC MAP level displays system, CP and packet working states as follows:
   - an alarm code appears under the XAC header in the alarm banner
   - an equipment alarm code appears under the SM and PE headers in the subsystem status summary field (SSSF)
XAC Split
minor (continued)

- the SSSF shows the number of CPs that are not processing calls
- an “X” (split indicator) appears in the state field in the shelf layout area. The split indicator tells you that the CP is not part of the system that is processing calls

The following is a sample MAP display.

XAC MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

XAC: 0 Quit
1 Card_
2 XACMtc
3 XACMtc
4 SM
5 PE
6 IO
7 CMIC
8 RTIF
9 Disk
10 Tape
11
12
13
14 Alarm_
15
16
17 Indicat_
18 Query_

XMAP0
Time 14:12 >

If the MAP indicates          Do

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 6</td>
</tr>
<tr>
<td>clear</td>
<td>step 7</td>
</tr>
</tbody>
</table>

297-8991-510  Standard  12.02  December 2005
Perform the correct alarm clearing procedure described in this document.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 6</td>
</tr>
<tr>
<td>clear</td>
<td>step 7</td>
</tr>
</tbody>
</table>

Call the next level of support.

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
Understanding the alarm system

1-485

XAC SysBTh major

Alarm display

<table>
<thead>
<tr>
<th>XAC SysBTh</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Indication

A SysBTh alarm code appears under the XAC header of the alarm banner. The alarm code indicates a SysBTh major alarm.

Meaning

During the last 42 to 48 hours, a component has transitioned too frequently from the in-service (InSv) state to the system-busy (SysB) state, which indicates that one or more components may be unstable.

Note: For simplicity, we use the following terminology throughout this section. The term “SysB transition” means a transition from the InSv state to the SysB state. The term “48-hour” total means the total number of SysB transitions occurring in the last 42 to 48 hours.

The system monitors the SysB transitions for many components. It maintains separate counts for each instance of each monitored component.

The monitored components are separated into groups.

The following list shows the groups and the monitored components.

- The PE group includes PE circuit packs.
- The SM group includes SM circuit packs.
The IO link (IOlk) group includes all IO links.

The IO hardware (IOhw) group includes
- IOP, HIOP, and HCMIC circuit packs
- all packlets: disk, tape, CMIC, RTIF, Ethernet, and AMDI
- sections of HIOP circuit packs that are supporting ETHR and AMDI connections
- sections of HCMIC circuit packs that are supporting CMIC, RTIF, and ETHR connections
- time-of-day (TOD) devices
- ports

For each instance of each monitored component, the system counts the SysB transitions that occur during the current six-hour interval. It also maintains records of the numbers of transitions that occurred during the seven preceding six-hour intervals. For each component, the system sums the totals from the seven preceding intervals and the total from the current interval, producing the 48-hour total, which is the number of SysB transitions occurring over the last 42 to 48 hours.

For each component group, there are minor and major SysB-transition threshold values. The thresholds apply to each component in the component group. To obtain a list of the major and minor thresholds that apply to the component groups, use the CNTRS QUERY command. The system displays the threshold values as part of its response to the CNTRS QUERY command. For detailed information on the display of threshold values, see the description of the QUERY parameter of the CNTRS command in the XAC MAP level. The description is found in the XA-Core Reference Manual, in the chapter that describes MAP levels and user interfaces.

For each monitored component, the system compares the component’s 48-hour transition total to the major SysB transition threshold for the group. If the 48-hour SysB transition total equals or exceeds the major SysB transition threshold, and if the SysBTh major alarm is not already raised, the system raises the SysBTh major alarm (unless the alarm has been disabled).

Note: There are also minor SysB transition thresholds. If the component’s 48-hour total of SysB transitions equals or exceeds the minor threshold, and if the SysBTh minor alarm or the SysB major alarm is not already raised, the system raises the SysBTh minor alarm (unless the alarm has been
The SysBTh major alarm remains raised until one of the following events occurs:

- The 48-hour totals of SysB transitions for all components fall below the major thresholds. The totals can fall below the thresholds because at the beginning of each new six-hour interval, the system deletes the SysB transition data from the oldest six-hour interval and starts counting SysB transitions for the current interval from zero.

- You replace a component. On this occasion the system resets to zero all interval counters for that component. If, following the resetting, there is no other component whose 48-hour SysB-transition total equals or exceeds the applicable major threshold, then the system clears the SysBTh major alarm.

- A warm restart, cold restart, or reload restart occurs.

- You use the CNTRS RESET command to reset the counters for a component. On this occasion the system resets to zero all interval counters for that component. If, following the resetting, there is no other component whose 48-hour SysB-transition total equals or exceeds the applicable major threshold, then the system clears the SysBTh major alarm.

(Note 1: Ordinarily, you should use the CNTRS RESET command only for links. Use it after you have corrected a link fault, to reset the SysB transition counters for the link. For all components other than links, you should let the system reset the counters automatically. Automatic resetting occurs when you replace a component. Also, each time that a new six-hour interval begins, the system discards the oldest interval count for each component.)

(Note 2: Detailed information on the CNTRS RESET command is found in the XA-Core Reference Manual, in the chapter that describes MAP levels and user interfaces.)
XAC SysBTh major (continued)

**Impact**

Frequent transitions to the system-busy (SysB) state may indicate that the component is unstable. An unstable component may cause a degradation of performance. Otherwise, there is no change in subscriber service.

**Common procedures**

This procedure refers to the card replacement procedures found in Chapter 2 of this document.

**Action**

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

**Summary of clearing a SysBTh major alarm**

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

- Is the component a link?
  - Yes: Correct the link fault.
  - No: Replace the circuit pack or packet

- Reset the link's counters using CNTRS RESET

- End
How to clear a SysBTh major alarm

At the MAP terminal

1. Go to the XAC MAP level. At the command input prompt on any MAP screen, type
   >MAPCl;MTC;XAC
   and press the Enter key.

2. Obtain information about the alarm. At the command input prompt, type
   >ALARM SysBTh
   and press the Enter key.
   In response, the system displays a list of components whose SysB transition totals equal or exceed the major thresholds. For each listed component, the system displays the state of the component, and the location of the component.

3. If the unstable component is an IO link
   Do step 4

   If the unstable component is any component other than an IO link
   Do step 6

4. Investigate the link fault and correct it.

5. Reset the SysB transition counters for the link. Type either
   >CNTRS RESET <nn> <s> <p> <link-name>
   or
   >CNTRS RESET <nn> <s> <link-name>
   and press the Enter key.

   where

   <nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packet to which the link is connected - 1 to 18

   <s> is the side parameter value - front (f) or rear (r)

   <p> is used only if the link is connected to a packet, and indicates the packet location in an input/output processor (IOP) - upper (u) or lower (l)

   Note: You do not need to use the <p> parameter if the link is connected to the Ethernet or AMDI section of an HIOP circuit pack, or to the CMIC, RTIF, or Ethernet section of an HCMIC circuit pack.

   <link-name> is the name of the link, for example, link for an Ethernet link, link0 or link1 for an AMDI link

   Note: Ordinarily, you should use the CNTRS RESET command only for links. The reason is that links are the only components for which the system does not reset the SysB transition counters automatically.
Ordinarily, you should not use the CNTRS RESET command for other components because the system resets their counters automatically.

6 If the unstable component is one of the following, replace the circuit pack:
   • a circuit pack
   • the Ethernet or AMDI section of an HIOP circuit pack
   • the CMIC, RTIF, or Ethernet section of an HCMIC circuit pack
   • a port on an HIOP circuit pack
   • a port on an HCMIC circuit pack
   • the time-of-day device on an HCMIC circuit pack
If the unstable component is one of the following, replace the packlet:
   • a packlet
   • a port on a packlet
   • the time-of-day device on a CMIC packlet
Perform the appropriate replacement procedure. Replacement procedures are found in Chapter 2 of this document. Return to this point when done.

When you replace the circuit pack or packlet, the system automatically resets to zero all the SysB transition counters for the current six-hour interval for the circuit pack or packlet. At the same time, the system also resets to zero the SysB transition totals for the seven preceding six-hour intervals for the circuit pack or packlet. If, following the resetting, there is no other component whose 48-hour SysB-transition total equals or exceeds the applicable minor threshold, then the system clears the SysBTh minor alarm.

Note 1: If you replace a circuit pack or packlet that has one or more associated devices, the system does not automatically reset the transition counters for the devices. Examples of devices are ports, links, and time-of-day devices. If you want to reset the transition counters for the associated devices, you must use the CNTRS RESET command.

Note 2: If the system repeatedly raises the SysBTh alarm, and if the SysB transitions are traceable to a specific circuit pack or packlet, and if replacing that circuit pack or packlet does not prevent the alarm from recurring, the source of the problem may be a damaged fiber.

7 You have completed this procedure.

Note: After the SysBTh major alarm clears, you may find that it has been replaced by the SysBTh minor alarm. The reason is that after the SysBTh major alarm clears, there may still be at least one other component whose 48-hour SysB-transition total equals or exceeds the applicable minor threshold.
Alarm display

A SysBTh alarm code appears under the XAC header of the alarm banner. The alarm code indicates a SysBTh minor alarm.

Meaning

During the last 42 to 48 hours, a component has transitioned too frequently from the in-service (InSv) state to the system-busy (SysB) state, which indicates that one or more components may be unstable.

*Note:* For simplicity, we use the following terminology throughout this section. The term “SysB transition” means a transition from the InSv state to the SysB state. The term “48-hour” total means the total number of SysB transitions occurring in the last 42 to 48 hours.

The system monitors the SysB transitions for many components. It maintains separate counts for each instance of each monitored component.

The monitored components are separated into groups.

The following list shows the groups and the monitored components:

- The PE group includes PE circuit packs.
- The SM group includes SM circuit packs.
The IO link (IOlk) group includes IO links: all CMIC links, all Ethernet links, all AMDI links, and all RTIF links.

The IO hardware (IOhw) group includes

- IOP, HIOP, and HCMIC circuit packs
- all packlets: disk, tape, CMIC, RTIF, Ethernet, and AMDI
- sections of HIOP circuit packs that are supporting ETHR and AMDI connections
- sections of HCMIC circuit packs that are supporting CMIC, RTIF, and ETHR connections
- time-of-day (TOD) devices
- ports

For each instance of each monitored component, the system counts the SysB transitions that occur during the current six-hour interval. It also maintains records of the numbers of transitions that occurred during the seven preceding six-hour intervals. For each component, the system sums the totals from the seven preceding intervals and the total from the current interval, producing the 48-hour total, which is the number of SysB transitions occurring over the last 42 to 48 hours.

For each component group, there are minor and major SysB-transition threshold values. The thresholds apply to each component in the component group. To obtain a list of the major and minor thresholds that apply to the component groups, use the CNTRS QUERY command. The system displays the threshold values as part of its response to the CNTRS QUERY command. For detailed information on the display of threshold values, see the description of the QUERY parameter of the CNTRS command in the XAC MAP level. The description is found in the XA-Core Reference Manual, in the chapter that describes MAP levels and user interfaces.

For each monitored component, the system compares the component’s 48-hour transition total to the minor SysB transition threshold for the group. If the 48-hour SysB transition total equals or exceeds the minor SysB transition threshold, and if the SysBTh minor alarm or the SysBTh major alarm is not already raised, the system raises the SysBTh minor alarm (unless the alarm has been disabled).

Note: There are also major SysB transition thresholds. If the component’s 48-hour total of SysB transitions equals or exceeds the major threshold, and if the SysBTh major alarm is not already raised, the system raises the
SysBTh major alarm (unless the alarm has been disabled). See the section describing the SysBTh major alarm in this chapter.

The SysBTh minor alarm remains raised until one of the following events occurs:

- The 48-hour totals of SysB transitions for all components fall below the minor thresholds. The totals can fall below the thresholds because at the beginning of each new six-hour interval, the system deletes the SysB transition data from the oldest six-hour interval and starts counting SysB transitions for the current interval from zero.

- You replace a component. On this occasion the system resets to zero all interval counters for that component. If, following the resetting, there is no other component whose 48-hour SysB-transition total equals or exceeds the applicable minor threshold, then the system clears the SysBTh minor alarm.

- A warm restart, cold restart, or reload restart occurs.

- You use the CNTRS RESET command to reset the counters for a component. On this occasion the system resets to zero all interval counters for that component. If, following the resetting, there is no other component whose 48-hour SysB-transition total equals or exceeds the applicable minor threshold, then the system clears the SysBTh minor alarm.

**Note 1:** Ordinarily, you should use the CNTRS RESET command only for links. Use it after you have corrected a link fault, to reset the SysB transition counters for the link. For all components other than links, you should let the system reset the counters automatically. Automatic resetting occurs when you replace a component. Also, each time that a new six-hour interval begins, the system discards the oldest interval count for each component.

**Note 2:** Detailed information on the CNTRS RESET command is found in the *XA-Core Reference Manual*, in the chapter that describes MAP levels and user interfaces.
XAC SysBTh

minor (continued)

Impact

Frequent transitions to the system-busy (SysB) state may indicate that the component is unstable. An unstable component may cause a degradation of performance. Otherwise, there is no change in subscriber service.

Common procedures

This procedure refers to the card replacement procedures found in Chapter 2 of this document.

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

**Summary of clearing a SysBTh minor alarm**

This flowchart summarizes the procedure.
Use the step instructions that follow this flowchart to clear the alarm.

```
Is the component a link?

Yes

Correct the link fault.

No

Replace the circuit pack or packet

Reset the link's counters using CNTRS RESET

End

End
```

How to clear a SysBTh minor alarm

At the MAP terminal

1. Go to the XAC MAP level. At the command input prompt on any MAP screen, type

   >MAPCI;MTC;XAC

   and press the Enter key.

2. Obtain information about the alarm. At the command input prompt, type

   >ALARM SysBTh

   and press the Enter key.

   In response, the system displays a list of components whose SysB transition totals equal or exceed the major thresholds. For each listed component, the system displays the state of the component, and the location of the component.

3. If the unstable component is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an IO link</td>
</tr>
<tr>
<td>step 4</td>
</tr>
<tr>
<td>any component other than an IO link</td>
</tr>
<tr>
<td>step 6</td>
</tr>
</tbody>
</table>

   Investigate the link fault and correct it.

4. Reset the SysB transition counters for the link. Type either

   >CNTRS RESET <nn> <s> <p> <link-name>

   or

   >CNTRS RESET <nn> <s> <link-name>

   and press the Enter key

   where

   <nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packet to which the link is connected - 1 to 18
   <s> is the side parameter value - front (f) or rear (r)
   <p> is used only if the link is connected to a packet, and indicates the packet location in an input/output processor (IOP) - upper (u) or lower (l)

   Note: You do not need to use the <p> parameter if the link is connected to the Ethernet or AMDI section of an HIOP circuit pack, or to the CMIC, RTIF, or Ethernet section of an HCMIC circuit pack.

   <link-name> is the name of the link, for example, link for an Ethernet link, link0 or link1 for an AMDI link

   Note: Ordinarily, you should use the CNTRS RESET command only for links. The reason is that links are the only components for which the system does not reset the SysB transition counters automatically.
Ordinarily, you should not use the CNTRS RESET command for other components because the system resets their counters automatically.

6 If the unstable component is one of the following, replace the circuit pack:
- a circuit pack
- the Ethernet or AMDI section of an HIOP circuit pack
- the CMIC, RTIF, or Ethernet section of an HCMIC circuit pack
- a port on an HIOP circuit pack
- a port on an HCMIC circuit pack
- the time-of-day device on an HCMIC circuit pack

If the unstable component is one of the following, replace the packlet:
- a packlet
- a port on a packlet
- the time-of-day device on a CMIC packet

Perform the appropriate replacement procedure. Replacement procedures are found in Chapter 2 of this document. Return to this point when done.

When you replace the circuit pack or packlet, the system automatically resets to zero all the SysB transition counters for the current six-hour interval for the circuit pack or packlet. At the same time, the system also resets to zero the SysB transition totals for the seven preceding six-hour intervals for the circuit pack or packlet. If, following the resetting, there is no other component whose 48-hour SysB-transition total equals or exceeds the applicable minor threshold, then the system clears the SysBTh minor alarm.

Note 1: If you replace a circuit pack or packet that has one or more associated devices, the system does not automatically reset the transition counters for the devices. Examples of devices are ports, links, and time-of-day devices. If you want to reset the transition counters for the associated devices, you must use the CNTRS RESET command.

Note 2: If the system repeatedly raises the SysBTh alarm, and if the SysB transitions are traceable to a specific circuit pack or packet, and if replacing that circuit pack or packet does not prevent the alarm from recurring, the source of the problem may be a damaged fiber.

7 You have completed this procedure.
**XAC Tape minor**

**Alarm display**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAPE</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**Indication**

A Tape message appears under the XAC header of the alarm banner. This message indicates a tape minor alarm.

**Meaning**

An input/output processor (IOP) CP or tape packlet fault is creating access problems between the XA-Core and the tape device. A Tape minor alarm condition is a result of one or more of the following conditions:

- an XA-Core tape packlet is manual busy (ManB)
- an XA-Core tape packlet is system busy (SysB)
- an XA-Core tape packlet is OOS CBsy because an IOP CP is in a SysB or ManB state

**Impact**

There is no change to subscriber service.

**Common procedures**

There are no common procedures.

**Action**

The following flowchart is only a summary of this procedure. Use the instructions in the steps that follow the flowchart to clear the alarm.
Summary of clearing a Tape minor alarm

This flowchart summarizes the procedure. Use the step instructions that follow this flowchart to clear the alarm.

1. Obtain logs
2. Tape packet ManB?
   - Yes: Return Tape packet to service
   - No: Tape packet SysB?
3. Tape packet is CBsy?
   - Yes: IOP is ManB?
      - Yes: Return the IOP CP to service
      - No: IOP CP is SysB?
4. 
   - Yes: ManB the IOP CP and perform an OOS test
   - No: Call the next level of support
5. 
   - Yes: OOS test passed?
      - Yes: Replace the unit. Refer to the correct NTP.
      - No: Call the next level of support
   - No: Alarm clear?
5. 
   - Yes: different alarm?
      - Yes: Refer to the correct alarm clearing NTP
      - No: Call the next level of support
   - No: End
How to clear a Tape minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
*Risk of static electricity damage*
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
*Loss of service*
Do not repeat steps.

**CAUTION**
*Loss of service*
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
At your current location

1 Collect information from the XA-Core log report system. The log messages provide information about the source of the Tape alarm.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Tape minor condition</td>
<td>step 2</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 17</td>
</tr>
<tr>
<td>that the alarm condition is clear</td>
<td>step 19</td>
</tr>
</tbody>
</table>

2 Access the Tape MAP level. At the CI MAP level, type
   MAPCI;MTC;XAC;TAPE
   and press the Enter key.

3 Examine the Tape MAP level. Record the status of the Tape packlets and the IOP CPs. Record the location of any out of service (OOS) CPs or packlets.

   Note: The Tape MAP level displays alarms and Tape packet status as follows:
   • an alarm code appears under the XAC header in the alarm banner
   • an equipment alarm code appears under the PKLT header in the subsystem status summary field (SSSF)
   • a status code appears under the Status header in the command interpreter output area

   The following is a sample MAP display.
If the MAP indicates

| a Tape packlet is in a SysB state  | step 4 |
| a Tape packlet is in a ManB state  | step 6 |
| a Tape packlet is in a Cbsy state  | step 7 |
| a different alarm                  | step 17 |
| no alarm and all CPs and packlets are in service | step 19 |

4 Manually busy the OOS Tape packlet. At the Tape MAP level type

>BSY <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
XAC Tape
minor (continued)

<p> is the position parameter value to indicate the packlet location in an
input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`BSY 17 f u

Example of system response:

BSY 17 front upper complete

Note: If needed, use the Force option to place the packlet in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 5</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 18</td>
</tr>
</tbody>
</table>

5 Perform an OOS test on the Tape packlet. At the Tape MAP level type:

>`TST <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command:

>`TST 17 f u

Example of system response:

TST 17 front upper passed

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 6</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 14</td>
</tr>
</tbody>
</table>

6 Return the Tape packlet to service. At the Tape MAP level type:

>`RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command:

>RTS 17 f u

*Example of system response:*

RTS 17 front upper passed

<table>
<thead>
<tr>
<th>If the Tape packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 4</td>
</tr>
<tr>
<td>in a CBsy state</td>
<td>step 7</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 16</td>
</tr>
</tbody>
</table>

7 Access the IO MAP level. At the Tape MAP level type

>IO

and press the Enter key.

8 Examine the IO MAP level. Record the working state and location of the OOS IOP CP.

*Note:* The IO MAP level displays IOP CP and packet working states as follows:

- an alarm code appears under the XAC header in the alarm banner
- an equipment alarm code appears under the IO header in the subsystem status summary field (SSSF)
- a status indicator appears in the state field in the shelf layout area.
- a status indicator appears in the equipment status field in the command interpreter output area.

*The following is a sample MAP display.*
Understanding the alarm system

XAC Tape minor (continued)

IO MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Front:</th>
<th>Rear:</th>
<th>SM</th>
<th>PE</th>
<th>IO</th>
<th>PKLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Quit</td>
<td>11111111</td>
<td>111111</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>IOP M Tape C</td>
</tr>
<tr>
<td>2</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>St:--.--.--.--.--.--.--..--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

If the IOP CP is in a ManB state, do step 9

9 Return the IOP CP to service. Make sure that all related packlets are also in service.

a At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command:

>RTS 17 f

Example of system response:

RTS 17 front passed
**Understanding the alarm system**

**XAC Tape**

**minor** (continued)

- Make sure that all related packlets are in service. Examine the IO MAP level to determine the packlet working states.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv and any related packlet is ManB</td>
<td>step 12</td>
</tr>
<tr>
<td>InSv and any related packlet is SysB</td>
<td>step 14</td>
</tr>
<tr>
<td>SysB and all related packlets are CBsy</td>
<td>step 15</td>
</tr>
<tr>
<td>InSv and all related packlets are InSv</td>
<td>step 16</td>
</tr>
</tbody>
</table>

10 Manually busy the OOS IOP CP. At the IO MAP level type

\[>\text{BSY} \ <\text{nn}> \ <\text{s}>\]

and press the Enter key

where

- \(<\text{nn}>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- \(<\text{s}>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

\[>\text{BSY} \ 17 \ f\]

*Example of system response:*

BSY 17 front complete

*Note: If needed, use the Force option to place the CP in a ManB state. Refer to the XA-Core MAP commands documentation.*

11 Perform an OOS test on the ManB IOP CP. At the IO MAP level type

\[>\text{TST} \ <\text{nn}> \ <\text{s}>\]

and press the Enter key

where

- \(<\text{nn}>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- \(<\text{s}>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:

>`TST 17 f`

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 8</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 15</td>
</tr>
</tbody>
</table>

12 Access the correct packlet MAP level. Return the ManB packlet to service.

>`RTS <nn> <s> <p>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command:

`RTS 17 f u`

*Example of system response:*

`RTS 17 front upper passed`

<table>
<thead>
<tr>
<th>If the packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 13</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 16</td>
</tr>
</tbody>
</table>

13 Perform the correct packlet OOS test procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the packlet OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>did not pass</td>
<td>step 14</td>
</tr>
<tr>
<td>passed</td>
<td>step 16</td>
</tr>
</tbody>
</table>

14 Perform the correct packlet replacement procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 16</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 18</td>
</tr>
</tbody>
</table>
Perform the correct IOP CP replacement procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in an InSv state</td>
<td>step 16</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 18</td>
</tr>
</tbody>
</table>

Confirm that the alarm is clear. Examine the alarm banner on the MAP screen.

<table>
<thead>
<tr>
<th>If the Tape minor alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 17</td>
</tr>
<tr>
<td>not clear</td>
<td>step 18</td>
</tr>
<tr>
<td>clear</td>
<td>step 19</td>
</tr>
</tbody>
</table>

Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 18</td>
</tr>
<tr>
<td>clear</td>
<td>step 19</td>
</tr>
</tbody>
</table>

Call the next level of support.

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
XAC TOD critical

Alarm display

A TOD critical alarm code appears under the XAC header of the alarm banner. The alarm code indicates the time-of-day (TOD) critical alarm.

Meaning

There is no accurate time of day. The XA-Core system has detected clock signal faults on all message switch (MS) links. The XA-Core system sets the value of the TOD clocks to zero. A hardware fault can exist as one or more of the following.

- All XA-Core TOD devices are OOS. The XA-Core TOD devices are on HCMIC circuit packs or on OC-3 two port interface packlets.
- All MS OC-3 two port interface paddleboards cannot send TOD clock signals.

Impact

The switch needs time-of-day clocks to record billing information (automatic message accounting) and produce log reports. There is a change in subscriber billing service and logs.

Common procedures

This procedure refers to the replacement procedure for the HCMIC circuit pack and the replacement procedure for the OC-3 two port interface packlet. The procedures are in this document.

Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a TOD critical alarm

This flowchart summarizes the alarm clearing procedure. Use the instructions in the steps that follow this flowchart to clear the alarm.

Determine the source of the TOD fault

TOD fault on HCMIC CP or on CMIC packlet?

- Y: ManB the packet or CP and perform an OOS TOD test

- N: MS TOD fault?

  - Y: Refer to the correct alarm clearing NTP

  - N: Other alarm?

    - Y: Refer to the correct alarm clearing NTP

    - N: Alarm clear?

      - Y: Date and time correct?

        - Y: End

        - N: Call the next level of support

      - N: Call the next level of support

Date and time set?

- Y: Replace the unit. Refer to the correct NTP.

- N: OOS test passed?

  - Y: ManB the packet or CP and perform an OOS TOD test

  - N: Call the next level of support
Understanding the alarm system

How to clear a TOD critical alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
**Risk of equipment damage**
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**
**Risk of equipment damage - electric static discharge (ESD)**
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packetlets.

**CAUTION**
**Loss of service**
Do not repeat steps.

**CAUTION**
**Loss of service**
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packetlets or resources OOS.
At the XA-Core MAP terminal

1. Collect information from the XA-Core log report system. The log messages provide information about the source of the loss of TOD.
   a. Access the log utility feature. At the CI MAP level, type
      `>LOGUTIL`
      and press the Enter key.
   b. Access the XA-Core logs. At the Logutil prompt type
      `>OPEN XAC`
      and press the Enter key.
   c. Examine and record the appropriate log reports.
   d. Return to the CI MAP prompt. At the Logutil prompt type
      `>QUIT`
      and press the Enter key.

   If the log indicates Do
   
<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a TOD critical alarm condition</td>
<td>step 2</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 14</td>
</tr>
<tr>
<td>the TOD critical alarm condition is clear</td>
<td>step 18</td>
</tr>
</tbody>
</table>

2. Access the XA-Core CMIC MAP level. At the CI MAP level prompt type
   `>MAPCI;MTC;XAC;CMIC`
   and press the Enter key.

3. Examine the CMIC MAP level. Record the location and status of the CMIC hardware, which will be either HCMIC circuit packs or OC-3 two-port interface packetets and the IOP CPs.

   Note: The CMIC MAP level displays alarms and TOD status as follows:
   - an alarm under the XAC header in the alarm banner
   - an equipment alarm under the PKLT header of the subsystem status summary field (SSSF), indicating an OC-3 two port interface packet
   - a status code appears under the Status, Link, Port, or TOD headers in the command interpreter output area
Understanding the alarm system

XAC TOD

critical (continued)

The following is a sample MAP display.

CMIC MAP level, showing TOD faults in HCMICs in slot 4 rear and 15 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMIC
0 Quit
2
3
4
5
6 Tst_
7 Bay_
8 RTS_
9
10
11
12 Uneq_
13 Route_
14 Alarm_
15
16 Trnsl_
17 Indicat_
18 Query_

XMAP0

Time 14:12 >

Front: 1111111111 Rear: 111111 SM PE IO PKLT
123456789012345678 456789012345
Sta: -.---.---.---.---.---.---.---.---.---
Dep: F F
Typ: * *
Slot: Side: Packlet: Status: Port0 Port1 Link0: Link1: TOD0 TOD1
4 Rear . . . . S S
15 Rear . . . . S S
If the CMIC MAP level indicates Do

| XA-CORE TODs are in a SysB state and the alarm code under the SSSF IO header or under the SSSF PKLT header is TODflt | step 4 |
| XA-CORE TODs are in a CBsy state and the alarm code under the SSSF IO header or under the SSSF PKLT header is MSTOD | step 12 |
| a different alarm | step 14 |
| no alarm and all CPs and TODs are in service | step 18 |
4 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the CMIC hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 5</td>
</tr>
<tr>
<td>OC-3 two port interface circuit packs</td>
<td>step 8</td>
</tr>
</tbody>
</table>

5 Go to IO MAP level. Type

>IO

and press the Enter key.

6 Manually busy the HCMIC circuit pack. Type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r

Example of system response:

BSY 4 rear complete

Note: If needed, use the Force option to place the packlet in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 7</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>

7 Perform OOS test on the HCMIC circuit pack. Type

>TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:

```bash
>TST 4 r
```

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 10</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 11</td>
</tr>
</tbody>
</table>

Manually busy the OC-3 two port interface packlet. Type

```bash
>BSY <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

```bash
>BSY 4 r l
```

*Example of system response:*

Warning: Bsy command will take it out of service. Proceed (Y or N)

Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:

```bash
>Y
```

*Example of system response:*

BSY 4 rear upper completed

*Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.*

<table>
<thead>
<tr>
<th>If the HCMIC circuit pack or the OC-3 two port interface packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 9</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>
Perform an OOS test on the packlet. Type

\( \text{TST} \ <\text{nn}> \ <\text{s}> \ <\text{p}> \)

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\( \text{TST} \ 4 \ r \ l \)

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 10</td>
</tr>
<tr>
<td>did not pass</td>
<td>step 11</td>
</tr>
</tbody>
</table>

Confirm that the TOD critical alarm is clear. Examine the CMIC MAP level.

<table>
<thead>
<tr>
<th>If the TOD alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to different alarm</td>
<td>step 14</td>
</tr>
<tr>
<td>clear</td>
<td>step 15</td>
</tr>
<tr>
<td>not clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

Perform the replacement procedure for the HCMIC circuit pack or for the OC-3 two port interface packlet. Refer to the correct NTP. Return to this point when complete.

If the XA-Core CMIC hardware (the HCMIC circuit pack or the OC-3 two port interface packlet) and the TODs are

<table>
<thead>
<tr>
<th>in an InSv state</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a SysB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>

Confirm that the OC-3 two port interface paddleboard TODs are OOS. Perform the following steps:

a. Display the MS MAP level. At the CMIC MAP level type

\( \text{TST} \ <\text{nn}> \ <\text{s}> \ <\text{p}> \)

and press the Enter key.
b Access the MS Shelf MAP level. The Shelf MAP level displays the status of all CPs in the shelf. At the MS MAP level, type

>`SHELF

and press the Enter key.

c Access the MS Card MAP level for the OC-3 two port interface paddleboards. The card MAP level displays the status of the OC-3 two port interface paddleboards. At the MS MAP level, type

>`CARD <nn>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the MS physical shelf slot - 1 to 26

Example of command:

>`CARD 24

d Record the status of the OC-3 two port interface paddleboards (see the MS Card MAP level diagram in this step).

The following is a sample MAP display.

MS Card MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MS
0 Quit
2
3
4
5
6 Tst_
7 Bsy_
8 RTS_
9
10 LoadMS_
11
12 SwMast
13 Shelf
14 QueryMS
15
16
17 InterMS_
18 Clock

XMAP0

Time 14:12 >
If the MS Card MAP level indicates

<table>
<thead>
<tr>
<th>OC-3 two port interface paddleboard ports are OOS</th>
<th>step 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a different alarm</td>
<td>step 14</td>
</tr>
<tr>
<td>no faults or alarms</td>
<td>step 17</td>
</tr>
</tbody>
</table>

13 Perform the OC-3 two port interface paddleboard replacement procedure. Return to this point when complete.

If the TOD alarm is

| changed to a different alarm                      | step 14 |
| clear                                             | step 15 |
| not clear                                         | step 17 |

14 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

If the alarm is

| clear                                             | step 15 |
| not clear                                         | step 17 |

15 Set the system date. Exit the CMIC or MS Card MAP level and display the CI MAP prompt. At the CMIC MAP level, type

>`QUIT all`

and press the Enter key.

a Set the system date. At the CI prompt type

>`SETDATE <dd> <mm> <yyyy>`

and press the Enter key.

where

- `<dd>` is the day (01 to 31)
- `<mm>` is the month (01 to 12)
- `<yyyy>` is the current year

Example of command use:

>`SETDATE 14 04 1999`
Example of system response:
Date is WED. 14/APR/1999 08:16:45

<table>
<thead>
<tr>
<th>If the system date is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>step 16</td>
</tr>
<tr>
<td>not set</td>
<td>step 17</td>
</tr>
</tbody>
</table>

16 Set the XA-Core system time.
   a At the CI prompt type
      >SETTIME <hh> <mm> [timezone]
      and press the Enter key.
      <hh> is the hour (00 to 23)
      <mm> is the minutes (00 to 59)
      [timezone] is the offset time (in minutes) relative to Greenwich Mean Time (GMT). The default value is zero minutes.
Example of command use:
   >SETTIME 08 24 1999

Example of system response:
Time is 08:24:00 on WED. 1999/04/14
Timezone is 0 minutes from GMT

<table>
<thead>
<tr>
<th>If the system time is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not set</td>
<td>step 17</td>
</tr>
<tr>
<td>set</td>
<td>step 17</td>
</tr>
</tbody>
</table>

17 Call the next level of support.
18 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
Understanding the alarm system

**Alarm display**

A TOD major alarm code appears under the XAC header of the alarm banner. The alarm code indicates the time-of-day (TOD) major alarm.

**Meaning**

There is no TOD clock redundancy. A single article of CMIC hardware in the XA-Core shelf (an HCMIC circuit pack or an OC-3 two port interface packlet) cannot receive TOD information from the message switch (MS). A hardware fault can exist as one or more of the following:

- In the XA-Core shelf, a single TOD device on an article of CMIC hardware (an HCMIC circuit pack or an OC-3 two port interface packlet) is OOS.
- An MS OC-3 two port interface paddleboard cannot send a TOD clock signal.
- In the XA-Core shelf, a single article of CMIC hardware (an HCMIC circuit pack or an OC-3 two port interface packlet) is in a SysB, ManB or Cbsy state.

**Impact**

There is no immediate change in subscriber service. In the XA-Core shelf, a single article of CMIC hardware (an HCMIC circuit pack or an OC-3 two port interface packlet) is isolated from the XA-Core system.

**Common procedures**

This procedure refers to the replacement procedure for the HCMIC circuit pack and the replacement procedure for the OC-3 two port interface packlet. The procedures are in this document.

**Action**

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
This flowchart summarizes the procedure. Use the instructions in the steps that follow this flowchart to clear the alarm.

Start

Gather logs information

TOD major alarm exists? Y

TOD is SysBsy? N

TOD is CBsy? Y

Test packet or CP, replace if necessary

Check links, repair or replace if necessary

Check the MS for problems, fix if necessary

N

Some other alarm exists? Y

Perform proper alarm-clearing procedure

Y

N

End
How to clear a TOD major alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
**Risk of static electricity damage**
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**WARNING**
**Possible fiber cable damage**
Handle the fiber optic cables with caution. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface reduces communication performance.

**CAUTION**
**Loss of service**
Do not repeat steps.

**CAUTION**
**Loss of service**
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.
XAC TOD major (continued)

At the XA-Core MAP terminal

1 Collect information from the XA-Core log report system. The log messages provide information about the source of the loss of TOD.
   a Access the log utility feature. At the CI MAP level, type
       >LOGUTIL
       and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
       >OPEN XAC
       and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
       >QUIT
       and press the Enter key.

2 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the log information indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a TOD major alarm condition</td>
<td>step 3</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 32</td>
</tr>
<tr>
<td>the TOD major alarm condition is</td>
<td>step 35</td>
</tr>
<tr>
<td>clear</td>
<td></td>
</tr>
</tbody>
</table>

3 Access the CMIC MAP level (if you are not already at that level). Type
   >MAPCI;MTC;XAC;CMIC
   and press the Enter key.

4 Examine the CMIC MAP level. Record the location and state of the links and the time-of-day devices. If the CMIC hardware is OC-3 two port interface packlets, record the location and state of those packlets.

   Note: The CMIC MAP level displays alarms and TOD status as follows:
   • an alarm under the XAC header in the alarm banner
   • an equipment alarm under the PKLT header of the subsystem status summary field (SSSF), indicating an OC-3 two port interface packet
   • a status code appears under the Status, Link, Port, or TOD headers in the command interpreter output area

The following is a sample MAP display.
CMIC MAP level, showing TOD faults in the HCMICs in slot 4 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS IOD Net PM CCS Lns Trks Ext APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD</td>
<td>M 11111111 Rear: 111111 SM PE IO PKLT</td>
</tr>
<tr>
<td>CMIC</td>
<td>123456789012345678 456789012345 . . .</td>
</tr>
</tbody>
</table>

CMIC MAP level, showing a TOD fault in the CMIC packet in slots 4 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS IOD Net PM CCS Lns Trks Ext APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD</td>
<td>M 11111111 Rear: 111111 SM PE IO PKLT</td>
</tr>
<tr>
<td>CMIC</td>
<td>123456789012345678 456789012345 . . .</td>
</tr>
</tbody>
</table>

---

CMIC MAP level, showing TOD faults in the HCMICs in slot 4 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS IOD Net PM CCS Lns Trks Ext APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD</td>
<td>M 11111111 Rear: 111111 SM PE IO PKLT</td>
</tr>
<tr>
<td>CMIC</td>
<td>123456789012345678 456789012345 . . .</td>
</tr>
</tbody>
</table>

CMIC MAP level, showing a TOD fault in the CMIC packet in slots 4 rear

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS IOD Net PM CCS Lns Trks Ext APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD</td>
<td>M 11111111 Rear: 111111 SM PE IO PKLT</td>
</tr>
<tr>
<td>CMIC</td>
<td>123456789012345678 456789012345 . . .</td>
</tr>
</tbody>
</table>
### XAC TOD major (continued)

<table>
<thead>
<tr>
<th>If the MAP indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a TOD is SysB</td>
<td>step 5</td>
</tr>
<tr>
<td>a TOD is CBsy</td>
<td>step 14</td>
</tr>
<tr>
<td>a different alarm exists</td>
<td>step 32</td>
</tr>
<tr>
<td>no alarm exists and all OC-3 XA-Core and MS TODs are in service</td>
<td>step 35</td>
</tr>
</tbody>
</table>

5 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the CMIC hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 6</td>
</tr>
<tr>
<td>OC-3 two port interface circuit packs</td>
<td>step 9</td>
</tr>
</tbody>
</table>

6 Go to IO MAP level. Type `>IO` and press the Enter key.

7 Manually busy the HCMIC circuit pack. Type `>BSY <nn> <s>` and press the Enter key where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

`>BSY 4 r`

**Example of system response:**

BSY 4 rear lower complete

**Note:** If needed, use the Force option to place the packet in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 34</td>
</tr>
</tbody>
</table>
Perform OOS test on the HCMIC circuit pack. Type

>`TST <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>`TST 4 r

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>did not pass</td>
<td>step 11</td>
</tr>
<tr>
<td>passed</td>
<td>step 12</td>
</tr>
</tbody>
</table>

Manually busy the 0C-3 two-port interface packlet. Type

>`BSY <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`BSY 4 r l

Example of system response:

BSY 4 rear lower complete

*Note:* If needed, use the Force option to place the packlet in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 10</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 34</td>
</tr>
</tbody>
</table>

Perform an OOS test on the 0C-3 two-port interface packlet. Type

>`TST <nn> <s> <p>

and press the Enter key
where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

> TST 4 r l

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>did not pass</td>
<td>step 11</td>
</tr>
<tr>
<td>passed</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11 Perform the replacement procedure for the HCMIC circuit pack or for the OC-3 two interface packlet. Refer to the correct procedure located in this document. Return to this point when complete.

12 Return the HCMIC circuit pack or the OC-3 two port interface packlet to service. Type

> RTS <nn> <s> <p>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is used only if the CMIC hardware is a packlet, and is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use to return a packlet to service:

> RTS 4 r l

Example of system response:

RTS 4 rear upper passed

13 Go to step 2.

At the XA-Core physical shelf

14 Locate the CMIC hardware that has the CBsy TOD. The CMIC hardware is either an HCMIC circuit pack or an OC-3 two port interface packlet.
Examine the fiber optic cables on the HCMIC circuit pack or on the OC-3 two port interface packet. Look for visible damage or disconnection of the cables or cable connectors. Make sure that the link connections fit into the correct OC-3 interface on the HCMIC circuit pack or on the OC-3 two port interface packet. Make sure that the link connections fit into the correct paddleboard ports in the message switch (MS). Use the following diagrams to check the link connections.

**XA-Core and MS fiber optic cable connections (SuperNode)**

<table>
<thead>
<tr>
<th>XA-Core OC-3 interface 1 Slot 4 rear (HCMIC circuit pack or CMIC packet)</th>
<th>XA-Core OC-3 interface 2 Slot 15 rear (HCMIC circuit pack or CMIC packet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>Port 1</td>
</tr>
<tr>
<td>Port 0</td>
<td>Port 0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
XA-CORE and MS fiber optic cable connections (SuperNode SE)

Legend:

<table>
<thead>
<tr>
<th>Receive terminal</th>
<th>Transmit terminal</th>
</tr>
</thead>
</table>

Paired fiber optic cable connectors

Connector body
Fiber tip guide
Cable sheath
Strain relief retainer
Receptacle guide
If OC-3 fiber optic cables or connectors are

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>damaged</td>
<td>step 16</td>
</tr>
<tr>
<td>not correctly connected to the MS</td>
<td>step 20</td>
</tr>
<tr>
<td>not visibly damaged or disconnected</td>
<td>step 23</td>
</tr>
</tbody>
</table>

16 Obtain replacement cables as necessary.

17 Disconnect the fiber optic cables from the CMIC hardware in the XA-Core (HCMIC circuit pack or OC-3 two port interface packlet) and from the OC-3 two-port interface paddleboard in the message switch.

   a  Hold the connector by the receptacle body only
   b  Carefully pull the fiber optic connector away from the receptacle.
   c  Cover the ends of the fiber optic cable with dust caps.
   d  Place the cables in a safe location away from the circuit pack or packlet

Disconnect the fiber optic cables from the OC-3 two port interface packlet ports
Disconnect the fiber optic cables from the OC-3 ports on the HCMIC circuit pack
Disconnect the OC-3 fiber optic cables from the OC-3 two port interface paddleboard ports

18 Connect the replacement fiber optic cables to the correct CMIC hardware in the XA-Core (HCMIC circuit pack or OC-3 two port interface packet) and to the OC-3 two-port interface paddleboard ports in the message switch. Use the link connection diagrams shown in this step.

a Hold the connector by the body only.

b Remove the fiber optic cable dust caps.

c Clean the tips of the fiber optic cables. Use the correct fiber optic cleaning procedure.

d Push the connector into the correct receptacle until the connector is fit into position.
Connect the fiber optic cables to the OC-3 ports on the HCMIC circuit pack.
Connect the fiber optic cables to the OC-3 two port interface packet ports

19 Go to step 30.

20 If you found that the connections were wrong, fix them, referring to the diagrams in step 15.

21 Connect the fiber optic cables to the correct CMIC hardware in the XA-Core (HCMIC circuit pack or OC-3 two port interface packet) and to the OC-3 two-port interface paddleboard ports in the message switch. Use the link connection diagrams shown in this step.
a Hold the connector by the body only.
b Remove the fiber optic cable dust caps.
c Clean the tips of the fiber optic cables. Use the correct fiber optic cleaning procedure.
d Push the connector into the correct receptacle until the connector is fit into position.

Connect the fiber optic cables to the OC-3 ports on the HCMIC circuit pack
Connect the fiber optic cables to the OC-3 two port interface packlet ports

22 Go to step 30.
23 Perform the replacement procedure for the HCMIC circuit pack or for the OC-3 two interface packet. Refer to the correct procedure located in this document. Return to this point when complete.
24 Select the next step as follows.

<table>
<thead>
<tr>
<th>If the CMIC hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 27</td>
</tr>
<tr>
<td>OC-3 two port interface circuit packs</td>
<td>step 25</td>
</tr>
</tbody>
</table>

25 Return the OC-3 two port interface packet to service. Type

>`RTS <nn> <s> <p>

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`RTS 4 r l

Example of system response:

RTS 4 rear upper passed

26 Go to step 2.

27 Go to IO MAP level. Type

>`IO

and press the Enter key.

28 Return the HCMIC circuit pack to service. Type

>`RTS <nn> <s>

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>`RTS 4 r

Example of system response:

RTS 4 rear passed
29  Go to step 2.

At the XA-Core MAP terminal

30  Examine the MS MAP. Perform the following steps:

  a  Display the MS MAP level. At the CMIC MAP level type
      >MS
      and press the Enter key.

  b  Access the MS Shelf MAP level. The Shelf MAP level displays the status
      of all CPs in the shelf. At the MS MAP level, type
      >SHELF
      and press the Enter key.

  c  Access the MS Card MAP level for the OC-3 two port interface
      paddleboards. The card MAP level displays the status of the OC-3 two
      port interface paddleboards. At the MS MAP level, type
      >CARD <nn>
      and press the Enter key.

       where

       <nn> is the slot number parameter value to indicate the number of the MS
       physical shelf slot - 1 to 26

       Example of command:

       >CARD 24

  d  Record the status of the OC-3 two port interface paddleboards (see the
      MS Card MAP level diagram in this step).
The following is a sample MAP display.

**MS Card MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**MS**

- 0 Quit
- 1 Shelf 0
- 2 Card 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
- 3 Chain
- 4 MS 0
- 5 MS 1
- 6 Tst_
- 7 Bsy_
- 8 RTS_
- 9 LoadMS_
- 10 QueryMS
- 11 Shelf
- 12 SwMast
- 13 InterMS_
- 14 Clock
- 15 MS IOD Net PM CCS Lns Trks Ext APPL
- 16 XMAP0
- 17 Time 14:12 >

**If the MS Card MAP level indicates**

<table>
<thead>
<tr>
<th>OC-3 two port interface paddleboard ports are OOS</th>
<th>step 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>a different alarm</td>
<td>step 32</td>
</tr>
<tr>
<td>no faults or alarms</td>
<td>step 33</td>
</tr>
</tbody>
</table>
31 Perform the correct MS CP replacement procedure. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the TOD alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 32</td>
</tr>
<tr>
<td>not clear</td>
<td>step 34</td>
</tr>
<tr>
<td>clear</td>
<td>step 33</td>
</tr>
</tbody>
</table>

32 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 34</td>
</tr>
<tr>
<td>clear</td>
<td>step 33</td>
</tr>
</tbody>
</table>

33 Go to step 2.

34 Call the next level of support.

35 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Understanding the alarm system

XAC TOD minor

Alarm display

<table>
<thead>
<tr>
<th>XAC</th>
<th>TOD</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

Indication

A TOD alarm code appears under the XAC header of the alarm banner. The alarm code indicates the time-of-day (TOD) minor alarm.

Meaning

In the XA-Core shelf, a single article of CMIC hardware (an HCMIC circuit pack or an OC-3 two port interface packlet) has lost TOD clock synchronization for the following reasons:

- The TOD device on the article of CMIC hardware in the XA-Core shelf cannot synchronize TOD signals from the message switch (MS).
- A single MS OC-3 TOD device on a single message switch is out of service.

Impact

There is no immediate change in subscriber service. In the XA-Core shelf, a single article of CMIC hardware (an HCMIC circuit pack or an OC-3 two port interface packlet) cannot obtain an accurate TOD signal.

Common procedures

This procedure refers to the replacement procedure for the HCMIC circuit pack and the replacement procedure for the OC-3 two port interface packlet. The procedures are in this document.

Action

The following flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a TOD minor alarm

This flowchart summarizes the procedure. Use the instructions in the steps that follow this flowchart to clear the alarm.

Start

Gather logs information

TOD major alarm exists? Y

TOD is SysBsy? N

TOD is CBsy? N

Test packet or CP, replace if necessary

Check the MS for problems, fix if necessary

Some other alarm exists? Y

Perform proper alarm-clearing procedure

End

Y

N

Y

N

Y

N

Y

N

Y

N
To clear a TOD minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**WARNING**
*Risk of static electricity damage*
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**WARNING**
*Possible fiber cable damage*
Handle the fiber optic cables with caution. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface reduces communication performance.

**CAUTION**
*Loss of service*
Do not repeat steps.

**CAUTION**
*Loss of service*
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packets or resources OOS.
At the XA-Core MAP terminal

1 Collect information from the XA-Core log report system. The log messages provide information about the source of the loss of TOD.
   a Access the log utility feature. At the CI MAP level, type
      >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type
      >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type
      >QUIT
      and press the Enter key.

2 Select the next step as follows.

   If the log information indicates      Do
   a TOD major alarm condition          step 3
   a different alarm condition          step 32
   the TOD major alarm condition is clear step 35

3 Access the CMIC MAP level (if you are not already at that level). Type
   >MAPCI;MTC;XAC;CMIC
   and press the Enter key.

4 Examine the CMIC MAP level. Record the location and state of the links and the time-of-day devices. If the CMIC hardware is OC-3 two port interface packlets, record the location and state of those packlets.

   Note: The CMIC MAP level displays alarms and TOD status as follows:
   • an alarm under the XAC header in the alarm banner
   • an equipment alarm under the PKLT header of the subsystem status summary field (SSSF), indicating an OC-3 two port interface packet
   • a status code appears under the Status, Link, Port, or TOD headers in the command interpreter output area

   The following is a sample MAP display.
**CMIC MAP level, showing a TOD faults in the HCMIC in slot 4 rear**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**CMIC**

- Front: 111111111 Rear: 111111 SM PE IO PKLT
- 123456789012345678 456789012345 . . .
- Sta: -.-.--..-..--.-..- .--.-------. 0 0 0 0
- Dep:
- Typ: *
- Slot: Side: Packlet: Status: Port0 Port1 Link0: Link1: TOD0 TOD1
  - 4 Rear . . . . S
  - 15 Rear . . . . .

**CMIC MAP level, showing a TOD fault in the CMIC packet in slots 4 rear**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**CMIC**

- Front: 111111111 Rear: 111111 SM PE IO PKLT
- 123456789012345678 456789012345 . . . TODf1
- Sta: -.-.--..-..--.-..- .--.-------. 0 0 0 1
- Dep:
- Typ: *
- Slot: Side: Packlet: Status: Port0 Port1 Link0: Link1: TOD0 TOD1
  - 4 Rear Lower . . . S
  - 15 Rear Lower . . . .

Time 14:12 >
**Select the next step as follows.**

<table>
<thead>
<tr>
<th>If the MAP indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a TOD is SysB</td>
<td>step 5</td>
</tr>
<tr>
<td>a TOD is CBsy</td>
<td>step 14</td>
</tr>
<tr>
<td>a different alarm exists</td>
<td>step 32</td>
</tr>
<tr>
<td>no alarm exists and all OC-3 XA-Core and MS TODs are in service</td>
<td>step 35</td>
</tr>
</tbody>
</table>

5. Go to IO MAP level. Type

>IO

and press the Enter key.

<table>
<thead>
<tr>
<th>If the CMIC hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 6</td>
</tr>
<tr>
<td>OC-3 two port interface circuit packs</td>
<td>step 9</td>
</tr>
</tbody>
</table>

6. Manually busy the HCMIC circuit pack. Type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r

**Example of system response:**

BSY 4 rear lower complete

*Note:* If needed, use the Force option to place the packlet in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the circuit pack is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 34</td>
</tr>
</tbody>
</table>
Perform OOS test on the HCMIC circuit pack. Type

```
>TST <nn> <s>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

```
>TST 4 r
```

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>did not pass</td>
<td>step 11</td>
</tr>
<tr>
<td>passed</td>
<td>step 12</td>
</tr>
</tbody>
</table>

Manually busy the 0C-3 two-port interface packlet. Type

```
>BSY <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

```
>BSY 4 r l
```

Example of system response:

```
BSY 4 rear lower complete
```

**Note:** If needed, use the Force option to place the packlet in a ManB state. Refer to the XA-Core MAP commands documentation.

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 10</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 34</td>
</tr>
</tbody>
</table>

Perform an OOS test on the 0C-3 two-port interface packet. Type

```
>TST <nn> <s> <p>
```

and press the Enter key
XAC TOD

minor (continued)

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

> TST 4 r l

<table>
<thead>
<tr>
<th>If the OOS test</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>did not pass</td>
<td>step 11</td>
</tr>
<tr>
<td>passed</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11 Perform the replacement procedure for the HCMIC circuit pack or for the OC-3 two interface packlet. Refer to the correct procedure located in this document. Return to this point when complete.

12 Return the HCMIC circuit pack or the OC-3 two port interface packlet to service. Type

> RTS <nn> <s> <p>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is used only if the CMIC hardware is a packlet, and is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use to return a packlet to service:

> RTS 4 r l

Example of system response:

RTS 4 rear upper passed

13 Go to step 2.

At the XA-Core physical shelf

14 Locate the CMIC hardware that has the CBsy TOD. The CMIC hardware is either an HCMIC circuit pack or an OC-3 two port interface packlet.
Examine the fiber optic cables on the HCMIC circuit pack or on the OC-3 two port interface packet. Look for visible damage or disconnection of the cables or cable connectors. Make sure that the link connections fit into the correct OC-3 interface on the HCMIC circuit pack or on the OC-3 two port interface packet. Make sure that the link connections fit into the correct paddleboard ports in the message switch (MS). Use the following diagrams to check the link connections.

**XA-Core and MS fiber optic cable connections (SuperNode)**

```
<table>
<thead>
<tr>
<th>XA-Core OC-3 interface 1</th>
<th></th>
<th>XA-Core OC-3 interface 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 4 rear (HCMIC circuit pack or CMIC packet)</td>
<td></td>
<td>Slot 15 rear (HCMIC circuit pack or CMIC packet)</td>
<td></td>
</tr>
<tr>
<td>Port 1</td>
<td></td>
<td>Port 1</td>
<td></td>
</tr>
<tr>
<td>Port 0</td>
<td></td>
<td>Port 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 0</td>
<td></td>
<td>Port 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS 1, slot 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS 1, slot 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS 0, slot 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS 0, slot 24</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Receive terminal
- Transmit terminal
```
**XA-CORE and MS fiber optic cable connections (SuperNode SE)**

**Legend:**
- □ Receive terminal
- □ Transmit terminal

**Paired fiber optic cable connectors**

![Diagram of fiber optic cable connectors](image-url)
Obtain replacement cables as necessary.

Disconnect the fiber optic cables from the CMIC hardware in the XA-Core (HCMIC circuit pack or OC-3 two port interface packet) and from the OC-3 two-port interface paddleboard in the message switch.

a Hold the connector by the receptacle body only

b Carefully pull the fiber optic connector away from the receptacle.

c Cover the ends of the fiber optic cable with dust caps.

d Place the cables in a safe location away from the packet

**If OC-3 fiber optic cables or connectors are**

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>damaged</td>
<td>step 16</td>
</tr>
<tr>
<td>not correctly connected to the MS</td>
<td>step 20</td>
</tr>
<tr>
<td>not visibly damaged or disconnected</td>
<td>step 23</td>
</tr>
</tbody>
</table>

Disconnect the fiber optic cables from the OC-3 two port interface packet ports
Disconnect the fiber optic cables from the OC-3 ports on the HCMIC circuit pack.
Disconnect the OC-3 fiber optic cables from the OC-3 two port interface paddleboard ports

18 Connect the replacement fiber optic cables to the correct CMIC hardware in the XA-Core (HCMIC circuit pack or OC-3 two port interface packet) and to the OC-3 two-port interface paddleboard ports in the message switch. Use the link connection diagrams shown in this step.

a Hold the connector by the body only.
b Remove the fiber optic cable dust caps.
c Clean the tips of the fiber optic cables. Use the correct fiber optic cleaning procedure.
d Push the connector into the correct receptacle until the connector is fit into position.
Connect the fiber optic cables to the OC-3 ports on the HCMIC circuit pack
Connect the fiber optic cables to the OC-3 two port interface packlet ports

19 Go to step 30.

20 If you found that the connections were wrong, fix them, referring to the diagrams in step 15.

21 Connect the fiber optic cables to the correct CMIC hardware in the XA-Core (HCMIC circuit pack or OC-3 two port interface packlet) and to the OC-3 two-port interface paddleboard ports in the message switch. Use the link connection diagrams shown in this step.
XAC TOD
minor (continued)

a  Hold the connector by the body only.
b  Remove the fiber optic cable dust caps.
c  Clean the tips of the fiber optic cables. Use the correct fiber optic cleaning procedure.
d  Push the connector into the correct receptacle until the connector is fit into position.

Connect the fiber optic cables to the OC-3 ports on the HCMIC circuit pack
Connect the fiber optic cables to the OC-3 two port interface packet ports

![Image](image1.png)

Connect the fiber optic cables to the OC-3 two port interface paddleboard ports

![Image](image2.png)

22 Go to step 30.
23 Perform the replacement procedure for the HCMIC circuit pack or for the OC-3 two interface packet. Refer to the correct procedure located in this document. Return to this point when complete.
### Select the next step as follows.

<table>
<thead>
<tr>
<th>If the CMIC hardware is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMIC circuit packs</td>
<td>step 27</td>
</tr>
<tr>
<td>OC-3 two port interface circuit packs</td>
<td>step 25</td>
</tr>
</tbody>
</table>

25 Return the OC-3 two port interface packet to service. Type

```
>RTS <nn> <s> <p>
```

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the packet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

```
>RTS 4 r l
```

*Example of system response:*

```
RTS 4 rear upper passed
```
Example of command use:

>`RTS 4 r`

*Example of system response:*

`RTS 4 rear passed`

29 Go to step 2.

**At the XA-Core MAP terminal**

30 Examine the MS MAP. Perform the following steps:

a Display the MS MAP level. At the CMIC MAP level type

>`MS`

and press the Enter key.

b Access the MS Shelf MAP level. The Shelf MAP level displays the status of all CPs in the shelf. At the MS MAP level, type

>`SHELF`

and press the Enter key.

c Access the MS Card MAP level for the OC-3 two port interface paddleboards. The card MAP level displays the status of the OC-3 two port interface paddleboards. At the MS MAP level, type

>`CARD <nn>`

and press the Enter key.

where

`<nn>` is the slot number parameter value to indicate the number of the MS physical shelf slot - 1 to 26

Example of command:

>`CARD 24`

d Record the status of the OC-3 two port interface paddleboards (see the MS Card MAP level diagram in this step).
The following is a sample MAP display.

**MS Card MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **MS**
  - 0 Quit
  - 2
  - 4
  - 6 Tst_
  - 7 Bsy_
  - 8 RTS_
  - 9
  - 10 LoadMS_
  - 11
  - 12 SwMast
  - 13 Shelf
  - 14 QueryMS
  - 15
  - 16
  - 17 InterMS_
  - 18 Clock

If the MS Card MAP level indicates

<table>
<thead>
<tr>
<th>If the MS Card MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-3 two port interface paddleboard ports are OOS</td>
<td>step 31</td>
</tr>
<tr>
<td>a different alarm</td>
<td>step 32</td>
</tr>
<tr>
<td>no faults or alarms</td>
<td>step 33</td>
</tr>
</tbody>
</table>

Perform the correct MS CP replacement procedure. Return to this point when complete.

If the TOD alarm is

<table>
<thead>
<tr>
<th>If the TOD alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to a different alarm</td>
<td>step 32</td>
</tr>
<tr>
<td>not clear</td>
<td>step 34</td>
</tr>
<tr>
<td>clear</td>
<td>step 33</td>
</tr>
</tbody>
</table>
Perform the correct alarm clearing procedure. Refer to the correct NTP.
Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 34</td>
</tr>
<tr>
<td>clear</td>
<td>step 33</td>
</tr>
</tbody>
</table>

Go to step 2.

Call the next level of support.

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Alarm display

<table>
<thead>
<tr>
<th>XAC WgSlot</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
</table>

Indication

A WgSlot (wrong slot) minor alarm message appears under the XAC header of the alarm banner. The message indicates a wrong slot minor alarm.

The system generates the WgSlot alarm if either of the following conditions occurs:

• system software detects one or more CPs in the wrong XA-Core shelf slot positions.
• system software detects that a shelf slot configured for a CP is empty.

If there are no existing alarms, the alarm banner displays the WgSlot alarm. An existing alarm condition masks the WgSlot alarm banner message if the alarm condition is higher in the alarm hierarchy. You can perform an alarm query to review active alarms. The subsystem status summary field (SSSF) displays a BadPEC notice.

Meaning

The message indicates that a circuit pack (CP) is in a wrong physical shelf slot. The XA-Core system software detects a mismatch between the circuit pack product engineering code (PEC) now in the physical slot and the PECINV table.

Impact

The circuit pack type cannot operate in the physical shelf slot. Operating company personnel must insert the circuit pack in the physical shelf slot matched for the circuit pack type.

Common procedures

There are no common procedures.
XAC WgSlot
minor (continued)

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing a WgSlot minor alarm

1. Obtain logs

2. Examine the MAP display
   - MAP displays WgSlot alarm?
     - No: Query alarms
     - Yes: Determine the CP shelf slot location

3. Determine the CP shelf slot location
   - Yes: WgSlot alarm active?
     - No: Call the next level of support
     - Yes: Remove the CP

4. Remove the CP

5. Insert the CP in the correct shelf slot location

6. Alarm cleared?
   - No: Call the next level of support
   - Yes: Other alarm?
     - No: End
     - Yes: Refer to the correct alarm clearing NTP

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to clear the alarm.
How to clear a WgSlot minor alarm

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**CAUTION**
*Loss of service*
Do not repeat steps.

**At your current location**

1. Collect information from the XA-Core log report system. The log messages provide information about the source of the Tape alarm.
   a. Access the log utility feature. At the CI MAP level, type
      `>LOGUTIL`
      and press the Enter key.
   b. Access the XA-Core logs. At the Logutil prompt type
      `>OPEN XAC`
      and press the Enter key.
   c. Examine and record the appropriate log reports.
   d. Return to the CI MAP prompt. At the Logutil prompt type
      `>QUIT`
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the MAP indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a WgSlot condition</td>
<td>step 2</td>
</tr>
<tr>
<td>another alarm event</td>
<td>step 7</td>
</tr>
<tr>
<td>that the WgSlot condition is clear</td>
<td>step 9</td>
</tr>
</tbody>
</table>
Understanding the alarm system

1. Access the correct XA-Core MAP level using the information from 1. Examine the state and location of the CP or packet.

   **Note:** The MAP terminal can display alarms as follows:
   - a WgSlot minor alarm appears under the XAC header in the alarm banner
   - an equipment alarm appears under an equipment header in the subsystem status summary field (SSSF)

   *The following is a sample MAP display.*

   **PE MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>TOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WgSlot</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>PE</td>
<td>Front: 11111111 Rear: 111111 SM PE IO PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>123456789012345678 456789012345 badPEC . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sta: --S--.--.--.--.--.--.--.--.--.--.--.--.--.--. 0 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dep:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Typ: * *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tst_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bsy_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RTS_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Trnsl_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Indicat_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Query_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 14:12 &gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   **If the MAP level indicates**

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a WgSlot alarm</td>
</tr>
<tr>
<td>a different alarm</td>
</tr>
<tr>
<td>the alarm is clear and all CPs and packlets are in service</td>
</tr>
</tbody>
</table>

2. Find the correct CP physical slot location. Perform a query by typing

   `>QUERY <type> <subsystem_name>`

   and press the Enter key. The MAP level displays the correct physical slot location for the subsystem type.

   where
XAC WgSlot

minor (end)

<type> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<subsystem_name> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

>QUERY type pe

The Type field displays an asterisk (*) to indicate the correct slot locations for the CP.

4 Remove the CP from the incorrect physical shelf slot.

5 Insert the CP in the correct physical shelf slot.

6 Confirm that the alarm is clear. Examine the alarm banner on the MAP screen.

<table>
<thead>
<tr>
<th>If the Wgslot alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>changed to another alarm</td>
<td>step 7</td>
</tr>
<tr>
<td>not clear</td>
<td>step 8</td>
</tr>
<tr>
<td>clear</td>
<td>step 9</td>
</tr>
</tbody>
</table>

7 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

<table>
<thead>
<tr>
<th>If the alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 8</td>
</tr>
<tr>
<td>clear</td>
<td>step 6</td>
</tr>
</tbody>
</table>

8 Call the next level of support.

9 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
Alarm display

An XATrap major alarm code appears under the XAC header of the alarm banner. The alarm code indicates a XATrap major alarm.

Meaning

The XATrap major alarm indicates that the frequency and number of processor interruptions exceeds threshold values. A trap is a report of an interruption or change in the normal flow of system software processing. The processor cannot completely execute a command because of a software fault. The XATrap major alarm does not have a matching equipment alarm.

Impact

There is a change in subscriber service. There is a reduction in subscriber service response time because fault detection software is using system resources and processor time to correct faults. A restart is imminent.

Common procedures

There are no common procedures.

Action

Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.
Summary of clearing an XATrap major alarm

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to clear the alarm.

1. Obtain logs
2. Examine XACMtc MAP level
3. Trap alarm?
   - Yes: Contact the next level of support
   - No: Other alarm?
     - Yes: Refer to the correct alarm clearing NTP
     - No: Alarm clear?
       - Yes: End
       - No: Call the next level of support

End
How to clear an XATrap major alarm

CAUTION
Loss of service
Do not repeat steps.

At your current location

1 Collect information from the XA-Core log report system. The log messages provide information about the source of the XATrap alarm.
   a Access the log utility feature. At the CI MAP level, type >LOGUTIL
      and press the Enter key.
   b Access the XA-Core logs. At the Logutil prompt type >OPEN XAC
      and press the Enter key.
   c Examine and record the appropriate log reports.
   d Return to the CI MAP prompt. At the Logutil prompt type >QUIT
      and press the Enter key.

<table>
<thead>
<tr>
<th>If the log indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a trap major condition</td>
<td>step 2</td>
</tr>
<tr>
<td>a different alarm condition</td>
<td>step 5</td>
</tr>
<tr>
<td>the XATrap major alarm condition is clear</td>
<td>step 6</td>
</tr>
</tbody>
</table>

2 Access the XACMtc MAP level. At the CI MAP level, type MAPCI;MTC;XAC;XACMTC
   and press the Enter key.

<table>
<thead>
<tr>
<th>If the XA-Core XACMtc MAP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>accessible</td>
<td>step 3</td>
</tr>
<tr>
<td>not accessible</td>
<td>step 6</td>
</tr>
</tbody>
</table>
3 Examine the XACMtc MAP level. Record the rate and total number of traps. The trap rate indicates the frequency of faults that occur per minute. The trap total is the number of faults over a period of time. 

The following is a sample MAP display.

XACMtc MAP level

4 Perform the correct alarm clearing procedure. Refer to the correct NTP. Return to this point when complete.

If the alarm is do
not clear step 5
clear step 6

5 Call the next level of support.

6 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
2 Introduction to card replacement

Chapter summary

This chapter contains procedures for replacing circuit packs (CPs) and packlets in XA-Core shelves in SuperNodes and SuperNode SEs (SNSEs). It also contains procedures for adding and removing PE circuit packs and Ethernet packlets.

Each procedure provides the following information:

- application information
- common procedures
- summary flowchart
- step-action instructions

Application information

The Application information section describes when to use the procedure. The Application information section also lists the versions of the CP or packlet.

Common procedures

The common procedures section refers you to another set of instructions located elsewhere in the documentation. The common procedures describe how to perform related maintenance activities.

Summary flowchart

The summary flowchart shows the primary activities, decision points, and paths to correctly replace the CP or packlet. Use the summary flowchart to preview the replacement activities and to prepare for the replacement procedure.

Step-action instructions

The step instructions are a sequence of activities that describe how to replace a CP or packlet. The instructions also provide examples of MAP command syntax and MAP terminal responses.
On occasion, a step instruction can refer to a common procedure or to another document. After completion of the common or related procedure, return to the original point in the step-action instructions and continue.

**XA-Core hardware components**
This section provides a short description of the major XA-Core hardware components.

XA-Core has the following major hardware components:
- C42 equipment cabinet
- shelf module
- circuit packs and packlets
- cooling unit

**C42 equipment cabinet**
The C42 equipment cabinet contains the XA-Core shelf module, CPs, packlets and cooling unit. All cabinet versions have a frame supervisory panel (FSP), four shelf units and a cooling unit.

XA-Core is available in one of three cabinet configurations:
- C42 SuperNode-XA cabinet
- C42 SuperNode SE-XA (SNSE-XA) cabinet
- C42 XA-Extension cabinet
Figure 2-1  C42 SuperNode-XA cabinet layout

- FSP
- Message switch (0) shelf
- Message switch (1) shelf
- Filler shelf
- XA-Core shelf
- Cooling unit
Figure 2-2  C42 SNSE-XA cabinet layout

- FSP
- Message switch shelf (0/1)
- Optional link interface shelf (LIS)
- Optional ENet shelf (0/1)
- XA-Core shelf
- Cooling unit
**Figure 2-3 C42 XA-Extension cabinet layout**

**XA-Core shelf module**

The XA-Core shelf module houses all CPs and packlets. The CPs connect to a midplane connector.

The shelf has two sides:
- front (primary)
- rear (secondary)

The front side houses IOP CPs that contain non-cable supporting packlets such as the Disk and Tape. The rear side contains IOP CPs that contain all cable-supporting packlets such as the OC-3 dual port interface and the RTIF.
Each CP installs into a vertical slot integrated within the shelf. Each slot holds one type of CP. The CPs plug into a series of connectors placed along the interior axis of the shelf. Together, these connectors form the midplane connector level.

The midplane is a printed circuit board (PCB) assembly that provides the inter-connection between the processor elements (PEs) and peripheral devices. The midplane is not a field replaceable unit (FRU). Any failures traceable to the midplane requires replacement of the XA-Core shelf.

Slots at the front (primary side) of the shelf are numbered as (left to right) 01F to 18F. Slots at the rear (secondary side) of the shelf are numbered as (left to right) 03R to 16R. There are a total of 30 slots for both front and rear sides.

**Figure 2-4 XA-Core shelf**

*Note 1*: Only representative card guides, T-bars, support plates, and connector stack-ups are shown.

*Note 2*: The XA-Core shelf contains thirty 50mm I/O, PE, and MEM modules, and two 40.5mm SIM modules.
Circuit packs and packlets

Each replacement procedure in this chapter applies to a single CP or packet. There are two different types of slots that contain three types of circuit packs and packlets:

1. **Shared memory slots**: contain the shared memory (SM) CPs
2. **Element slots**: contain the processor element (PE), IOP, and HIOP circuit packs. The IOP CPs contain the disk, tape, OC-3 dual port interface, reset terminal interface (RTIF) packlets.

Two shelf interface modules (SIMs) provide a power interface to the shelf. The SIMs are an extension of the midplane and are removable for maintenance purposes.

Shelf layout

This section describes CP and packet placement for both the SuperNode and SuperNode SE (SNSE) configurations.

Shelf provisioning depends on the configuration and office requirements. In both SuperNode and SNSE versions, the primary side contains non-cable bearing (disk/tape) circuit packlets. The secondary side contains slots for SM, cable/non-cable bearing IOPs and up to five slots for additional PEs or IOPs.

Special termination filler modules electrically terminate empty slots at the midplane. Filler modules help to dissipate heat within the C42 cabinet.

There are two sizes of circuit packs:

- **Single-width**: IOP CPs occupy one slot width and have a single slot location number. These IOP CPs contain packlets such as the OC-3 dual port interface and RTIF packlets.
- **Dual-width**: IOP CPs occupy two slot widths and have more than one slot location number. These IOP CPs typically contain the Disk and Tape packlets.

The following table shows a summary of the CP and packet version and descriptions.
### Table 2-1 Equipment provisioning summary (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>PEC</th>
<th>Version</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX02</td>
<td>AA</td>
<td>Processor element (PE) circuit pack</td>
<td>256 MByte processor element</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTLX02</td>
<td>DA</td>
<td>Processor element (PE) circuit pack</td>
<td>512 MByte processor element</td>
</tr>
<tr>
<td>NTLX03</td>
<td>AA</td>
<td>Input/output processor (IOP) circuit pack</td>
<td>Single-width IOP</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTLX03</td>
<td>BA</td>
<td>Input/output processor (IOP) circuit pack</td>
<td>Dual-width IOP for Disk &amp; Tape packlets</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTLX04</td>
<td>AA</td>
<td>High performance input/output processor (HIOP) circuit pack</td>
<td>Occupies one slot. Does not take packlets. Version AA supports ethernet links only. Versions BA and CA support both ethernet and AMDI links. The CA version cannot coexist with the earlier versions.</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTLX05</td>
<td>AA</td>
<td>OC-3 two port interface CMIC packetlet</td>
<td>XA-Core to message switch interconnect (CMIC) packetlet</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTLX05</td>
<td>BA</td>
<td>OC-3 two port interface AMDI packetlet</td>
<td>ATM multi-node data interface (AMDI) packetlet--interfaces to the ATM edge switch</td>
</tr>
</tbody>
</table>
### Table 2-1  Equipment provisioning summary (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>PEC</th>
<th>Version</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX06</td>
<td>AA</td>
<td>Disk packlet</td>
<td>4 GByte disk drive packlet (AA)</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td></td>
<td>8 GByte disk drive packlet (AB)</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td></td>
<td>34.2 GByte disk drive packlet (AC)</td>
</tr>
<tr>
<td>NTLX07</td>
<td>AA</td>
<td>Digital audio tape (DAT) drive</td>
<td>Supports 60-meter (1.3 GByte) tapes (AA only) or 90-meter (2.0 GByte) tapes (AA/BA) or 120-meter (4.0 GByte) tapes (AA/BA)</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>packlet</td>
<td></td>
</tr>
<tr>
<td>NTLX08</td>
<td>AA</td>
<td>Reset terminal interface (RTIF)</td>
<td>RS232/422 serial interface packlet</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>packet</td>
<td></td>
</tr>
<tr>
<td>NTLX09</td>
<td>AA</td>
<td>Ethernet single port interface</td>
<td>Ethernet packet-core to LAN hub/IP network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ETHR) packlet</td>
<td></td>
</tr>
<tr>
<td>NTLX11</td>
<td>AA</td>
<td>Fan drawer</td>
<td>Cooling unit fan drawer</td>
</tr>
<tr>
<td>NTLX12</td>
<td>AA</td>
<td>Shelf interface module (SIM) circuit</td>
<td>Power supply and power filter. Two are always provided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pack</td>
<td></td>
</tr>
<tr>
<td>NTLX14</td>
<td>CA</td>
<td>Shared memory (SM) circuit pack</td>
<td>384 MBytes</td>
</tr>
<tr>
<td>NTLX17</td>
<td>AA</td>
<td>High performance CMIC (HCMIC) circuit</td>
<td>Occupies one slot. Does not take packlets. Supports CMIC and RTIF links, and can also support Ethernet links.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pack</td>
<td></td>
</tr>
<tr>
<td>NTLX20</td>
<td>AA</td>
<td>Filler circuit pack</td>
<td>Single-width slot filler circuit pack</td>
</tr>
<tr>
<td>NTLX20</td>
<td>BA</td>
<td>Terminating filler circuit pack</td>
<td>Single-width plug-in module</td>
</tr>
</tbody>
</table>
Shelf layout

This section describes CP and packet placement in an XA-Core shelf.

The XA-Core shelf supports a variety of PE configurations ranging from 1+1 to 9+1. However, not all PE configurations are available in all cases. There are restrictions associated with certain products, and restrictions associated with the SuperNodeSE cabinet. For detailed information on the PE configurations, see the descriptions of the NTLX02CA and NTLX02DA circuit packs in the XA-Core Reference Manual, 297-8991-810, in the chapter titled “XA-Core hardware description overview”.

Note: In each PE configuration, the spare processing power is the equivalent of one PE unit.

The XA-Core can contain from five to ten SM circuit packs. For detailed information on the SM configurations, see the description of the NTLX14CA circuit pack in the XA-Core Reference Manual, 297-8991-810, in the chapter titled “XA-Core hardware description overview”.

Note: In an XA-Core shelf in a SuperNode SE cabinet (NTLX01BA), the maximum number of SM circuit packs is seven, except if the SuperNode SE is used in HLR applications, in which case the XA-Core shelf can have up to ten SE circuit packs.

Slots 5R, 6R, 13R, and 14R can contain single-width IOP circuit packs.

HIOP circuit packs can be installed in slots 5R and 14R. If NTLX04CA HIOPs are used, then there can be up to four HIOPs in the shelf, the third and fourth installing in slots 6R and 13R. The HIOP circuit packs may support only ethernet links, or may support both ethernet links and AMDI links. If ethernet links are supported by NTLX04 HIOP circuit packs, then ethernet packetlets are not used. If ATM AMDI links are supported by NTLX04 HIOP circuit packs, then AMDI packetlets are not used. (NTLX04AA HIOP circuit packs support ethernet links only.)

HCMIC circuit packs can be installed in slots 4R and 15R. The HCMIC circuit packs support CMIC links and RTIF links, and can also support ethernet links. If HCMIC circuit packs are equipped, then CMIC packetlets and RTIF packetlets are not used, and ethernet packetlets cannot be installed in the shelf. The HCMIC circuit packs can support ethernet links if there are no HIOP circuit packs in the shelf or if there are two HIOP circuit packs in the shelf, but not if there are four HIOP circuit packs in the shelf.

Figure 2-5 shows the shelf layout for an XA-Core shelf that has the 7+1 PE configuration and the 9+1 SM configuration.
**Figure 2-5 Example of XA-Core shelf layout**

<table>
<thead>
<tr>
<th>16R</th>
<th>SIM</th>
<th></th>
<th>IOP (Disk/Tape)</th>
<th>18F</th>
</tr>
</thead>
<tbody>
<tr>
<td>15R</td>
<td>HCMIC CP or IOP (OC-3/RTIF)</td>
<td></td>
<td>PE</td>
<td>17F</td>
</tr>
<tr>
<td>14R</td>
<td>HIOP CP or IOP (AMDI/ETHR)</td>
<td></td>
<td>Terminating filler</td>
<td>16F</td>
</tr>
<tr>
<td>13R</td>
<td>HIOP CP or IOP (AMDI/ETHR)</td>
<td>PE</td>
<td>15F</td>
<td></td>
</tr>
<tr>
<td>12R</td>
<td>PE</td>
<td>PE</td>
<td>14F</td>
<td></td>
</tr>
<tr>
<td>11R</td>
<td>SM</td>
<td>SM</td>
<td>13F</td>
<td></td>
</tr>
<tr>
<td>10R</td>
<td>SM</td>
<td>SM</td>
<td>12F</td>
<td></td>
</tr>
<tr>
<td>09R</td>
<td>SM</td>
<td>SM</td>
<td>11F</td>
<td></td>
</tr>
<tr>
<td>08R</td>
<td>SM</td>
<td>SM</td>
<td>10F</td>
<td></td>
</tr>
<tr>
<td>07R</td>
<td>SM</td>
<td>SM</td>
<td>09F</td>
<td></td>
</tr>
<tr>
<td>06R</td>
<td>HIOP CP or IOP (AMDI/ETHR)</td>
<td>PE</td>
<td>08F</td>
<td></td>
</tr>
<tr>
<td>05R</td>
<td>HIOP CP or IOP (AMDI/ETHR)</td>
<td>PE</td>
<td>07F</td>
<td></td>
</tr>
<tr>
<td>04R</td>
<td>HCMIC CP or IOP (OC-3/RTIF)</td>
<td>PE</td>
<td>06F</td>
<td></td>
</tr>
<tr>
<td>03R</td>
<td>SIM</td>
<td></td>
<td>IOP (Disk/Tape)</td>
<td>05F</td>
</tr>
</tbody>
</table>

**Note 1:** HIOP circuit packs can support ethernet links only, or both ethernet links and ATM AMDI links. HCMIC circuit packs support CMIC links and RTIF links, and can also support ethernet links. Co-existence rules are as follows. (1) All instances of a given type of link must be supported by the same type of hardware. For example, RTIF links must all be on packetets, or all be on HCMIC CPs. (2) If there are HCMIC CPs in the shelf, then there cannot be ethernet packetets. (3) If there HCMIC CPs in the shelf, and if there are no HIOP CPs or only two HIOP CPs, then the HCMIC CPs can support ethernet links. If there are four HIOP CPs in the shelf, then HCMIC CPs cannot support ethernet links.

**Note 2:** If IOP circuit packs are installed in slot 5R, 6R, 13R, or 14R, then depending the application, they contain ethernet and/or AMDI packetets.
Addition, removal, and replacement of circuit packs and packlets

We use the terms addition and removal to indicate actions that increase or decrease the capabilities of the XA-Core shelf. The shelf supports multiple PE configurations. Also, the shelf can contain four Ethernet packlets, or two, or none. Also, the shelf can contain four HIOP circuit packs, or two, or none. Addition and removal refer to changing the number of PE circuit packs, Ethernet packlets, or HIOP circuit packs in the shelf.

The most common reasons for replacing a CP or packet are for repair, or for XA-Core system upgrade. If you are going to remove an item for the purpose of replacing it, you must evaluate the effect that the removal will have on the system. For example, removing the last remaining and active PE terminates all system processes and causes an outage. If a task can cause an outage, the XA-Core MAP terminal displays a warning message. You can either continue, end the task or refer to a second level of support.

The XA-Core fault detection system software notifies you of hardware fault events. You can determine a suitable course of action based on instructions or notifications provided by the system. When the XA-Core system detects a fault, one or more of the following activities automatically take place:

- the operational measurement (OM) system records the frequency or duration of the event(s)
- the alarm system provides audible and visual notification
- the MAP terminal displays the source of the fault as determined by software
- the log system provides a log report for the event

Remove and replace a CP if it shows the following behavior:

- it cannot be brought into, or returned to service
- the red triangular light emitting diode (LED) on the faceplate remains lit despite all attempts to correct the problem
- the MAP terminal displays notice of a critical or major hardware alarm

Light emitting diode (LED) interpretation

The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Generally, the LEDs show that the CP is working or not working or if it is safe to remove the CP.

All CPs have two LEDs: red and green. In addition, amber LEDs are found on the SIM circuit pack, the HIOP circuit pack, the HCMIC circuit pack, and the packlets (CMIC, RTIF, AMDI, and ethernet).
The combination of lit or unlit LEDs indicate the CP’s working status. Table 2-2 summarizes the LED interpretation for CPs equipped with two LEDs. Table 2-3 summarizes the LED interpretation for CPs equipped with three LEDs.

The LEDs also indicate a trouble condition that can be unique to the function of the CP. The LED interpretation tables are included in each of the replacement procedures and are indicative of the CP’s role in the XA-Core system.

Table 2-2 Two-LED visual indicator interpretation

<table>
<thead>
<tr>
<th>LED Status</th>
<th>Reason</th>
<th>Action</th>
<th>Safe to Remove?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Dual-primary power failure</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Call the next level of support. Do not remove the CP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP power failure</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examine alarm status on the MAP terminal. Replace the CP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LED failure on one or two LEDs</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examine alarm status on the MAP terminal. Replace the CP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CP not properly inserted</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examine CP working status on MAP. Re-insert the CP.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Self-test failure</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examine alarm status on the MAP terminal. Replace the CP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance software rejects the CP</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examine alarm status on the MAP terminal. Replace the CP.</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>The CP is functioning properly</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify CP working status on MAP. Do not remove the CP.</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>CP undergoing self test</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examine the MAP terminal. Wait for a change in LED status. Do not remove the CP.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Wink</td>
<td>Indicate command issued</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locate CP on the physical shelf. The CP can be removed.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3 Three-LED visual indicator strategy

<table>
<thead>
<tr>
<th>LED Status</th>
<th>Reason</th>
<th>Action</th>
<th>Safe to Remove?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Red</td>
<td>Amber</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>LED fault on one or more LEDs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Determine the working status from the MAP terminal. Do not remove the CP if the MAP terminal shows active status.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dual-primary power fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Call the next level of support. Do not remove the CP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Improperly inserted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Determine the working status from the MAP terminal. Re-insert the CP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Packlet power fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examine MAP alarm status and replace the CP.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>External communication fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check input links or refer to next level of support. Do not remove the CP.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Self-test fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examine MAP alarm status and replace the CP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rejected by Maintenance software</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examine MAP alarm status and replace the CP.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Self-test fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examine MAP alarm status and replace the CP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rejected by Maintenance software</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examine MAP alarm status and replace the CP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Communication fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check input links. Replace the CP.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Packlet is functioning properly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verify working status on MAP. Do not remove the CP.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>External communication fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check input links. Do not remove the CP.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Self test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examine the MAP terminal. Do not remove the CP.</td>
</tr>
<tr>
<td>On</td>
<td>Wink</td>
<td>Off</td>
<td>Indicate command issued</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Examine physical shelf. Locate and remove the CP.</td>
</tr>
</tbody>
</table>
The following diagram shows how to determine the meaning of the LED labels.

**Figure 2-6 LED label interpretation**

<table>
<thead>
<tr>
<th>MEANS: OK to pull circuit pack (red LED is lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEANS: Start up / Self test (both LEDs are lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image2.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEANS: Do not pull circuit pack (green LED is lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEANS: No power (no LEDs are lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEANS: Circuit pack indicated. OK to pull (Flashing red LED)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image5.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEANS: Loss of transmission (amber LED is lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image6.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>
This page is left blank intentionally.
NT9X63 OC-3 two port interface paddleboard in a SuperNode or SuperNode SE Message Switch

Application

Use this procedure to replace the NT9X63 OC-3 two port interface paddleboard in a SuperNode or SuperNode SE Message Switch shelf. Use this procedure for circuit pack (CP) versions shown in the following table.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT9X63</td>
<td>AA</td>
<td>OC-3 two port interface paddleboard</td>
</tr>
<tr>
<td>NT9X63</td>
<td>AB</td>
<td>OC-3 two port interface paddleboard</td>
</tr>
</tbody>
</table>

OC-3 two port interface paddleboard front and side view

- PCB assembly
- Upper locking lever
- Port 0
- Port 1
- Lower locking lever
Common procedures

The OC-3 two port interface paddleboard replacement procedure refers to the Failure to switch clock mastership common procedure.

Do not go to a common procedure unless indicated in the step-action procedure.

Action

The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.
Introduction to card replacement

NT9X63 OC-3 two port interface paddleboard in a SuperNode or SuperNode SE Message Switch (continued)

Summary of OC-3 paddleboard replacement in a SuperNode or SuperNode SE Message Switch

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.

1. Obtain a replacement CP
2. Check CP PEC compatibility
3. CP on master MS?
   - Yes: Switch clock mastership
   - No: YN

   1. PEC is compatible?
      - Yes: ManB the Slave MS
      - No: Call the next level of support

   2. Slave MS ManB?
      - Yes: Image load successful?
      - No: Call the next level of support

   3. Image load successful?
      - Yes: Slave MS test passed?
      - No: Call the next level of support

   4. Slave MS test passed?
      - Yes: RTS the Slave MS
      - No: Call the next level of support

   5. RTS the Slave MS?
      - Yes: RTS passed?
      - No: Call the next level of support

   6. RTS passed?
      - Yes: Load the MS image
      - No: Call the next level of support

   7. Load the MS image?
      - Yes: Power up the MS
      - No: Call the next level of support

   8. Power up the MS?
      - Yes: Replace the CP
      - No: Call the next level of support

   9. Replace the CP?
      - Yes: Power down the Slave MS
      - No: Call the next level of support

10. Power down the Slave MS?
    - Yes: Slave MS ManB?
    - No: Call the next level of support

11. Slave MS ManB?
    - Yes: Test the OOS Slave MS
    - No: Call the next level of support

12. Test the OOS Slave MS?
    - Yes: Test passed?
    - No: Call the next level of support

13. Test passed?
    - Yes: Call the next level of support
    - No: RTS passed?

14. RTS passed?
    - Yes: End
    - No: Call the next level of support

End
How to replace an NT9X63 OC-3 paddleboard

**ATTENTION**
Use this procedure as indicated from a step in a maintenance procedure or by your maintenance support group.

**At the MAP terminal**

1. Get a replacement OC-3 two port interface paddleboard CP. Make sure that the replacement CP and the CP you remove have the same product engineering code (PEC) and PEC suffix.

2. Access the MS MAP level. At the MAP terminal type

```
>MAPCI;MTC;MS
```

and press the Enter key.

*The following is a sample MAP display.*

**MS MAP level**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Switch</th>
<th>Clock</th>
<th>Shelf</th>
<th>Inter-MS Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0 S M Free C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 1 S Slave C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MS:

Message Switch Clock Shelf 0 Inter-MS Link 0 1
Examine the MS MAP level. Record the MS clock configuration displayed under the Clock header. Determine if the CP that you must replace is in the Slave or Master MS. The Master MS controls the clocking for the Slave MS. The following text displayed under the Clock header indicates the Slave MS unit:

- Slave
- S Flt
- S OOS
- S Free

The following text displayed under the Clock header indicates the Master MS unit:

- Master
- M Free
- M Flt

If the MS that contains the CP is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the Master MS</td>
</tr>
<tr>
<td>step 4</td>
</tr>
<tr>
<td>the Slave MS</td>
</tr>
<tr>
<td>step 8</td>
</tr>
</tbody>
</table>

Switch clock mastership. At the MS MAP level type

>`SWMAST`

and press the Enter key

*Example of system response:*

Request to Switch Clock Mastership MS: 0 submitted.

Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
</tr>
<tr>
<td>step 5</td>
</tr>
<tr>
<td>not successful</td>
</tr>
<tr>
<td>step 6</td>
</tr>
</tbody>
</table>

Wait 10 min. to make sure that the change in MS mastership does not cause any alarm.

If the MS is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>stable</td>
</tr>
<tr>
<td>step 7</td>
</tr>
<tr>
<td>not stable</td>
</tr>
<tr>
<td>step 22</td>
</tr>
</tbody>
</table>

Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
NT9X63 OC-3 two port interface paddleboard
in a SuperNode or SuperNode SE Message Switch (continued)

7  Determine if the slave MS is in a ManB state. Examine the MS MAP level.

   **Note:** The letter M on the right of the MS 0 or MS 1 header on the MS
   MAP level identifies a ManB MS.

<table>
<thead>
<tr>
<th>If the MS is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not ManB</td>
<td>step 8</td>
</tr>
<tr>
<td>ManB</td>
<td>step 9</td>
</tr>
</tbody>
</table>

8  ManB the Slave MS. At the MS MAP level type
   >BSY <ms_number>
   and press the Enter key
   where
   <ms_number> is the number of the slave MS (0 or 1).

<table>
<thead>
<tr>
<th>If the MS is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 9</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 22</td>
</tr>
</tbody>
</table>

**At the MS shelf:**

9

**WARNING**

Risk of equipment damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap
connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling
circuit packs or packlets.

Examine the Slave MS shelf. Determine if the red LED on the NT9X13 CPU
is lit.

<table>
<thead>
<tr>
<th>If the CPU LED is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>lit</td>
<td>step 10</td>
</tr>
<tr>
<td>not lit</td>
<td>step 22</td>
</tr>
</tbody>
</table>
Power down the Slave MS as follows:

- **a** Locate the NT9X30 power converter CP in slot 4F. Press down and release the power switch located on the faceplate of the MS NT9X30 power converter.
- **b** Locate the NT9X31 power converter CP in slot 1F. Press down and release the power switch located on the faceplate of the MS NT9X31 power converter.
- **c** Locate the power converter CPs in slots 33F and 36F. Press down at the same time and release the power switches located on the faceplates of the MS power converters.

**11** Locate the OC-3 two port interface paddleboard CP on the Slave MS shelf.

**12** Label the OC-3 fiber optic cable connections on the OC-3 two port interface paddleboard CP. Label the cable pair in the transmit port in accordance with office standards. Label the cable pair in the receive port in accordance with office standards.
Disconnect the fiber optic cables from the faceplate of the OC-3 two port interface paddleboard CP. Use the diagrams shown in this step.

a. Hold the connector by the receptacle body only.
b. Carefully pull the fiber optic connector away from the receptacle.
c. Place the fiber optic cable in a safe location away from the physical shelf.

**WARNING**

Risk of fiber cable damage
Handle the fiber optic cables with caution. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface reduces communication performance.
NT9X63 OC-3 two port interface paddleboard in a SuperNode or SuperNode SE Message Switch (continued)

14 Remove the OC-3 two port interface paddleboard from the MS shelf. Use the diagrams shown in this step.
   a  Open the locking levers on the CP
   b  Carefully pull the CP toward you by the locking levers until it extends halfway from the shelf opening
   c  Hold the CP by the faceplate with one hand and support the bottom edge with the other hand. Remove the CP completely from the shelf.

Remove the OC-3 two port interface paddleboard from the Slave MS shelf

15 Place the OC-3 two port interface paddleboard CP in ESD protective packaging.
16 Insert the replacement OC-3 two port interface paddleboard CP into the slot. Use the diagrams shown in this step.

a Remove the replacement OC-3 dual port interface packlet from the ESD protective packaging.
b Open the upper and lower locking levers on the packlet.
c Hold the packlet by the faceplate with one hand and support the bottom edge with the other.
d Align the packlet with the lower IOP CP slot and carefully slide the packlet into the slot. Do not force the packlet into the slot.
e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.
f Close the locking levers to secure the CP. Do not force the locking levers to close.

Insert the OC-3 two port interface paddleboard into the Slave MS shelf
NT9X63 OC-3 two port interface paddleboard in a SuperNode or SuperNode SE Message Switch (continued)

17 Connect the fiber optic cables to the OC-3 two port interface paddleboard CP. Use the diagrams shown in this step.
   a Hold the connector by the receptacle body only.
   b Carefully insert the fiber optic connector into the correct receptacle.

Connect the fiber optic cable to the OC-3 two port interface paddleboard
Examine the fiber optic cable connections. Make sure that the fiber optic connectors fit correctly into the OC-3 two-port interface packet and OC-3 two-port interface paddleboard ports. Use the diagrams in this step to check the link connections.

### XA-Core and MS fiber optic cable connections (SuperNode)

**Legend:**
- □ Receive terminal
- □ Transmit terminal

![Diagram of XA-Core OC-3 interface connections](image-url)
NT9X63 OC-3 two port interface paddleboard in a SuperNode or SuperNode SE Message Switch (continued)

XA-Core and MS fiber optic cable connections (SuperNode SE)

<table>
<thead>
<tr>
<th>XA-Core OC-3 interface 1</th>
<th>Slot 4 r l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>Port 0</td>
</tr>
<tr>
<td></td>
<td>MS 1, slot 4</td>
</tr>
<tr>
<td></td>
<td>Port 1</td>
</tr>
<tr>
<td></td>
<td>Port 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XA-Core OC-3 interface 2</th>
<th>Slot 15 r l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>Port 0</td>
</tr>
<tr>
<td></td>
<td>MS 0, slot 4</td>
</tr>
<tr>
<td></td>
<td>Port 1</td>
</tr>
<tr>
<td></td>
<td>Port 0</td>
</tr>
</tbody>
</table>

Legend: □ Receive terminal □ Transmit terminal

19 Power up the Slave MS as follows:
   a Locate the power converters in slots 33F and 36F. Lift and release the power switches at the same time. The power switches are on the faceplates of the MS power converters.
   b Locate the NT9X31 power converter CP in slot 1F. Lift and release the power switch located on the faceplate of the MS NT9X31 power converter CP.
   c Locate the NT9X30 power converter CP in slot 4F. Lift and release the power switch located on the faceplate of the MS NT9X30 power converter CP.
At the MAP terminal

20 Reload the image on the Slave MS. At the MS MAP perform the following:

a Reload the most recent MS image file. At the MS MAP level type:

```
>LOADMS <ms_number>
```

and press the Enter key

where

<ms_number> is the number of the manual-busy MS (0 or 1)

Example of a MAP response:

Active boot file CSP04AX_MS from S01DVOL1 on DISK will be loaded
Do you want to proceed with loading?
Please confirm ("YES", "Y", "NO", or "N"):

b Confirm the image load command. At the MS MAP level type

```
>YES
```

and press the Enter key

Example of a MAP response

Request to Load MS: 0 submitted.
Request to Load MS: 0 passed.
Loading completed, entry point is #0604FC0

<table>
<thead>
<tr>
<th>If the LOADMS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 21</td>
</tr>
<tr>
<td>failed</td>
<td>step 22</td>
</tr>
</tbody>
</table>
Return the Slave MS to service. At the MS MAP level type

>RTS <ms_number>

and press the Enter key

where

<ms_number> is the number of the manual-busy MS (0 or 1)

*Example of a MAP response:*

Request to RTS MS: 0 submitted.
Request to RTS MS: 0 passed.
No node faults were found on MS 0.
No cards were found to be faulty on MS 0.

<table>
<thead>
<tr>
<th>If the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 22</td>
</tr>
<tr>
<td>passed</td>
<td>step 23</td>
</tr>
</tbody>
</table>

22 Call the next level of support.
23 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
Application

This section contains the procedure for replacing an NTLX02AA, CA, or DA processor element (PE) circuit pack (CP).

Use this procedure
• to replace a defective circuit pack
• to replace a circuit pack that does not meet the baseline requirements

If you are replacing a defective circuit pack, the replacement that you install should have the same product engineering code and version as the circuit pack that you remove. That means you should substitute AA for AA, CA for CA, or DA for DA.

If you are replacing a circuit pack that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following table lists the PE CP versions.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Circuit pack name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX02</td>
<td>AA</td>
<td>Processor Element PPC604/256MB Module</td>
</tr>
<tr>
<td>NTLX02</td>
<td>CA</td>
<td>Processor Element PPC604/256MB Module</td>
</tr>
<tr>
<td>NTLX02</td>
<td>DA</td>
<td>Processor Element MPC7410/512MB Module</td>
</tr>
</tbody>
</table>

Note 1: In releases following CSP13, the NTLX02AA version of the PE circuit pack is not supported.

Note 2: The NTLX02DA PE circuit pack is scheduled for availability at some time following the initial release of CSP17.
**Note 3:** For instructions on upgrading from model NTLX02CA to model NTLX02DA, see installation method (IM) 65-6161, which is available from Nortel Networks.

**Note 4:** For instructions on increasing or decreasing the number of PE circuit packs in the XA-Core, see installation method (IM) number 35-6176, which is available from Nortel Networks.

**NTLX02 Processor element (PE) CP front and side views**

**Common procedures**

Do not go to a common procedure unless directed to do so in the step-action procedure.
Light emitting diode (LED) visual indicators
The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action: replacing a PE circuit pack
The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.
Obtain a replacement CP

CP is load compatible?

CP has the proper PEC suffix?

Obtain CP with proper PEC suffix

Verify that component install state is manbusy

ManB the CP

ManB passed?

Locate the CP position on shelf

Remove the CP from the shelf

Insert new CP in the shelf

Return the CP to service

RTS passed?

Verify the firmware load

End

Call the next level of support
How to replace an NTLX02 PE CP

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of equipment damage
Before inserting the replacement circuit pack during this procedure, use a flashlight to inspect the backplane in the slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins. If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in the slot. Look for physical damage or abnormalities. If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

WARNING
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION
Loss of service
Do not repeat steps.
NTLX02 PE circuit pack  
in a SuperNode and SuperNode SE XA-Core (continued)

**CAUTION**

Loss of service
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

**At your current location**

1  Get a replacement CP. If you are replacing a defective CP, make sure that the replacement CP has the same product engineering code (PEC) and PEC suffix. If you are replacing a CP that does not meet baseline hardware requirements, make sure that the replacement CP meets those requirements.

2  Access the XA-Core PE MAP level. At the MAP terminal type

   >MAPCI;MTC;XAC;PE

   and press the Enter key.

3  Before installing any new circuit packs, check that the XA_COMPONENT_INSTALL_STATE office parameter has the value MANBUSY, and edit the value if necessary. Proceed as follows.

   a  Start the table editor. Type

      >TABLE OFCENG

      and press the Enter key.

      *Example of system response:*

      TABLE: OFCENG

   b  Display the value of the XA_COMPONENT_INSTALL_STATE office parameter. Type

      >POS XA_COMPONENT_INSTALL_STATE

      and press the Enter key.

      *Example of system response:*

      XA_COMPONENT_INSTALL_STATE <parameter-value>

      where

      <parameter-value> is INSERVICE or MANBUSY

<table>
<thead>
<tr>
<th>If the parameter value is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERVICE</td>
<td>substep c</td>
</tr>
<tr>
<td>MANBUSY</td>
<td>step 4</td>
</tr>
</tbody>
</table>
c  Change the value of the office parameter. Type
   >CHA
   and press the Enter key.
   
   *Example of system response:*

   PARMVAL: INSERVICE

d  Type the new parameter value. Type
   >MANBUSY
   and press the Enter key.

   *Example of system response:*

   TUPLE TO BE CHANGED
   XA_COMPONENT_INSTALL_STATE MANBUSY
   ENTER Y TO CONFIRM, N TO REJECT, OR E TO EDIT.

e  Confirm the change. Type
   >Y
   and press the Enter key.

   *Example of system response:*

   TUPLE CHANGED

f  Exit from the table editor. Type
   >QUIT
   and press the Enter key.
NTLX02 PE circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

4 Examine the PE MAP display. Record the status and the shelf location of the PE CP that you need to replace.

The following is a sample MAP display.

PE MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Front: 111111111 Rear: 111111 SM PE IO PKLT
123456789012345678 456789012345 . PEf1 . .
Sta: --.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.----

5 ManB the PE CP. At the PE MAP level type

>BSY <nn> <s> FORCE

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 f FORCE

Example of system response:

Warning: Bsy command will take it out of service.

Please confirm ("YES", "Y", "NO", or "N")

To confirm the command type:

>Y
Example of system response
Bsy 4 front complete

6 Indicate the ManB PE CP. At the PE MAP type
>INDICAT card <nn> <s>
and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:
>INDICAT card 4 f

Example of system response:
Indicate 4 front passed

At the XA-Core physical shelf

7 Locate the PE CP on the XA-Core physical shelf. Use the CP location information recorded from the PE MAP in step 4. Look for a winking, red triangular LED (from step 6).

8 Remove the PE CP from the physical shelf. Use the diagrams shown in this step.

a Open the locking levers on the CP.

b Hold the CP by the locking levers. Pull the CP half way from the shelf opening toward you.

c Hold the CP by the faceplate with one hand and support the bottom edge with the other. Remove the CP completely from the shelf.
NTLX02 PE circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

NTLX02 PE removal from the XA-Core shelf

Place the CP in ESD protective packaging.

Using a flashlight, inspect the backplane in this slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins.

If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in this slot. Look for physical damage or abnormalities.

If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

Insert the replacement PE CP into the physical shelf slot. Use the diagrams shown in this step.

a Open the locking levers on the replacement PE CP.

b Hold the CP by the faceplate with one hand and support the bottom edge with the other.

c Align the CP with the physical shelf slot. Slide the CP into the physical slot. Do not force the CP into the physical slot.

d Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Push on the faceplate until the CP is fit into position.
Close the locking levers to lock the CP in the physical shelf. Do not force the locking levers to close.

**NTLX02 PE CP insertion in the XA-Core shelf**

**At the MAP terminal**

12 Return the PE CP to service. At the PE MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command:

>RTS 4 f

*Example of system response:*

RTS 4 front passed
NTLX02 PE circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

<table>
<thead>
<tr>
<th>If the replacement PE CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not returned to service</td>
<td>step 13</td>
</tr>
<tr>
<td>returned to service</td>
<td>step 14</td>
</tr>
</tbody>
</table>

13 Call the next level of support.
14 Check that the newly installed circuit pack contains the proper firmware load. At the PE MAP level type
>QUERY CARD <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command:
>QUERY CARD 4 f
The system displays several items of information, including the firmware version.

Example of system response:
Command Submitted.
.
.
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers. Baseline OK
--- ----- ----- -- --- -- -------------- -------- -------- --
|vers| <blv| <ok|
where
<vers> identifies the firmware load that is in the circuit pack
<blv> identifies the baseline firmware version
<ok> indicates whether the current firmware load is compatible with the baseline and exception information specified in table FWINV. For information on the baseline and exception specifications, see the description of table FWINV in the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

<table>
<thead>
<tr>
<th>If the firmware version</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the proper version</td>
<td>step 16</td>
</tr>
<tr>
<td>is not the proper version</td>
<td>step 15</td>
</tr>
</tbody>
</table>
15 Perform the procedure titled “Loading current firmware into a newly installed XA-Core component”. The procedure is in this document, in the chapter titled “Introduction to routine maintenance procedures”. Return to this point when complete.

16 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
Introduction to card replacement

NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX03AA or AB single-width Input/Output processor (IOP) circuit pack (CP).

Use this procedure
• to replace a defective circuit pack
• to replace a circuit pack that does not meet the baseline requirements

If you are replacing a defective circuit pack, then you can do like-for-like replacements (AA for AA or AB for AB). Also, you can use an AA as a replacement for an AB or vice versa, unless the baseline requirements impose restrictions.

If you are replacing a circuit pack that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

Remove the packetets from the NTLX03 first. The following table lists the correct single-width IOP CP versions.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>CP name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03</td>
<td>AA, AB</td>
<td>Single width Input/Output Processor (IOP) CP</td>
</tr>
</tbody>
</table>
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

NTLX03AA single width IOP CP front and side views

- Enclosure sub-assembly
- Upper locking lever
- Red/green LED apertures
- RTIF bay
- CP faceplate
- CMIC bay
- Lower locking lever
Common procedures

Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) visual indicators

The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action

The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.
Summary of NTLX03 replacement procedure in a SuperNode and SuperNode SE XA-Core

1. Obtain a compatible replacement CP
   - CP is load compatible?
     - Y
     - ManB the IOP CP
       - ManB passed?
         - Y
         - End
         - N
         - Call the next level of support
       - N
         - Remove the IOP CP from shelf
         - Remove packlets from the IOP CP
         - Insert new IOP CP in the shelf
         - RTS passed?
           - Y
           - Verify firmware
           - End
           - N
           - Call the next level of support
     - N
       - ManB passed?
         - Y
         - Return the IOP CP to service
         - RTS passed?
           - Y
           - Verify firmware
           - End
           - N
           - Call the next level of support
         - N
         - Return the packets to service
         - RTS passed?
           - Y
           - Verify firmware
           - End
           - N
           - Call the next level of support
       - N
         - locate IOP CP position on shelf
         - Remove packlets from the IOP CP
         - Insert new IOP CP in the shelf
         - RTS passed?
           - Y
           - Verify firmware
           - End
           - N
           - Call the next level of support
     - N
       - Return the IOP CP to service
       - RTS passed?
         - Y
         - Verify firmware
         - End
         - N
         - Call the next level of support
   - N
     - Remove the IOP CP from shelf
     - Remove packlets from the IOP CP
     - Insert new IOP CP in the shelf
     - RTS passed?
       - Y
       - Verify firmware
       - End
       - N
       - Call the next level of support

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to perform the procedure.
How to replace an NTLX03 single width IOP CP

**WARNING**

**Risk of equipment damage**

Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

**WARNING**

**Risk of equipment damage**

Before inserting the replacement circuit pack during this procedure, use a flashlight to inspect the backplane in the slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins. If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in the slot. Look for physical damage or abnormalities. If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

**WARNING**

**Risk of static electricity damage**

Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**

**Loss of service**

Do not repeat steps.
At your current location

1 Get a replacement CP. If you are replacing a CP that does not meet baseline hardware requirements, make sure that the replacement CP meets those requirements. If you are replacing a defective CP, you can replace an AA with an AB or vice versa, if the replacement meets the baseline requirements. (The AA and AB versions can coexist in the XA-Core, unless baseline requirements impose restrictions.)

At the XA-Core MAP

2 Access the XA-Core IO MAP level. At the MAP terminal type

```>MAPCI;MTC;XAC:IO```

and press the Enter key.

3 Examine the IO MAP level. Determine the location of the IOP CP that you need to replace. Record the IOP CP location on the physical shelf, side and slot. Make sure that redundant components are InSv before removing the IOP CP that you need to replace.

IO MAP level

```
<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPflt</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>Front: 1111111111 Rear: 111111 SM PE IO PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123456789012345678 456789012345</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sta: .-.-.--..-..----..-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dep: .-.-.--..-..----..-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ: *</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot: Side: Status:</td>
<td>Upper: Middle: Lower:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Rear: S</td>
<td>RTIF: C</td>
<td>CMIC: C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>XAC:</td>
<td>IOP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>LoadFW:</td>
<td>XAC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>Query:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Uneq:</td>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Alarm:</td>
<td>Time 14:12 &gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

<table>
<thead>
<tr>
<th>If the redundant IOP, OC-3 or RTIF are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 4</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 5</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 29</td>
</tr>
</tbody>
</table>

4 Return the redundant IOP CP or packlets to service. At the correct MAP level type

>RTS <nn> <s>

or

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>RTS 2 f

Example of system response:

RTS 2 front completed

<table>
<thead>
<tr>
<th>If the redundant IOP, OC-3 and RTIF are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 5</td>
</tr>
<tr>
<td>not in service</td>
<td>step 29</td>
</tr>
</tbody>
</table>

5 ManB the OC-3 two port interface packlet contained in the IOP CP. Perform the following steps.

a Exit from the IO MAP level and access the CMIC MAP level. At the IO MAP level type

>CMIC

and press the Enter key.
NTXL03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

b ManB the OC-3 two port interface packet. At the CMIC MAP level type
 >BSY <nn> <s> <p>
 or
 >BSY <nn> <s> <p> FORCE

 Note: If this command reduces redundancy and produces a major
 alarm, you must use the Force option.

 and press the Enter key

 where
 <nn> is the slot number parameter value to indicate the number of
 the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packet location in
 the physical shelf - front (f) or rear (r)
 <p> is the position parameter value to indicate the packet location in an
 input/output processor (IOP) - upper (u) or lower (l)

 Example of command use:
 >BSY 4 r l
 or
 >BSY 4 r l FORCE

 Example of system response:
 Warning: Bsy command will take it out of service.
 Proceed (Y or N)
 Please confirm ("YES", "Y", "NO", or "N"):

 To confirm the command type:
 >Y

 Example of system response:
 BSY 4 rear upper completed

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 6</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 29</td>
</tr>
</tbody>
</table>

6 ManB the RTIF packet contained in the IOP CP. Perform the following steps.

a Exit from the CMIC MAP level and access the RTIF MAP level. At the
 CMIC MAP level type
 >RTIF
 and press the Enter key.
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

b ManB the RTIF packlet. At the RTIF MAP level type

>BSY <nn> <s> <p>

or

>BSY<nn> <s> <p> FORCE

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>BSY 4 r u

or

>BSY 4 r u FORCE

Example of system response:

Warning: Bsy command will take it out of service. Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:

>Y

Example of system response:

BSY 4 rear upper completed

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 7</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 29</td>
</tr>
</tbody>
</table>

7 ManB the IOP CP that is set for replacement. Perform the following steps

a Exit from the RTIF MAP level and access the IO MAP level. At the RTIF MAP level type

>IO

and press the Enter key.
b ManB the IOP CP. At the IO MAP level type
>BSY <nn> <s>

or
>BSY<nn> <s> FORCE

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:
>BSY 4 r

or
>BSY 4 r FORCE

Example of system response:

Warning: Bsy command will take it out of service.
Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:
>Y

Example of system response:

BSY 4 rear completed

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 29</td>
</tr>
</tbody>
</table>

8 Indicate the ManB IOP CP. At the IO MAP level, type

>INDICAT card <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
Example of command use:
>INDICAT card 4 r

Example of system response:
Indicate 4 rear complete

At the XA-Core physical shelf:

9 Locate the IOP CP on the XA-Core physical shelf. Refer to the IOP CP location recorded from 3. Examine the CP faceplates on the XA-Core physical shelf.

Look for a flashing, red triangular LED on the IO CP. Look for lit red LEDs on the related packlets.

10 Locate the OC-3 two port interface packlet in the IOP CP. Label the OC-3 fiber optic cable connections on the OC-3 two port interface packlet in accordance with office standards.

OC-3 two port interface packlet
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Paired fiber optic cable connectors

![Diagram of fiber optic connectors with labels: Connector body, Fiber tip guide, Cable sheath, Strain relief retainer, Receptacle guide.]

WARNING

Fiber cable damage
Handle the fiber optic cables with caution. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface reduces communication performance.

Disconnect the fiber optic cables from the faceplate of the OC-3 two port interface packlet.

- **a** Hold the connector by the receptacle body only.
- **b** Carefully pull the fiber optic connector away from the receptacle.
- **c** Place the fiber optic cable in a safe location away from the physical shelf.
12 Remove the OC-3 two port interface packlet from the IOP CP. Perform the following steps:

a. Open the upper and lower locking levers on the packlet.

b. Carefully pull the packlet toward you by the locking levers until it extends half way from the shelf opening.

c. Hold the packlet by the faceplate with one hand and support the bottom edge with the other. Remove the packlet completely from the shelf.

d. Place the packlet in ESD protective packaging.

Disconnect the fiber optic cables from the OC-3 two port interface packlet
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Remove the OC-3 two port interface packlet from the IOP CP

13 Locate the RTIF packlet in the IOP CP. Label the local and remote port cable connections on the RTIF packlet in accordance with office standards.

Reset terminal interface (RTIF) packlet

Upper locking lever
DB26 interface receptacle
Lower locking lever
DB15 interface receptacle
14 Disconnect the remote port cable from the RTIF packlet (see illustrations in step).
 a Loosen the connector retaining screws from the RTIF ports.
 b Hold the connector by the body only.
 c Carefully pull the connectors away from the port receptacles.
 d Place the cables in a safe location away from the packlet.

Loosen the RTIF port connectors from the RTIF ports

Remove all RTIF port connectors from the RTIF ports
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

15 Disconnect the local port cable from the RTIF packlet.
 a Loosen the connector retaining screws from the RTIF ports.
 b Hold the connector by the body only.
 c Carefully pull the connectors away from the port receptacles.
 d Place the cables in a safe location away from the packlet.

16 Remove the RTIF packlet from the IOP CP. Perform the following steps:
 a Open the locking levers on the RTIF packlet.
 b Carefully pull the packlet toward you by the locking levers until it extends half way from the shelf opening.
 c Hold the packlet by the faceplate with one hand and support the bottom edge with the other. Remove the packlet completely from the shelf.
 d Place the packlet in ESD protective packaging.

Remove the RTIF packlet from the IOP CP
17 Remove the IOP CP from the physical shelf.
 Note: Make sure that you remove all packlets from the IOP CP before you perform this step.
 a Open the upper and lower locking levers on the CP.
 b Carefully pull the CP toward you by the locking levers until it extends halfway from the shelf opening.
 c Hold the CP by the faceplate with one hand and support the bottom edge with the other. Remove the CP completely from the shelf.
 d Place the CP in ESD protective packaging.

Remove the IOP CP from the XA-Core shelf

18 Using a flashlight, inspect the backplane in this slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins.

If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in this slot. Look for physical damage or abnormalities.

If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

19 Insert the replacement IOP CP in the physical shelf.
 a Open the upper and lower locking levers on the replacement CP.
 b Hold the CP by the faceplate with one hand and support the bottom edge with the other.
 c Align the CP with the slot in the shelf. Carefully slide the CP into the physical slot.
 d Use your fingers or thumbs and push on the upper and lower edges of the faceplate.
 e Close the upper and lower locking levers to secure the CP in the physical shelf. Do not force the locking levers to close.

Insert the IOP CP in the XA-Core shelf
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

20 Insert the original RTIF packet in the upper slot of the replacement IOP CP.
 a Remove the original RTIF packet from the ESD protective packaging.
 b Open the locking levers on the RTIF packet.
 c Hold the packet by the faceplate with one hand and support the bottom edge with the other.
 d Align the RTIF packet with the upper IOP CP slot and carefully slide the packet into the slot. Do not force the packet into the slot.
 e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.
 f Close the locking levers to secure the circuit packet. Do not force the locking levers to close.

Insert the RTIF packet into the IOP CP

21 Connect the local cable to the correct RTIF port receptacle.
 a Hold the connector by the receptacle body only.
 b Align the connector to the correct RTIF port receptacle.
 c Push the connector into the receptacle.
 d Tighten the connector retaining screws.
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

22 Connect the remote cable to the correct RTIF port receptacle (see illustrations in this step).
 a Hold the connector by the receptacle body only.
 b Align the connector to the correct RTIF port receptacle.
 c Push the connector into the receptacle.
 d Tighten the connector retaining screws.

Insert the RTIF port connectors in the RTIF port receptacles

Tighten the RTIF port connectors to the RTIF port receptacles
23 Insert the original OC-3 two port interface packlet in the lower IOP CP slot (see the illustrations in this step).
 a Remove the original packlet from the ESD protective packaging.
 b Open the upper and lower locking levers on the packlet.
 c Hold the packlet by the faceplate with one hand and support the bottom edge with the other.
 d Align the packlet with the lower IOP CP slot and carefully slide the packlet into the slot. Do not force the packlet into the slot.
 e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.
 f Close the locking levers to secure the packlet. Do not force the locking levers to close.

Insert the OC-3 two port interface packlet into the IOP CP

24 Connect the fiber optic cables to the correct OC-3 two port interface ports (see the illustration in this step).
 a Remove the dust caps from the fiber optic cable.
 b Clean the fiber optic cables in accordance with office standards.
 c Hold the fiber optic cable connector by the body only.
 d Carefully insert the fiber optic cable connector into the correct receptacle.
NTLX03 single width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Connect the OC-3 two port interface fiber optic cable

Examine the fiber optic cables and connectors. Make sure that the link connections fit into the correct OC-3 interface ports. Use the diagrams in this step to check the link connections.

XA-Core and MS fiber optic cable connections (SuperNode)

<table>
<thead>
<tr>
<th>XA-Core OC-3 interface 1</th>
<th>Slot 4 rear (HCMIC circuit pack or CMIC packetlet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>Port 0</td>
</tr>
<tr>
<td></td>
<td>MS 1, slot 25</td>
</tr>
<tr>
<td></td>
<td>MS 1, slot 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XA-Core OC-3 interface 2</th>
<th>Slot 15 rear (HCMIC circuit pack or CMIC packetlet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>Port 0</td>
</tr>
<tr>
<td></td>
<td>MS 0, slot 25</td>
</tr>
<tr>
<td></td>
<td>MS 0, slot 24</td>
</tr>
</tbody>
</table>

Legend:
- Receive terminal
- Transmit terminal

297-8991-510 Standard 12.02 December 2005
NTLX03 single width IOP circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

XA-Core and MS fiber optic cable connections (SuperNode SE)

At the XA-Core MAP

26 Return the IOP CP to service. At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>RTS 4 r
Introduction to card replacement

NTLX03 single width IOP circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

Example of system response:

RTS 4 rear passed

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 27</td>
</tr>
<tr>
<td>not in service</td>
<td>step 29</td>
</tr>
</tbody>
</table>

27 Return the OC-3 two port interface packlet to service. Perform the following steps.

a Exit from the IO MAP level and access the CMIC MAP level. At the IO MAP level type
 >CMIC
 and press the Enter key.

b Return the OC-3 two port interface packlet to service. At the CMIC MAP level type
 >RTS <nn> <s> <p>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
 <p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:
 >RTS 4 r l

Example of system response:

RTS 4 rear lower passed

<table>
<thead>
<tr>
<th>If the OC-3 two port interface packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 28</td>
</tr>
<tr>
<td>not in service</td>
<td>step 29</td>
</tr>
</tbody>
</table>
Return the RTIF packet to service. Perform the following steps.

a. Exit from the CMIC MAP level and access the RTIF MAP level. At the CMIC MAP level type

 >RTIF

 and press the Enter key.

b. Return the RTIF packet to service. At the RTIF MAP level type

 >RTS <nn> <s> <p>

 and press the Enter key

 where

 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

 <s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

 <p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

 Example of command use:

 >RTS 7 r l

 Example of system response:

 RTS 4 rear upper passed

If the RTIF packet is | Do

| not in service | step 29 |
| in service | step 30 |

29. Call the next level of support
Check that the newly installed circuit pack contains the proper firmware load. At the PE MAP level type

>QUERY CARD <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command:

>QUERY CARD 6 r

The system displays several items of information, including the firmware version.

Example of system response:

Command Submitted.
.
.
.
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers. Baseline OK
--- ---- ---- -- --- -- -- ------------- -------- -------- --

where

<vers> identifies the firmware load that is in the circuit pack

<blv> identifies the baseline firmware version

<ok> indicates whether the current firmware load is compatible with the baseline and exception information specified in table FWINV. For information on the baseline and exception specifications, see the description of table FWINV in the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

<table>
<thead>
<tr>
<th>If the firmware version</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the proper version</td>
<td>step 32</td>
</tr>
<tr>
<td>is not the proper version</td>
<td>step 31</td>
</tr>
</tbody>
</table>

Perform the procedure titled “Loading current firmware into a newly installed XA-Core component”. The procedure is in this document, in the chapter titled “Introduction to routine maintenance procedures”. Return to this point when complete.

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
NTLX03 dual width IOP circuit pack
in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX03BA or BB dual-width Input/Output processor (IOP) circuit pack (CP).

Use this procedure
• to replace a defective circuit pack
• to replace a circuit pack that does not meet the baseline requirements

If you are replacing a circuit pack that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The dual-width IOP CP contains tape and disk packlets. Remove the packlets from the NTLX03 first. The following lists the valid XA-Core dual-width IOP CPs.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Circuit pack name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03</td>
<td>BA, BB</td>
<td>Dual width Input/Output Processor (IOP) circuit pack</td>
</tr>
</tbody>
</table>
Introduction to card replacement

NTLX03 dual width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

NTLX03BA dual-width IOP CP front and side views

- Enclosure sub-assembly
- Upper latch
- Tape bay
- Red/green LED apertures
- Circuit pack faceplate
- Disk bay
- Lower latch
Common procedures

Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) strategy

The faceplate of all CPs and packetts have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action

The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.
NTLX03 dual width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Summary of NTLX03 replacement procedure in a SuperNode and SuperNode SE XA-Core

This flowchart summarizes the procedure.

Use the instructions in the steps that follow this flowchart to perform the procedure.

1. Obtain a compatible replacement CP

 CP is load compatible?

 Y

 1

 ManB the CP

 ManB passed?

 Y

 ManB passed?

 Y

 Return the IOP CP to service

 N

 Return the packet to service

 N

 RTS passed?

 Y

 Verify firmware

 End

 N

 Call the next level of support

 N

 Call the next level of support

 N

 RTS passed?

 Y

 Call the next level of support

 N

 Remove the IOP CP from the shelf

 N

 Insert new IOP CP in the shelf

 Y

 Remove packets from the IOP CP

 N

 Locate IOP CP position on shelf

 Y

 ManB passed?

 N

 Call the next level of support

 N

 Remove packlets from the IOP CP

 Y

 ManB passed?

 N

 Call the next level of support

 N

 Insert packlets

 Y

 Return the IOP CP to service

 N

 Call the next level of support

 N

 ManB passed?
How to replace an NTLX03 circuit pack

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of equipment damage
Before inserting the replacement circuit pack during this procedure, use a flashlight to inspect the backplane in the slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins. If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in the slot. Look for physical damage or abnormalities. If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

WARNING
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION
Loss of service
Do not repeat steps.
Introduction to card replacement

NTLX03 dual width IOP circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

CAUTION

Loss of service
Manually busy one CP or packet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location

1 Get a replacement CP. If you are replacing a CP that does not meet baseline hardware requirements, make sure that the replacement CP meets those requirements. If you are replacing a defective CP, you can replace a BA with a BB or vice versa, if the replacement meets the baseline requirements. (The BA and BB versions can coexist in the XA-Core, unless baseline requirements impose restrictions.)

At the MAP terminal:

2 Access the XA-Core IO MAP level. At the CI MAP prompt type

>`MAPCI;MTC;XAC;IO`

and press the Enter key.

3 Examine the IO MAP display. Determine the location of the IOP CP that you need to replace. Record the IOP CP location on the physical shelf, side and slot. Make sure that redundant components are InSv before removing the IOP CP that you need to replace.

The following is a sample MAP display.

IO MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IGD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPflt</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Front: 1111111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>IOPf1</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta: S-.-.-.-.-.-.-.-.-</td>
<td>.-.-.-.-.-.-.-.-.-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ: *</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot: Side: Status:</td>
<td>Upper:</td>
<td>Middle:</td>
<td>Lower:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Front S</td>
<td>Tape C</td>
<td>Disk C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Rear .</td>
<td>RTIF .</td>
<td>CMIC .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Rear .</td>
<td>RTIF .</td>
<td>CMIC .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XAC:

| XAC MS IOD Net PM CCS Lns Trks Ext APPL |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| IO: | . | . | . | . | . | . | . | . | . |
| LoadFW_ | XAC: | . | . | . | . | . | . | . | . |
| 11 | 12 | Uneq_ | . | . | . | . | . | . | . |
| 13 | Alarm_ | . | . | . | . | . | . | . | . |
| 14 | Indicat_ | . | . | . | . | . | . | . | . |
| 15 | Query_ | . | . | . | . | . | . | . | . |
| Time 14:12 | > |
4 Return the redundant IOP CP or packlets to service. At the correct MAP level type

>RTS <nn> <s>
or
>RTS <nn> <s> <p>
and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>RTS 17 f

Example of system response:

RTS 17 front completed

5 Make sure that the redundant Disk packlet contains the active image backup file.

a Exit from the IO MAP level and access the CI MAP level prompt. At the IO MAP level type

>QUIT ALL

and press the Enter key.
NTLX03 dual width IOP circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

b Access the image table of contents (ITOCCI) MAP interface. At the CI MAP level prompt type

>`ITOCCI

and press the Enter key.

Example of a MAP response:

ITOCC User Interface is now active.

ITOCCI:

c List the image files for the XA-Core in the ITOC, type:

>`LISTBOOTFILE XA

and press the Enter key.

Example of a MAP response:

Image Table Of Contents for XA:

<table>
<thead>
<tr>
<th>A Registered</th>
<th>Generic Device</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Date</td>
<td>Time</td>
<td>Name</td>
</tr>
<tr>
<td>R MM/DD/YYYY</td>
<td>HH:MM:SS</td>
<td>---------</td>
</tr>
</tbody>
</table>

0 * 05/04/1999 19:16:21 F02LIMAGE IMG0504CX_XA
0 05/01/1999 19:21:19 F02LIMAGE IMG0501CU_XA

Note: The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.

d Determine which device contains the active image files. Examine the device name under the Generic Device header in the ITOC listing. The device name indicates the location of the disk device.

e Exit from the ITOCCI MAP interface and display the CI MAP level prompt. At the ITOCCI MAP interface prompt, type

>`QUIT

and press the Enter key.

<table>
<thead>
<tr>
<th>If the redundant disk device</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>does not contain the active image</td>
<td>step 6</td>
</tr>
<tr>
<td>contains the active image</td>
<td>step 8</td>
</tr>
</tbody>
</table>
Perform a manual dump of the active image to the redundant disk device. At the CI MAP level prompt, type

>`AUTODUMP MANUAL`

and press the Enter key.

Wait for a system response to indicate that the manual image dump is successful.

<table>
<thead>
<tr>
<th>If the manual image dump to the redundant disk device is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 8</td>
</tr>
<tr>
<td>not successful</td>
<td>step 32</td>
</tr>
</tbody>
</table>

Determine if the Tape packlet that you want to remove contains a mounted tape. Perform the following steps:

a. Access the Tape MAP level. At the CI MAP level prompt type:

>`MAPCI;MTC;XAC;TAPE`

and press the Enter key.

b. Examine the Tape MAP level. Record the location of the Tape packlet that you want to remove.

 Note: The Tape MAP level displays the following information in the command interpreter output area:

 - the user name under the User Name header
 - the tape drive status under the Drive header (mounted/unmounted)

 The following is a sample MAP display.
Tape MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tape

0 Quit
1
2
3
4
5
6 Tst_
7 Bsy_
8 RTS_
9
10
11
12
13
14 Alarm_
15
16
17 Indicat_
18 Query_

Record the user name and drive state as shown on the Tape MAP level. There are four possible tape device user conditions:

- The system is using the tape device. The Tape MAP level displays “System” as the user name. The system software is performing an activity such as an ONP or software upgrade. The tape drive state is mounted.
- Another user is performing a backup or restore at a different location. The tape drive state is mounted.
- You are the user of the tape device. The tape drive state is mounted.
- There are no users. The tape drive state is unmounted.

If the Tape MAP level indicates that Do

| the system software is the user | step 10 |
| another user is using the tape device | step 11 |
| you are the user of the tape device | step 14 |
| there are no users | step 15 |
10 Wait for the system software to complete the ONP or upgrade process. When the system software activities are complete, the MAP deletes the “System” user name and the tape drive state changes to unmounted.

<table>
<thead>
<tr>
<th>If the system software process is complete and the Tape MAP level indicates that</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 13</td>
</tr>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 15</td>
</tr>
</tbody>
</table>

11 Notify the other user that you intend to remove the Tape packlet. The other user needs to complete tape device activities and perform an EJECTTAPE. Wait for the Tape MAP level to delete the other user name and indicate that the tape drive state is unmounted.

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates that</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and that the tape drive state is mounted</td>
<td>step 12</td>
</tr>
<tr>
<td>the tape is rewound and that the tape drive state is unmounted</td>
<td>step 15</td>
</tr>
</tbody>
</table>

12 Call the other user to make sure that all tape drive activities are complete.

<table>
<thead>
<tr>
<th>If the other user has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed tape drive activities and rewound the tape</td>
<td>step 15</td>
</tr>
<tr>
<td>not completed tape drive activities</td>
<td>step 32</td>
</tr>
</tbody>
</table>

13 Clear the tape drive state on the Tape MAP level. Manually busy the Tape packlet and return the Tape packet to service.

a Manually busy the Tape packlet. At the Tape MAP level type

```
>BSY <nn> <s> <p>
```

and press the enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).
NTLX03 dual width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Example of command use:
>`BSY 2 f u`

Example of system response:

BSY 2 front upper complete

\[b\] Return the Tape packlet to service. At the Tape MAP level type
>`RTS <nn> <s> <p>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command use:
>`RTS 2 f u`

Example of system response:

RTS 2 front upper passed

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates that</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 14</td>
</tr>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 32</td>
</tr>
</tbody>
</table>

14 Access the DISKUT MAP interface and rewind the tape.

\[a\] At the Tape MAP level type:
>`QUIT all`

and press the enter key.

\[b\] Access the DISKUT MAP level. At the CI MAP prompt type:
>`DISKUT`

and press the enter key.
Rewind the tape. At the DISKUT MAP level type:

```
>EJECTTAPE <device>
```

and press the enter key.

where

<device> is the name of the tape device.

Note: The system rejects the EJECTTAPE command if the system cannot identify you as the user of the tape device.

Example of command use:

```
>EJECTTAPE F02UTAPE
```

Example of system response:

Rewind of tape F02UTAPE on node <node_name> is completed. The tape device is not available to the user now.

d Exit from the DISKUT MAP level. At the DISKUT MAP prompt, type

```
>QUIT
```

and press the enter key.

e Access the XA-Core Tape MAP level. At the CI MAP prompt, type

```
>MAPCI;MTC;XAC:TAPE
```

and press the enter key.

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates that</th>
<th>Do</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 15</td>
<td></td>
</tr>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 32</td>
<td></td>
</tr>
</tbody>
</table>

ManB the Tape packlet. At the Tape MAP level type

```
>BSY <nn> <s> <p>
```

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Note: The Tape packlet is in the same physical shelf and slot location as the replacement IOP CP.
Example of command use:

>`BSY 2 f u`

Example of system response:

Warning: Bsy command will take it out of service.
Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:

>`Y`

Example of system response:

Bsy 2 front upper complete.

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the Tape packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 16</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 32</td>
</tr>
</tbody>
</table>

16 ManB the Disk packlet contained in the IOP CP. Perform the following steps:

a Exit from the Tape MAP level and access the Disk MAP level. At the Tape MAP level type

>`DISK`

and press the Enter key.

b ManB the Disk packlet. At the Disk MAP level type

>`BSY <nn> <s> <p>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`BSY 2 f l`
Example of system response:
Warning: Bsy command will take it out of service.
Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:
>Y

Example of system response:
BSY 2 front lower completed

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the Disk packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 17</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 32</td>
</tr>
</tbody>
</table>

17 ManB the IOP CP. Perform the following steps
a Exit from the Disk MAP level and display the IO MAP level. At the Disk MAP level type
 >IO
 and press the Enter key.

b ManB the IOP CP. At the IO MAP level type
 >BSY <nn> <s>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:
 >BSY 2 f

Example of system response:
Warning: Bsy command will take it out of service.
Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:
>Y
Example of system response:

Bay 2 front completed.

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 18</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 32</td>
</tr>
</tbody>
</table>

18 Indicate the ManB IOP CP. At the IO MAP level, type

>`INDICAT card <nn> <s>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command usage:

>`INDICAT card 2 f`

Example of system response:

Indicate 2 front passed.

At the XA-Core physical shelf

19

WARNING

Static electricity damage

Make sure that you wear a wrist-strap connected to a grounding point on the FSP. The wrist-strap protects against electrical static discharge (ESD).

Locate the IOP CP on the physical shelf. Refer to the IOP CP location recorded from step 3. Examine the CP faceplates on the XA-Core physical shelf.

Look for a flashing, red triangular LED on the IOP CP. A winking, red LED is a result of using the indicate command. Look for lit red LEDs on the packlets.

20 Remove the Disk packlet from the IOP CP. Perform the following steps:

 a Locate the Disk packlet in the IOP CP.

 b Open the upper and lower locking levers on the packlet.
NTLX03 dual width IOP circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

- Carefully pull the packlet toward you by the locking levers until it extends half way from the shelf opening.
- Hold the packlet by the faceplate with one hand and support the bottom edge with the other. Remove the packlet completely from the shelf.
- Close the upper and lower locking levers on the packlet to prevent breakage.
- Place the packlet in ESD protective packaging.

Remove the Disk packlet from the IOP CP

- Remove the Tape cassette from the Tape packlet if necessary. If there is no tape in the IOP CP, continue to step 22. Perform the following steps:
 - Locate the Tape packlet in the IOP CP.
 - Push the door lock in the direction of the arrow to unlock. The cassette door swings open.
 - Press the tape eject button. The tape cassette partially ejects and is ready for removal.
 - Close the tape cassette door. Carefully push on the door until it locks in place.
Open the Tape cassette door

Eject and remove the Tape cassette
Removal of the Tape packlet from the IOP CP

22 Remove the Tape packlet from the IOP CP. Perform the following steps:

a. Open the upper and lower locking levers on the packlet.

b. Carefully pull the packlet toward you by the locking levers until it extends half way from the shelf opening.

c. Hold the packlet by the faceplate with one hand and support the bottom edge with the other. Remove the packlet completely from the shelf.

d. Close the upper and lower locking levers on the packlet to prevent breakage.

e. Place the packlet in ESD protective packaging.

Remove the Tape packlet from the IOP CP
NTLX03 dual width IOP circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

23 Remove the IOP CP from the physical shelf.

 Note: Make sure that you remove all packlets from the IOP CP before you perform this step.

a Open the upper and lower locking levers on the CP.

b Carefully pull the CP toward you by the locking levers until it extends half way from the shelf opening.

c Hold the CP by the faceplate with one hand and support the bottom edge with the other. Remove the CP completely from the shelf.

d Close the upper and lower locking levers on the CP to prevent breakage.

e Place the CP in ESD protective packaging.

Remove the dual width IOP CP from the XA-Core shelf

24 Using a flashlight, inspect the backplane in this slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins.

If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in this slot. Look for physical damage or abnormalities.
NTLX03 dual width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

25 Insert the replacement IOP CP in the physical shelf.

a Open the upper and lower locking levers on the replacement CP.
b Hold the CP by the faceplate with one hand and support the bottom edge with the other.
c Align the CP with the slot in the shelf. Carefully slide the CP into the physical slot.
d Use your fingers or thumbs and push on the upper and lower edges of the faceplate.
e Close the upper and lower locking levers to secure the CP in the physical shelf. Do not force the locking levers to close.

Insert the dual width IOP CP in the XA-Core shelf
NTLX03 dual width IOP circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

26 Insert the original Tape packlet in the upper slot of the replacement IOP CP.
 a Remove the original Tape packlet from the ESD protective packaging.
 b Open the locking levers on the Tape packlet.
 c Hold the packlet by the faceplate with one hand and support the bottom edge with the other.
 d Align the packlet with the upper IOP CP slot and carefully slide the packlet into the slot. Do not force the packlet into the slot.
 e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.
 f Close the locking levers to secure the circuit packlet. Do not force the locking levers to close.

Insert the Tape packlet in the IOP CP
NTLX03 dual width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

27 Insert the original Disk packlet into the lower IOP CP slot. Perform the following steps:

a. Open the locking levers on the original Disk packlet.

b. Hold the packlet by the faceplate with one hand and support the bottom edge with the other.

c. Align the packlet with the slot in the shelf and slide the packlet into the physical slot. Do not force the packlet into the slot.

d. Use your fingers or thumbs to push on the upper and lower edges of the packlet faceplate.

e. Close the locking levers on the packlet. Do not force the locking levers to close.

Insert the Disk packlet in the IOP CP
NTLX03 dual width IOP circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

At the MAP terminal:

28 Return the IOP CP to service. At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command usage:

>RTS 2 f

Example of system response:

RTS 2 front passed.

If the IOP CP is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
</tr>
<tr>
<td>not in service</td>
</tr>
</tbody>
</table>

29 Return the Tape packlet to service. Perform the following steps:

a Access the XA-Core TAPE MAP level. At the IO MAP level type

>TAPE

and press the Enter key

b Return the Tape packlet to service. At the TAPE MAP level type

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>RTS 2 f u
Example of system response:
RTS 2 front upper passed

<table>
<thead>
<tr>
<th>If the Tape packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 30</td>
</tr>
<tr>
<td>not in service</td>
<td>step 32</td>
</tr>
</tbody>
</table>

30 Return the Disk packlet to service. Perform the following steps:

a Exit from the Tape MAP level and access the Disk MAP level. At the TAPE MAP level type

>`DISK`

and press the Enter key.

b Return the Disk packlet to service. At the DISK MAP level type

>`RTS <nn> <s> <p>`

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`RTS 2 f l`

Example of system response:
RTS of 2 front lower passed

<table>
<thead>
<tr>
<th>If the Disk packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 31</td>
</tr>
<tr>
<td>not in service</td>
<td>step 32</td>
</tr>
</tbody>
</table>

31 Confirm that the IOP CP and all packet returned to service. Examine the Alarm banner and subsystem summary status field (SSSF) displayed on the MAP level

<table>
<thead>
<tr>
<th>If the MAP displays</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an alarm</td>
<td>step 33</td>
</tr>
<tr>
<td>a “.” under the IO status header</td>
<td>step 34</td>
</tr>
</tbody>
</table>
Call the next level of support

Perform the correct alarm clearing procedure.

Check that the newly installed circuit pack contains the proper firmware load.

At the PE MAP level type

>QUERY CARD <nn> <s>
and press the Enter key

where

<n> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command:

>QUERY CARD 2 f

The system displays several items of information, including the firmware version.

Example of system response:

Command Submitted.
.
.
.
.
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers. Baseline OK
--- ---- ---- -- --- -- -- ------------- -------- -------- --

where

<vers> identifies the firmware load that is in the circuit pack

<blv> identifies the baseline firmware version

<ok> indicates whether the current firmware load is compatible with the baseline and exception information specified in table FWINV. For information on the baseline and exception specifications, see the description of table FWINV in the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

<table>
<thead>
<tr>
<th>If the firmware version</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the proper version</td>
<td>step 36</td>
</tr>
<tr>
<td>is not the proper version</td>
<td>step 35</td>
</tr>
</tbody>
</table>

Perform the procedure titled “Loading current firmware into a newly installed XA-Core component”. The procedure is in this document, in the chapter titled “Introduction to routine maintenance procedures”. Return to this point when complete.

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
Application

This section contains the procedure for replacing an NTLX04 high performance input/output (HIOP) circuit pack (CP).

Use this procedure
- to replace a defective circuit pack
- to replace a circuit pack that does not meet the baseline requirements

If you are replacing a circuit pack that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following table lists the versions of the HIOP circuit pack.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX04AA</td>
<td>Supports Ethernet links only</td>
</tr>
<tr>
<td>NTLX04BA</td>
<td>Supports Ethernet links and ATM multi-node data interface (AMDI) links</td>
</tr>
<tr>
<td>NTLX04CA</td>
<td>Supports Ethernet links and ATM multi-node data interface (AMDI) links</td>
</tr>
</tbody>
</table>
NTLX04 high performance input/output circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

NTLX04 high performance input/output circuit pack front and side views

- Upper locking lever
- RTIF section with connectors and RTIF LED at right
- Ethernet section with connector and Ethernet LED at right
- HIOP common-equipment LEDs, red and green
- OC-3 section with connectors and OC-3 LED at right
- Lower locking lever
Replacement rules

The NTLX04AA and NTLX04BA versions can co-exist in the same XA-Core shelf (unless the baseline requirements impose restrictions). However, the NTLX04CA cannot co-exist with the other versions. The following table explains which replacement scenarios are permitted.

<table>
<thead>
<tr>
<th>Replacement scenario</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove an AA, replace with an AA.</td>
<td>Permitted.</td>
</tr>
<tr>
<td>Remove an AA, replace with a BA.</td>
<td>Permitted.</td>
</tr>
<tr>
<td>Remove an AA, replace with a CA.</td>
<td>If you do this, you must replace all HIOP CPs in the XA-Core with NTLX04CA versions. For details see “Rules for installing CA versions as replacements for AA or BA versions”.</td>
</tr>
<tr>
<td>Remove a BA, replace with an AA.</td>
<td>Permitted. Note that replacing an NTLX04BA with an NTLX04AA makes sense only if the only links to be supported are Ethernet links.</td>
</tr>
<tr>
<td>Remove a BA, replace with a BA.</td>
<td>Permitted.</td>
</tr>
<tr>
<td>Remove a BA, replace with a CA.</td>
<td>If you do this, you must replace all HIOP CPs in the XA-Core with NTLX04CA versions. For details see “Rules for installing CA versions as replacements for AA or BA versions”.</td>
</tr>
<tr>
<td>Remove a CA, replace with an AA.</td>
<td>Not permitted.</td>
</tr>
<tr>
<td>Remove a CA, replace with a BA.</td>
<td>Not permitted.</td>
</tr>
<tr>
<td>Remove a CA, replace with a CA.</td>
<td>Permitted.</td>
</tr>
</tbody>
</table>

Rules for installing CA versions as replacements for AA or BA versions

If you intend to install NTLX04CA HIOP CPs as replacements for NTLX04AA HIOP CPs or as replacements for NTLX04BA HIOP CPs, the following rules apply.

- You must replace all the HIOP CPs in the XA-Core, so that the shelf contains only NTLX04CA versions.
- You must complete the replacement of all the HIOP CPs during a single maintenance window.
Common procedures

Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) visual indicators

The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action

The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.
NTLX04 high performance input/output circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Summary of NTLX04 replacement procedure in a SuperNode and SuperNode SE XA-Core

- Obtain a replacement CP
- Check CP PEC codes
- CP has the appropriate PEC?
 - Y: ManB the CP
 - N: CP has the appropriate PEC?
- Replacement CP has same suffix?
 - Y: ManB passed?
 - N: Proper DLL file listed as “current”?
- Proper DLL file listed as “current”?
 - Y: Update table XAFWLOAD
 - N: Connect cables to the faceplate
- Disconnect cables from the faceplate
- Remove the CP from the shelf
- Insert new CP in the shelf
- RTS passed?
 - Y: Verify firmware
 - N: Call next level of support
- Return the CP to service
- End

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.
How to replace an NTLX04 circuit pack

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of equipment damage
Before inserting the replacement circuit pack during this procedure, use a flashlight to inspect the backplane in the slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins. If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in the slot. Look for physical damage or abnormalities. If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP of the same equipment type at a time.
At your current location

1. Get a replacement CP. If you are replacing a CP that does not meet baseline hardware requirements, make sure that the replacement CP meets those requirements. If you are replacing a defective CP, make sure that the replacement CP has an appropriate product engineering code (PEC) and PEC suffix, as explained in the following sentences. If the replacement has a PEC and suffix that are identical to the PEC and suffix of the CP that is to be replaced, you can proceed. If the replacement has a PEC that is the same, but a suffix that is different from that of the CP that is to be replaced, see “Replacement rules” in this module for information on whether the replacement scenario is permitted. If you intend to use an NTLX04CA to replace an earlier version (NTLX04AA or NTLX04BA), see “Rules for installing CA versions as replacements for AA or BA versions”, earlier in this module.

At the MAP terminal

2. Select the next step as follows:

<table>
<thead>
<tr>
<th>If the replacement HIOP CP</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>has the same suffix as the HIOP CP that is to be removed</td>
<td>step 5</td>
</tr>
<tr>
<td>has a different suffix</td>
<td>step 3</td>
</tr>
</tbody>
</table>

3. Access table XAFWLOAD and verify that “current” DLL firmware load for the HIOP that you are going to install is the proper DLL load for that circuit pack, as stated in the Peripheral Module Software Release Document.

Proceed as follows.

a. Access table XAFWLOAD. Type

 >TABLE XAFWLOAD

 and press the Enter key.

 Map response

 TABLE: XAFWLOAD

b. List all the tuples. Type

 >LIST ALL

 and press the Enter key.

 Map response
NTLX04 high performance input/output circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Find the tuple listing the current DLL firmware load for the HIOP CP that you intend to install.

In the Peripheral Module Software Release Document for the software release that the system is running, look up the DLL firmware load that is listed for the HIOP CP that you intend to install.

Select the next step as follows:

<table>
<thead>
<tr>
<th>If the DLL loads from the two preceding substeps</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are the same</td>
<td>step 5</td>
</tr>
<tr>
<td>are different</td>
<td>step 4</td>
</tr>
</tbody>
</table>

Update table XAFWLOAD so that it lists the proper DLL firmware load as the current DLL firmware load for the HIOP CP that you intend to install. If the load is not listed in the table, you will need to add a new tuple. Alternatively, if the load is listed but its status is not listed as “current”, you will need to change the status field for the load to “current”. (For examples of instructions to perform such updates, see the procedure titled “Upgrading firmware on the occasion of a software release”. The procedure is in this document, in the chapter “Introduction to routine maintenance procedures.”) If you are uncertain about what you should do, call the next level of support.

Access the XA-Core IO MAP level. At the MAP terminal type

>MAPCI;MTC;XAC;IO

and press the Enter key.

The following is a sample MAP display.
Introduction to card replacement

NTLX04 high performance input/output circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

IO MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Examine the IO MAP display. Record the working state of the system and the HIOP CPs. Determine the location of the HIOP CP that you need to replace. (You can recognize the HIOP CPs because they have information in the "Middle" field in the MAP display.) Record the HIOP CP location on the physical shelf, side and slot.

6

7

ManB the HIOP CP. The CP must be in a ManB state before indication, removal, insertion or out-of-service testing. At the IO MAP type

>BSY <nn> <s> FORCE

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 5 r

Example of system response:

Bsy 5 rear complete.

<table>
<thead>
<tr>
<th>If the HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 16</td>
</tr>
</tbody>
</table>
NTLX04 high performance input/output circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

8 Indicate the ManB HIOP CP. At the IO MAP terminal type
 >INDICAT card <nn> <s>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the
 physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP location in the physical
 shelf - front (f) or rear (r)
 Example of command use:
 >INDICAT card 5 r

 Example of system response:
 Indicate 5 rear passed.

At the XA-Core physical shelf

9 Locate the HIOP CP on the XA-Core physical shelf. Use the CP location
 information recorded from the IO MAP in step 6. Label the cable connections
 on the HIOP CP according to office standards.

10 Disconnect the all cables from the faceplate of the circuit pack. For each
 cable, proceed as follows.
 a Carefully pull the connector away from the receptacle. Hold the connector
 by the body only.
 b Cover the ends of the cable with dust caps.
 c Place the cable in a safe location away from the CP.

11

WARNING

Static electricity damage

Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the
wrist-strap grounding point of the frame supervisory
panel (FSP) while handling circuit packs.

Remove the HIOP CP from the physical shelf.
 a Open the locking levers on the CP.
 b Hold the CP by the locking levers. Pull the CP half way from the shelf
 opening toward you.
 c Hold the CP by the faceplate with one hand and support the bottom edge
 with the other. Remove the CP completely from the shelf.
 d Place the CP in ESD protective packaging.
Remove the NTLX04 HIOP CP from the XA-Core shelf

12 Using a flashlight, inspect the backplane in this slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins.

If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in this slot. Look for physical damage or abnormalities.

If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.
13 Insert the replacement HIOP CP into the physical shelf slot.
 a Open the locking levers on the replacement HIOP CP.
 b Hold the CP by the faceplate with one hand and support the bottom edge with the other.
 c Align the CP with the physical shelf slot. Slide the CP into the physical slot. Do not force the CP into the physical slot.
 d Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Push on the faceplate until the CP is fit into position.
 e Close the locking levers to lock the CP in the physical shelf. Do not force the locking levers to close.

Insert the NTLX04 HIOP CP in the XA-Core shelf
NTLX04 high performance input/output circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

14 Connect the replacement or original cables to the appropriate connectors on the faceplate of the circuit pack. For each cable, proceed as follows.
 a Remove the dust caps from the cable tips.
 b Hold the cable connector by the body only.
 c Carefully insert the cable connector into the correct receptacle.

At the MAP terminal

15 Return the HIOP CP to service. At the IO MAP level type
 >RTS <nn> <s>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
 Example of command:
 >RTS 5 r
 Example of system response:
 RTS 5 rear passed.

<table>
<thead>
<tr>
<th>If replacement HIOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not returned to service</td>
<td>step 16</td>
</tr>
<tr>
<td>returned to service</td>
<td>step 17</td>
</tr>
</tbody>
</table>

16 Call the next level of support.
Check that the newly installed circuit pack contains the proper firmware loads. At the PE MAP level type

>QUERY CARD <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<ss> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command:

>QUERY CARD 5 r

The system displays several items of information, including the firmware versions.

Example of system response:

Command Submitted.

Pos Type PEC+ HW Rel BL OK Serial Number FW Vers. Baseline OK
--- ---- ---- -- --- -- -- ------------- -------- -------- --

<table>
<thead>
<tr>
<th><fwvers></th>
<th><fblv></th>
<th><ok></th>
</tr>
</thead>
<tbody>
<tr>
<td><dlvers></td>
<td><dblv></td>
<td><ok></td>
</tr>
</tbody>
</table>

where

<fwvers> identifies the FW firmware load that is in the circuit pack
<fbvlv> identifies the baseline FW firmware version
<dlvers> identifies the DLL firmware load that is in the circuit pack
<dblv> identifies the baseline DLL firmware load
<ok> indicates whether the current firmware load is compatible with the baseline and exception information specified in table FWINV. For information on the baseline and exception specifications, see the description of table FWINV in the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

<table>
<thead>
<tr>
<th>If the firmware versions</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>are the proper versions</td>
<td>step 19</td>
</tr>
<tr>
<td>are not the proper versions</td>
<td>step 18</td>
</tr>
</tbody>
</table>

Perform the procedure titled “Loading current firmware into a newly installed XA-Core component”. The procedure is in this document, in the chapter titled “Introduction to routine maintenance procedures”. Return to this point when complete.

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
NTLX05 OC-3 CMIC two port interface packlet
in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX05AB OC-3 CMIC two port interface packlet. The packlet installs in a single-width IOP circuit pack (CP).

Use this procedure

- to replace a defective packlet
- to replace a packlet that does not meet the baseline requirements

If you are replacing a defective packlet, the replacement that you install should have the same product engineering code and version as the packlet that you remove.

If you are replacing a packlet that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following lists the valid OC-3 two port interface packlets.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX05</td>
<td>AB</td>
<td>OC-3 two port interface packlet</td>
</tr>
</tbody>
</table>
NTLX05 OC-3 CMIC two port interface packlet in a SuperNode and SuperNode SE XA-Core (continued)

NTLX05 OC-3 two port interface packlet front and side views

Module faceplate
Red triangular LED
Green rectangular LED
Amber round LED
Upper locking lever
OC-3 port interface 0
OC-3 port interface 1
Lower locking lever
Common procedures
Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) strategy
The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action
The following flowchart is only a summary of this procedure. To replace the packlet, use the methods in the step instructions that follow the flowchart.
Summary of NTLX05 replacement procedure in a SuperNode and SuperNode SE XA-Core

1. Obtain compatible replacement packlet
 - Packlet is load compatible?
 - Y
 -Packlet has appropriate PEC suffix?
 - Y
 - Obtain packlet with appropriate PEC suffix
 - ManB the OC-3 packet
 - ManB the RTIF packet
 - Remove packet from the IOP CP
 - Insert the replacement packet
 - Return IOP CP and packlets to service
 - N
 - Call the next level of support
 - RTS passed?
 - Y
 - Verify firmware
 - End
 - N
 - ManB the IOP CP
 - Call the next level of support
2. Obtain packlet with appropriate PEC suffix
 - Packlet has appropriate PEC suffix?
 - Y
 - Obtain packlet with appropriate PEC suffix
 - N
 - Return IOP CP and packlets to service

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.
How to replace an NTLX05 circuit packlet

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location:
1. Get a replacement packlet. If you are replacing a packlet that does not meet baseline hardware requirements, make sure that the replacement packlet meets those requirements. If you are replacing a defective packlet, make sure that the replacement packlet has the same product engineering code (PEC) and PEC suffix.

At the MAP terminal
2. Access the XA-Core CMIC MAP level. At the CI MAP prompt type

```plaintext
>MAPCI;MTC;XAC;CMIC
```

and press the Enter key.
3. Examine the CMIC MAP level. Record the location and status of the OC-3 two port interface packlet that you need to replace. Make sure that redundant components are InSv before removing the OC-3 two port interface packlet that you need to replace.

The following is a sample MAP display.
NTLX05 OC-3 CMIC two port interface packet
in a SuperNode and SuperNode SE XA-Core (continued)

CMIC MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MScomm M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMIC
0 Quit
2
3 Sta: .-.-.-.-.-.-.-.-.-.- .-.-.-.-.-.- .-.-.-.-.-.- .-.-.-.-.-.- .-.-.-.-.-.- 0 0 0 1
4 Dep: F
5 Typ: *
6 Tst_
7 Bsy_
8 RTS_
9

Slot: Side: Packet: Status: Port0 Port1 Link0: Link1: TOD0 TOD1

4 Rear Lower S C C C
15 Rear Lower

If the redundant components are

in a ManB state step 4
in an InSv state step 5
in a SysB state step 17

Return the redundant IOP CP or packetets to service. At the correct MAP level type

>RTS <nn> <s>
or

>RTS <nn> <s> <p>
and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packetet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packetet location in an input/output processor (IOP) - upper (u) or lower (l)
NTLX05 OC-3 CMIC two port interface packet
in a SuperNode and SuperNode SE XA-Core (continued)

Example of command use:
>RTS 4 r

Example of system response:
RTS 4 rear completed

<table>
<thead>
<tr>
<th>If the redundant components are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 5</td>
</tr>
<tr>
<td>not in service</td>
<td>step 17</td>
</tr>
</tbody>
</table>

5 Place the OC-3 two-port interface packet in a ManB state. At the CMIC MAP level type
>BSY <nn> <s> <p>
and press the Enter key
where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:
>BSY 4 r l

Example of system response:
Warning: Bsy command will take it out of service.
Please confirm ("YES", "Y", "NO", or "N")

To confirm the command type:
>Y

Example of system response:
Bsy 4 rear lower complete

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 6</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>
Indicate the ManB OC-3 two port interface packet. At the CMIC MAP level, type

>INDICAT card <nn> <s> <p>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>INDICAT card 4 r l

Example of system response:

Indicate 4 rear lower passed

Place the RTIF packet in a ManB state.

a Access the RTIF MAP level. At the CMIC MAP level type

>RTIF

and press the Enter key

b At the RTIF MAP level type:

>BSY <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
<p> is the upper (u) or lower (l) physical slot location of the packet in an input/output processor (IOP).

Example of command use:

>BSY 4 r u

Example of system response:

Warning: Bsy command will take it out of service. Please confirm ("YES", "Y", "NO", or "N")

To confirm the command type:

>Y
NTLX05 OC-3 CMIC two port interface packet in a SuperNode and SuperNode SE XA-Core (continued)

Example of system response:

Bsy 4 rear upper complete

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>

8 ManB the IOP CP. Perform the following steps

a Exit from the RTIF MAP level and display the IO MAP level. At the RTIF MAP level type

>IO

and press the Enter key.

b ManB the IOP CP. At the IO MAP level type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 4 r

Example of system response:

Warning: Bsy command will take it out of service. Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"),

To confirm the command type:

>Y

Example of system response:

Bsy 4 rear passed.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 9</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>
NTLX05 OC-3 CMIC two port interface packet in a SuperNode and SuperNode SE XA-Core (continued)

At the XA-Core physical shelf

9 Locate the OC-3 two port interface packet in the IOP CP. Label the fiber optic cable connections on the OC-3 two port interface packet according to office standards.

Paired SC fiber optic cable connectors

![Diagram of fiber optic cable connectors]

WARNING
Fiber cable damage
Handle the fiber optic cables with caution. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface reduces communication performance.

Disconnect the fiber optic cables from the faceplate of the OC-3 two port interface packet.

a Carefully pull the fiber optic connector away from the receptacle. Hold the connector by the body only.

b Cover the ends of the fiber optic cable with dust caps.

c Place the fiber optic cables in a safe location away from the packet.
NTLX05 OC-3 CMIC two port interface packet in a SuperNode and SuperNode SE XA-Core (continued)

Disconnect the fiber optic cables from the OC-3 two port interface packet ports

11

WARNING
Do not hold circuit packet by levers only
Holding a circuit packet by the levers can result in lever breakage.

Remove the OC-3 two port interface packet from the IOP CP. Perform the following steps:

a. Open the upper and lower locking levers on the packet.

b. Carefully pull the packet toward you by the locking levers until it extends half way from the shelf opening.

c. Hold the packet by the faceplate with one hand and support the bottom edge with the other. Remove the packet completely from the shelf.

d. Place the packet in ESD protective packaging.
Remove the OC-3 two port interface packet from the IOP CP

WARNING
Do not hold circuit packet by levers only
Holding a circuit packet by the levers can result in lever breakage.

Insert the replacement OC-3 two port interface packet in the lower IOP CP slot.

a Remove the replacement OC-3 two port interface packet from the ESD protective packaging.
b Open the upper and lower locking levers on the packet.
c Hold the packet by the faceplate with one hand and support the bottom edge with the other.
d Align the packet with the lower IOP CP slot and carefully slide the packet into the slot. Do not force the packet into the slot.
e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.
f Close the locking levers to secure the packet. Do not force the locking levers to close.
NTLX05 OC-3 CMIC two port interface packet in a SuperNode and SuperNode SE XA-Core (continued)

Insert the OC-3 two port interface packet into the IOP CP

13 Connect the replacement or original fiber optic cables to the correct OC-3 two port interface ports.
 a Remove the dust caps from the fiber optic cable tips. Clean the tips of the fiber optic cables. Use the recommended cleaning methods.
 b Hold the fiber optic cable connector by the body only.
 c Carefully insert the fiber optic cable connectors into the correct receptacles. See the diagrams in this step.
Connect the OC-3 two port interface fiber optic cables

XA-Core and MS fiber optic cable connections (SuperNode)

Legend:
- Receive terminal
- Transmit terminal
XA-Core and MS fiber optic cable connections (SuperNode SE)

<table>
<thead>
<tr>
<th>Port 1</th>
<th>Port 0</th>
<th>Port 1</th>
<th>Port 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- □ Receive terminal
- □ Transmit terminal

At the MAP

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Return the IOP CP to service. At the IO MAP level type >RTS <nn> <s> and press the Enter key where <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18 <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r) Example of command use: >RTS 4 r Example of system response: RTS 4 rear completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 15</td>
</tr>
<tr>
<td>not in service</td>
<td>step 17</td>
</tr>
</tbody>
</table>
NTLX05 OC-3 CMIC two port interface packlet in a SuperNode and SuperNode SE XA-Core (continued)

15 Return the OC-3 two port interface packlet to service. Perform the following steps.
 a Exit from the IO MAP level and access the CMIC MAP level. At the IO MAP level type
 \texttt{\textgreater CMIC}
 and press the Enter key.
 b Return the OC-3 two port interface packlet to service. At the CMIC MAP level type
 \texttt{\textgreater RTS \textless nn\textgreater \textless s\textgreater \textless p\textgreater}
 and press the Enter key
 where
 \textless nn\textgreater is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 \textless s\textgreater is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
 \textless p\textgreater is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
 Example of command use:
 \texttt{\textgreater RTS 4 r l}

 \textit{Example of system response:}

 RTS 4 rear lower completed

If the OC-3 two port interface packlet is not in service step 17
16 Return the RTIF packlet to service. Perform the following steps.
 a Exit from the CMIC MAP level and access the RTIF MAP level. At the CMIC MAP level type
 >RTIF
 and press the Enter key.
 b Return the RTIF packlet to service. At the RTIF MAP level type
 >RTS <nn> <s> <p>
 and press the Enter key where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
 <p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
 Example of command use:
 >BSY 4 r u
 Example of system response:
 RTS 4 rear upper completed

<table>
<thead>
<tr>
<th>If the RTIF packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in service</td>
<td>step 17</td>
</tr>
<tr>
<td>in service</td>
<td>step 18</td>
</tr>
</tbody>
</table>

17 Call the next level of support.
18 Check that the newly installed CMIC packlet contains the proper firmware load. At the PE MAP level type
 >QUERY CARD <nn> <s>
 and press the Enter key where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
 <p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
 Example of command:
 >QUERY CARD 4 r u
The system displays several items of information, including the firmware version.

Example of system response:

Command Submitted.
.
.
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers. Baseline OK
--- ---- ---- -- --- -- -- ------------- -------- -------- --

where

<vers> identifies the firmware load that is in the circuit pack

<blv> identifies the baseline firmware version

<ok> indicates whether the current firmware load is compatible with the baseline and exception information specified in table FWINV. For information on the baseline and exception specifications, see the description of table FWINV in the chapter titled “XA-Core data schema overview” in the *XA-Core Reference Manual*, 297-8991-810.

<table>
<thead>
<tr>
<th>If the firmware version</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the proper version</td>
<td>step 20</td>
</tr>
<tr>
<td>is not the proper version</td>
<td>step 19</td>
</tr>
</tbody>
</table>

19 Perform the procedure titled “Loading current firmware into a newly installed XA-Core component”. The procedure is in this document, in the chapter titled “Introduction to routine maintenance procedures”. Return to this point when complete.

20 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
NTLX05 OC-3 AMDI two port interface packet in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX05BA OC-3 AMDI two port interface packet. The packet installs in a single-width IOP circuit pack (CP).

Use this procedure

- to replace a defective packet
- to replace a packet that does not meet the baseline requirements

If you are replacing a defective packet, the replacement that you install should have the same product engineering code and version as the packet that you remove.

If you are replacing a packet that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following lists the valid OC-3 AMDI two port interface packets.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX05</td>
<td>BA</td>
<td>OC-3 AMDI two port interface packet</td>
</tr>
</tbody>
</table>
Common procedures

Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) strategy

The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action

The following flowchart is only a summary of this procedure. To replace the packlet, use the methods in the step instructions that follow the flowchart.
NTLX05 OC-3 AMDI two port interface packlet in a SuperNode and SuperNode SE XA-Core (continued)

Summary of NTLX05 replacement procedure in a SuperNode and SuperNode SE XA-Core

1. Obtain compatible replacement packet

2. Packet is load compatible?
 - Y: Packlet has appropriate PEC and suffix?
 - N: Obtain packlet with appropriate PEC and suffix
 - Y: ManB the IOP CP

3. ManB the OC-3 packet

4. Insert the replacement packet

5. RTS passed?
 - Y: Verify firmware
 - N: Call the next level of support
How to replace an NTLX05 circuit packlet

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location:

1. Get a replacement packlet. If you are replacing a defective packlet, make sure that the replacement packlet has the same product engineering code (PEC) and PEC suffix. If you are replacing a packlet that does not meet baseline hardware requirements, make sure that the replacement packlet meets those requirements.

At the MAP terminal

2. Access the XA-Core AMDI MAP level. At the CI MAP prompt type
 >MAPCI;MTC;XAC;AMDI
 and press the Enter key.

3. Examine the AMDI MAP level. Record the location and status of the OC-3 two port interface packlet that you need to replace. Make sure that redundant components are InSv before removing the OC-3 two port interface packlet that you need to replace.

 The following is a sample MAP display.
NTLX05 OC-3 AMDI two port interface packet
in a SuperNode and SuperNode SE XA-Core (continued)

AMDI MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the redundant IOP or AMDI devices are

<table>
<thead>
<tr>
<th></th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 4</td>
</tr>
<tr>
<td>in an InSv state</td>
<td>step 5</td>
</tr>
<tr>
<td>in a SysB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>
NTLX05 OC-3 AMDI two port interface packlet in a SuperNode and SuperNode SE XA-Core (continued)

4
Return the redundant IOP CP or packlets to service. At the correct MAP level type

\[
>\text{RTS} \ <nn> \ <s>
\]

or

\[
>\text{RTS} \ <nn> \ <s> \ <p>
\]

and press the Enter key

where

- \(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- \(<s>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- \(<p>\) is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\[
>\text{RTS} \ 4 \ r
\]

Example of system response:

RTS 4 rear completed

<table>
<thead>
<tr>
<th>If the redundant IOP and AMDI devices are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 5</td>
</tr>
<tr>
<td>not in service</td>
<td>step 17</td>
</tr>
</tbody>
</table>

5
Place the OC-3 AMDI two-port interface packlet in a ManB state. At the AMDI MAP level type

\[
>\text{BSY} \ <nn> \ <s> \ <p>
\]

and press the Enter key

where

- \(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- \(<s>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- \(<p>\) is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\[
>\text{BSY} \ 4 \ r \ l
\]

Example of system response:

Warning: Bsy command will take it out of service.
Please confirm ("YES", "Y", "NO", or "N")
To confirm the command type:

> Y

Example of system response

Bsy 4 rear lower complete

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 6</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 17</td>
</tr>
</tbody>
</table>

6

Indicate the ManB OC-3 two port interface packlet. At the AMDI MAP level, type

> INDICAT card <nn> <s> <p>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

> INDICAT card 4 r l

Example of system response:

Indicate 4 rear lower passed

7

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03AA or BA</td>
<td>step 8</td>
</tr>
<tr>
<td>NTLX03AB or BB</td>
<td>step 9</td>
</tr>
</tbody>
</table>
NTLX05 OC-3 AMDI two port interface packlet in a SuperNode and SuperNode SE XA-Core (continued)

8 ManB the IOP CP. Perform the following steps
 a Exit from the AMDI MAP level and display the IO MAP level. At the AMDI MAP level type
 >IO
 and press the Enter key.
 b ManB the IOP CP. At the IO MAP level type
 >BSY <nn> <s>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
 Example of command use:
 >BSY 4 r
 Example of system response:
 Warning: Bsy command will take it out of service.
 Proceed (Y or N)
 Please confirm ("YES", "Y", "NO", or "N"),

 To confirm the command type:
 >Y

 Example of system response:
 Bsy 4 rear passed.

 | If the IOP CP is | Do |
 |-----------------------|------------------------|
 | in a ManB state | step 9 |
 | not in a ManB state | step 17 |

9 At the XA-Core physical shelf
 Locate the OC-3 two port interface packlet in the IOP CP. Label the fiber optic cable connections on the OC-3 two port interface packlet according to office standards.
NTLX05 OC-3 AMDI two port interface packet in a SuperNode and SuperNode SE XA-Core (continued)

Paired SC fiber optic cable connectors

WARNING
Fiber cable damage
Handle the fiber optic cables with caution. Do not crimp or bend the fiber optic cables to a radius of less than 25mm (1 in.). Do not touch the tip of the fiber optic filament. Dirt or oil from the skin transferred to the fiber tip surface reduces communication performance.

Disconnect the fiber optic cables from the faceplate of the OC-3 two port interface packet.

- **a** Carefully pull the fiber optic connector away from the receptacle. Hold the connector by the body only.
- **b** Cover the ends of the fiber optic cable with dust caps.
- **c** Place the fiber optic cables in a safe location away from the packet.
NTLX05 OC-3 AMDI two port interface packlet in a SuperNode and SuperNode SE XA-Core (continued)

Disconnect the fiber optic cables from the OC-3 two port interface packlet ports

![Diagram of fiber optic cable connection](image)

WARNING
Do not hold circuit packlet by levers only
Holding a circuit packlet by the levers can result in lever breakage.

Remove the OC-3 two port interface packlet from the IOP CP. Perform the following steps:

a. Open the upper and lower locking levers on the packlet.

b. Carefully pull the packlet toward you by the locking levers until it extends half way from the shelf opening.

c. Hold the packlet by the faceplate with one hand and support the bottom edge with the other. Remove the packlet completely from the shelf.

d. Place the packlet in ESD protective packaging.
NTLX05 OC-3 AMDI two port interface packlet in a SuperNode and SuperNode SE XA-Core (continued)

Remove the OC-3 two port interface packlet from the IOP CP

12

WARNING
Do not hold circuit packlet by levers only
Holding a circuit packlet by the levers can result in lever breakage.

Insert the replacement OC-3 two port interface packlet in the lower IOP CP slot.

a Remove the replacement OC-3 two port interface packlet from the ESD protective packaging.

b Open the upper and lower locking levers on the packlet.

c Hold the packlet by the faceplate with one hand and support the bottom edge with the other.

d Align the packlet with the lower IOP CP slot and carefully slide the packlet into the slot. Do not force the packlet into the slot.

e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.

f Close the locking levers to secure the packlet. Do not force the locking levers to close.
NTLX05 OC-3 AMDI two port interface packlet in a SuperNode and SuperNode SE XA-Core (continued)

Insert the OC-3 two port interface packlet into the IOP CP

13 Connect the replacement or original fiber optic cables to the correct OC-3 two port interface ports.
 a Remove the dust caps from the fiber optic cable tips. Clean the tips of the fiber optic cables. Use the recommended cleaning methods.
 b Hold the fiber optic cable connector by the body only.
 c Carefully insert the fiber optic cable connectors into the correct receptacles. See the diagrams in this step.
NTLX05 OC-3 AMDI two port interface packet
in a SuperNode and SuperNode SE XA-Core (continued)

Connect the OC-3 two port interface fiber optic cables

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03AA or BA</td>
<td>step 15</td>
</tr>
<tr>
<td>NTLX03AB or BB</td>
<td>step 16</td>
</tr>
</tbody>
</table>

At the MAP

15 Return the IOP CP to service. At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the
physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the
physical shelf - front (f) or rear (r)

Example of command use:

>RTS 4 r
Example of system response:
RTS 4 rear completed

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 16</td>
</tr>
<tr>
<td>not in service</td>
<td>step 17</td>
</tr>
</tbody>
</table>

16 Return the OC-3 AMDI two port interface packlet to service. Perform the following steps.

a Exit from the previous MAP level and access AMDI MAP level. At the previous MAP level type

>AMDI
and press the Enter key.

b Return the OC-3 two port interface packlet to service. At the AMDI MAP level type

>RTS <nn> <s> <p>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>RTS 4 r l

Example of system response:
RTS 4 rear lower completed

<table>
<thead>
<tr>
<th>If the OC-3 two port interface packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in service</td>
<td>step 17</td>
</tr>
<tr>
<td>in service</td>
<td>step 18</td>
</tr>
</tbody>
</table>

17 Call the next level of support.
18 Check that the newly installed AMDI packlet contains the proper firmware load. At the PE MAP level type

>QUERY CARD <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command:

>QUERY CARD 4 r l

The system displays several items of information, including the firmware version.

Example of system response:

Command Submitted.
.
.
.
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers. Baseline OK
--- ---- ---- -- --- -- -- ------------- -------- -------- --
<vers> <blv> <ok>

where

<vers> identifies the firmware load that is in the circuit pack
<brv> identifies the baseline firmware version
<ok> indicates whether the current firmware load is compatible with the baseline and exception information specified in table FWINV. For information on the baseline and exception specifications, see the description of table FWINV in the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

<table>
<thead>
<tr>
<th>If the firmware version</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the proper version</td>
<td>step 20</td>
</tr>
<tr>
<td>is not the proper version</td>
<td>step 19</td>
</tr>
</tbody>
</table>

19 Perform the procedure titled “Loading current firmware into a newly installed XA-Core component”. The procedure is in this document, in the chapter titled “Introduction to routine maintenance procedures”. Return to this point when complete.

20 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
NTLX06 disk packlet in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX06AA, AB, or AC disk packlet. The disk packlet installs in an NTLX03BA or BB dual-width Input/Output processor (IOP) circuit pack (CP).

Use this procedure

- to replace a defective packlet
- to replace a packlet that does not meet the baseline requirements

If you are replacing a defective packlet, the replacement that you install should have the same product engineering code and version as the packlet that you remove.

If you are replacing a packlet that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following lists the valid disk packlets.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Circuit packlet name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX06</td>
<td>AA</td>
<td>Disk 4 GigaByte packet</td>
</tr>
<tr>
<td>NTLX06</td>
<td>AB</td>
<td>Disk 8 GigaByte packet</td>
</tr>
<tr>
<td>NTLX06</td>
<td>AC</td>
<td>Disk 34.2 GigaByte packet</td>
</tr>
</tbody>
</table>
NTLX06 disk packlet in a SuperNode and SuperNode SE XA-Core (continued)

NTLX06 disk packlet front and side views

- Upper locking lever
- Red triangular LED
- Green rectangular LED
- Faceplate
- Lower locking lever
NTLX06 disk packlet in a SuperNode and SuperNode SE XA-Core (continued)

Common procedures
Do not go to a common procedure unless instructed in the step-action procedure.

Light emitting diode (LED) strategy
The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action
The following flowchart is only a summary of this procedure. To replace the packlet, use the instructions in the step-action procedure that follows the flowchart.
NTLX06 disk packlet
in a SuperNode and SuperNode SE XA-Core (continued)

Summary of NTLX06 replacement procedure in a SuperNode and SuperNode SE XA-Core

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.

1. Obtain compatible replacement packlet
2. ManB the disk packlet
3. IOP type?
 - Yes: ManB the IOP CP
 - No: IOP type?
 - Yes: RTS the IOP CP
 - No: RTS the tape packlet
4. RTS the replacement disk packlet
5. RTS passed?
 - Yes: Insert the replacement disk packlet
 - No: Unformatted disk?
 - Yes: Call the next level of support
 - No: Format the disk
6. End
How to replace an NTLX06 disk packlet

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location
1. Get a replacement packlet. If you are replacing a defective packlet, make sure that the replacement packlet has the same product engineering code (PEC) and PEC suffix. If you are replacing a packet that does not meet baseline hardware requirements, make sure that the replacement packlet meets those requirements.

At the MAP terminal
2. Access the XA-Core Disk MAP level. At the CI MAP prompt type
   ```
   >MAPCI;MTC;XAC;DISK
   ```
 and press the Enter key.
NTLX06 disk packlet
in a SuperNode and SuperNode SE XA-Core (continued)

3. Examine the Disk MAP level. Record the location and status of the Disk packlet that you need to replace. Make sure that redundant components are InSv before removing the Disk packlet that you need to replace. (In the example shown here, the Disk packlet that needs to be replaced is in slot 17 front lower, and the redundant components are in slot 2.)

The following is a sample MAP display.

Disk MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Disk</td>
<td>Front: 11111111 Rear: 111111 SM PE IO PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>DISK M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Typ: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tst__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bsy__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Front</td>
<td>Lower</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>Front</td>
<td>Lower</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alarm__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Indicat__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Query__</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XMAP0
Time 14:12 >

If the redundant IOP, Disk or Tape devices are
in a ManB state Do step 4
in an InSv state step 5
in a SysB state step 31

4. Return the redundant IOP CP or packlets to service. At the correct MAP level type
>RTS <nn> <s>
or
>RTS <nn> <s> <p>
and press the Enter key
where
NTLX06 disk packet
in a SuperNode and SuperNode SE XA-Core (continued)

<n> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:
>RTS 4 r

Example of system response:
RTS 4 rear completed

<table>
<thead>
<tr>
<th>If the redundant IOP, Disk and Tape devices are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 5</td>
</tr>
<tr>
<td>not in service</td>
<td>step 31</td>
</tr>
</tbody>
</table>

5 Make sure that the redundant Disk packet contains the active image backup file.

a Exit from the Disk MAP level and access the CI MAP prompt. At the Disk MAP level type
 >QUIT ALL
 and press the Enter key.

b Access the image table of contents (ITOCCI) MAP interface. At the CI MAP level prompt type
 >ITOCCI
 and press the Enter key.
 Example of a MAP response:
 ITOC User Interface is now active.
 ITOCCI:

c List the image files for the XA-Core in the ITOC, type:
 >LISTBOOTFILE XA
 and press the Enter key.
Example of a MAP response:

Image Table Of Contents for XA:

<table>
<thead>
<tr>
<th>A Registered</th>
<th>Generic Device</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Date</td>
<td>Time</td>
<td>Name</td>
</tr>
<tr>
<td>R MM/DD/YYYY</td>
<td>HH:MM:SS</td>
<td>------</td>
</tr>
</tbody>
</table>

0 * 05/04/1999 19:16:21 F02LIMAGE IMG0504CX_XA
0 05/01/1999 19:21:19 F02LIMAGE IMG0501CU_XA

Note: The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.

d Determine which device contains the active image files. Examine the device name under the Generic Device header in the ITOC listing. The device name indicates the location of the disk device.

e Exit from the ITOCCI MAP interface and display the CI MAP level prompt. At the ITOCCI MAP interface prompt, type

>QUIT

and press the Enter key.

<table>
<thead>
<tr>
<th>If the redundant disk device</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>does not contain the active image</td>
<td>step 6</td>
</tr>
<tr>
<td>contains the active image</td>
<td>step 8</td>
</tr>
</tbody>
</table>

6 Perform a manual dump of the active image to the redundant disk device. At the CI MAP prompt, type

>AUTODUMP MANUAL

and press the Enter key.

7 Wait for a system response to indicate that the manual image dump is successful.

<table>
<thead>
<tr>
<th>If the manual image dump to the redundant disk device is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 8</td>
</tr>
<tr>
<td>not successful</td>
<td>step 31</td>
</tr>
</tbody>
</table>

8 Determine if the Tape packlet contains a mounted tape. Perform the following steps:
Access the Tape MAP level. At the CI MAP level prompt type:

```
>MAPCI;MTC;XAC;TAPE
```

and press the Enter key.

The Tape MAP level appears. The Tape MAP level displays the following information in the command interpreter output area:

- the user name under the User Name header
- the tape drive status under the Drive header (mounted/unmounted)

The following is a sample MAP display.

Tape MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tape

<table>
<thead>
<tr>
<th>Slot</th>
<th>Side</th>
<th>Packet</th>
<th>Status</th>
<th>User Name</th>
<th>Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>User1</td>
<td>mounted</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tst_</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS_</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Indicat_</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIME

14:12

9 Record the user name and drive state of the redundant Tape packet as shown on the Tape MAP level. (In the example shown here, the redundant Tape packet is in slot 2 front upper.) There are four possible tape device user conditions:

- The system is using the tape device. The Tape MAP level displays "System" as the user name. The system software is performing an activity such as an ONP or software upgrade. The tape drive state is mounted.
- Another user is performing a backup or restore at a different location. The tape drive state is mounted.
You are the user of the tape device. The tape drive state is mounted.

There are no users. The tape drive state is unmounted.

If the Tape MAP level indicates that

<table>
<thead>
<tr>
<th>Condition</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>the system software is the user</td>
<td>step 10</td>
</tr>
<tr>
<td>another user is using the tape device</td>
<td>step 11</td>
</tr>
<tr>
<td>you are the user of the tape device</td>
<td>step 14</td>
</tr>
<tr>
<td>there are no users</td>
<td>step 15</td>
</tr>
</tbody>
</table>

10 Wait for the system software to complete the ONP or upgrade process. When the system software activities are complete, the MAP deletes the “System” user name and the tape drive state changes to unmounted.

If the system software process is complete and the Tape MAP level indicates that

<table>
<thead>
<tr>
<th>Condition</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 13</td>
</tr>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 15</td>
</tr>
</tbody>
</table>

11 Notify the other user that you intend to busy the Tape packlet. The other user needs to complete tape device activities and perform an EJECTTAPE. Wait for the Tape MAP level to delete the other user name and indicate that the tape drive state is unmounted.

If the Tape MAP level indicates that

<table>
<thead>
<tr>
<th>Condition</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and that the tape drive state is mounted</td>
<td>step 12</td>
</tr>
<tr>
<td>the tape is rewound and that the tape drive state is unmounted</td>
<td>step 15</td>
</tr>
</tbody>
</table>

12 Call the other user to make sure that all tape device activities are complete.

If the other user has

<table>
<thead>
<tr>
<th>Condition</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed tape drive activities and rewound the tape</td>
<td>step 15</td>
</tr>
<tr>
<td>not completed tape drive activities</td>
<td>step 31</td>
</tr>
</tbody>
</table>
Clear the tape drive state on the Tape MAP level. Manually busy the Tape packlet and return the Tape packlet to service.

a. Manually busy the Tape packlet. At the Tape MAP level type

```
>BSY <nn> <s> <p>
```

and press the enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command use:

```
>BSY 2 f u
```

Example of system response:

```
BSY 2 front upper complete
```

b. Return the Tape packlet to service. At the Tape MAP level type

```
>RTS <nn> <s> <p>
```

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command use:

```
>RTS 2 f u
```

Example of system response:

```
RTS 2 front upper passed
```

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 15</td>
</tr>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 31</td>
</tr>
</tbody>
</table>
Access the DISKUT MAP interface and rewind the tape.

a. At the Tape MAP level type:
 >QUIT all
 and press the enter key.

b. Access the DISKUT MAP level. At the CI MAP prompt type:
 >DISKUT
 and press the enter key.

c. Rewind the tape. At the DISKUT MAP level type:
 >EJECTTAPE <device>
 and press the enter key.
 where
 <device> is the name of the tape device.

 Note: The system rejects the EJECTTAPE command if the system
 cannot identify you as the user of the tape device.

 Example of command use:
 >EJECTTAPE F02UTAPE

 Example of system response:
 Rewind of tape F02UTAPE on node <node_name> is completed. The tape device is not available to the user now

d. Exit from the DISKUT MAP level. At the DISKUT MAP prompt, type
 >QUIT
 and press the enter key.

e. Access the XA-Core Tape MAP level. At the CI MAP prompt, type
 >MAPCI;MTC;XAC:TAPE
 and press the enter key.

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates that</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 15</td>
</tr>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 31</td>
</tr>
</tbody>
</table>
NTLX06 disk packlet
in a SuperNode and SuperNode SE XA-Core (continued)

15 ManB the Disk packlet that you are going to replace. Perform the following steps:

a Exit from the Tape MAP level and access the Disk MAP level. At the Tape MAP level type

\texttt{>DISK}

and press the Enter key.

b ManB the Disk packlet. At the Disk MAP level type

\texttt{>BSY <nn> <s> <p>}

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\texttt{>BSY 2 f l}

Example of system response:

Warning: Bsy command will take it out of service. Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"):

\texttt{>Y}

Example of system response:

BSY 2 front lower completed

\textbf{Note:} If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the Disk packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 16</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 31</td>
</tr>
</tbody>
</table>
16 Indicate the ManB Disk packlet. At the Disk MAP level, type

```
>INDICAT card <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the `e` side parameter value to indicate the CP or packlet location in the physical shelf - `front (f)` or `rear (r)`
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - `upper (u)` or `lower (l)`

Example of command use:

```
>INDICAT card 2 f l
```

Example of system response:

Indicate 2 front lower passed.

17

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03BA</td>
<td>step 18</td>
</tr>
<tr>
<td>NTLX03BB</td>
<td>step 20</td>
</tr>
</tbody>
</table>

18 ManB the Tape packlet that is contained in the same IOP circuit pack that contains the Disk packlet that you intend to replace. At the Tape MAP level type

```
>BSY <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the `e` side parameter value to indicate the CP or packlet location in the physical shelf - `front (f)` or `rear (r)`
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - `upper (u)` or `lower (l)`

Note: The Tape packlet is in the same physical shelf and slot location as the replacement IOP CP.

Example of command use:

```
>BSY 2 f u
```
NTLX06 disk packlet
in a SuperNode and SuperNode SE XA-Core (continued)

Example of system response:
Warning: Bsy command will take it out of service.
Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:
>Y

Example of system response:
Bsy 2 front upper passed.

Note: If this command reduces redundancy and produces a major alarm,
you must use the Force option.

<table>
<thead>
<tr>
<th>If the Tape packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 19</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 31</td>
</tr>
</tbody>
</table>

19 ManB the IOP CP that contains the Disk packlet that you intend to replace.
Perform the following steps
a Exit from the Disk MAP level and display the IO MAP level. At the Disk MAP level type
 >IO
 and press the Enter key.
b ManB the IOP CP. At the IO MAP level type
 >BSY <nn> <s>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:
 >BSY 2 f

Example of system response:
Warning: Bsy command will take it out of service.
Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:
>Y
Example of system response:

Bsy 2 front completed.

Note: If the Bsy command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 20</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 31</td>
</tr>
</tbody>
</table>

At the XA-Core physical shelf

20 Locate the Disk packlet that you intend to replace. Refer to the packlet location recorded from step 3. Examine the IOP CP and packlet faceplates on the XA-Core physical shelf.

Look for a winking, red triangular LED on the packlet. A winking, red LED is a result of using the indicate command.

21 Remove the Disk packlet from the IOP CP. Perform the following steps:

a Open the upper and lower locking levers on the packlet.

b Carefully pull the packlet toward you by the locking levers until it extends half way from the shelf opening.

c Hold the packlet by the faceplate with one hand and support the bottom edge with the other. Remove the packlet completely from the shelf.

Remove the Disk packlet from the IOP CP
NTLX06 disk packlet in a SuperNode and SuperNode SE XA-Core (continued)

d Close the upper and lower locking levers on the packlet to prevent breakage.

e Place the packlet in ESD protective packaging.

22 Insert the replacement Disk packlet into the lower IOP CP slot. Perform the following steps:

- **a** Open the locking levers on the replacement Disk packlet.
- **b** Hold the packlet by the faceplate with one hand and support the bottom edge with the other.
- **c** Align the packlet with the slot in the shelf and slide the packlet into the physical slot. Do not force the packlet into the slot.
- **d** Use your fingers or thumbs to push on the upper and lower edges of the packlet faceplate.
- **e** Close the locking levers on the packlet. Do not force the locking levers to close.

Insert the Disk packlet in the IOP CP

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03BA</td>
<td>step 24</td>
</tr>
<tr>
<td>NTLX03BB</td>
<td>step 26</td>
</tr>
</tbody>
</table>
NTLX06 disk packlet in a SuperNode and SuperNode SE XA-Core (continued)

At the MAP terminal

24 Return the IOP CP to service. At the IO MAP level type

\[\text{\texttt{RTS \textless nn\textgreater \textless s\textgreater}} \]

and press the Enter key

where

\textless nn\textgreater is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

\textless s\textgreater is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command usage:

\[\text{\texttt{RTS 2 \textit{f}}} \]

Example of system response:

RTS 2 front passed.

25 Return the Tape packlet to service. Perform the following steps:

a Access the XA-Core TAPE MAP level. At the Disk MAP level type

\[\text{\texttt{TAPE}} \]

and press the Enter key

b Return the Tape packlet to service. At the TAPE MAP level type

\[\text{\texttt{RTS \textless nn\textgreater \textless s\textgreater \textless p\textgreater}} \]

and press the Enter key

where

\textless nn\textgreater is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

\textless s\textgreater is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

\textless p\textgreater is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\[\text{\texttt{RTS 2 \textit{f u}}} \]
NTLX06 disk packlet
in a SuperNode and SuperNode SE XA-Core (continued)

Example of system response:

RTS 2 front upper passed

<table>
<thead>
<tr>
<th>If the Tape packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in service</td>
<td>step 31</td>
</tr>
<tr>
<td>in service</td>
<td>step 26</td>
</tr>
</tbody>
</table>

26 Return the Disk packlet to service. Perform the following steps:

a Exit from the IO MAP level and access the Disk MAP level. At the IO MAP level type

>DISK

and press the Enter key.

b Return the Disk packlet to service. At the DISK MAP level type

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>RTS 2 f l

Example of system response:

RTS 2 front lower passed

<table>
<thead>
<tr>
<th>If the Disk packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in service</td>
<td>step 27</td>
</tr>
<tr>
<td>in service</td>
<td>step 32</td>
</tr>
</tbody>
</table>

27 Select the next step as follows:

If the system issues a message that the disk is not formatted, step 28

the system does not issue a “not formatted” message, step 31
NTLX06 disk packet
in a SuperNode and SuperNode SE XA-Core (end)

28 Format the disk. Type
 >FORMAT <nn> <s> <p>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the
 physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packlet location in the
 physical shelf - front (f) or rear (r)
 <p> is the position parameter value to indicate the packlet location in an
 input/output processor (IOP) - upper (u) or lower (l)
 Example of command usage:
 FORMAT 2 f l
 Example of system response:
 format 2 f l
 Warning: Format of the disk will result in LOST DATA.
 Proceed?
 Please confirm ("YES", "Y", "NO", or "N"): 29
 Confirm the command. Type
 >YES
 and press the Enter key.
 Example of system response:
 yes
 Command Submitted.
 Format 2 front lower checking data
 Format 2 front lower formatting disk
 Format 2 front lower initializing
 Format 2 front lower completed

30 Go back to step 26 and proceed from there.
31 Call the next level of support.
32 You have completed this procedure. Return to the main procedure that sent
you to this procedure and continue as instructed.
NTLX07 tape packlet in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX07 DAT tape drive packlet. The packlet installs in a dual-width Input/Output processor (IOP) circuit pack (CP).

Use this procedure

• to replace a defective packlet
• to replace a packlet that does not meet the baseline requirements

If you are replacing a defective packlet, then the following replacements are possible. You use an AA as a replacement for an AA. You can use BA as a replacement for a BA. You can use an BA as a replacement for an AA, but you must comply with the instructions found in this section, in Step 1 of the procedure.

If you are replacing a packlet that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following table lists the versions of the DAT tape drive packlet.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX07AA</td>
<td>Supports 60-meter (1.3 GByte capacity) tapes,</td>
</tr>
<tr>
<td></td>
<td>90-meter (2.0 GByte capacity) tapes, and</td>
</tr>
<tr>
<td></td>
<td>120-meter (4.0 GByte capacity) tapes</td>
</tr>
<tr>
<td>NTLX07BA</td>
<td>Supports 90-meter (2.0 GByte capacity) tapes and</td>
</tr>
<tr>
<td></td>
<td>120-meter (4.0 GByte capacity) tapes.</td>
</tr>
</tbody>
</table>
NTLX07 tape packlet in a SuperNode and SuperNode SE XA-Core (continued)

Note: The NTLX07BA tape packlet does not support 60-meter tapes.
Common procedures
Do not go to a common procedure unless instructed in the step-action procedure.

Light emitting diode (LED) strategy
The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action
The following flowchart is only a summary of this procedure. To replace the packlet, use the instructions in the step-action procedure that follows the flowchart.
NTLX07 tape packlet
in a SuperNode and SuperNode SE XA-Core (continued)

Summary of NTLX07 replacement procedure in a SuperNode and SuperNode SE XA-Core

1. Obtain compatible replacement packlet

 Packlet is load compatible?

 Packlet has appropriate PEC and suffix?

 Obtain packlet with appropriate PEC and suffix

2. ManB the Tape packlet

 ManB the Disk packlet

 ManB the IOP CP

3. Insert the replacement packlet

 RTS passed?

 Return IOP CP and packlets to service

 Call the next level of support

 End

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.

A. IOP card is NTLX03AA or BA

B. IOP card is NTLX03AB or BB
How to replace an NTLX07 tape packlet

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one packlet of the same equipment type at a time. Make sure that the unit you are replacing is inactive and the mate unit is active.
NTLX07 tape packlet
in a SuperNode and SuperNode SE XA-Core (continued)

At your current location
1 Get a replacement packlet. If you are replacing a packlet that does not meet baseline hardware requirements, make sure that the replacement packlet meets those requirements. If you are replacing a defective packlet, make sure that the replacement packlet and the packlet you remove have the same product engineering code (PEC), that is, NTLX07, and follow the instructions found in the following notes.

 Note 1: If the system is using CSP18 or later software, then the NTLX07AA and NTLX07BA packlets can co-exist in the same XA-Core (unless the baseline requirements impose restrictions). Therefore, if you need to replace a faulty NTLX07AA packlet, you can use an NTLX07AA packlet or an NTLX07BA packlet as a replacement. Similarly, if you need to replace a faulty NTLX07BA packlet, you can use an NTLX07AA packlet or an NTLX07BA packlet as a replacement.

 Note 2: If the system is using CSP14, CSP15, CSP16, or CSP17 software, you must apply a software patch before you install an NTLX07BA packlet. The patch enables the system to accept the BA suffix in the inventory table. After you have applied the patch, the NTLX07AA and NTLX07BA packlets can co-exist in the XA-Core. See the patch bulletins for detailed information about the patch.

 Note 3: Immediately after installing the first NTLX07BA packlet in an XA-Core shelf that has been using NTLX07AA packlets, perform the following maintenance activities. (1) Use the NTLX07BA packlet to copy all backup images for the office to 90-meter or 120-meter tapes. (2) Verify that the tapes can be restored to the disk in the NTLX07BA. Also, if the NTLX07BA is going to co-exist with an NTLX07AA, verify that the tapes can be restored to the disk in the NTLX07AA.

 Note 4: If the NTLX07AA and NTLX07BA packlets are going to co-exist in an XA-Core, you should copy all data that is on 60-meter tapes to 90-meter tapes or 120-meter tapes, and you should stop using 60-meter tapes.

At the MAP terminal
2 Access the XA-Core Tape MAP level. At the CI MAP prompt type

 >MAPCI;MTC;XAC;TAPE

 and press the Enter key.
NTLX07 tape packlet in a SuperNode and SuperNode SE XA-Core (continued)

3 Examine the Tape MAP level. Record the location and status of the Tape packlet that you need to replace. Make sure that redundant components are InSv before removing the Tape packlet that you need to replace. Determine if the Tape packlet contains a mounted tape.

Note: The Tape MAP level displays the following information in the command interpreter output area:

- the user name under the User Name header
- the tape drive status under the Drive header (mounted/unmounted)

Tape MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Front:</td>
<td>11111111</td>
<td>Rear:</td>
<td>111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>TAPEtb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta:</td>
<td>-----.-----.S-</td>
<td>.--------.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep:</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ:</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot:</td>
<td>Side:</td>
<td>Packlet:</td>
<td>Status:</td>
<td>User Name:</td>
<td>Drive:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Front</td>
<td>Upper</td>
<td>.</td>
<td>USER1</td>
<td>mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Front</td>
<td>Upper</td>
<td>S</td>
<td>Unmounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the redundant IOP, Disk or Tape devices are

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
</tr>
<tr>
<td>in an InSv state</td>
</tr>
<tr>
<td>in a SysB state</td>
</tr>
</tbody>
</table>
4 Return the redundant IOP CP or packlets to service. At the correct MAP level type
 >RTS <nn> <s>
 or
 >RTS <nn> <s> <p>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
 <p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
 Example of command use:
 >RTS 2 f
 Example of system response:
 RTS 4 rear completed

 If the redundant IOP, Disk and Tape devices are
 Do
 in service step 5
 not in service step 29

5 Make sure that the redundant Disk packlet contains the active image backup file.
 a Exit from the Tape MAP level and access the CI MAP prompt. At the Tape MAP level type
 >QUIT ALL
 and press the Enter key.
 b Access the image table of contents (ITOCCI) MAP interface. At the CI MAP level prompt type
 >ITOCCI
 and press the Enter key.
 Example of a MAP response:
 ITOC User Interface is now active.
 ITOCCI:
 c List the image files for the XA-Core in the ITOC, type:
 >LISTBOOTFILE XA
Introduction to card replacement

NTLX07 tape packlet in a SuperNode and SuperNode SE XA-Core (continued)

and press the Enter key.

Example of a MAP response:

Image Table Of Contents for XA:

<table>
<thead>
<tr>
<th>A Registered</th>
<th>Generic Device</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Date</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>R MM/DD/YYYY HH:MM:SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>0 * 05/04/1999 19:16:21 F02LIMAGE IMG0504CX_XA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 05/01/1999 19:21:19 F02LIMAGE IMG0501CU_XA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.

d Determine which device contains the active image files. Examine the device name under the Generic Device header in the ITOC listing. The device name indicates the location of the disk device.

e Exit from the ITOCCI MAP interface and display the CI MAP prompt. At the ITOCCI MAP interface prompt, type

>QUIT

and press the Enter key.

<table>
<thead>
<tr>
<th>If the redundant disk device</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>does not contain the active image</td>
<td>step 6</td>
</tr>
<tr>
<td>contains the active image</td>
<td>step 8</td>
</tr>
</tbody>
</table>

6 Perform a manual dump of the active image to the redundant disk device. At the CI MAP prompt, type

>AUTODUMP MANUAL

and press the Enter key.

7 Wait for a system response to indicate that the manual image dump is successful.

<table>
<thead>
<tr>
<th>If the manual image dump to the redundant disk device is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 8</td>
</tr>
<tr>
<td>not successful</td>
<td>step 29</td>
</tr>
</tbody>
</table>
NTLX07 tape packet
in a SuperNode and SuperNode SE XA-Core (continued)

8. Access the XA-Core Tape MAP level. At the CI MAP prompt type

```
>MAPCI;MTC;XAC;TAPE
```

and press the Enter key.

9. Record the user name and drive state as shown on the Tape MAP level. There are four possible tape device user conditions:

- The system is using the tape device. The Tape MAP level displays “System” as the user name. The system software is performing an activity such as an ONP or software upgrade. The tape drive state is mounted.
- Another user is performing a backup or restore at a different location. The tape drive state is mounted.
- You are the user of the tape device. The tape drive state is mounted.
- There are no users. The tape drive state is unmounted.

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates that</th>
</tr>
</thead>
<tbody>
<tr>
<td>the system software is the user</td>
</tr>
<tr>
<td>another user is using the tape device</td>
</tr>
<tr>
<td>you are the user of the tape device</td>
</tr>
<tr>
<td>there are no users</td>
</tr>
</tbody>
</table>

10. Wait for the system software to complete the ONP or upgrade process. When the system software activities are complete, the MAP deletes the “System” user name and the tape drive state changes to unmounted.

<table>
<thead>
<tr>
<th>If the system software process is complete and the Tape MAP level indicates that</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
</tr>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
</tr>
</tbody>
</table>
11 Notify the other user that you intend to replace the Tape packet. The other user needs to complete tape device activities and perform an EJECTTAPE. Wait for the Tape MAP level to delete the other user name and indicate that the tape drive state is unmounted.

If the Tape MAP level indicates that

<table>
<thead>
<tr>
<th></th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and that the tape drive state is mounted</td>
<td>step 12</td>
</tr>
<tr>
<td>the tape is rewound and that the tape drive state is unmounted</td>
<td>step 15</td>
</tr>
</tbody>
</table>

12 Call the other user to make sure that all tape device activities are complete.

If the other user has

<table>
<thead>
<tr>
<th>Completed tape drive activities and rewound the tape</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed tape drive activities and rewound the tape</td>
<td>step 15</td>
</tr>
<tr>
<td>not completed tape drive activities</td>
<td>step 29</td>
</tr>
</tbody>
</table>

13 Clear the tape drive state on the Tape MAP level. Manually busy the Tape packet and return the Tape packet to service.

a Manually busy the Tape packet. At the Tape MAP level type

```bash
>BSY <nn> <s> <p>
```

and press the enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
- `<p>` is the upper (u) or lower (l) physical slot location of the packet in an input/output processor (IOP).

Example of command use:

```bash
>BSY 2 f u
```

Example of system response:

`BSY 2 front upper complete`
NTLX07 tape packlet in a SuperNode SE XA-Core (continued)

b Return the Tape packet to service. At the Tape MAP level type
>RTS <nn> <s> <p>
and press the Enter key

where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
<p> is the upper (u) or lower (l) physical slot location of the packet in an input/output processor (IOP).

Example of command use:
>RTS 2 f u

Example of system response:
RTS 2 front upper passed

If the Tape MAP level indicates that

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
</tr>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
</tr>
</tbody>
</table>

14 Access the DISKUT MAP interface and rewind the tape.

a At the Tape MAP level type:
>QUIT all
and press the enter key.

b Access the DISKUT MAP level. At the Ci MAP prompt type:
>DISKUT
and press the enter key.

c Rewind the tape. At the DISKUT MAP level type:
>EJECTTAPE <device>
and press the enter key.

where
<device> is the name of the tape device.

Note: The system rejects the EJECTTAPE command if the system cannot identify you as the user of the tape device.
NTLX07 tape packlet in a SuperNode and SuperNode SE XA-Core (continued)

Example of command use:
>>> EJECTTAPE F02UTAPE

Example of system response:
Rewind of tape F02UTAPE on node <node_name> is completed. The tape device is not available to the user now.

d Exit from the DISKUT MAP level. At the DISKUT MAP prompt, type
 >>> QUIT
 and press the enter key.

e Access the XA-Core Tape MAP level. At the CI MAP prompt, type
 >>> MAPCI;MTC;XAC:TAPE
 and press the enter key.

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 15</td>
</tr>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 29</td>
</tr>
</tbody>
</table>

15 ManB the Tape packet. At the Tape MAP level type
>>> BSY <nn> <s> <p>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)
Example of command use:
>>> BSY 17 f u

Example of system response:
Warning: Bsy command will take it out of service. Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"),

To confirm the command type:
>>> Y
NTLX07 tape packet in a SuperNode and SuperNode SE XA-Core (continued)

Example of system response:

Busy 2 front upper passed.

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the Tape packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 16</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 29</td>
</tr>
</tbody>
</table>

16 Indicate the ManB Tape packet. At the Tape MAP level, type

>INDICAT card <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>INDICAT card 17 f u

Example of system response:

Indicate 2 front upper passed.

17

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03AA or BA</td>
<td>step 18</td>
</tr>
<tr>
<td>NTLX03AB or BB</td>
<td>step 20</td>
</tr>
</tbody>
</table>

18 ManB the Disk packet contained in the IOP CP. Perform the following steps:

a Exit from the Tape MAP level and access the Disk MAP level. At the Tape MAP level type

>DISK

and press the Enter key.
NTLX07 tape packet
in a SuperNode and SuperNode SE XA-Core (continued)

b ManB the Disk packet. At the Disk MAP level type
 >BSY <nn> <s> <p>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the
 physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packetlet location in
 the physical shelf - front (f) or rear (r)
 <p> is the position parameter value to indicate the packetlet location in an
 input/output processor (IOP) - upper (u) or lower (l)
 Example of command use:
 >BSY 17 f l
 Example of system response:
 Warning: Bsy command will take it out of service.
 Proceed (Y or N)
 Please confirm ("YES", "Y", "NO", or "N"),

 To confirm the command, type:
 >Y
 Example of system response:
 BSY 2 front lower completed

 Note: If this command reduces redundancy and produces a major
 alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the Disk packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 19</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 29</td>
</tr>
</tbody>
</table>

19 ManB the IOP CP. Perform the following steps

a Exit from the Disk MAP level and display the IO MAP level. At the Disk
 MAP level type
 >IO
 and press the Enter key.
NTLX07 tape packlet
in a SuperNode and SuperNode SE XA-Core (continued)

b ManB the IOP CP. At the IO MAP level type
 >BSY <nn> <s>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the
 physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packlet location in
 the physical shelf - front (f) or rear (r)
 Example of command use:
 >BSY 17 f
 Example of system response:
 Warning: Bsy command will take it out of service.
 Proceed (Y or N)
 Please confirm ("YES", "Y", "NO", or "N")
 To confirm the command type:
 >Y

 Example of system response:
 Bsy 17 front completed.
 Note: If this command reduces redundancy and produces a major alarm,
 you must use the Force option.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 20</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 29</td>
</tr>
</tbody>
</table>
NTLX07 tape packlet
in a SuperNode and SuperNode SE XA-Core (continued)

At the XA-Core physical shelf

20

WARNING
Static electricity damage
Make sure that you wear a wrist-strap connected to a grounding point on the FSP. The wrist-strap protects against electrical static discharge (ESD).

Locate the Tape packlet on the physical shelf. Refer to the packlet location recorded from step 16. Examine the packlet faceplates on the XA-Core physical shelf.

Look for a winking, red triangular LED on the Tape packlet. A winking, red LED is a result of using the indicate command.

21 If needed, remove the tape cassette from the Tape packlet. Perform the following steps:

a Locate the Tape packlet in the IOP CP.
b Push the door lock in the direction of the arrow to unlock. The cassette door swings open.
c Press the tape eject button. The tape cassette partially ejects and is ready for removal.
d Remove the tape cassette and place it in a safe location away from the physical shelf.
e Move the door to the closed position. Carefully push on the door until it locks in place.
NTLX07 tape packet
in a SuperNode and SuperNode SE XA-Core (continued)

Open the Tape cassette door

Eject and remove the Tape cassette
NTLX07 tape packet
in a SuperNode and SuperNode SE XA-Core (continued)

22 Remove the Tape packet from the IOP CP. Perform the following steps:
 a Open the upper and lower locking levers on the packet.
 b Carefully pull the packet toward you by the locking levers until it extends half way from the shelf opening.
 c Hold the packet by the faceplate with one hand and support the bottom edge with the other. Remove the packet completely from the shelf.
 d Close the upper and lower locking levers on the packet to prevent breakage.
 e Place the packet in ESD protective packaging.

Remove the Tape packet from the IOP CP

23 Insert the replacement Tape packet in the upper slot of the replacement IOP CP.
 a Remove the replacement Tape packet from the ESD protective packaging.
 b Open the locking levers on the Tape packet.
 c Hold the packet by the faceplate with one hand and support the bottom edge with the other.
NTLX07 tape packlet
in a SuperNode and SuperNode SE XA-Core (continued)

d Align the packlet with the upper IOP CP slot and carefully slide the packlet into the slot. Do not force the packlet into the slot.

e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.

f Close the locking levers to secure the circuit packlet. Do not force the locking levers to close.

Insert the Tape packlet in the IOP CP

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03AA or BA</td>
<td>step 25</td>
</tr>
<tr>
<td>NTLX03AB or BB</td>
<td>step 26</td>
</tr>
</tbody>
</table>

24
At the MAP terminal

25 Return the IOP CP to service. At the IO MAP level type

\[\text{\texttt{>RTS <nn> <s>}} \]

and press the Enter key

where

\(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

\(<s>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command usage:

\[\text{\texttt{>RTS 17 f}} \]

Example of system response:

RTS 17 front passed.

If the IOP CP is | Do
---|---
in service | step 26
not in service | step 29

26 Return the Tape packlet to service. Perform the following steps:

a Access the XA-Core TAPE MAP level. At the IO MAP level type

\[\text{\texttt{>TAPE}} \]

and press the Enter key

b Return the Tape packlet to service. At the TAPE MAP level type

\[\text{\texttt{>RTS <nn> <s> <p>}} \]

and press the Enter key

where

\(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

\(<s>\) is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

\(<p>\) is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

\[\text{\texttt{>RTS 17 f u}} \]

Example of system response:

RTS 2 front upper passed
NTLX07 tape packlet in a SuperNode and SuperNode SE XA-Core (end)

<table>
<thead>
<tr>
<th>If the Tape packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in service</td>
<td>step 29</td>
</tr>
<tr>
<td>in service</td>
<td>step 27</td>
</tr>
</tbody>
</table>

27

If the IOP card is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 28</td>
</tr>
<tr>
<td>step 31</td>
</tr>
</tbody>
</table>

28

Return the Disk packlet to service. Perform the following steps:

a. Access the Disk MAP level. At the Tape MAP level type

 >DISK

 and press the Enter key.

b. Return the Disk packlet to service. At the DISK MAP level type

 >RTS <nn> <s> <p>

 and press the Enter key

 where

 <nn> is the slot number parameter value to indicate the number of the physical shelf slot -1 to 18

 <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

 <p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

 Example of command use:

 >RTS 17 f l

 Example of system response:

 RTS 17 front lower passed

<table>
<thead>
<tr>
<th>If the Disk packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in service</td>
<td>step 29</td>
</tr>
<tr>
<td>in service</td>
<td>step 31</td>
</tr>
</tbody>
</table>

29

Call the next level of support

30

Perform the correct alarm clearing procedure.

31

You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
NTLX08 RTIF packlet
in a SuperNode and SuperNode SE XA-Core

Application
This section contains the procedure for replacing an NTLX08AA or NTLX08AB reset terminal interface (RTIF) packlet. The packlet installs in a single-width IOP circuit pack (CP).

Use this procedure
• to replace a defective packlet
• to replace a packlet that does not meet the baseline requirements

If you are replacing a defective packlet, the replacement that you install should have the same product engineering code and version as the packlet that you remove.

If you are replacing a packlet that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following table lists the valid RTIF packlets.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX08</td>
<td>AA</td>
<td>Reset terminal interface (RTIF) packlet</td>
</tr>
<tr>
<td>NTLX08</td>
<td>AB</td>
<td>Reset terminal interface (RTIF) packlet</td>
</tr>
</tbody>
</table>
NTLX08 RTIF packlet
in a SuperNode and SuperNode SE XA-Core (continued)

Common procedures

Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) strategy

The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action

The following flowchart is only a summary of this procedure. To replace the packlet, use the instructions in the step-action procedure that follows the flowchart.
Summary of NTLX08 replacement procedure in a SuperNode and SuperNode SE XA-Core

1. Obtain compatible replacement packet
 - Packet is load compatible?
 - Y
 - N
 - Packlet has appropriate PEC and suffix?
 - Y
 - N
 - Obtain packet with appropriate PEC and suffix
 - ManB the IOP CP
 - Remove packet from the IOP CP
 - Insert the replacement packet
 - RTS passed?
 - Y
 - Return IOP CP and packlets to service
 - End
 - N
 - Call the next level of support

2. This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.

A. IOP card is NTLX03AA or BA
B. IOP card is NTLX03AB or BB
How to replace an NTLX08 RTIF packet

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location
1 Get a replacement packet. If you are replacing a packet that does not meet baseline hardware requirements, make sure that the replacement packet meets those requirements. If you are replacing a defective packet, make sure that the replacement packet has the same product engineering code (PEC) and PEC suffix.

At the MAP terminal
2 Access the XA-Core RTIF MAP level. At the CI MAP prompt type

>MAPCI;MTC;XAC;RTIF

and press the Enter key.

3 Examine the RTIF MAP level. Record the location and status of the RTIF packet that you need to replace. Make sure that redundant components are InSv before removing the RTIF packet that you need to replace.
The following is a sample MAP display.

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>RTIF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Front: 111111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>RTIFF1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta:</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep: *</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot:</td>
<td>Side:</td>
<td>Packet:</td>
<td>Status</td>
<td>Port0:</td>
<td>Port1</td>
<td>Link0</td>
<td>Link1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear</td>
<td>Upper</td>
<td>S</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Rear</td>
<td>Upper</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the redundant IOP, OC-3 or RTIF are

Do

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Return the redundant IOP CP or packlets to service. At the correct MAP level type</td>
</tr>
<tr>
<td>>RTS <nn> <s></td>
<td>or</td>
</tr>
<tr>
<td>>RTS <nn> <s> <p></td>
<td>and press the Enter key</td>
</tr>
</tbody>
</table>

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
NTLX08 RTIF packet in a SuperNode and SuperNode SE XA-Core (continued)

<table>
<thead>
<tr>
<th>If the redundant IOP, RTIF and OC-3 packlets are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 5</td>
</tr>
<tr>
<td>not in service</td>
<td>step 20</td>
</tr>
</tbody>
</table>

5

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03AA or BA</td>
<td>step 6</td>
</tr>
<tr>
<td>NTLX03AB or BB</td>
<td>step 7</td>
</tr>
</tbody>
</table>

6 Place the OC-3 two-port interface packlet in a ManB state. At the CMIC MAP level type

```
>BSY <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

```
>BSY 4 r l
```

Example of system response:

Warning: Bsy command will take it out of service. Please confirm ("YES", "Y", "NO", or "N")

To confirm the command type:

```
>Y
```

Example of system response:

Bsy 4 rear lower complete
NTLX08 RTIF packlet in a SuperNode and SuperNode SE XA-Core (continued)

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 7</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 20</td>
</tr>
</tbody>
</table>

7. Place the RTIF packlet in a ManB state. At the RTIF MAP level type

>`BSY <nn> <s> <p>`

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>`BSY 4 r u`

Example of system response:

Warning: Bsy command will take it out of service. Please confirm ("YES", "Y", "NO", or "N")

To confirm the command type:

>`Y`

Example of system response:

Bsy 4 rear upper complete

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 20</td>
</tr>
</tbody>
</table>

8. Indicate the ManB RTIF packlet. At the RTIF MAP level, type

>`INDICAT card <nn> <s> <p>`

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

```plaintext
>INDICAT card 4 r u
```

Example of system response:

Indicate 4 rear upper passed.

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03AA or BA</td>
<td>step 10</td>
</tr>
<tr>
<td>NTLX03AB or BB</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 ManB the IOP CP. Perform the following steps

a Exit from the RTIF MAP level and display the IO MAP level. At the RTIF MAP level type

```plaintext
>IO and press the Enter key.
```

b ManB the IOP CP. At the IO MAP level type

```plaintext
>BSY <nn> <s>
```

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

```plaintext
>BSY 4 r
```

Example of system response:

Warning: Bsy command will take it out of service.
Proceed (Y or N)
Please confirm ("YES", "Y", "NO", or "N"),

To confirm the command type:

```plaintext
>Y
```
NTLX08 RTIF packlet in a SuperNode and SuperNode SE XA-Core (continued)

Example of system response:

Bsy 4 rear passed.

Note: If this command reduces redundancy and produces a major alarm, you must use the Force option.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 11</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 20</td>
</tr>
</tbody>
</table>

At the XA-Core physical shelf

11 Locate the RTIF packlet in the IOP CP. Use the location information from 3. Examine the packet faceplate and look for a flashing red LED. Label the local and remote port cable connections on the RTIF packlet according to office standards.

RTIF port connectors

12 Disconnect the local and remote port cables from the RTIF packlet.
 a Loosen the connector retaining screws from the RTIF ports.
 b Hold the connector by the body only.
 c Carefully pull the connectors away from the port receptacles.
d Place the cables in a safe location away from the packlet.

Loosen the RTIF port connectors

Remove the RTIF port connectors
NTLX08 RTIF packlet
in a SuperNode and SuperNode SE XA-Core (continued)

13 Remove the RTIF packlet from the IOP CP. Perform the following steps:
 a Open the locking levers on the RTIF packlet.
 b Carefully pull the packlet toward you by the locking levers until it extends half way from the shelf opening.
 c Hold the packlet by the faceplate with one hand and support the bottom edge with the other. Remove the packlet completely from the shelf.
 d Place the packlet in ESD protective packaging.

Remove the RTIF packlet from the IOP CP

14 Insert the replacement RTIF packlet in the upper slot of the IOP CP. Use the diagrams in this step.
 a Remove the replacement RTIF packlet from the ESD protective packaging.
 b Open the locking levers on the replacement RTIF packlet.
 c Hold the packlet by the faceplate with one hand and support the bottom edge with the other.
 d Align the packlet with the upper IOP CP slot and carefully slide the packlet into the slot. Do not force the packlet into the slot.
 e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.
 f Close the locking levers on the RTIF packlet. Do not force the locking levers to close.
Insert the RTIF packlet into the IOP CP

15 Connect the local and remote cables to the RTIF packlet.
 a Hold the connector by the receptacle body only.
 b Align the connector to the correct RTIF port receptacle.
 c Push the connector into the receptacle.
 d Tighten the connector retaining screws.
NTLX08 RTIF packlet in a SuperNode and SuperNode SE XA-Core (continued)

Insert the local and remote port connectors into the RTIF ports

Tighten the local and remote port connector screws

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03AA or BA</td>
<td>step 17</td>
</tr>
<tr>
<td>NTLX03AB or BB</td>
<td>step 19</td>
</tr>
</tbody>
</table>
At the MAP

17 Return the IOP CP to service. At the IO MAP level type

>RTS <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>RTS 4 r

Example of system response:

RTS 4 rear completed

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 18</td>
</tr>
<tr>
<td>not in service</td>
<td>step 20</td>
</tr>
</tbody>
</table>

18 Return the OC-3 two port interface packlet to service. Perform the following steps.

a Exit from the IO MAP level and access the CMIC MAP level. At the IO MAP level type

>CMIC

and press the Enter key.

b Return the OC-3 two port interface packlet to service. At the CMIC MAP level type

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>RTS 4 r l
NTLX08 RTIF packlet
in a SuperNode and SuperNode SE XA-Core (end)

Example of system response:
RTS 4 rear lower completed

<table>
<thead>
<tr>
<th>If the OC-3 two port interface packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 19</td>
</tr>
<tr>
<td>not in service</td>
<td>step 20</td>
</tr>
</tbody>
</table>

19 Return the RTIF packlet to service. Perform the following steps.

a Exit from the CMIC MAP level and access the RTIF MAP level. At the CMIC MAP level type

>RTIF

and press the Enter key.

b Return the RTIF packlet to service. At the RTIF MAP level type

>RTS <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>BSY 4 r u

Example of system response:
RTS 4 rear upper completed

<table>
<thead>
<tr>
<th>If the RTIF packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in service</td>
<td>step 20</td>
</tr>
<tr>
<td>in service</td>
<td>step 22</td>
</tr>
</tbody>
</table>

20 Call the next level of support.

21 Perform the correct alarm clearing procedure.

22 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
Application

This section contains the procedure for replacing an NTLX09AA Ethernet packlet. The packlet installs in a single-width IOP circuit pack (CP).

Use this procedure
• to replace a defective packlet
• to replace a packlet that does not meet the baseline requirements

If you are replacing a defective packlet, the replacement that you install should have the same product engineering code and version as the packlet that you remove.

If you are replacing a packlet that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following lists the valid Ethernet packlets.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Card name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX09</td>
<td>AA</td>
<td>Ethernet packet</td>
</tr>
</tbody>
</table>
Common procedures
Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) strategy
The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action
The following flowchart is only a summary of this procedure. To replace the packlet, use the instructions in the step-action procedure that follows the flowchart.
Summary of NTLX09 Ethernet packlet replacement procedure

1. Obtain compatible replacement packet
 - Packlet is load compatible? [Y/N]
 - Y: Obtain packlet with appropriate PEC and suffix
 - N: Packlet has appropriate PEC and suffix?
 - Y: ManB the Ethernet packlet
 - N: ManB the IOP CP

2. Remove packlet from the IOP CP
 - Insert the replacement packet
 - RTS passed?
 - Y: Load proper firmware
 - N: Firmware correct?
 - Y: Call the next level of support
 - N: Return IOP CP and packlets to service

3. End
How to replace an NTLX09 Ethernet packlet

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP or packlet of the same equipment type at a time. Make sure that redundant components are InSv before taking any CPs, packlets or resources OOS.

At your current location:
1 Get a replacement packlet. If you are replacing a packlet that does not meet baseline hardware requirements, make sure that the replacement packlet meets those requirements. If you are replacing a defective packlet, make sure that the replacement packlet has the same product engineering code (PEC) and PEC suffix.

At the MAP terminal
2 Access the XA-Core ETHR MAP level. At the CI MAP prompt type
>MAPCI;MTC;XAC;ETHR
and press the Enter key.
NTLX09 Ethernet packet in a SuperNode and SuperNode SE XA-Core (continued)

3 Examine the ETHR MAP level. Record the location and status of the ethernet packet that you need to replace. Make sure that redundant components are InSv before removing the ethernet packet that you need to replace.

The following is a sample MAP display.

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td>C</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>ETHR</td>
<td>Front: 111111111 Rear: 111111 SM PE IO PKLT</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>ETHR M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td>1234567890 12345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Slot: Side: Packet: Port: Link:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the redundant IOP and Ethernet packet are

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state step 4</td>
</tr>
<tr>
<td>in an InSv state step 5</td>
</tr>
<tr>
<td>in a SysB state step 19</td>
</tr>
</tbody>
</table>
4 Return the redundant IOP CP or packlets to service. At the correct MAP level type
>RTS <nn> <s>
or
>RTS <nn> <s> <p>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
Example of command use:
>RTS 4 r
Example of system response:
RTS 4 rear completed

<table>
<thead>
<tr>
<th>If the redundant IOP and Ethernet packlet are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 5</td>
</tr>
<tr>
<td>not in service</td>
<td>step 19</td>
</tr>
</tbody>
</table>

5 Place the Ethernet packlet in a ManB state. At the ETHR MAP level type
>BSY <nn> <s> <p>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
Example of command use:
>BSY 4 r l
NTLX09 Ethernet packet
in a SuperNode and SuperNode SE XA-Core (continued)

Example of system response:
Warning: Bsy command will take it out of service.
Please confirm ("YES", "Y", "NO", or "N")

To confirm the command type:
>Y

Example of system response, indicating success
Bsy 4 rear lower complete

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the packet is in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>the packet does not go into the ManB state</td>
<td>step 6</td>
</tr>
</tbody>
</table>

Use the “force” option to place the Ethernet packetlet in a ManB state. At the ETHR MAP level type

>BSY <nn> <s> <p> force

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packetlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packetlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:
>BSY 4 r l force

If Do
the packetlet is in a ManB state step 8
the packetlet does not go into the ManB state step 6

If Do
the system responded to the previous step by asking for confirmation, and, on receiving confirmation, displayed the message, "No action taken because of Bsy impact," step 7
the packetlet failed to go into the ManB state for any other reason step 19

6

7
Example of system response:
Warning: Bsy command will take it out of service. Please confirm ("YES", "Y", "NO", or "N")

To confirm the command type:
>Y

Example of system response
Bsy 4 rear lower complete

<table>
<thead>
<tr>
<th>If the packet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 8</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 19</td>
</tr>
</tbody>
</table>

8 Indicate the ManB Ethernet packet. At the ETHR MAP level, type
>INDICAT card <nn> <s> <p>
and press the Enter key.
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the position parameter value to indicate the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Example of command use:
>INDICAT card 4 r l

Example of system response:
Indicate 4 rear lower passed

9 If the IOP card is Do
--------------------------------|
| NTLX03AA | step 10 |
| NTLX03AB | step 11 |
10 ManB the IOP CP. Perform the following steps
 a Exit from the ETHR MAP level and display the IO MAP level. At the ETHR MAP level type
 \texttt{>IO}
 and press the Enter key.
 b ManB the IOP CP. At the IO MAP level type
 \texttt{>BSY <nn> <s>}
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)
 Example of command use:
 \texttt{>BSY 4 r}
 \textit{Example of system response:}
 Warning: Bsy command will take it out of service. Proceed (Y or N)
 Please confirm ("YES", "Y", "NO", or "N")
 To confirm the command type:
 \texttt{>Y}
 \textit{Example of system response:}
 Bsy 4 rear passed.

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 11</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 19</td>
</tr>
</tbody>
</table>
NTLX09 Ethernet packet in a SuperNode and SuperNode SE XA-Core (continued)

At the XA-Core physical shelf

11 Locate the Ethernet packet in the IOP CP. Label the cable connections on the Ethernet packet according to office standards.

12 Disconnect the cables from the faceplate of the Ethernet packet.
 a Carefully pull the connector away from the receptacle. Hold the connector by the body only.
 b Cover the ends of the cable with dust caps.
 c Place the cable in a safe location away from the packet.

Disconnect the cable from the Ethernet packet port
Remove the Ethernet packlet from the IOP CP. Perform the following steps:

a. Open the upper and lower locking levers on the packlet.

b. Carefully pull the packlet toward you by the locking levers until it extends half way from the shelf opening.

c. Hold the packlet by the faceplate with one hand and support the bottom edge with the other. Remove the packlet completely from the shelf.

d. Place the packlet in ESD protective packaging.

WARNING

Do not hold circuit packlet by levers only

Holding a circuit packlet by the levers can result in lever breakage.

![Diagram of removing Ethernet packlet](image-url)
NTLX09 Ethernet packlet
in a SuperNode and SuperNode SE XA-Core (continued)

14

WARNING
Do not hold circuit packlet by levers only
Holding a circuit packlet by the levers can result in lever breakage.

Insert the replacement Ethernet packlet in the upper or lower IOP CP slot.

a Remove the replacement Ethernet packlet from the ESD protective packaging.

b Open the upper and lower locking levers on the packlet.

c Hold the packlet by the faceplate with one hand and support the bottom edge with the other.

d Align the packlet with the upper or lower IOP CP slot and carefully slide the packlet into the slot. Do not force the packlet into the slot.

e Use your fingers or thumbs to push on the upper and lower edges of the faceplate.

f Close the locking levers to secure the packlet. Do not force the locking levers to close.

Insert the Ethernet packlet into the IOP CP
15 Connect the replacement or original cable to the correct interface ports.
 a Remove the dust caps from the cable tips.
 b Hold the cable connector by the body only.
 c Carefully insert the cable connector into the correct receptacle. See the diagrams in this step.

Connect the cable

<table>
<thead>
<tr>
<th>If the IOP card is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX03AA</td>
<td>step 17</td>
</tr>
<tr>
<td>NTLX03AB</td>
<td>step 18</td>
</tr>
</tbody>
</table>
NTLX09 Ethernet packlet
in a SuperNode and SuperNode SE XA-Core (continued)

At the MAP
17 Return the IOP CP to service. At the IO MAP level type
>RTS <nn> <s>
and press the Enter key
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
Example of command use:
>RTS 4 r
Example of system response:
RTS 4 rear completed

<table>
<thead>
<tr>
<th>If the IOP CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 18</td>
</tr>
<tr>
<td>not in service</td>
<td>step 19</td>
</tr>
</tbody>
</table>
NTLX09 Ethernet packlet
in a SuperNode and SuperNode SE XA-Core (continued)

18 Return the Ethernet packlet to service. Perform the following steps.
 a Exit from the IO MAP level and access the ETHR MAP level. At the IO
 MAP level type
 >ETHR
 and press the Enter key.
 b Return the Ethernet packlet to service. At the ETHR MAP level type
 >RTS <nn> <s> <p>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the
 physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP or packlet location in
 the physical shelf - front (f) or rear (r)
 <p> is the position parameter value to indicate the packlet location in an
 input/output processor (IOP) - upper (u) or lower (l)
 Example of command use:
 >RTS 4 r l
 Example of system response:
 RTS 4 rear lower completed

<table>
<thead>
<tr>
<th>If the Ethernet packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 20</td>
</tr>
<tr>
<td>not in service</td>
<td>step 19</td>
</tr>
</tbody>
</table>

Note: After you return the Ethernet packlet to service, you may have to
wait a few minutes for the link to come into service. The reason for the
delay is that the MAC address of the new packet must be updated in the
LAN ARP table. The addresses in the table are refreshed automatically at
fixed intervals.

19 Call the next level of support.
NTLX09 Ethernet packet
in a SuperNode and SuperNode SE XA-Core (end)

20 Check that the Ethernet packet contains the proper firmware load. At the
ETHR MAP level type

>QUERY card <nn> <s> <p>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the
physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the
physical shelf - front (f) or rear (r)

<p> is the position parameter value to indicate the packet location in an
input/output processor (IOP) - upper (u) or lower (l)

Example of command use:

>QUERY card 4 r l

Example of system response:

Command Submitted.

Pos Type PEC+ HW Rel BL OK Serial Number FW Vers. Baseline OK
--- ---- ---- -- --- -- -- ------------- -------- -------- --

<vers> <blv> <ok>

where

<vers> identifies the firmware load that is in the circuit pack

<blv> identifies the baseline firmware version

<ok> indicates whether the current firmware load is compatible with the
baseline and exception information specified in table FWINV. For information
on the baseline and exception specifications, see the description of table
FWINV in the chapter titled “XA-Core data schema overview” in the XA-Core

<table>
<thead>
<tr>
<th>If the firmware version</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is the proper version</td>
<td>step 22</td>
</tr>
<tr>
<td>is not the proper version</td>
<td>step 21</td>
</tr>
</tbody>
</table>

21 Perform the procedure titled “Loading current firmware into a newly installed
XA-Core component”. The procedure is in this document, in the chapter titled
“Introduction to routine maintenance procedures”. Return to this point when
complete.

22 You have completed this procedure. Return to the main procedure that sent
you to this procedure and continue as instructed.
Introduction to card replacement

NTLX12 SIM circuit pack
in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX12 Shelf interface module (SIM) circuit pack (CP) with a replacement of the same product engineering code and version. The following table lists the correct SIM CP versions.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Circuit pack name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX12</td>
<td>AA</td>
<td>SIM circuit pack</td>
</tr>
</tbody>
</table>

NTLX12 shelf interface module circuit pack front and side views
NTLX12 SIM circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Common procedures
The NTLX12 replacement procedure refers to the How to return a card or assembly common procedure.

Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diodes (LEDs) strategy
Description
The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to the section titled “Light emitting diode (LED) interpretation” for an explanation of the LED system.

SIM LED explanation

<table>
<thead>
<tr>
<th>Green</th>
<th>Amber</th>
<th>Red</th>
<th>SIM state</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>The SIM is in a normal working state. Do not remove.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>The SIM does not have power or there is an LED control circuit failure. You can remove the SIM from the shelf if you are sure there is no power.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Alarm State. There is a SIM failure, the input feed is without electrical power or one or more circuit breakers are off. Do not remove the SIM from the shelf.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Alarm state. There is a SIM failure or all input feeds are without electrical power. You can remove the SIM from the shelf.</td>
</tr>
</tbody>
</table>

Action
The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.
Summary of NTLX12 replacement procedure in a SuperNode and SuperNode SE XA-Core

1. Obtain a replacement SIM

2. Set the circuit breaker switches to the off position

 Y

 Examine the LEDs on the SIM

 Safe to replace the SIM?

 N

 Call the next level of support

 Y

 Set the circuit breaker switches to the off position

 Remove the power cable

 Wait 60 seconds

 Remove the alarm cable

 Remove the SIM from the slot

 2

 Insert the power cable

 Insert the alarm cable

 Set the circuit breaker switches to the on position

 End

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.
How to replace an NTLX12 SIM circuit pack

WARNING

Risk of equipment damage

Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING

Risk of equipment damage

Before inserting the replacement circuit pack during this procedure, use a flashlight to inspect the backplane in the slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins. If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in the slot. Look for physical damage or abnormalities. If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

WARNING

Risk of static electricity damage

Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION

Loss of service

Do not repeat steps.
NTLX12 SIM circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

CAUTION
Loss of service
Manually busy one CP of the same equipment type at a time. Make sure that the unit you are replacing is inactive and the mate unit is active.

At your current location

1 Get a replacement SIM CP. Make sure that the replacement CP and the CP you remove have the same product engineering code (PEC) and PEC suffix.

At the XA-Core physical shelf

2 Locate the SIM CP on either end of the rear of the XA-Core physical shelf. Look for a lit red triangular and a yellow round LED on the SIM CP.

3

WARNING
Risk of equipment damage
Switch circuit breakers to 0 before removing the power connector. Allow 60 seconds discharge time after front power cable disconnection before removing the alarm connector or module.

Set all circuit breakers to the off (0) position. Press down on each circuit breaker switch until it clicks and remains in place.
Set the circuit breakers on the SIM to the off (0) position

4 Remove the power cable from the SIM CP faceplate.
 a Turn the power connector fasteners in a counter-clockwise direction.
 b Carefully pull the power cable connector from the faceplate receptacle.
 c Place the cable in a safe location away from the XA-Core shelf.
 d Wait 60 seconds before continuing with the next step.
NTLX12 SIM circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

Remove the SIM power connector

5 Remove the alarm cable from the SIM CP faceplate.
 a Turn the alarm connector fastener in a counter-clockwise direction.
 b Carefully pull the alarm cable connector from the faceplate receptacle.
 c Place the cable in a safe location away from the XA-Core shelf.

Remove the SIM alarm connector
NTLX12 SIM circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

6 Remove the SIM CP from the physical shelf.
 a Open the locking levers on the CP.
 b Hold the CP by the locking levers. Pull the CP half way from the shelf opening toward you.
 c Hold the CP by the faceplate with one hand and support the bottom edge with the other. Remove the CP completely from the shelf.
 d Place the CP in ESD protective packaging.

Remove the NTLX12 SIM CP from the XA-Core shelf

7 Using a flashlight, inspect the backplane in this slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins.

 If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in this slot. Look for physical damage or abnormalities.

 If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.
8 Insert the replacement SIM CP into the physical shelf slot.
 a Open the locking levers on the replacement SM CP.
 b Hold the CP by the faceplate with one hand and support the bottom edge with the other.
 c Align the CP with the physical shelf slot. Slide the CP into the physical slot. Do not force the CP into the physical slot.
 d Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Push on the faceplate until the CP is fit into position.
 e Close the locking levers to lock the CP in the physical shelf. Do not force the locking levers to close.

9 Connect the alarm cable to the SIM alarm receptacle.
 a Carefully insert the alarm connector into the SIM alarm receptacle.
 b Turn the alarm connector fastener in a clockwise direction.
NTLX12 SIM circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

Insert the SIM alarm connector

10 Connect the power cable to the SIM power receptacle.
 a Carefully insert the power cable connector into the faceplate receptacle.
 b Turn the power connector fasteners in a clockwise direction.

Insert the SIM power connector
NTLX12 SIM circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

11 Set all circuit breakers to the ON (1) position. Push up on each circuit breaker switch until it clicks and remains in place. Wait 15 sec. before continuing.

Set all circuit breakers on the SIM to the ON (1) position

12 Examine the SIM CP faceplate. Look at the LEDs.

<table>
<thead>
<tr>
<th>If circuit breakers</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>remain set to the ON position</td>
<td>step 12</td>
</tr>
<tr>
<td>reset to the OFF position</td>
<td>step 16</td>
</tr>
</tbody>
</table>

If the

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>green LED is ON and red and yellow LEDs are OFF</td>
</tr>
<tr>
<td>green, yellow and red LEDs are OFF</td>
</tr>
<tr>
<td>green and yellow LEDs are ON and the red LED is OFF</td>
</tr>
<tr>
<td>green LED is OFF and the yellow and red LEDs are ON</td>
</tr>
</tbody>
</table>
NTLX12 SIM circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

At the MAP terminal

13 Examine the XAC Map level. Look for any in-service trouble (IsTb) alarms in the alarm banner or subsystem status summary fields (SSSF). At the CI MAP level, type

>MAPCI;MTC;XAC

and press the Enter key.

The following is a sample MAP display.

XAC MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>XAC Quit 0 Card_ 2 XACMtc 3 SM 4 PE 5 IO 7 CMIC 8 RTIF 9 Disk 10 Tape 11 12 13 14 Alarm_ 15 16 17 Indicat_ 18 Query_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front: 111111111 Rear: 111111 SM PE IO PKLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta: .-.--.-.-.-.----.- .--.-------. 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep: XAC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the XA-Core XAC MAP level displays

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in-service trouble alarms step 14</td>
</tr>
<tr>
<td>a different alarm type step 15</td>
</tr>
<tr>
<td>no alarms step 17</td>
</tr>
</tbody>
</table>
14 Access the XA-Core log utility system and check for power failure log reports.
 a At the MAP CI prompt type
 >LOGUTIL
 and press the Enter key.
 b Open the XA-Core log system by typing
 >OPEN XAC
 and press the Enter key.
 c Query the XA-Core log reports. To display all of the most recent log reports, type
 >DUMPLOGS XAC
 and press the Enter key.
 Or, to display a known log report, type
 >OPEN XAC LOG#

<table>
<thead>
<tr>
<th>If the XA-Core log report shows</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a different alarm type</td>
<td>step 15</td>
</tr>
<tr>
<td>a power failure</td>
<td>step 16</td>
</tr>
<tr>
<td>all alarms are clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

15 Perform the correct alarm clearing procedure and return to this point.

<table>
<thead>
<tr>
<th>If the XA-Core alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not clear</td>
<td>step 16</td>
</tr>
<tr>
<td>clear</td>
<td>step 17</td>
</tr>
</tbody>
</table>

16 Call the next level of support.

17 Refer to the procedure titled “How to return an XA-Core circuit pack, packet, or assembly to Nortel Networks (Canada)” in this document. Return to this point when complete.

18 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
NTLX14 shared memory circuit pack
in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX14 shared memory (SM) circuit pack (CP).

Use this procedure
• to replace a defective circuit pack
• to replace a circuit pack that does not meet the baseline requirements

If you are replacing a defective circuit pack, make sure that the replacement circuit pack has the same product engineering code and version as the circuit pack that you are removing.

If you are replacing a circuit pack that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.

The following table lists the correct SM CP versions.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Circuit pack name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX14</td>
<td>CA</td>
<td>384 MByte SM circuit pack</td>
</tr>
</tbody>
</table>
NTLX14 shared memory circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

NTLX14 shared memory circuit pack front and side views

- Enclosure sub-assembly
- Upper locking lever
- Module faceplate
- Red triangular/ green rectangular LED indicators
- Lower locking lever
Common procedures

The NTLX14 replacement procedure refers to the How to return a card or assembly common procedure.

Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) strategy

The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action

The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.
NTLX14 shared memory circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

Summary of NTLX14 replacement procedure in a SuperNode and SuperNode SE XA-Core

1. Obtain a replacement CP
 - Check CP PEC codes
 - CP has the same PEC?
 - Y: CP has the appropriate PEC suffix?
 - Y: ManB the CP
 - ManB passed?
 - Y: Locate the CP position on shelf
 - Remove the CP from the shelf
 - Insert new CP in the shelf
 - RTS passed?
 - N: Call the next level of support
 - N: Return the CP to service
 - N: RTS passed?
 - Y: End
 - N: Return the CP to service
 - N: RTS passed?
 - Y: End
 - N: Call the next level of support
 - N: Return the CP to service
 - N: RTS passed?
 - Y: End
 - N: Obtain CP with appropriate PEC suffix
 - 2

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.
How to replace an NTLX14 circuit pack

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of equipment damage
Before inserting the replacement circuit pack during this procedure, use a flashlight to inspect the backplane in the slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins. If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in the slot. Look for physical damage or abnormalities. If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP of the same equipment type at a time. Make sure that the unit you are replacing is inactive and the mate unit is active.
NTLX14 shared memory circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

At your current location

1. Get a replacement CP. If you are replacing a CP that does not meet baseline hardware requirements, make sure that the replacement CP meets those requirements. If you are replacing a defective CP, make sure that the replacement CP and the CP you remove have the same product engineering code (PEC) and PEC suffix.

At the MAP terminal

2. Access the XA-Core SM MAP level. At the MAP terminal type

 >MAPci;MTC;XAC;SM

 and press the Enter key.

 The following is a sample MAP display.

 SM MAP level

 XAC MS IOD Net PM CCS Lns Trks Ext APPL
 LowSM

 XMAP0
 Time 14:12

 SM
 0 Quit
 1
 2
 3
 4
 5
 6 Tst_
 7 Bsy_
 8 RTS_
 9
 10
 11
 12 Uneq_
 13
 14 Alarm_
 15
 16 Trnsl_
 17 Indicat_
 18 Query_

 SM:
 SYNC State: duplex

3. Examine the SM MAP display. Record the working state of the system and the SM CPs. Determine the location of the SM CP that you need to replace. Record the SM CP location on the physical shelf, side and slot.
NTLX14 shared memory circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

4. ManB the SM CP. The CP must be in a ManB state before indication, removal, insertion or out-of-service testing. At the SM MAP type

>BSY <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>BSY 7 r

Example of system response:

Bsy 7 rear complete.

5. Indicate the ManB SM CP. At the SM MAP terminal type

>INDICAT card <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

Example of command use:

>INDICAT card 7 r

Example of system response:

Indicate 7 rear passed.

At the XA-Core physical shelf

6. Locate the SM CP on the XA-Core physical shelf. Use the CP location information recorded from the SM MAP in step 3. Look for a winking, red triangular LED (from step 5).
NTLX14 shared memory circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Remove the SM CP from the physical shelf.

a. Open the locking levers on the CP.

b. Hold the CP by the locking levers. Pull the CP half way from the shelf opening toward you.

c. Hold the CP by the faceplate with one hand and support the bottom edge with the other. Remove the CP completely from the shelf.

d. Place the CP in ESD protective packaging.

WARNING
Static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs.

Remove the NTLX14 SM CP from the XA-Core shelf
8 Using a flashlight, inspect the backplane in this slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins.

If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in this slot. Look for physical damage or abnormalities.

If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

9 Verify that 60 seconds or more have elapsed since you removed the CP from the shelf. Then proceed to the next step.

10 Insert the replacement SM CP into the physical shelf slot.
 a Open the locking levers on the replacement SM CP.
 b Hold the CP by the faceplate with one hand and support the bottom edge with the other.
 c Align the CP with the physical shelf slot. Slide the CP into the physical slot. Do not force the CP into the physical slot.
 d Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Push on the faceplate until the CP is fit into position.
 e Close the locking levers to lock the CP in the physical shelf. Do not force the locking levers to close.
Insert the NTLX14 SM CP in the XA-Core shelf

At the MAP terminal

11 Return the SM CP to service. At the SM MAP level type

 >RTS <nn> <s>

 and press the Enter key

 where

 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

 <s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

 Example of command:

 >RTS 7 r
Example of system response:

RTS 7 rear passed.

<table>
<thead>
<tr>
<th>If replacement SM CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not returned to service</td>
<td>step 12</td>
</tr>
<tr>
<td>returned to service</td>
<td>step 13</td>
</tr>
</tbody>
</table>

12 Call the next level of support.

13 Refer to the procedure titled “How to return an XA-Core circuit pack, packlet, or assembly to Nortel Networks (Canada)”. The procedure is in this document. Return to this point when complete.

14 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
Introduction to card replacement

NTLX17 high performance CMIC circuit pack in a SuperNode and SuperNode SE XA-Core

Application

This section contains the procedure for replacing an NTLX17AA high performance CMIC (HCMIC) circuit pack (CP).

Use this procedure

• to replace a defective circuit pack
• to replace a circuit pack that does not meet the baseline requirements

If you are replacing a defective circuit pack, make sure that the replacement circuit pack has the same product engineering code and version as the circuit pack that you are removing.

If you are replacing a circuit pack that does not meet the baseline requirements, the replacement that you install should meet those requirements. That means it must be at or above the hardware baseline, and it must not be specified as an exception. Table PECINV lists the hardware baselines for all field-replaceable units, and also lists any exceptions. For information on table PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Note: This procedure is intended to cover only those baseline problems that occur during day-to-day operations. This procedure is not intended to cover upgrades required to meet new baseline requirements when the system is upgraded from one software release to another.
NTLX17 high performance CMIC circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

NTLX17AA high performance CMIC circuit pack front and side views

Common procedures
Do not go to a common procedure unless directed to do so in the step-action procedure.

Light emitting diode (LED) visual indicators
The faceplate of all CPs and packlets have built-in LED visual indicators. The visual indicators allow you to determine the working status of the CPs and identify damaged or inactive CPs. The relationship between lit and not lit LEDs indicate the CP’s working status. Refer to Introduction to card replacement procedures for an explanation of the LED system.

Action
The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.
NTLX17 high performance CMIC circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

Summary of NTLX17 replacement procedure in a SuperNode and SuperNode SE XA-Core

- Obtain a replacement CP
- Check CP PEC codes
- CP has the appropriate PEC?
 - ManB the CP
 - ManB passed?
 - Y: Locates the CP position on shelf
 - N: Call the next level of support
 - N: Call the next level of support
- Disconnect cables from the faceplate
- Remove the CP from the shelf
- Insert new CP in the shelf
- Connect cables to the faceplate
- Return the CP to service
- RTS passed?
 - Y: Verify firmware
 - N: Call next level of support
- End

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.
WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of equipment damage
Before inserting the replacement circuit pack during this procedure, use a flashlight to inspect the backplane in the slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins. If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in the slot. Look for physical damage or abnormalities. If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

CAUTION
Loss of service
Do not repeat steps.

CAUTION
Loss of service
Manually busy one CP of the same equipment type at a time.
Introduction to card replacement

NTLX17 high performance CMIC circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

At your current location

1. Get a replacement CP. If you are replacing a CP that does not meet baseline hardware requirements, make sure that the replacement CP meets those requirements. If you are replacing a defective CP, make sure that the replacement CP and the CP you remove have the same product engineering code (PEC) and PEC suffix.

At the MAP terminal

2. Access the XA-Core IO MAP level. At the MAP terminal type

 >MAPCi;MTC;XAC;IO

 and press the Enter key.

 The following is a sample MAP display.

 ![Sample MAP display](image)

 3. Examine the IO MAP display. Record the working state of the system and the HCMIC CPs. Determine the location of the HCMIC CP that you need to replace. Record the HCMIC CP location on the physical shelf, side and slot.

 4. ManB the HCMIC CP. The CP must be in a ManB state before indication, removal, insertion or out-of-service testing. At the IO MAP type

 >BSY <nn> <s> FORCE

 and press the Enter key.

 where

 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
NTLX17 high performance CMIC circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:
>`BSY 4 r`

Example of system response:
Bsy 4 rear complete.

<table>
<thead>
<tr>
<th>If the HCMIC CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a ManB state</td>
<td>step 5</td>
</tr>
<tr>
<td>not in a ManB state</td>
<td>step 13</td>
</tr>
</tbody>
</table>

5 Indicate the ManB HCMIC CP. At the IO MAP terminal type
>`INDICAT card <nn> <s>`
and press the Enter key
where
* <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
* <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
Example of command use:
>`INDICAT card 4r`

Example of system response:
Indicate 4 rear passed.

At the XA-Core physical shelf

6 Locate the HCMIC CP on the XA-Core physical shelf. Use the CP location information recorded from the IO MAP in step 3. Label the cable connections on the HCMIC CP according to office standards.

7 Disconnect the all cables from the faceplate of the circuit pack. For each cable, proceed as follows.
 a Carefully pull the connector away from the receptacle. Hold the connector by the body only.
 b Cover the ends of the cable with dust caps.
 c Place the cable in a safe location away from the CP.
Remove the HCMIC CP from the physical shelf.

- **a** Open the locking levers on the CP.
- **b** Hold the CP by the locking levers. Pull the CP half way from the shelf opening toward you.
- **c** Hold the CP by the faceplate with one hand and support the bottom edge with the other. Remove the CP completely from the shelf.
- **d** Place the CP in ESD protective packaging.

Remove the NTLX17 HCMIC CP from the XA-Core shelf

WARNING

Static electricity damage

Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs.
NTLX17 high performance CMIC circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

9 Using a flashlight, inspect the backplane in this slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins.

If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in this slot. Look for physical damage or abnormalities.

If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

10 Insert the replacement HCMIC CP into the physical shelf slot.
 a Open the locking levers on the replacement HCMIC CP.
 b Hold the CP by the faceplate with one hand and support the bottom edge with the other.
 c Align the CP with the physical shelf slot. Slide the CP into the physical slot. Do not force the CP into the physical slot.
 d Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Push on the faceplate until the CP is fit into position.
 e Close the locking levers to lock the CP in the physical shelf. Do not force the locking levers to close.

Insert the NTLX17 HCMIC CP in the XA-Core shelf
NTLX17 high performance CMIC circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

11 Connect the replacement or original cables to the appropriate connectors on the faceplate of the circuit pack. For each cable, proceed as follows.
 a Remove the dust caps from the cable tips.
 b Hold the cable connector by the body only.
 c Carefully insert the cable connector into the correct receptacle.

At the MAP terminal

12 Return the HCMIC CP to service. At the IO MAP level type
 >RTS <nn> <s>
 and press the Enter key
 where
 <nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
 <s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)
 Example of command:
 >RTS 4 r
 Example of system response:
 RTS 4 rear passed.

<table>
<thead>
<tr>
<th>If replacement HCMIC CP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not returned to service</td>
<td>step 13</td>
</tr>
<tr>
<td>returned to service</td>
<td>step 14</td>
</tr>
</tbody>
</table>

13 Call the next level of support.
14 Check that the newly installed circuit pack contains the proper firmware loads. At the PE MAP level type

>QUERY CARD <nn> <s>

and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP location in the physical shelf - front (f) or rear (r)

Example of command:

>QUERY CARD 4 r

The system displays several items of information, including the firmware versions.

Example of system response

Command Submitted.
.
.
.

<table>
<thead>
<tr>
<th>Pos</th>
<th>Type</th>
<th>PEC+</th>
<th>HW Rel</th>
<th>BL OK</th>
<th>Serial Number</th>
<th>FW Vers.</th>
<th>Baseline OK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><vers></td>
<td></td>
<td><blv></td>
<td><ok></td>
</tr>
</tbody>
</table>

where

<vers> identifies the firmware load that is in the circuit pack
<brv> identifies the baseline firmware version
<brk> indicates whether the current firmware load is compatible with the baseline and exception information specified in table FWINV. For information on the baseline and exception specifications, see the description of table FWINV in the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

If the firmware versions Do

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>are the proper versions</td>
<td>step 16</td>
</tr>
<tr>
<td>are not the proper versions</td>
<td>step 15</td>
</tr>
</tbody>
</table>

15 Perform the procedure titled “Loading current firmware into a newly installed XA-Core component”. The procedure is in this document, in the chapter titled “Introduction to routine maintenance procedures”. Return to this point when complete.

16 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
NTLX20 filler circuit pack in a Super Node and Super Node SE XA-Core

Application
Use this procedure to replace or insert a new NTLX20 filler circuit pack (CP). Install the NTLX20 filler CP in slot 1 F (slot 1 front). The following table lists the correct XA-Core filler CP versions.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Circuit pack name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX20</td>
<td>AA</td>
<td>Filler</td>
</tr>
</tbody>
</table>

NTLX20 filler CP front and side views

Common procedures
There are no common procedures.
NTLX20 filler circuit pack in a Super Node and Super Node SE XA-Core (continued)

Light emitting diode (LED) visual indicators
There are no LEDs on the filler faceplate.

Action
The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.

Summary of NTLX20 filler CP replacement procedure

```
Obtain a replacement CP

CP has the same PEC suffix?
  Y
    1
  N
    Obtain CP with same PEC suffix

1
Locate the CP position on shelf

Remove the CP from the shelf

Insert new CP in the shelf

End
```

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to perform the procedure.
How to replace an NTLX20 filler circuit pack

WARNING

Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING

Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION

Loss of service
Do not repeat steps.

At your current location

1. Get a replacement CP. Make sure that the replacement CP and the CP you remove have the same product engineering code (PEC) and PEC suffix.

At the XA-Core physical shelf

2. Locate the filler CP on the XA-Core physical shelf.
3. Remove the filler CP from the physical shelf. Use the diagrams shown in this step.
 - a. Open the locking levers on the CP.
 - b. Hold the CP by the locking levers. Pull the CP half way from the shelf opening toward you.
 - c. Hold the CP by the faceplate with one hand and support the bottom edge with the other. Remove the CP completely from the shelf.
NTLX20 filler circuit pack in a Super Node and Super Node SE XA-Core (continued)

Remove the NTLX20 filler CP from the XA-Core shelf

4. Place the CP in ESD protective packaging.
5. Insert the replacement filler CP into the physical shelf slot. Use the diagrams shown in this step.
 a. Open the locking levers on the replacement filler CP.
 b. Hold the CP by the faceplate with one hand and support the bottom edge with the other.
 c. Align the CP with the physical shelf slot. Slide the CP into the physical slot. Do not force the CP into the physical slot.
 d. Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Push on the faceplate until the CP is fit into position.
 e. Close the locking levers to lock the CP in the physical shelf. Do not force the locking levers to close.
Insert the NTLX20 filler CP in the XA-Core shelf

6 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
Application

Use this procedure to replace or insert a new NTLX20 Terminating filler circuit pack (CP). The following table lists the correct XA-Core Slot terminator CP versions.

<table>
<thead>
<tr>
<th>PEC</th>
<th>Suffix</th>
<th>Circuit pack name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLX20</td>
<td>BA</td>
<td>Terminating filler</td>
</tr>
</tbody>
</table>

NTLX20 Terminating filler CP front and side views

Common procedures

There are no common procedures.
NTLX20 terminating filler circuit pack in a SuperNode and SuperNode SE XA-Core (continued)

Light emitting diode (LED) visual indicators
There are no LEDs on the faceplate.

Action
The following flowchart is only a summary of this procedure. To replace the CP, use the instructions in the step-action procedure that follows the flowchart.

Summary of NTLX20 Terminating filler CP replacement procedure

1. Obtain a replacement CP
2. CP has the same PEC suffix?
 - Y: Locate the CP position on shelf
 - N: Obtain CP with same PEC suffix
3. Remove the CP from the shelf
4. Insert new CP in the shelf
5. End

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to perform the procedure.
How to replace an NTLX20 Terminating filler circuit pack

WARNING
Risk of equipment damage
Use this procedure as instructed from a step in a maintenance procedure. Use of this procedure separately can result in equipment damage.

WARNING
Risk of equipment damage
Before inserting the replacement circuit pack during this procedure, use a flashlight to inspect the backplane in the slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins. If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in the slot. Look for physical damage or abnormalities. If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

WARNING
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

CAUTION
Loss of service
Do not repeat steps.
NTLX20 terminating filler circuit pack
in a SuperNode and SuperNode SE XA-Core (continued)

At your current location
1 Get a replacement CP. Make sure that the replacement CP and the CP you remove have the same product engineering code (PEC) and PEC suffix.

At the XA-Core physical shelf
2 Locate the Terminating filler CP on the XA-Core physical shelf.
3 Remove the Terminating filler CP from the physical shelf. Use the diagrams shown in this step.
 a Open the locking levers on the CP.
 b Hold the CP by the locking levers. Pull the CP half way from the shelf opening toward you.
 c Hold the CP by the faceplate with one hand and support the bottom edge with the other. Remove the CP completely from the shelf.

Remove the NTLX20 Terminating filler CP from the XA-Core shelf

4 Place the CP in ESD protective packaging.
5 Using a flashlight, inspect the backplane in this slot for bent pins. If you find any bent backplane pins, stop work immediately and contact the next level of support to arrange for an in-service XA-Core shelf replacement. Under no circumstances should you try to straighten bent pins.
If no bent backplane pins are found, inspect the backplane connector on the rear of the circuit pack being installed in this slot. Look for physical damage or abnormalities.

If you encounter significant resistance when inserting this circuit pack, investigate the cause before continuing.

6 Insert the replacement Terminating filler CP into the physical shelf slot. Use the diagrams shown in this step.
 a Open the locking levers on the replacement Terminating filler CP.
 b Hold the CP by the faceplate with one hand and support the bottom edge with the other.
 c Align the CP with the physical shelf slot. Slide the CP into the physical slot. Do not force the CP into the physical slot.
 d Use your fingers or thumbs to push on the upper and lower edges of the faceplate. Push on the faceplate until the CP is fit into position.
 e Close the locking levers to lock the CP in the physical shelf. Do not force the locking levers to close.

7 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as instructed.
This page is left blank intentionally.
3 Introduction to recovery procedures

Introduction
This chapter describes how to perform recovery maintenance procedures on the DMS SuperNode (SN) and DMS SuperNode SE (SNSE) XA-Core (XAC). Each procedure contains the following sections:

• application
• interval
• common procedures
• action

Application
This section describes the purpose of the procedure.

Interval
This section describes when to perform the procedure.

Common procedures
This section lists common procedures used during the recovery maintenance procedure. A common procedure is a series of steps that repeats in maintenance procedures. Common procedures include card removal and replacement.

Action
This section provides a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
This page is left blank intentionally.
How to boot an XA-Core in a DMS switch

Application
Use this procedure to boot a DMS SuperNode or DMS SuperNode SE switch that has an eXtended Architecture Core (XA-Core). This procedure boots a switch from a reset terminal display. An image loads from a small computer systems interface (SCSI) device. The SCSI device can be in a disk or a digital audio tape (DAT).

When you boot a switch, the booted switch drops all calls.

Interval
Perform this procedure when instructed by your next level of support.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart and a list of steps. Use the flowchart as an summary of the procedure. Follow the exact steps to boot an XA-Core in a DMS switch.
How to boot an XA-Core in a DMS switch

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.
How to boot an XA-Core in a DMS switch

At your current location
1 Determine from office records, the name of the XA-Core recording device that contains the last office image file. The XA-Core recording device is a disk drive or a tape drive for a digital audio tape (DAT). Record the name of the XA-Core device.

At the XA-Core shelf
2 Make sure that the disk drive or the tape drive that you recorded in step 1 is in service. Make sure the disk drive or the tape drive recorded in step 1 has a green light-emitting diode (LED) illuminated.

CAUTION
Call your next level of support
Do not try this procedure before you call your next level of support.

CAUTION
Extended service interruption
A longer recovery time occurs for a switch boot from tape than a switch boot from disk. Boot from disk when possible, because call processing starts again more quickly after a switch boot from disk.

If the disk drive or tape drive is in service not in service
Do step 3 step 14

At the XA-Core reset terminal
3 To override the XA-Core reset terminal, type:
>
OVERRIDE
and press the enter key.

Example of a reset terminal response
NOW IN SERVICE AFFECTING MODE
How to boot an XA-Core in a DMS switch (continued)

4 To boot the XA-Core, type:
 >\BOOT nn s p
 and press the enter key.
 where
 nn is the number of the slot position of the input/output processor (IOP) card
 that contains the packlet with the last image file. The packlet is for a disk drive
 or a DAT drive.
 s is the front (F) or rear (R) shelf position of the IOP card that contains the
 packlet with the last image file. The packlet is for a disk drive or a DAT drive.
 p is the upper (U) or lower (L) position of the IOP card that contains the
 packlet with the last image file. The packlet is for a disk drive or a DAT drive.
 Example of reset terminal input:
 >\BOOT 2 F L
 Example of a reset terminal response
 CONFIRM (\YES OR \NO)

5 To confirm the command, type:
 >\YES
 and press the enter key.

6 Monitor the reset terminal display to determine if the switch has booted.

 Example of a reset terminal response
 RTIF>

 If the response has
 Do
 a prompt step 7
 no prompt after approximately 15 min step 14
How to boot an XA-Core in a DMS switch (continued)

At the MAP terminal

7

Determine if you have to log in.

Note: The log-in message indicates that you have to manually log in. An automatic log in can occur if the office parameters have automatic log in.

Example of a MAP response
Please Login.

<table>
<thead>
<tr>
<th>If log in is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not automatic</td>
<td>step 8</td>
</tr>
<tr>
<td>automatic</td>
<td>step 12</td>
</tr>
</tbody>
</table>

8 Press the break key.

Example of a MAP response
?

9 To log in to the MAP terminal, type:

LOGIN

and press the enter key.

Example of a MAP response
Enter User Name

10 To enter the user name, type:

user_name

and press the enter key.

where

user_name is the name of the user for the account

Example of a MAP response
Enter Password
How to boot an XA-Core in a DMS switch (end)

11 To enter the password, type:
password
and press the enter key.
where
password is the name of the password for the account
Example of a MAP response
 SuperNode_1 Logged in on 1997/01/15 at 20:37:17

12 To access the MS Clock level of the MAP display, type:
MAPCI;MTC;MS;CLOCK
and press the enter key.

13 To synchronize the clocks, type:
SYNC
and press the enter key.

<table>
<thead>
<tr>
<th>If the MAP response is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a successful completion</td>
<td>step 15</td>
</tr>
<tr>
<td>a failure</td>
<td>step 14</td>
</tr>
</tbody>
</table>

14 For additional help, call the personnel responsible for the next level of support.

15 You have completed this procedure.
Emergency power conservation restoration

Application
Use this procedure to return to normal operation an eXtended Architecture Core (XA-Core) configuration of a switch. The switch is a DMS SuperNode or a DMS SuperNode SE switch. Use this procedure after having performed all parts of the procedure “Emergency power conservation shutdown” to maintain emergency backup power. The procedure “Emergency power conservation shutdown” follows an extended commercial power outage.

The procedure “Emergency power conservation shutdown” reduces the power decrease of emergency batteries to a minimum. The reduced power of emergency batteries is from a turn off in stages of equipment that is not necessary to maintain subscriber service. The specification of equipment shutdown is in a moving up order based on its effect on the system reliability. The equipment shutdown begins with less required equipment such as spare printers and ends with more required equipment.

This restoration procedure includes a top-level procedure and a number of other procedures. This procedure, “Emergency power conservation restoration” is the top-level procedure. This procedure describes the equipment for retrieval, and the order to do the retrieval. The top-level procedure refers out to the other procedures. The other procedures provide detail instructions for a restore of separate elements of the switch. A list of these other procedures are in the table of contents.

This procedure describes equipment recovery in decreasing order based on its effect on system reliability. The equipment restoration begins with more required equipment and ends with less required equipment such as maintenance trunk modules. The configuration of your office and the requirements of your operating company, can change the order of equipment restoration. The return of elements of the switch to service can be in a different order.

Interval
Use this procedure after completion of the procedure “Emergency power conservation shutdown” in this document. Perform this procedure on switch equipment that is out of service. Perform this procedure to restore normal operation to equipment after the need for power conservation shutdown in an emergency.

Common procedures
There are no common procedures.
Emergency power conservation restoration

Action

This procedure contains a summary flowchart and a list of exact steps. Use the flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.

Emergency power conservation restoration

1. Restore power to all MAPs and printers
2. Restore MS to duplex operation
3. Restore LIMs or MSB7 to duplex operation
4. Restore network to duplex operation
5. Restore XPMs to duplex operation
6. Restore LCMs to duplex operation
7. Restore LMs to duplex operation
8. Return MTMs to service
9. Clear any alarms
10. End
Emergency power conservation restoration

WARNING
Potential extended equipment outage
Nortel Networks recommends that you perform this procedure under the supervision of Emergency Technical Assistance Services (ETAS) of Nortel Networks. Also call your next level of support before you perform this procedure.

CAUTION
Potential loss of service or extended outage
This procedure is only to restore normal operation after the performance of measures for emergency power conservation. Do not use this procedure or parts of this procedure for equipment maintenance purposes.

At your current location
1. Use office records to identify and record the power converters which supply the MAPs and printers of the switch.
2. Restore power to all the power converters identified in step 1 that supply power to the MAPs and printers of the switch.

At the MAP
3. Restore power to one side of the remote oscillator shelf (NT3X9507). If you turned off power to save emergency backup power, perform the procedure “Restoring the remote oscillator shelf to duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).
4. Restore power to one message switch (MS) shelf if you turned off power to save emergency backup power. To restore power, perform the procedure “Restoring the MS duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).
5. Restore power to one unit of the CCS7 message switch and buffer (MSB7) if you turned off power to save emergency backup power. To restore power, perform the procedure “Restoring the MSB7 to duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).
6. Restore power to one link interface module (LIM) unit on one or more link peripheral processors (LPP) if you turned off power to save emergency backup power. To restore power, perform the procedure “Restoring LPP LIMs to duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).
7. If you removed power from one or more network frames, restore power to the changed frames at the power distribution center (PDC).
8 Restore power to one or more junctored network (JNET) shelves if you turned off power to save emergency backup power. To restore power, perform the procedure “Restoring the junctored network to duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

9 Restore power to one or more enhanced network (ENET) shelves if you turned off power to save emergency backup power. To restore power, perform the procedure “Restoring the enhanced network to duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

10 Restore power to one or more units of a line group controller (LGC), line trunk controller (LTC), or digital trunk controller (DTC). Restore power if you turned off power to save emergency backup power. To restore power, perform the procedure “Restoring LGCs, LTCs, and DTCs to duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

11 Restore power to one or more units of a line concentrating module (LCM) if you turned off power to save emergency backup power. To restore power, perform the procedure “Restoring LCMs to duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

12 Restore power to one or more line modules (LM) if you turned off power to save emergency backup power. To restore power, perform the procedure “Restoring line modules to duplex operation” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

13 Restore power to one or more maintenance trunk modules (MTM) if you turned off power to save emergency backup power. To restore power, perform the procedure “Returning maintenance trunk modules to service” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

14 To clear any alarms on the MAP display, perform the correct alarm clearing procedure. The correct alarm clearing procedure is in this document or in the Alarm and Performance Monitoring Procedures, 297-8001-543 (North American market) or 297-9051-543 (International market).

15 You have completed this procedure.
Application

Use this procedure to maintain emergency backup power for a DMS SuperNode or a DMS SuperNode SE switch. Use this procedure when the switch has an eXtended Architecture Core (XA-Core) configuration.

This procedure reduces the loss from emergency batteries to a minimum by closure of power to equipment in stages. The equipment shutdown is not necessary to maintain subscriber service. Equipment shutdown is in moving up order based on its effect on switch reliability. The equipment shutdown begins with less required equipment, such as spare printers, and ends with more required equipment.

The procedure includes a top-level procedure and a number of referred procedures. The top-level procedure, “Emergency power conservation shutdown” in this document describes the equipment you can turn off without loss of service. The top-level procedure, “Emergency power conservation shutdown” in this document also describes the order of equipment shutdown. The top-level procedure refers out to other procedures which provide detail instructions for turning off power to separate elements of the switch. The referred procedures are in the table of contents.

When you perform this procedure, take into consideration the configuration and condition of your switch. Also take into consideration the expected period of the power outage, and the quantity of reserve power available. Continue as follows:

Note: If you receive a warning message for a loss of service if you busy a plane or unit, do not continue. Clear the problem that can cause a loss of service before you busy the plane or unit. Also you can leave both planes or units of that subsystem in service.

• Complete the number of steps of this procedure as your set of conditions needs. For example, if you expect power to restore, you can decide to leave important systems to operate in a duplex mode. The message switch (MS) is an example of a system that can have a duplex mode. Equally for reliability, you can decide to leave both units in service on peripheral modules required for emergency service lines.

• This procedure requires a condition when this procedure instructs you to busy down one plane or unit of a system. The condition is that the mate plane or unit you leave in service, is fault free and can operate normally.

• When possible, take the same plane or unit out of service on each subsystem (for example, ENET plane 0, LIM unit 0, MS 0). This action decreases the possible result of error and reduces recovery time.
Interval

Use this procedure to maintain emergency backup power without loss of subscriber service, during an extended commercial power outage.

Common procedures

There are no common procedures.

Action

This procedure contains a summary flowchart and a list of exact steps. Use the flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
Emergency power conservation shutdown

- Shut down printers and spare MAPs
- Make sure recent office image is available
- Shut down nonessential MTMs
- Shut down one side of LMCs
- Shut down one unit of LCMs
- Shut down one unit of LGCs, LTCs, and DTCs
- Shut down one network plane
- Shut down one LIM or MSB7 unit
- Shut down one plane of the MS
- End

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.
Emergency power conservation shutdown (continued)

Emergency power conservation shutdown

CAUTION

Potential service interruption or extended outage
Nortel Networks recommends that you call Emergency Technical Assistance Services (ETAS) of Nortel Networks. Also call your next level of support before you perform this procedure.

CAUTION

Potential loss of service or extended outage
This procedure is only for conservation of emergency backup power. Do not use this procedure or sections for equipment maintenance purposes.

At your current location

1. Use office records to identify and record the power converters that supply the MAPs and printers for the switch.

2. Turn the power off on all power converters identified in step 1. Do not turn the power off for the power converters which supplies the operator’s MAP and one printer connected to IOC 0.

At the MAP terminal

3. To confirm that an office image is available to reload the switch if a total turn off of power becomes necessary, type:

 `>AUTODUMP STATUS`

 and press the enter key.

 Example of a MAP response

   ```
   Successful Image: 990215_XA
   Taken: 1999/03/17 21:47:32:04.138 WED.
   On Volume: F17LIMAGE
   Successful Image: 990215_MS
   Taken: 1999/03/17 21:47:32:04:138 WED.
   On Volume: F17LIMAGE
   SCHEDULED-Image Dump is ON.
   Next scheduled dump is MONDAY at 22:30 hours.
   Next image to be dumped on F02LIMAGE.
   ```

If an office image is

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>available</td>
</tr>
<tr>
<td>not available</td>
</tr>
</tbody>
</table>
Emergency power conservation shutdown (continued)

4 Record the office image. Perform the procedure, “How to record an XA-Core office image on a disk” in this document. Return to this step when you complete the procedure to record the office image.

5 Turn off power for all maintenance trunk modules (MTM) in the office. Do not turn power off if the MTM contains cards that have an effect on service. To turn off power perform the procedure, “Emergency shutdown of maintenance trunk modules” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

 Note: Cards that have an effect on service include digitone receiver cards (NT2X48), centralized automatic message accounting (CAMA) cards (NT2X66), and digital recorded announcement machine (DRAM) cards.

6 Turn off power for one of the line module controllers (LMC) (NT2X14 shelf) in each double-bay line module (LM) pair in the office. To turn off the power, perform the procedure, “Emergency shutdown of one half of a line module pair” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

7 Turn off power for one unit of all line concentrating modules (LCM) in the office. To turn off the power, perform the procedure, “Emergency shutdown of one unit of LCMs” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

8 Turn off power for one unit of all line group controllers (LGC), line trunk controllers (LTC), and digital trunk controllers (DTC) in the office. To turn off the power, perform the procedure, “Emergency shutdown of one LGC, LTC, and DTC unit” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

9 Turn off power for one plane of all network shelves in the office, as follows:
 • for ENET, perform the procedure, “Emergency shutdown of one enhanced network plane” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).
 • for JNET, perform the procedure, “Emergency shutdown of one junctored network plane” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

10 If you removed power from a complete network frame in step 9, turn off power for the cooling fans for the frame. To turn off power, remove the correct power fuses from the PDC.

11 Busy and power down one local message switch in the link peripheral processor (LPP). Perform the procedure, “Emergency shutdown of one LIM unit on each LPP” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

12 Turn off power for one unit of all CCS7 message switch and buffers (MSB7) in the office. To turn off power, perform the procedure, “Emergency shutdown of one unit of MSB7s” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

13 Turn off power for one message switch (MS) plane. To turn off power, perform the procedure, “Emergency shutdown of one DMS SuperNode MS plane” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).
Emergency power conservation shutdown (end)

14 If your office has a remote oscillator shelf (NT3X9507), busy the clock related to the MS number. The MS number is for the MS that you turned off power in step 13. To busy the clock, perform the procedure, “Emergency shutdown of one remote oscillator shelf plane” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

15 You have completed this procedure.
Emergency shutdown of the switch

Application

Use this procedure to power down a DMS switch as follows:
• in the event of an emergency, for example, flooding or fire
• to protect equipment if the available functioning voltage at the power distribution center (PDC) falls below -43.75 V dc
• when instructed by the next level of support

Do not use this procedure to conserve emergency backup power. To conserve emergency backup power, perform the procedure titled “Emergency power conservation shutdown”, located in this chapter. That procedure powers down elements of the switch that you do not require.

Interval

Not applicable.

Common procedures

There are no common procedures.

Action

The following flowchart is a summary of the procedure. To perform the power shutdown, use the instructions in the step-action procedure that follows the flowchart.
Emergency shutdown of the switch (continued)

Notify network management of service loss

Notify essential services of service loss

Immediate shutdown required?

YES

NO

Power down peripheral modules (PMs) that you do not require

Power down peripheral modules (PMs) that remain

Power down network, LPP, ELPP, and IOCs

Power down XA-Core and message switch

Disconnect A and B feeds

This flowchart summarizes the procedure.
Use the instructions in the procedure that follows this flowchart to perform the procedure.
Emergency shutdown of the switch

CAUTION

This procedure results in a complete loss of subscriber service.

Nortel Networks recommends that before you perform this procedure, you should contact emergency Technical Assistance Services (ETAS) of Nortel Networks or contact your next level of support.

At your current location

1. Notify network management personnel of the impending service interruption.
2. Notify emergency services (police, fire, ambulance) of the impending service interruption.

At the switch

3. Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the switch must be shut down immediately due to dangerous</td>
<td>step 4</td>
</tr>
<tr>
<td>environmental conditions</td>
<td></td>
</tr>
<tr>
<td>there is time (one half hour or more) to shut down the switch</td>
<td>step 6</td>
</tr>
<tr>
<td>in an orderly fashion</td>
<td></td>
</tr>
</tbody>
</table>

4. Turn off the power to the power distribution centers (PDCs) by disconnecting the power feeds at the power room.

 Note: Turning off the switch in this manner should be done only if absolutely necessary, as current arcing may occur.

5. Go to step 19.

6. Using office records, identify the peripheral modules that host emergency services (such as fire, police, and ambulance), so that these peripherals can be shut off last.

7. Turn off the power converter for each maintenance trunk module shelf, except those identified in step 6 as essential for emergency service lines.

 Note: Older peripheral modules, such as line modules and digital carrier modules, use universal tone receivers resident in maintenance trunk modules.

8. Turn off the inverters for all MAPs and printers, except the operator MAP and one printer.

9. Turn off the power converters on all digital trunk controllers and trunk modules, except those identified in step 6 as essential for emergency service communications.

10. Turn off the power converters on each line module shelf, except those identified in step 6 as hosting emergency service lines.
Emergency shutdown of the switch (end)

11 Turn off the power converters on all line concentrating modules, except those identified in step 6 as hosting emergency service lines.

12 Turn off the power converters on all line group controllers and line trunk controllers, except those identified in step 6 as essential for emergency service communications.

13 Turn off the power on all remaining peripheral modules, leaving essential service peripheral modules until last.

14 Turn off the power for the network modules, link peripheral processor, and input/output controllers (IOCs).

 Note: To power down the ENET and the LPP, unseat and then reseat the power converters.

15 Turn off the power for all remaining devices, including the inverter that supplies the operator MAP, and any external printers, tape drives, or disk drives.

16 Turn off the power for the XA-Core. Power down both SIM cards in the XA-Core. In each SIM card you must turn off three breakers.

17 Turn off the power for the message switch. Power down one plane by turning off the power converters. Power down the second plane by unseating and then reseating the power converters.

18 Turn off the power to the power distribution centers (PDCs) by discontinuing the A and B feeds at the power room.

19 You have completed this procedure.
How to perform a cold restart in an XA-Core

Application

Use this procedure to perform a cold restart. The cold restart is on an eXtended Architecture Core (XA-Core) of a DMS SuperNode or of a DMS SuperNode SE switch.

A cold restart is more serious than a warm restart but less serious than a reload restart. A cold restart is an initialization phase during which temporary storage deallocates and clears. All calls drop during the restart and there is no billing data recorded for the calls that the switch drops. After a cold restart, the switch keeps the office configuration and translation data.

Interval

Perform this instruction when instructed by your next level of support.

Common procedures

There are no common procedures.

Action

This procedure contains a summary flowchart and a list of exact steps. Use the flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to perform a cold restart in an XA-Core

This flowchart summarizes the procedure.

Use the instructions in the procedure that follows this flowchart to perform the procedure.

MAP terminal is available?

Y

Perform restart at MAP

N

Perform restart at RTIF

Restart successful?

Y

Log in to MAP

N

Automatic log in to MAP?

Y

Synchronize MS clocks

N

MS clocks synchronized?

Y

End

N

Call next level of support

N

manually
How to perform a cold restart in an XA-Core

At your current location

1. Determine if a MAP terminal is available to execute the restart.

<table>
<thead>
<tr>
<th>If a MAP terminal is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>available</td>
<td>step 2</td>
</tr>
<tr>
<td>not available</td>
<td>step 7</td>
</tr>
</tbody>
</table>

At the MAP terminal

2. To access the CI level of the MAP, type:

 >QUIT ALL

 and press the enter key.

 Example of system response:

 CI:
 >
How to perform a cold restart in an XA-Core (continued)

3 To go into service-affecting mode, type
 >\OVERRIDE
 and press the Enter key.
 Example of system response:
 NOW IN SERVICE AFFECTING MODE

4 To restart the switch, type:
 >RESTART COLD ACTIVE
 and press the Enter key.
 Example of system response:
 WARNING: This action will result in a CALL PROCESSING OUTAGE.
 Use MTCSWACT. Consult NORESTARTSWACT/MTCSWACT Users Guide NTP.
 Please confirm ("YES", "Y", "NO", or "N"):

5 To confirm the command, type:
 >YES
 and press the enter key.
 Example of system response:
 COLD Restart from Command on CPU 0
 *** SOS COLD restart no. 2 at OCT-20 15:46:06.
 <<IGNORED>>
 Please Login.

At the RTIF terminal

6 Determine if the restart of the switch has completed.
 Note: When the switch restarts, alphanumeric addresses appear in the RTIF display.
 When the switch has completed the restart, an automatic log in occurs or a manual log-in request appears.

<table>
<thead>
<tr>
<th>If the response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a completed restart</td>
<td>step 10</td>
</tr>
<tr>
<td>no restart completion after approximately 5 min</td>
<td>step 17</td>
</tr>
</tbody>
</table>

At the RTIF terminal

7 To restart the switch, type:
 >\RESTART COLD ACTIVE
 and press the enter key.
 Example of system response:
 Please confirm: (YES/NO)
How to perform a cold restart in an XA-Core (continued)

8 To confirm the command, type:
 >\YES
 and press the enter key.
 *Example of system response:
 RESTART DONE

9 Monitor the RTIF display to determine if the switch has restarted.
 Note: When the switch restarts, alphanumeric addresses display in the
 RTIF response. When the switch completes the restart, A1 appears in the
 RTIF response.

<table>
<thead>
<tr>
<th>If the RTIF response has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>step 10</td>
</tr>
<tr>
<td>no A1 after approximately 5 min</td>
<td>step 17</td>
</tr>
</tbody>
</table>

At the MAP terminal

10

[CAUTION]
Extended service interruption
The exact log-in procedure can vary, depending on your office configuration. If you need additional help, call the personnel responsible for the next level of support.

Determine from the MAP display if you have to log in.
 Note: The message Please Login indicates that you have to log in manually. If your office parameters have automatic log in, you can log in automatically.

Example of system response:
 Please Login.

<table>
<thead>
<tr>
<th>If the log in is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>manual</td>
<td>step 11</td>
</tr>
<tr>
<td>automatic</td>
<td>step 15</td>
</tr>
</tbody>
</table>

11 Press the break key.
 Example of system response:
 ?
How to perform a cold restart in an XA-Core (end)

12 To log in to the MAP terminal, type:
 >LOGIN
 and press the Enter key.

 Example of system response:
 Enter User Name

13 To enter the user name, type:
 >user_name
 and press the enter key.
 where
 user_name is the name of the user for the account

 Example of system response:
 Enter Password

14 To enter the password, type:
 >password
 and press the enter key.
 where
 password is the alphanumeric string of the password for the account

 Example of system response:
 SuperNode_1 Logged in on 1997/01/15 at 20:37:17

15 To access the message switch (MS) Clock level of the MAP display, type:
 >MAPCI;MTC;MS;CLOCK
 and press the enter key.

16 To synchronize the clocks, type:
 >SYNC
 and press the enter key.

<table>
<thead>
<tr>
<th>If the MAP response to the SYNC command is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 18</td>
</tr>
<tr>
<td>failed</td>
<td>step 17</td>
</tr>
</tbody>
</table>

17 For additional help, call the personnel responsible for the next level of support.

18 You have completed this procedure.
How to perform a reload restart in an XA-Core

Application

Use this procedure to perform a reload restart. The reload restart is on an eXtended Architecture Core (XA-Core) of a DMS SuperNode or of a DMS SuperNode SE switch.

A reload restart is more serious than a cold restart. A reload restart simulates an actual reload of the current software into the switch. All calls drop during the restart and there is no billing data recorded for the calls that the switch drops. After a reload restart, the switch keeps the office configuration and translation data.

Interval

Perform this procedure when instructed by your next level of support.

Common procedures

There are no common procedures.

Action

This procedure contains a summary flowchart and a list of exact steps. Use the flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to perform a reload restart in an XA-Core

MAP terminal is available?

Y

Perform restart at MAP

N

Perform restart at RTIF

Restart successful?

Y

Log in to MAP

N

Automatic log in to MAP?

Y

Synchronize MS clocks

N

MS clocks synchronized?

Y

End

N

Call next level of support

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.
How to perform a reload restart in an XA-Core (continued)

How to perform a reload restart in XA-Core

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>Contact your next level of support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not try this procedure before you call your next level of support.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>Loss of service</th>
</tr>
</thead>
<tbody>
<tr>
<td>All calls drop during a reload-restart.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>Extended service interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute the restart from a MAP terminal when possible. The MAP terminals can be out of service if there is a serious problem. If a MAP terminal is not available, perform the restart from the reset terminal interface (RTIF) of XA-Core.</td>
<td></td>
</tr>
</tbody>
</table>

At your current location

1. Determine if a MAP terminal is available to execute the restart.

<table>
<thead>
<tr>
<th>If a MAP terminal is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>available</td>
<td>step 2</td>
</tr>
<tr>
<td>not available</td>
<td>step 7</td>
</tr>
</tbody>
</table>

At the MAP terminal

2. To access the CI level of the MAP, type:

>`QUIT ALL`

and press the enter key.

Example of system response:

> CI:

>`> `
How to perform a reload restart in an XA-Core (continued)

3 To go into service-affecting mode, type
 >\OVERRIDE
 and press the Enter key.
 Example of system response:
 NOW IN SERVICE AFFECTING MODE

4 To restart the switch, type:
 >\RESTART RELOAD ACTIVE
 and press the enter key.
 Example of system response:
 WARNING: This action will result in a CALL PROCESSING OUTAGE.
 Please confirm ("YES", "Y", "NO", "N"):

5 To confirm the command, type:
 >\YES
 and press the enter key.

At the RTIF terminal
6 Determine if the restart of the switch has completed.
 Note: When the switch restarts, alphanumeric addresses appear in the
 RTIF display. When the switch has completed the restart, an automatic log
 in occurs or a manual log-in request appears.

<table>
<thead>
<tr>
<th>If the response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a completed restart</td>
<td>step 10</td>
</tr>
<tr>
<td>no restart completion after approximately 5 min</td>
<td>step 17</td>
</tr>
</tbody>
</table>

At the RTIF terminal
7 To restart the switch, type:
 >\RESTART RELOAD
 and press the enter key.
 Example of system response:
 Please confirm: (YES/NO)

8 To confirm the command, type:
 >\YES
 and press the enter key.
 Example of system response:
 RESTART DONE
How to perform a reload restart in an XA-Core (continued)

9 Monitor the RTIF display to determine if the switch has restarted.

 Note: When the switch restarts, alphanumeric addresses display in the RTIF response. When the switch completes the restart, A1 appears in the RTIF response.

<table>
<thead>
<tr>
<th>If the RTIF response has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>step 10</td>
</tr>
<tr>
<td>no A1 after approximately 5 min</td>
<td>step 17</td>
</tr>
</tbody>
</table>

At the MAP terminal

10

 CAUTION

 Extended service interruption

 The exact log-in procedure can vary, depending on your office configuration. If you need additional help, call the personnel responsible for the next level of support.

 Determine from the MAP display if you have to log in.

 Note: The message Please Login indicates that you have to log in manually. If your office parameters have automatic log in, you can log in automatically.

 Example of system response:

 Please Login.

<table>
<thead>
<tr>
<th>If your log in is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not automatic</td>
<td>step 11</td>
</tr>
<tr>
<td>automatic</td>
<td>step 15</td>
</tr>
</tbody>
</table>

11 Press the break key.

 Example of system response:

 ?

12 To log in to the MAP terminal, type:

 LOGIN

 and press the enter key.

 Example of system response:

 Enter User Name
How to perform a reload restart in an XA-Core (end)

13 To enter the user name, type:
user_name
and pressing the Enter key.
where
user_name is the name of the user for the account
Example of system response:
Enter Password

14 To enter the password, type:
password
and press the enter key.
where
password is the alphanumeric string of the password for the account
Example of system response:
SuperNode1 Logged in on 1997/01/15 at 20:37:17

15 To access the message switch (MS) Clock level of the MAP display, type:
>MAPCI;MTC;MS;CLOCK
and press the enter key.

16 To synchronize the clocks, type:
>SYNC
and press the enter key.

<table>
<thead>
<tr>
<th>If the SYNC command is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 18</td>
</tr>
<tr>
<td>not successful</td>
<td>step 17</td>
</tr>
</tbody>
</table>

17 For additional help, call the personnel responsible for the next level of support.

18 You have completed this procedure.
Introduction to recovery procedures

How to perform a warm restart in an XA-Core

Application

Use this procedure to perform a warm restart. The warm restart is on an eXtended Architecture Core (XA-Core) of a DMS SuperNode or of a DMS SuperNode SE switch.

A warm restart is the least serious type of restart. A warm restart is an initialization phase during which temporary storage deallocates and clears. Calls in the talking state continue during the restart, and the switch keeps data related to each call. Calls that have not reached the talking state disconnect.

Interval

Perform this procedure when instructed by your next level of support.

Common procedures

There are no common procedures.

Action

This procedure contains a summary flowchart and a list of exact steps. Use the flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to perform a warm restart in an XA-Core

This flowchart summarizes the procedure.

Use the instructions in the procedure that follows this flowchart to perform the procedure.

MAP terminal is available?

- Y: Perform restart at MAP
- N: Perform restart at RTIF

Restart successful?

- Y: Log in to MAP
- N: Synchronize MS clocks

Automatic log in to MAP?

- Y: Manually synchronize MS clocks
- N: Call next level of support

End
How to perform a warm restart in an XA-Core

CAUTION
Call your next level of support
Do not try this procedure before you call your next level of support.

CAUTION
Loss of service
Calls in process that have not reached the talking state disconnect during a warm restart.

CAUTION
Loss of service at the USP
If the XA-Core is connected to a USP, then during a warm restart of the XA-Core, connectivity to the USP will be lost.

CAUTION
Extended service interruption
Execute the restart from a MAP terminal when possible. The MAP terminals can be out of service if there is a serious problem. If a MAP terminal is not available, perform the restart from the reset terminal interface (RTIF) of XA-Core.

At your current location
1 Determine if a MAP terminal is available to execute the restart.

<table>
<thead>
<tr>
<th>If a MAP terminal is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>available</td>
<td>step 2</td>
</tr>
<tr>
<td>not available</td>
<td>step 7</td>
</tr>
</tbody>
</table>
How to perform a warm restart in an XA-Core (continued)

At the MAP terminal

2 To access the CI level of the MAP, type:
 >QUIT ALL
 and press the enter key.
 Example of system response:
 CI:
 >

3 To go into service-affecting mode, type
 >\OVERRIDE
 and press the Enter key.
 Example of system response:
 NOW IN SERVICE AFFECTING MODE

4 To restart the switch, type:
 >RESTART WARM ACTIVE
 and press the enter key.
 Example of system response:
 WARNING: This action will result in a CALL PROCESSING OUTAGE.
 Use MTCSWACT. Consult NORESTARTSWACT/MTCSWACT Users Guide NTP.
 Please confirm ("YES", "Y", "NO", or "N"):

5 To confirm the command, type:
 >YES
 and press the enter key.
 Example of system response:
 WARM Restart from Command on CPU 0
 *** SOS WARM restart no. 3 at OCT-20 18:36:55.
 <<<IGNORED>>
 U2 Logged in on 1998/10/20 at 18:37:51.
How to perform a warm restart in an XA-Core (continued)

At the RTIF terminal

6. Determine if the restart of the switch has completed.

 Note: When the switch restarts, alphanumeric addresses appear in the RTIF display. When the switch has completed the restart, an automatic log in occurs or a manual log-in request appears.

<table>
<thead>
<tr>
<th>If the response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a completed restart</td>
<td>step 10</td>
</tr>
<tr>
<td>no restart completion after approximately 5 min</td>
<td>step 17</td>
</tr>
</tbody>
</table>

At the RTIF terminal

7. To restart the switch, type:

 `>\RESTART WARM`

 and press the enter key.

 Example of system response:

 Please confirm: (YES/NO)

8. To confirm the command, type:

 `>\YES`

 and press the enter key.

 Example of system response:

 RESTART DONE

9. Monitor the RTIF display to determine if the switch has restarted.

 Note: When the switch restarts, alphanumeric addresses display in the RTIF response. When the switch has restarted, A1 appears in the RTIF response.

<table>
<thead>
<tr>
<th>If the RTIF response has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>step 10</td>
</tr>
<tr>
<td>no A1 after approximately 5 min</td>
<td>step 17</td>
</tr>
</tbody>
</table>
How to perform a warm restart in an XA-Core (continued)

At the MAP terminal

10 CAUTION
Extended service interruption
The exact login procedure can vary, depending on your office configuration. If you need additional help, call the personnel responsible for the next level of support.

Determine from the MAP display if you have to log in.

Note: The message Please Login indicates that you have to log in manually. If your office parameters have automatic log in, you can log in automatically.

Example of system response:
Please Login.

<table>
<thead>
<tr>
<th>If If your log in is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not automatic</td>
<td>step 11</td>
</tr>
<tr>
<td>automatic</td>
<td>step 15</td>
</tr>
</tbody>
</table>

11 Press the break key.

Example of system response:
?

12 To log in to the MAP terminal, type:

>LOGIN

and press the enter key.

Example of system response:
Enter User Name

13 To enter the user name, type:

>user_name

and press the enter key.

where

user_name is the name of the user for the account

Example of system response:

Enter Password
Introduction to recovery procedures

How to perform a warm restart in an XA-Core

14 To enter the password, type:
 >password
 and press the enter key.
 where
 password is the alphanumeric string of the password for the account

 Example of system response:
 SuperNode1 Logged in on 1997/01/15 at 20:37:17

15 To access the message switch (MS) Clock level of the MAP display, type:
 >MAPCI;MTC;MS;CLOCK
 and press the enter key.

16 To synchronize the clocks, type:
 >SYNC
 and press the enter key.

 If the MAP response to the SYNC command is |
 Do
 successful step 18
 failed step 17

17 For additional help, call the personnel responsible for the next level of support.

18 You have completed this procedure.
This page is left blank intentionally.
How to recover a dead XA-Core DMS switch

Application
Use this procedure to recover a dead switch that has an eXtended Architecture Core (XA-Core). The switch can be a DMS SuperNode or SuperNode SE switch. The switch is dead if the complete switch is without power. The power loss results from a loss or interruption of A and B dc power feeds to the power distribution center (PDC).

Interval
Perform this procedure when instructed by your next level of support.

Common procedures
This procedure refers to the procedure “How to check and adjust the XA-Core TOD”, found in this document.

Action
This procedure contains a summary flowchart and a list of exact steps. Use the flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to recover a dead XA-Core DMS Switch

1. Proceed only after you call your next level of support.
2. Make sure power restores at PDC.
3. Restore power to shelves in XA-Core cabinet.
4. Is the switch in a booting process?
 - Yes: Boot the switch.
 - No: Proceed to next step.
5. Recover IOC 0 and operator MAP.
6. Sync MS clocks.
7. Restore power to network shelves.
8. Monitor system recovery status.
9. Recover other IOCs and MAPs alarms.
10. Restart DIRP subsystems.
11. Restore power to PM cabinets.
12. End.
How to recover a dead XA-Core DMS switch (continued)

CAUTION
Call ETAS or your next level of support
In the event of a dead system, call the Emergency Technical Assistance Services (ETAS) of Nortel Networks. Also call your next level of support before you perform this procedure.

DANGER
Risk of electrocution
Do not touch the cabinet wiring. Connections with unshielded cabinet wiring can result in electric shock. Only qualified power maintenance personnel can perform the voltage measurements in step 3.

At the PDC

1. When possible after detection of the power outage, remove all the fuse holders for the following:
 - line concentrating equipment (LCE) talk batteries
 - trunk module equipment (TME) talk batteries
 - PDC filter fuses from the correct PDCs

 Note: The location of the fuse holders in the fuse panel can vary, depending on your office configuration. For help in locating the fuse holders, refer to the fuse assignment diagram for your office. Also call your next level of support to help you locate the fuses.

2. The next step depends on if the switch power is a -48 V dc feed or by a -60 V dc feed.

 If the switch power is Do
 -48 V dc step 3
 -60 V dc step 4

3. Continue when you know of restored power at the power plant for your office. Power maintenance personnel must check for restored power at each PDC. At the rear of each PDC, measure the dc voltage across the A feed bus and
How to recover a dead XA-Core DMS switch (continued)

the battery return plate. Repeat the dc voltage measurement for the B feed bus. Power is correct when the voltage on each feed is -48 V dc.

Note: Power can be at a nominal potential of -48 V dc. Under conditions that are not normal, the operating voltage can range from -43.75 V dc to -55.8 V dc. A not normal condition is a commercial power failure.

<table>
<thead>
<tr>
<th>If the switch has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>power retrieval</td>
<td>step 6</td>
</tr>
<tr>
<td>no power retrieval</td>
<td>step 5</td>
</tr>
</tbody>
</table>

4 Continue when you know of restored power at the power plant for your office. Request power maintenance personnel to check for restored power at each PDC. At the rear of each PDC, measure the dc voltage across the A feed bus and the battery return plate. Repeat the dc voltage measurement for the B feed bus. Power is correct when the voltage on each feed is -60 V dc.

Note: Power can be at a nominal potential of -60 V dc. Under conditions that are not normal, the operating voltage can range from -57.4 V dc to -67.7 V dc. A not normal condition is a commercial power failure.

<table>
<thead>
<tr>
<th>If power has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>power retrieval</td>
<td>step 6</td>
</tr>
<tr>
<td>no power retrieval</td>
<td>step 5</td>
</tr>
</tbody>
</table>

At the power room

5 For help in restoring power to the PDC, call the personnel responsible for maintenance of power at your site.

When power restores to the PDC, return to this point.

At the PDC

6 Inspect the alarm indication fuses for the XA-Core and the network cabinets.

<table>
<thead>
<tr>
<th>If uses that blew are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>present</td>
<td>step 7</td>
</tr>
<tr>
<td>not present</td>
<td>step 14</td>
</tr>
</tbody>
</table>

7 Replace the blown cartridge fuse in the rear of the fuse holder. Make sure that the amperage of the replacement cartridge fuse matches the amperage marked on the PDC.

8 Remove the blown alarm-indication fuse from the front of the fuse holder.

9 Re-insert the fuse holder, with the alarm-indication fuse removed, into the PDC.

10 Get an alarm-indication fuse for replacement.

11 Insert the alarm-indication fuse that is for replacement into the fuse holder.
How to recover a dead XA-Core DMS switch (continued)

12 Continue as follows:

<table>
<thead>
<tr>
<th>If the replacement fuse is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not successful and blows repeatedly</td>
<td>step 13</td>
</tr>
<tr>
<td>successful</td>
<td>step 14</td>
</tr>
</tbody>
</table>

13 Call your next level of support for help.

Continue when you complete replacement of all blown fuses and restored power to the XA-Core and network cabinets. Continue this procedure at step 14.

14 If a second person is available to help in the recovery, continue this procedure with two sets of tasks. Request the second person to restore power from the pdc to the peripheral module frames. The second person restores power by use of steps 87 through 122 of this procedure. While the second person restores power, you recover the core and network by completion of steps 15 through 74. If one person is available, recover the core and network first.

15 Determine if the switch has a remote oscillator shelf.

<table>
<thead>
<tr>
<th>If the switch has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a remote oscillator shelf</td>
<td>step 16</td>
</tr>
<tr>
<td>no remote oscillator shelf</td>
<td>step 17</td>
</tr>
</tbody>
</table>

At the remote oscillator shelf

16 Turn on the power converters for the shelf.

At the XA-Core cabinet

17 Locate the NT9X31 and NT9X30 power converters for message switch 0 (MS 0) in slots 33F and 36F on the MS 0 shelf.

18 Turn on the NT9X31 and NT9X30 power converters in slots 33F and 36F of the MS 0 shelf at the same time. Lift and release the power switches located on the faceplates of the converters.

19 Locate the NT9X31 and NT9X30 power converters for MS 0 in slots 1F and 4F on the MS 0 shelf.

20 Turn on the NT9X31 and NT9X30 power converters in slots 1F and 4F of the MS 0 shelf at the same time. Lift and release the power switches located on the faceplates of the converters.

21 Locate the NT9X31 and NT9X30 power converters for message switch 1 (MS 1) in slots 33F and 36F on the MS 1 shelf.

22 Turn on the NT9X31 and NT9X30 power converters in slots 33F and 36F of the MS 1 shelf at the same time. Lift and release the power switches located on the faceplates of the converters.

23 Locate the NT9X31 and NT9X30 power converters for MS 1 in slots 1F and 4F on the MS 01 shelf.
How to recover a dead XA-Core DMS switch (continued)

24 Turn on the NT9X31 and NT9X30 power converters in slots 1F and 4F of the MS 1 shelf at the same time. Lift and release the power switches located on the faceplates of the converters.

25 Determine if the switch is a SuperNode switch or a SuperNode SE switch.

<table>
<thead>
<tr>
<th>If the switch is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a SuperNode switch</td>
<td>step 26</td>
</tr>
<tr>
<td>a SuperNode SE switch</td>
<td>step 29</td>
</tr>
</tbody>
</table>

26 Turn on circuit breakers for shelf interface module (SIM) A. Turn on the three switches for circuit breakers A1, A2, and A3. The SIM A card is in slot 3R of the XA-Core shelf.

27 Turn on circuit breakers for shelf interface module (SIM) B. Turn on the three switches for circuit breakers B1, B2, and B3. The SIM B card is in slot 16R of the XA-Core shelf.

28 Go to step 31

29 Turn on circuit breakers for shelf interface module (SIM) A. Turn on the two switches for circuit breakers A1 and A2. The SIM A card is in slot 3R of the XA-Core shelf.

30 Turn on circuit breakers for shelf interface module (SIM) B. Turn on the two switches for circuit breakers B1 and B2. The SIM B card is in slot 16R of the XA-Core shelf.

31 Determine whether all the power converters have power. You know that all the power converters have power when all the Converter Off lights go off.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>all the power converters have power</td>
<td>step 34</td>
</tr>
<tr>
<td>all the power converters do not have power</td>
<td>step 32</td>
</tr>
</tbody>
</table>

32 To power up the frame perform the procedure titled “Clearing an Ext FSP DPCC cabinet major alarm” in the document titled Alarm Clearing and Performance Monitoring Procedures, 297-8001-543 (North American market) or 297-9051-543 (International market).

When you have completed the procedure, return to this point.

33 Go to step 17.
How to recover a dead XA-Core DMS switch (continued)

At the XA-Core shelf

34

CAUTION
Extended service interruption
If you boot the switch from tape, the boot requires more recovery time than a boot from disk. Boot from disk when possible, because call processing operation continues quicker after a boot from disk. Do not try this procedure before you call your next level of support.

Determine from office records the name of the last office image file.

<table>
<thead>
<tr>
<th>If the last office image file is on</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>step 36</td>
</tr>
<tr>
<td>tape</td>
<td>step 35</td>
</tr>
</tbody>
</table>

35 Make sure that the tape cartridge contains the last image file inserted in the tape drive.

At the XA-Core reset terminal

36 To boot the XA-Core, type:

```
>BOOT nn s p
```
and press the enter key.
where

- nn is the number of the slot position of the input/output processor (IOP) card that contains the packlet with the last image file. The packlet is for a disk drive or a DAT drive.
- s is the front (F) or rear (R) shelf position of the IOP card that contains the packlet with the last image file. The packlet is for a disk drive or a DAT drive.
- p is the upper (U) or lower (L) position of the IOP card that contains the packlet with the last image file. The packlet is for a disk drive or a DAT drive.

Example of a RTIF response

```
BOOT Please confirm: (YES/NO)
```

37 To confirm the command, type:

```
>YES
```
and press the enter key.

Example of a RTIF response

```
Boot request submitted
```
How to recover a dead XA-Core DMS switch (continued)

38 Monitor the XA-Core reset terminal to determine if the switch has booted. When the switch boots, the XA-Core reset terminal displays a response to indicate a boot in progress. The response also displays different diagnostic messages and alphanumeric addresses. When the switch has completely booted, an A1 appears on the RTIF display.

<table>
<thead>
<tr>
<th>If the response has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an A1</td>
<td>step 39</td>
</tr>
<tr>
<td>no A1 after approximately 15 min</td>
<td>step 165</td>
</tr>
</tbody>
</table>

At the MAP terminal

39

CAUTION
Extended service interruption
The exact log in procedure can vary, depending on your office configuration. If you need additional help, call the personnel responsible for the next level of support.

Determine if you have to log in.

Note: The log in message indicates that you have to manually log in. An automatic log in can occur if the office parameters have automatic log in.

Example of a MAP response

Please Login.

<table>
<thead>
<tr>
<th>If the log in is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not automatic</td>
<td>step 40</td>
</tr>
<tr>
<td>automatic</td>
<td>step 44</td>
</tr>
</tbody>
</table>

40 Press the break key.

Example of a MAP response

?

41 To log in to the MAP terminal, type:

>LOGIN

and press the enter key.

Example of a MAP response

Enter User Name
How to recover a dead XA-Core DMS switch (continued)

42 To enter the user name, type:

>user_name

and press the enter key.

where

user_name is the name of the user for the account

Example of a MAP response

Enter Password

43 To enter the password, type:

>password

and press the enter key.

where

password is the name of the password for the account

Example of a MAP response

SuperNode1 Logged in on 1997/01/15 at 20:37:17

44

[CAUTION]

All customers must follow the sequence of steps set out in this procedure.

Do not interrupt this procedure at this point to clear an alarm. If a TOD critical alarm appears under the APPL level in the alarm banner, and if the system uses Network Time Protocol (NTP), you must complete all steps in the sequence shown. You will clear the TOD critical alarm by completing step 51. (For information on NTP, see step 51.)

To turn on priority, type:

>PRIORITY ON

and press the enter key.

Example of a MAP response

Pref>

45 To determine if the system time is correct, type:

>TIME

and press the enter key.
How to recover a dead XA-Core DMS switch (continued)

Example of a MAP response

Time is 14:55:50

<table>
<thead>
<tr>
<th>If the system time is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct</td>
<td>step 48</td>
</tr>
<tr>
<td>not correct</td>
<td>step 46</td>
</tr>
</tbody>
</table>

46 To enter the correct time (by use of the 24 hour clock), type:

>`SETTIME hh mm`

and press the enter key.

where

- hh is the hour (00 to 23)
- mm is the minute (00 to 59)

Example of a MAP response

Warning: There is an automated TOD clock change request scheduled on: 1997/10/15 at 1:00 (see table DSTTABLE). Do you want to proceed with this request? Please confirm ("YES", "Y", "NO", or "N")

47 To confirm the command, type:

>`YES`

and press the enter key.

Example of a MAP response

Time is 20:40:00 on WED 1997/10/15.

48 Determine if the system date is correct.

<table>
<thead>
<tr>
<th>If the system date is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct</td>
<td>step 52</td>
</tr>
<tr>
<td>not correct</td>
<td>step 49</td>
</tr>
</tbody>
</table>

49 To enter the correct date, type:

>`SETDATE dd mm yyy`

and press the enter key.

where

- dd is the day (01 to 31)
- mm is the month (01 to 12)
- yyy is the year
How to recover a dead XA-Core DMS switch (continued)

Example of a MAP response

Warning: There is an automated TOD clock change request scheduled on:
1997/10/15 at 1:00 (see table DSTTABLE).
Do you want to proceed with this request?
Please confirm (“YES”, “Y”, “NO”, or “N”)

To confirm the command, type:

>`YES`

and press the enter key.

Example of a MAP response

Date is WED. 15/OCT/1997 00:00:00

If the system uses Network Time Protocol (NTP) as the timing reference, and if a TOD critical alarm is displayed under the APPL level in the alarm banner, perform the procedure titled “How to check and adjust the XA-Core TOD”, found in this document, in the chapter titled “Introduction to routine maintenance procedures”. By performing that procedure, you will clear the TOD critical alarm. Return to this point when finished.

Note: In the German market only, switches can use Network Time Protocol (NTP) as the timing reference for the time-of-day clock. The system uses Network Time Protocol if the value of the SNTP_CLIENT office parameter in table OFCENG has been set to Y. For information on the office parameter, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

To access the SRSTATUS level of the MAP, type:

>`MAPCI;MTC;SRSTATUS`

and press the enter key.

Example of a MAP response

SRSTATUS
0 Quit OVERALL STATUS Pend: 0% Inprg: 0% Comp: 100%
Fail: 0%
2 View_ View: SYSTEM 14:08:30
3 List_ Pend InPrg Comp Fail Pend InPrg
Comp Fail
4 MS 0 0 2 0 IOD 5 5 30 2
5 NET 0 0 6 0 Other 21 3 13 3
6 SER1 0 41 0 0
7 SER2 0 39 0 0
8 SER3 0 37 0 0
9
10 MTC:
11 STATUS:
How to recover a dead XA-Core DMS switch (continued)

53 Determine the recovery status of the MSs.

Note: MS recovery status displays to the right of the word “MS” in the MAP display. Recovery status for each MS can be one of pending, in progress, complete, or failed.

<table>
<thead>
<tr>
<th>If the recovery status is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>either MS failed recovery</td>
<td>step 165</td>
</tr>
<tr>
<td>either MS continues to have pending recovery</td>
<td>step 54</td>
</tr>
<tr>
<td>another status different from failed or pending recovery</td>
<td>step 55</td>
</tr>
</tbody>
</table>

54 Wait until both MSs are either in recovery development or have completed recovery.

When neither MS continues to have pending recovery, go to step 53

55 To access the MS Clock level of the MAP display, type:

>MAPCI;MTC;MS;CLOCK

and press the enter key.

56 To synchronize the clocks, type:

>SYNC

and press the enter key.

<table>
<thead>
<tr>
<th>If the SYNC command is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 58</td>
</tr>
<tr>
<td>failed</td>
<td>step 57</td>
</tr>
</tbody>
</table>

57 Record the reason for synchronization failure, as shown in the MAP response. Continue this procedure at step 58 to recover networks and peripheral modules (PM). Repeat the try to synchronize the MS clocks later, after networks and PMs are in service.

At the ENET frames

58 Locate the NT9X31 power converters in slots 1F and 33F on the ENET shelves.

59 To turn on the NT9X31 power converters lift and release the power switches located on the faceplates of the converters.

60 Locate the NT9X30 power converters in slots 4F and 36F on the ENET shelves.

61 Turn on the NT9X30 power converters lift and release the power switches located on the faceplates of the converters.
How to recover a dead XA-Core DMS switch (continued)

62 Determine if all the converters have power. Power indication is by all the Converter Off lights going off.

<table>
<thead>
<tr>
<th>If all the power converters have</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>power</td>
<td>step 65</td>
</tr>
<tr>
<td>not power</td>
<td>step 63</td>
</tr>
</tbody>
</table>

63 To power up the ENET frame perform the procedure titled “Clearing an Ext FSP DPC cabinet major alarm” in the document titled Alarm Clearing and Performance Monitoring Procedures, 297-8001-543 (North American market) or 297-9051-543 (International market)

When you complete the procedure, return to this point.

64 Go to step 58

At the MAP terminal

65 To access the SRSTATUS level of the MAP display, type:

>`MAPCI;MTC;SRSTATUS`

and press the enter key.

Example of a MAP response

```
SRSTATUS
0 Quit OVERALL STATUS Pend: 0% Inprg: 0% Comp: 100%
Fail: 0%
2 View View: SYSTEM 14:08:30
3 List View: SYSTEM
Comp Fail
4 MS 0 0 2 0 IOD 5 5 30 2
5 NET 0 0 6 0 Other 21 3 13 3
6 SER1 0 41 0 6 0
7 SER2 0 39 0 0
8 SER3 0 37 0 0
9
10 MTC:
11 STATUS:
```

66 From the MAP display, determine the recovery status of the network.

Note: Network recovery status displays to the right of the word “NET” in the MAP display. Recovery status can be one of pending, in progress, complete, or failed.

<table>
<thead>
<tr>
<th>If the status of any network element is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 69</td>
</tr>
<tr>
<td>pending</td>
<td>step 67</td>
</tr>
<tr>
<td>another status</td>
<td>step 71</td>
</tr>
</tbody>
</table>

67 Continue when there are no network elements that continue to be pending recovery.
How to recover a dead XA-Core DMS switch (continued)

68 Go to step 66.

69 To manually recover the ENET perform the procedure, “Recovering the Enhanced Network” in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

When you complete the procedure, return to this point.

70 Go to step 65.

At the MAP terminal

71 To access the NET level of the MAP display, type:

```plaintext
>NET
```

and press the enter key.

Example of a MAP response

```
NET   11111  11111  22222  22222  33
Plane 01234  56789  01234  56789  01234  56789  01
0  0000
1  0000
ENET
```

72 To manually busy the network module for return to service, type:

```plaintext
>BSY plane_no pair_no
```

and press the enter key.

where

- `plane_no` is the network plane number (0 or 1)
- `pair_no` is the network plane pair number (0 to 31)

73 To return the network module to service, type:

```plaintext
>RTS plane_no pair_no
```

and press the enter key.

where

- `plane_no` is the network plane number (0 or 1)
- `pair_no` is the network plane pair number (0 to 31)

74 Repeat steps 72 through 73 for each ENET shelf.

When all ENET shelves have recovered, continue this procedure at step 75.

75 Determine if there are additional input output controller (IOC) and maintenance and administration position (MAP) terminals to recover.

<table>
<thead>
<tr>
<th>If recover of additional IOCs and MAP terminals is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not complete</td>
<td>step 76</td>
</tr>
<tr>
<td>complete</td>
<td>step 87</td>
</tr>
</tbody>
</table>

76 Restore power to all remaining power inverters in the office.
How to recover a dead XA-Core DMS switch (continued)

At the IOC

77 Locate the IOC for recovery.

<table>
<thead>
<tr>
<th>If recovery is for</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an IOC</td>
<td>step 78</td>
</tr>
<tr>
<td>an IOM</td>
<td>step 82</td>
</tr>
</tbody>
</table>

78 Turn on the power converters on the IOC.

Note: The version of IOC determines if the IOC has one or two power converters.

79 While you press the reset button on one of the IOC power converters, lift the related circuit breaker to turn on the FSP.

80 Release the reset button.

81 Repeat steps 77 through 80 for each IOC for recovery, then continue this procedure at step 82.

82 To access the input output device (IOD) level of the MAP display, type:

> IOD

and press the enter key.

83 To access the IOC level of the MAP display for the IOC for recovery, type:

> BSY ioc_no

and press the enter key.

where

ioc_no is the number of the IOC or IOM

84 To return the IOC or IOM to service, type:

> RTS ioc_no

and press the enter key.

where

ioc_no is the number of the IOC or IOM

85 Repeat steps 83 through 84 for each IOC or IOM for recovery, then continue this procedure at step 86.

86 Log in to additional MAP terminals as required.

Note: Steps 40 through 43 describe how to log in to the MAP terminal.

87 Determine if your switch has one or more link peripheral processors (LPP) or fiberized link interface shelf (FLIS).

<table>
<thead>
<tr>
<th>If the switch has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPs or FLIS</td>
<td>step 88</td>
</tr>
<tr>
<td>does not have LPPs or FLIS</td>
<td>step 107</td>
</tr>
</tbody>
</table>
How to recover a dead XA-Core DMS switch (continued)

88 Determine if PDC has power restored to the LPP(s).

<table>
<thead>
<tr>
<th>If PDC has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>power restored to the LPPs</td>
<td>step 92</td>
</tr>
<tr>
<td>not power restored to the LPPs</td>
<td>step 89</td>
</tr>
</tbody>
</table>

89 Check the PDC fuses that supply the LPP.

<table>
<thead>
<tr>
<th>If there are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>blown fuses</td>
<td>step 90</td>
</tr>
<tr>
<td>no blown fuses visible</td>
<td>step 91</td>
</tr>
</tbody>
</table>

90 Replace the blown fuses.

Note: If fuses blow repeatedly, call your next level of support for help.

When PDC power restores to the LPPs, continue this procedure at step 92.

91 Call the personnel responsible for maintaining power at your site, or refer to your next level of support for help.

When PDC power restores to the LPPs, continue this procedure at step 92.

92 Locate the LPPs for recovery.

At the LPP cabinet

93

WARNING

Static electricity damage

Wear a wrist strap connected to the wrist-strap grounding point of a frame supervisory panel (FSP). Also a wrist strap can connect to a modular supervisory panel (MSP). Wear a wrist strap when you handle circuit cards. A wrist strap protects the cards against damage caused by static electricity.

Locate the NT9X74 cards in all link interface shelves (LIS).

Note: NT9X74 cards are in shelf position 7F and 32F on all LISs.

94 To unseat each NT9X74 card, release the locking levers and carefully pull the card towards you about 25 mm (1 in.).

95 Locate the NT9X30 power converters in slots 4F and 36F of the link interface module (LIM) unit shelf.

96 To turn on the power converters of the LIM unit shelf, toggle the switch each NT9X30 card.
How to recover a dead XA-Core DMS switch (continued)

Locate the NT9X30 or NTDX16 power converters for each LIS.

Note: NT9X30 power converters are in slots 4F and 36F for each LIS. NTDX16 power converters can be in slots 1F, 4F, 33F, and 36F for each LIS.

To turn on the LIS power converters, toggle the switch on each NT9X30 or NTDX16 card.

Determine if all the power converters turned on power correctly. All the CONVERTER OFF lights go off when power turns on correctly.

<table>
<thead>
<tr>
<th>If all the CONVERTER OFF lights are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>step 102</td>
</tr>
<tr>
<td>not off</td>
<td>step 100</td>
</tr>
</tbody>
</table>

To power up the frame, perform the procedure, “Clearing an Ext FSP LPP cabinet major alarm” in *Alarm Clearing and Performance Monitoring Procedures*, 297-8001-543 (North American market) or 297-9051-543 (International market).

When you complete the procedure, return to this point.

Go to step 95.

Put in position all NT9X74 cards as follows:

- Carefully slide each NT9X74 card back into the LIS.
- Push on the upper and lower edges of each faceplate. Make sure that the card is completely in the slot of the shelf.
- Close the locking levers on each card.

Repeat steps 92 through 102 for each LPP in your office.

When power restores to all LPPs, continue this procedure at step 104.

To access the SRSTATUS level of the MAP display, type:

```
>MAPCI;MTC;SRSTATUS
```

and pressing the Enter key.

Example of a MAP response

```
SRSTATUS
0 Quit OVERALL STATUS Pend: 0% Inprg: 0% Comp: 100% Fail: 0%
2 View_ View: SYSTEM 14:08:30
3 List_ Pend InPrg Comp Fail Pend InPrg Comp Fail
4 MS 0 0 2 0 IOD 5 5 30 2
5 NET 0 0 6 0 Other 21 3 13 3
6 SER1 0 41 0 0
7 SER2 0 39 0 0
8 SER3 0 37 0 0
9
10 MTC:
11 STATUS:
```
How to recover a dead XA-Core DMS switch (continued)

105 From the MAP display, determine the recovery status of the Series III PMs.

Note: Series III PM recovery status displays to the right of the word “SER3” in the MAP display. Recovery status can be one of pending, in progress, complete, or failed.

<table>
<thead>
<tr>
<th>If the Series 3 PM are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>step 107</td>
</tr>
<tr>
<td>not zero</td>
<td>step 106</td>
</tr>
</tbody>
</table>

106 To manually recover the PMs, perform the procedure, “Recovering Link Peripheral Processors, in Recovery Procedures, 297-8001-545 (North American market) or 297-9051-545 (International market).

When you complete the procedure, return to this point.

107 Steps 108 through 122 describe how to restore power from the PDC to Series I and Series II peripheral module frames. Continue as follows:

<table>
<thead>
<tr>
<th>If the PDC power to the PM frames restores</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>correctly</td>
<td>step 123</td>
</tr>
<tr>
<td>not correctly</td>
<td>step 108</td>
</tr>
</tbody>
</table>

108 Get one of the following capacitor charging tools:

- a 100-W, 120-V light bulb installed into a socket that has pigtail leads
- tool number T000655 (CPC number NTA0600512), that has a fuse holder-style connector instead of pigtail leads for easier insertion

At the PDC

109

WARNING

Possible equipment damage or extended service interruption

Use correct fuses. When you return fuses to the PDC, make sure that the amperage of the fuses is correct. The fuse amperage must match the amperage marked on the PDC.

At the first empty fuse slot in the PDC, connect the leads of the capacitor charging tool. Connect the leads across the contacts for the fuse holder until the lamp decreases brightness. If you use a charging tool with a fuse holder-style connector, insert the connector into the slot. Insert the connector until the lamp decreases brightness.

110 Remove the capacitor charging tool and immediately insert again the correct fuse holder into the slot.
How to recover a dead XA-Core DMS switch (continued)

111 Repeat steps 109 and 110 for all the LCE talk battery, TME talk battery, and PDC filter fuse holders you removed in step 1. When all fuses restore to the PDCs, continue with this procedure.

112 Determine if any alarm-indicating fuses blew.

 Note: The fuse alarm-indicator lamp lights when an alarm-indicating fuse blows.

<table>
<thead>
<tr>
<th>If any alarm-indicating fuses have</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>blown</td>
<td>step 113</td>
</tr>
<tr>
<td>not blown</td>
<td>step 123</td>
</tr>
</tbody>
</table>

113 Locate a fuse holder with a blown alarm-indicating fuse.

 Note: You can replace blown fuses in any order.

114 The cartridge fuse in the fuse holder has blown. Remove the fuse holder from the PDC.

115 Replace the blown cartridge fuse in the rear of the fuse holder. Make sure that the amperage of the replacement cartridge fuse matches the amperage marked on the PDC.

116 Remove the blown alarm-indicating fuse from the front of the fuse holder.

117 Insert again the fuse holder, with the alarm-indicating fuse removed, into the PDC.

118 Get a replacement alarm-indicating fuse.

119 Insert the replacement alarm-indicating fuse into the fuse holder.

120 Determine if the alarm-indicating fuse blows.

 Note: The fuse alarm indicator lamp lights when an alarm-indicating fuse blows.

<table>
<thead>
<tr>
<th>If the alarm-indicating fuse is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>blown</td>
<td>step 165</td>
</tr>
<tr>
<td>not blown</td>
<td>step 121</td>
</tr>
</tbody>
</table>

121 Determine if you replaced all the blown alarm-indicating fuses.

<table>
<thead>
<tr>
<th>If you have</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>replaced all the blown alarm-indicating fuses</td>
<td>step 122</td>
</tr>
<tr>
<td>not replaced all the blown alarm-indicating fuses</td>
<td>step 113</td>
</tr>
</tbody>
</table>
How to recover a dead XA-Core DMS switch (continued)

122 Determine if the fuse alarm indicator lamp lit.

<table>
<thead>
<tr>
<th>If the fuse alarm indicator lamp lit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>step 165</td>
</tr>
<tr>
<td>no</td>
<td>step 123</td>
</tr>
</tbody>
</table>

At the PM frames

123 Select a peripheral module (PM) frame to power up.

 Note: The PM frames can power up in any order.

124 Locate the frame supervisory panel (FSP) and the power converters on the frame.

125 Determine if the FSP for the frame has fuses or circuit breakers.

<table>
<thead>
<tr>
<th>If the FSP has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuses</td>
<td>step 126</td>
</tr>
<tr>
<td>circuit breakers</td>
<td>step 131</td>
</tr>
</tbody>
</table>

126 Determine if the power converters have Power Reset buttons or Power Reset switches.

<table>
<thead>
<tr>
<th>If the power converters have</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Reset buttons</td>
<td>step 127</td>
</tr>
<tr>
<td>Power Reset switches</td>
<td>step 129</td>
</tr>
</tbody>
</table>

127 To turn on each power converter press and hold its Power Reset button for 2 s.

 Note: The Converter Fail light goes off when the power converter turns on.

128 Determine if all the power converters turn on correctly, indicated by all the Converter Fail lights going off.

<table>
<thead>
<tr>
<th>If all the Converter Fail lights are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>step 133</td>
</tr>
<tr>
<td>not off</td>
<td>step 134</td>
</tr>
</tbody>
</table>

129 To turn on each power converter pull out the power switch and toggle it to the Power Reset position.

 Note: The Converter Fail light goes off when the power converter turns on.
How to recover a dead XA-Core DMS switch (continued)

130 Determine if all the power converters turn on correctly, indicated by all the Converter Fail lights are off.

<table>
<thead>
<tr>
<th>If all the Converter Fail lights are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>step 133</td>
</tr>
<tr>
<td>not off</td>
<td>step 134</td>
</tr>
</tbody>
</table>

131 Turn on each power converter as follows:
- Toggle the circuit breaker to the ON position.
- Press and hold the Power Reset button for 2 s.
- Release the circuit breaker and the Power Reset button.

Note: The Converter Fail light goes off when the power converter turns on.

132 Determine if all the power converters turn on correctly, indicated by all the CONVERTER FAIL lights are off.

<table>
<thead>
<tr>
<th>If all the Converter Fail lights are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>step 133</td>
</tr>
<tr>
<td>not off</td>
<td>step 134</td>
</tr>
</tbody>
</table>

133 Determine if all PM frames turn on.

<table>
<thead>
<tr>
<th>If all the PM frames turn on</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>step 138</td>
</tr>
<tr>
<td>no</td>
<td>step 134</td>
</tr>
</tbody>
</table>

134 Determine if a try made to power up the remaining PM frames.

<table>
<thead>
<tr>
<th>If power up has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not tried</td>
<td>step 135</td>
</tr>
<tr>
<td>tried and failed</td>
<td>step 137</td>
</tr>
</tbody>
</table>

135 Power up the next PM frame.

136 Go to step 124.

137 To power up the remaining PM frames perform the correct procedures in *Alarm Clearing and Performance Monitoring Procedures, 297-8001-543 (North American market)* or 297-9051-543 (International market).
How to recover a dead XA-Core DMS switch (continued)

At the MAP terminal

138 To access the SRSTATUS level of the MAP display, type:

>MAPCI;MTC;SRSTATUS

and press the enter key.

Example of a MAP response

SRSTATUS
0 Quit OVERALL STATUS Pend: 0% Inprg: 0% Comp: 100%
Fail: 0%
2 View View: SYSTEM 14:08:30
3 List Pend InPrg Comp Fail Pend InPrg
Comp Fail
4 MS 0 0 2 0 IOD 5 5 30 2
5 NET 0 0 6 0 Other 21 3 13 3
6 SER1 0 41 0 0
7 SER2 0 39 0 0
8 SER3 0 0 37 0
9
10 MTC:
11 STATUS:

139 From the MAP display, determine the recovery status of the Series I and II PMs.

Note: Series I PM recovery status displays to the right of the word “SER1” in the MAP display. Series II PM recovery status displays to the right of the word “SER2” in the MAP display. Recovery status can be one of pending, in progress, complete, or failed.

If the recovery status is Do

zero step 142
not zero step 140

140 Determine from office records or other office personnel which PMs to manually recover first.

141 To manually recover the PMs in the required order, perform the correct alarm clearing procedures in Alarm Clearing and Performance Monitoring Procedures, 297-8001-543 (North American market) or 297-9051-543 (International market).
How to recover a dead XA-Core DMS switch (continued)

To access the device independent recording package (DIRP) level of the MAP, type:

```plaintext
> IOD;DIRP
```

and press the enter key.

To determine the state of the recording volumes for the billing system, type:

```plaintext
> QUERY subsystem ALL
```

and press the enter key.

where

subsystem is the name of the DIRP system used for the billing system

Example of a MAP response

```
SSNAME  SSNO  SEQNO  ROTATES  POOLNO  PARLPOOL  EMERGENCY
AMA      0     1      6        9        62       ***YES***
REGULAR
FILE(S)  STATE  VOLUME  RECOUNT  BLOCK  E  V  _B  VLID  FNUM  FRN#
ACTIVE   NONEg
STANDBY1 NONE
PARALLEL FILE  STATE  VOLUME  BLOCK  E  V  _B  VLID  FNUM  FRN#
NONE
REGULAR VOLUME(S)
VOL#  VOLNAME  STATE  IOC  CARD  VOL  FSEG  ROOM  VLID  FILES
REGULAR SPACE

If the state of the recording volumes for the billing system has  

| Do | 
|---|---|
| no volumes allocated, as indicated by the word NONE under the state header on the MAP display | step 145 |
| any volume is IN ERROR, as indicated under the REGULAR VOLUME(S) header on the MAP display | step 144 |
| all volumes are READY, as indicated under the REGULAR VOLUME(S) header on the MAP display | step 146 |
How to recover a dead XA-Core DMS switch (continued)

**Note:** Different billing systems than automatic message accounting (AMA) or additional billing system, can be in your office configuration. Call your next level of support to determine if other billing systems are in your office, and if you require recovery action.

144 To reset any volumes that are IN ERROR, type:

```
> RSETVOL vol_name
```

and press the enter key.

where

vol_name is the name of the volume to reset

<table>
<thead>
<tr>
<th>If the volumes reset has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 146</td>
</tr>
<tr>
<td>failed</td>
<td>step 165</td>
</tr>
</tbody>
</table>

145 Perform the procedure, “Allocating recording volumes in the DIRP utility” in *Routine Maintenance Procedures*, 297-8001-546 (North American market) or 297-9051-546 (International market). When you complete the procedure, return to this point.

146 To determine the state of the DLOG recording volumes, type:

```
> QUERY DLOG ALL
```

and press the enter key.
How to recover a dead XA-Core DMS switch (continued)

Example of a MAP response

<table>
<thead>
<tr>
<th>SSNAME</th>
<th>SSNO</th>
<th>SEQNO</th>
<th>ROTATES</th>
<th>POOLNO</th>
<th>PARLPOOL</th>
<th>EMERGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLOG</td>
<td>2</td>
<td>1</td>
<td>102</td>
<td>10</td>
<td>NONE</td>
<td>****<em><strong>YES</strong></em></td>
</tr>
</tbody>
</table>

- **REGULAR FILES**

<table>
<thead>
<tr>
<th>FILE(S) STATE</th>
<th>VOLUME</th>
<th>RECCOUNT</th>
<th>BLOCK</th>
<th>E</th>
<th>V</th>
<th>V_B</th>
<th>VLID</th>
<th>FNUM</th>
<th>FRN#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>AVAIL</td>
<td>S01DDLOG</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>22</td>
<td>NO</td>
<td>8447</td>
<td>0013</td>
</tr>
<tr>
<td>STANDBY1</td>
<td>AVAIL</td>
<td>S00DDLOG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>NO</td>
<td>8408</td>
<td>0014</td>
</tr>
</tbody>
</table>

- **REGULAR VOLUME(S)**

<table>
<thead>
<tr>
<th>VOL#</th>
<th>VOLNAME</th>
<th>STATE</th>
<th>IOC CARD</th>
<th>VOL FSEG ROOM VLID FILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>S01DDLOG</td>
<td>READY</td>
<td>N/A</td>
<td>N/A 7 5 18 8447 A</td>
</tr>
<tr>
<td>23</td>
<td>S00DDLOG</td>
<td>READY</td>
<td>N/A</td>
<td>N/A 8 4 18 8408 S1</td>
</tr>
</tbody>
</table>

- **REGULAR SPACE**

<table>
<thead>
<tr>
<th>VOL#</th>
<th>VOLNAME</th>
<th>STATE</th>
<th>SEGS</th>
<th>EXP</th>
<th>UNEXP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>S01DDLOG</td>
<td>READY</td>
<td>5</td>
<td>13</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>23</td>
<td>S00DDLOG</td>
<td>READY</td>
<td>4</td>
<td>14</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the state of DLOG recording volumes is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>no allocated volumes, as indicated by the word NONE under the state header on the MAP display</td>
<td>step 148</td>
</tr>
<tr>
<td>any volume is IN ERROR, as indicated under the REGULAR VOLUME(S) header on the MAP display</td>
<td>step 147</td>
</tr>
<tr>
<td>all volumes are READY, as indicated under the REGULAR VOLUME(S) header on the MAP display</td>
<td>step 149</td>
</tr>
</tbody>
</table>

**Note:** Different billing systems than automatic message accounting (AMA) or additional billing system, can be in your office configuration. Call your next level of support to determine if other billing systems are in your office, and if you require recovery action.
How to recover a dead XA-Core DMS switch  (continued)

147  To reset any volumes that are IN ERROR, type:

```
> RSETVOL vol_name
```

and press the enter key.

where

vol_name is the name of the volume to reset

<table>
<thead>
<tr>
<th>If the volumes reset has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 149</td>
</tr>
<tr>
<td>failed</td>
<td>step 165</td>
</tr>
</tbody>
</table>

148  Perform the procedure, “Allocating recording volumes in the DIRP utility” in Routine Maintenance Procedures, 297-8001-546 (North American market) or 297-9051-546 (International market). When you complete the procedure, return to this point.

149  Determine from your next level of support if you need to recover other DIRP systems (for example, JF, OM).

<table>
<thead>
<tr>
<th>If you need to recover other DIRP systems</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>step 150</td>
</tr>
<tr>
<td>no</td>
<td>step 153</td>
</tr>
</tbody>
</table>

150  Perform the correct procedures in Alarm Clearing and Performance Monitoring Procedures, 297-8001-543 (North American market) or 297-9051-543 (International market). When you complete the procedures, return to this point.

151  To determine if DIRP logs generated, type:

```
> LOGUTIL; OPEN DIRP
```

and press the enter key.

<table>
<thead>
<tr>
<th>If DIRP log generated</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>step 152</td>
</tr>
<tr>
<td>no</td>
<td>step 153</td>
</tr>
</tbody>
</table>

152  Refer to the Log Report Reference Manual, 297-8001-840 (North American market) or 297-9051-840 (International market), and take the correct action. When you complete the log report activities, return to this point.

153  Determine if the try to synchronize the clocks in step 56 was successful.

<table>
<thead>
<tr>
<th>If synchronization</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>was successful</td>
<td>step 156</td>
</tr>
<tr>
<td>failed</td>
<td>step 154</td>
</tr>
</tbody>
</table>
**How to recover a dead XA-Core DMS switch** (continued)

154 To access the MS Clock level of the MAP display, type:

```plaintext
>MAPCI;MTC;MS;CLOCK
```

and press the enter key.

155 To synchronize the clocks, type:

```plaintext
>SYNC
```

and press the enter key.

<table>
<thead>
<tr>
<th>If the SYNC command was</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a successful completion</td>
<td>step 156</td>
</tr>
<tr>
<td>a failure</td>
<td>step 165</td>
</tr>
</tbody>
</table>

156 To turn off priority, type:

```plaintext
>PRIORITY OFF
```

and press the enter key.

157 To access the SRSTATUS level of the MAP display, type:

```plaintext
>MAPCI;MTC;SRSTATUS
```

and press the enter key.

*Example of a MAP response*

```
SRSTATUS
0 Quit OVERALL STATUS Pend: 0% Inprg: 0% Comp: 100% Fail: 0%
2 View_ View: SYSTEM 14:08:30
3 List_ Pend InPrg Comp Fail Pend InPrg
Comp Fail
4 MS 0 0 2 0 IOD 5 5 30 2
5 NET 0 0 6 0 Other 21 3 13 3
6 SER1 0 0 41 0
7 SER2 0 0 39 0
8 SER3 0 0 37 0
9
10 MTC:
11 STATUS:
```
How to recover a dead XA-Core DMS switch

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>158</strong> Determine the status of the switch recovery.</td>
<td></td>
</tr>
<tr>
<td><strong>If the status of the switch recovery is</strong></td>
<td><strong>Do</strong></td>
</tr>
<tr>
<td>any Series III PMs that failed recovery</td>
<td>step 159</td>
</tr>
<tr>
<td>any Series I or II PMs that failed recovery</td>
<td>step 161</td>
</tr>
<tr>
<td>any IODs or other devices and services that failed recovery</td>
<td>step 164</td>
</tr>
<tr>
<td>that the system has completely recovered</td>
<td>step 166</td>
</tr>
</tbody>
</table>

**159** To manually recover the PMs, perform the procedure, “Recovering Link Peripheral Processors” in *Recovery Procedures, 297-8001-545* (North American market) or 297-9051-545 (International market).

When you complete the procedure, return to this point.

**160** Go to step 157.

**161** Determine from office records or other office personnel which PMs you can recover first.

**162** To manually recover the PMs in the required order perform the correct alarm clearing procedures in *Alarm Clearing and Performance Monitoring Procedures, 297-8001-543* (North American market) or 297-9051-543 (International market).

When you complete the procedure, return to this point.

**163** Go to step 157.

**164** To manually recover IODs and other devices and services, perform the correct procedure in this document. Also you can refer to your site-related operating procedures.

**165** For additional help, call the personnel responsible for the next level of support.

**166** You have completed this procedure.
4 Introduction to routine maintenance procedures

Introduction
This chapter describes how to perform routine maintenance procedures on the DMS SuperNode (SN) and DMS SuperNode SE (SNSE) XA-Core (XAC). Each procedure contains the following sections:
- application
- interval
- common procedures
- action

Application
This section describes the purpose of the procedure.

Interval
This section describes when to perform the procedure.

Common procedures
This section lists common procedures used during the routine maintenance procedure. A common procedure is a series of steps that repeats in maintenance procedures. Common procedures include card removal and replacement.

Action
This section provides a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
Summary of XA-Core storage device commands and tasks

CAUTION
Use the SCANF command with caution
SCANF is a powerful tool that is used to perform file operations, one of which is to allow open files to be copied. Use this command during periods of low activity to avoid loss of data.

This section provides a an overview of the tasks and commands associated with XA-Core storage devices.

Table 4-1 Back up a file

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
<th>CI common file manipulation commands: all storage devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up a single file from a disk to a tape</td>
<td>BACKUP FILE (BA)</td>
<td>SCANF XXXX COPY</td>
<td>COPY</td>
</tr>
</tbody>
</table>

Table 4-2 Copy a file (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
<th>CI common file manipulation commands: all storage devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy a single file from any storage device to another</td>
<td>SCANF XXXX COPY</td>
<td>COPY</td>
<td></td>
</tr>
<tr>
<td>Copy a single file from one disk volume to another disk volume</td>
<td>SCANF XXXX COPY</td>
<td>COPY</td>
<td></td>
</tr>
<tr>
<td>Copy a single file within the same disk volume to a different file name</td>
<td>DUPLICATE (DUP)</td>
<td>COPY</td>
<td></td>
</tr>
<tr>
<td>Copy multiple files from one storage device to another</td>
<td>SCANF XXXX COPY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy multiple files from tape to disk</td>
<td>SCANF XXXX COPY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 4-2 Copy a file (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
<th>CI common file manipulation commands: all storage devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy multiple files to a specified disk volume</td>
<td>SCANF XXXX COPY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 4-3 Create a file or volume

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKADM: XA-Core disks</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
<th>Edit utility: all storage devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a volume on an in-service disk</td>
<td>CREATEVOL (CV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create, navigate, edit or save a file</td>
<td></td>
<td>EDIT, INPUT, TOP, END, UP, DOWN, FIND, LINE, TYPE, CHANGE, DELETE, SAVE, FILE</td>
<td></td>
</tr>
</tbody>
</table>

### Table 4-4 Handling image files

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKADM: XA-Core disks</th>
<th>DISKADM: XA-Core disks</th>
<th>ITOCCI: XA-Core Disks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete a registered image file from a Message Switch (MS) or XA-Core ITOC</td>
<td></td>
<td></td>
<td>CLEARBBOTFILE (CBF)</td>
</tr>
<tr>
<td>List all image files registered in the MS or XA-Core ITOC</td>
<td></td>
<td></td>
<td>LISTBOOTFILE (LBF)</td>
</tr>
<tr>
<td>Register a specified image file in the MS or XA-Core ITOC</td>
<td></td>
<td></td>
<td>SETBOOTFILE (SBF)</td>
</tr>
<tr>
<td>Set an Autoload image file</td>
<td></td>
<td></td>
<td>SETALR (SA)</td>
</tr>
</tbody>
</table>
### Table 4-5 Deleting a file or volume

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKADM: XA-Core disks</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete a single file from a disk volume</td>
<td></td>
<td>DELETEFL (DDF)</td>
<td>SCANF XXXX DELETE</td>
</tr>
<tr>
<td>Delete a volume from an in-service disk</td>
<td></td>
<td>DELETEVOL (DDV)</td>
<td></td>
</tr>
<tr>
<td>Delete files from a volume on an</td>
<td></td>
<td>REINITVOL (RV)</td>
<td>SCANF XXXX DELETE</td>
</tr>
<tr>
<td>in-service disk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete selected files from a disk volume</td>
<td></td>
<td></td>
<td>SCANF XXXX DELETE</td>
</tr>
<tr>
<td>Delete files from a tape (see “Format a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tape”)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 4-6 Tape commands

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKADM: XA-Core disks</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demount a tape</td>
<td></td>
<td>EJECTTAPE (ET) or QUIT DISKUT</td>
<td></td>
</tr>
<tr>
<td>Format a tape</td>
<td></td>
<td>INSERTTAPE (IT)</td>
<td></td>
</tr>
<tr>
<td>Mount a tape</td>
<td></td>
<td>INSERTTAPE (IT)</td>
<td></td>
</tr>
</tbody>
</table>

### Table 4-7 Listing a file or volume (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKADM: XA-Core disks</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>List data about a single disk volume</td>
<td></td>
<td>VOLINFO (VINFO)</td>
<td></td>
</tr>
<tr>
<td>List data about all disk volumes</td>
<td></td>
<td>DISPLAYVOLS (DV)</td>
<td>LISTVOLS (LV)</td>
</tr>
</tbody>
</table>
### Table 4-7  Listing a file or volume (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKADM: XA-Core disks</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>List data about all files on a disk or tape, and place the file names in the user directory</td>
<td></td>
<td>LISTFL (LF)</td>
<td>SCANF XXXX BRIEF or FULL</td>
</tr>
<tr>
<td>List data about an in-service disk</td>
<td></td>
<td>DISPLAYDISK (DD)</td>
<td></td>
</tr>
<tr>
<td>List data about selected files on a disk or tape, and place the file names in the user directory</td>
<td></td>
<td></td>
<td>SCANF XXXX BRIEF or FULL</td>
</tr>
</tbody>
</table>

### Table 4-8  File commands

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
<th>CI common file manipulation commands: all storage devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute a file</td>
<td></td>
<td></td>
<td>READ</td>
</tr>
<tr>
<td>Rename a file on a disk volume</td>
<td>RENAMFL (RNF)</td>
<td></td>
<td>COPY</td>
</tr>
<tr>
<td>Restore a single file from tape to disk</td>
<td>RESTORE FILE (RE)</td>
<td>SCANF XXXX COPY</td>
<td>COPY</td>
</tr>
</tbody>
</table>

### Table 4-9  VDU or printer commands

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
<th>CI common file manipulation commands: all storage devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>List the contents of a file on the VDU or printer</td>
<td></td>
<td></td>
<td>PRINT</td>
</tr>
</tbody>
</table>
### Table 4-10 SCANF OPTIONS

<table>
<thead>
<tr>
<th>Task</th>
<th>DISKUT: XA-Core disks and tapes</th>
<th>SCANF: all storage devices (XXXX= name of storage device and volume)</th>
<th>CI common file manipulation commands: all storage devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable prompt for confirmation</td>
<td></td>
<td>NOPROMPT</td>
<td></td>
</tr>
<tr>
<td>Operate on files that do match criteria</td>
<td></td>
<td>MATCH</td>
<td></td>
</tr>
<tr>
<td>Operate on files that do not match specified name criteria</td>
<td></td>
<td>NOTNAME</td>
<td></td>
</tr>
<tr>
<td>Operate on files up to and including a specified index value</td>
<td></td>
<td>TOI</td>
<td></td>
</tr>
<tr>
<td>Operate on files with specified name criteria</td>
<td></td>
<td>NAME</td>
<td></td>
</tr>
<tr>
<td>Prompt for confirmation (default)</td>
<td></td>
<td>PROMPT</td>
<td></td>
</tr>
<tr>
<td>Start from a file index value</td>
<td></td>
<td>FROMI</td>
<td></td>
</tr>
</tbody>
</table>
Use this table to help you prepare a routine maintenance schedule for your office. The following procedures are for a DMS SuperNode or SuperNode SE switch that has the eXtended Architecture Core (XA-Core).

<table>
<thead>
<tr>
<th>Task</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to backup an XA-Core office image from disk to tape</td>
<td>each week or per office schedule</td>
</tr>
<tr>
<td>How to change XA-Core REx intensity</td>
<td>when required</td>
</tr>
<tr>
<td>How to check and adjust the TOD clock of XA-Core</td>
<td>daily</td>
</tr>
<tr>
<td>How to clean the XA-Core tape drive</td>
<td>after eight hours of operation</td>
</tr>
<tr>
<td>How to copy all files of an XA-Core disk volume to tape</td>
<td>when required</td>
</tr>
<tr>
<td>How to create a test volume on XA-Core disks</td>
<td>after installation of new disk in disk drive packet</td>
</tr>
<tr>
<td>How to create volumes on XA-Core disks</td>
<td>after installation of new or old disk in disk drive packet</td>
</tr>
<tr>
<td>How to perform LED maintenance in XA-Core</td>
<td>every 30 days (monthly)</td>
</tr>
<tr>
<td>How to record an XA-Core office image on a disk</td>
<td>every day or when required</td>
</tr>
<tr>
<td>How to replace XA-Core cooling unit filters</td>
<td>every six weeks</td>
</tr>
<tr>
<td>How to restore an XA-Core office image from tape to disk</td>
<td>when required</td>
</tr>
<tr>
<td>How to return an XA-Core card, packlet, or assembly to Nortel Networks</td>
<td>when required</td>
</tr>
<tr>
<td>How to schedule automatic image taking for XA-Core</td>
<td>per office manager</td>
</tr>
<tr>
<td>How to schedule tape drive maintenance in XA-Core</td>
<td>every 180 days (six months)</td>
</tr>
<tr>
<td>How to test wrist-strap grounding cords for XA-Core</td>
<td>every 30 days (monthly)</td>
</tr>
</tbody>
</table>
This page is left blank intentionally.
Upgrading firmware on the occasion of a software upgrade

Application

Use this procedure on the occasion of a release-to-release software upgrade, to upgrade the firmware in the downloadable components in the XA-Core.

*Note:* If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

This procedure sends you to separate component-specific procedures for the downloadable components. Each component-specific procedure directs you to update the information about the component’s firmware found in the XAFWLOAD data schema table, and to load the new firmware into each instance of the component in the XA-Core.

If a new software release requires the use of new firmware loads, those loads are on the PM load tape. Nortel Networks will send the PM load tape to your site. The PM load tape will arrive at your site before the scheduled date of the one-night process (ONP). (The ONP is the process by which you perform the release-to-release software upgrade.) You will find instructions for loading the PM load tape in the related Peripheral Module Software Release Document.

*Note:* New firmware loads are provided on an as-required basis. If the PM load tape does not contain a new firmware load for a given downloadable component, then you do not need to download new firmware into that component.

The Peripheral Module Software Release Document contains the following information:

- instructions for loading the PM load tape
- the baseline firmware loads for downloadable components

If there are new firmware loads, then you must upgrade the firmware as explained in the component-specific procedures. You upgrade the firmware after the unsplitting of the XA-Core on completion of the one-night process (ONP).
Structure of the component-specific procedures
In each of the component-specific procedures, you do the following things in
the sequence shown:
• edit table XAFWLOAD to point to the new firmware
• load the new firmware into all instances of the component
• edit table XAFWLOAD again to mark the new firmware as current

First edit of table XAFWLOAD
The data schema table XAFWLOAD identifies “new”, and “current”, and
“old” firmware loads for the downloadable components. After you have loaded
the PM load tape, the new firmware loads will be in the file system on the disk
in the XA-Core, but table XAFWLOAD will not yet point to those new loads.

If there is new firmware load of loadtype FW for a component, you must
ensure that table XAFWLOAD contains a tuple that points to that load, and
identifies the load as “new”. For each downloadable component, table
XAFWLOAD can contain only one entry that points to the “new” FW load.

If there is a new firmware loads of loadtype DLL for a component, you must
ensure that table XAFWLOAD contains a tuple that points to that load, and
identifies the load as “current”. For each downloadable component that takes
a DLL load, table XAFWLOAD can contain only one entry that points to the
“current” DLL load.

Loading the firmware
When you have edited table XAFWLOAD so that it contains the required
entries, you can download the new firmware into the affected components. To
load FW firmware into a component, you use a command that tells the system
to load the FW firmware that is designated as “new”. To load DLL firmware
into a component, you just return the component to service, which causes the
system to load the DLL load that is designated as “current”.

Second edit of XAFWLOAD
After downloading the new FW firmware load into the instances of the
component, you do further editing in table XAFWLOAD. You must change
the status of the new FW firmware load from “new” to “current”. You will be
able to make that change only if the table does not already contain a tuple that
identifies a now superseded load as the “current” FW load for the component.
Therefore, you must first edit tuple that points to the now superseded load,
changing the status from “current” to “old”. Then you edit the tuple that points
to the new firmware load, changing the status from “new” to “current”.
Upgrading firmware on the occasion of a software upgrade (continued)

Sequence of upgrades
If the PM load tape contains new firmware loads for multiple downloadable components, you must upgrade the components in a certain sequence. This procedure follows the sequence. The sequence is as follows:

- PE circuit packs
- IOP circuit packs
- HIOP circuit packs
- HCMIC circuit packs
- CMIC packlets
- AMDI packlets
- ETHR packlets

Interval
Perform this procedure on the occasion of a release-to-release software upgrade. Perform this procedure after you have unsplit the XA-Core after the completion of the one-night process.

All firmware should be upgraded immediately following the ONP if possible. If the ONP maintenance window does not allow time for the firmware upgrades, they should be scheduled for the next maintenance window. If you are upgrading the firmware in a group of items, for example, a group of PE circuit packs, you do not need to wait between upgrading the items in the group. After upgrading the firmware in one of the items, you can proceed immediately to upgrade the firmware in the next item.

Note 1: An abort to a previous software load is not supported after the completion of this procedure. Do not perform this procedure until after you have unsplit the XA-Core after the completion of the one-night process.

Note 2: If you want to undo a firmware upgrade following the completion of this procedure, you can do so by loading the old firmware that you prefer, which we will refer to as the preferred firmware. However, you can load the preferred FW firmware only if it is designated as “new” or “current” in table XAFWLOAD, and the preferred DLL firmware loads only if it is designated as “current”. Therefore, you must perform the following actions in the following sequence. (1) If you need to undo an upgrade to the FW firmware for a component, edit the current FW firmware’s tuple in table XAFWLOAD. Change the status from “current” to “old”. If you need to undo an upgrade to the DLL firmware for a component, edit the current DLL firmware’s tuple in table XAFWLOAD. Change the status from “current” to “old”. For an example showing how to change the status, look in any one of the procedures listed in the “Common procedures” section. (2) If you need
Upgrading firmware on the occasion of a software upgrade (continued)

to undo an upgrade to the FW firmware for a component, edit the preferred firmware’s tuple in table XAFWLOAD. Change the status from “old” to “current”. If you need to undo an upgrade to the DLL firmware for a component, edit the preferred DLL firmware’s tuple in table XAFWLOAD. Change the status from “current” to “old”. For an example showing how to change the status, look in any one of the procedures listed in the “Common procedures” section. (3) If you intend to downgrade the firmware in IOPs, remember that when you downgrade an IOP, table XAFWLOAD must indicate that the preferred firmware is in a volume on a disk in an IOP other than the one to be downgraded. Therefore, before downgrading that last double-width IOP, you must edit table XAFWLOAD so that the tuple listing IOP firmware points to a file in a volume on a disk packlet in the other double-width IOP. For an example, see step 42 in the procedure titled “Upgrading IOP firmware on the occasion of a software upgrade”. (4) When you reload the preferred FW firmware, use the LOADFW command, as shown in any one of the procedures listed in the “Common procedures” section, but when entering the LOADFW command, remember to use the FILE CURRENT parameter, not the FILE NEW parameter. (5) If you downgraded the IOP firmware, then you edited table XAFWLOAD to point to a disk volume on a different IOP, and you must reverse that change. For an example, see step 63 in the procedure titled “Upgrading IOP firmware on the occasion of a software upgrade”.

Common procedures

This procedure refers to the following common procedures:

- “Upgrading NTLX02CA firmware on the occasion of a s/w upgrade”
- “Upgrading NTLX02DA firmware on the occasion of a s/w upgrade”
- “Upgrading IOP firmware on the occasion of a software upgrade”
- “Upgrading HIOP firmware on the occasion of a software upgrade”
- “Upgrading HCMIC firmware on the occasion of a software upgrade”
- “Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade”
- “Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade”
- “Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade”

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Upgrading firmware on the occasion of a software upgrade (continued)

Summary of upgrading firmware on the occasion of a software upgrade

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.

Start

New firmware for NTLX02 AA/CA?

YES

Perform the procedure for upgrading firmware in NTLX02AA/CA

NO

New firmware for NTLX02 DA?

YES

Perform the procedure for upgrading firmware in NTLX02DA

NO

New firmware for IOP?

YES

Perform the procedure for upgrading firmware in IOP circuit packs

NO

New firmware for HIOP?

YES

Perform the procedure for upgrading firmware in HIOP circuit packs

NO

New firmware for HCMIC?

YES

Perform the procedure for upgrading firmware in HCMIC circuit packs

NO

New firmware for CMIC packlet?

YES

Perform the procedure for upgrading firmware in CMIC packlets

NO

New firmware for AMDI packlet?

YES

Perform the procedure for upgrading firmware in AMDI packlets

NO

New firmware for ETNR packlet?

YES

Perform the procedure for upgrading firmware in Ethernet packlets

NO

End
Upgrading firmware on the occasion of a software upgrade

At the MAP terminal

1. If the PM load tape includes a new firmware load of loadtype FW for the NTLX02AA and NTLX02CA versions of the PE circuit pack, perform the procedure titled “Upgrading NTLX02CA firmware on the occasion of a s/w upgrade”, found in this document. When you have finished that procedure, resume this procedure at the next step.

   If the PM load tape does not include any new firmware for the NTLX02AA and NTLX02CA versions of the PE circuit pack, continue to the next step of this procedure.

2. If the PM load tape includes new firmware for the NTLX02DA version of the PE circuit pack (a load of loadtype FW and/or a load of loadtypeDLL), perform the procedure titled “Upgrading NTLX02DA firmware on the occasion of a s/w upgrade”, found in this document. When you have finished that procedure, resume this procedure at the next step.

   If the PM load tape does not include any new firmware for the NTLX02DA version of the PE circuit pack, continue to the next step of this procedure.

3. If the PM load tape includes a new firmware load of loadtype FW for the IOP circuit pack, perform the procedure titled “Upgrading IOP firmware on the occasion of a software upgrade”, found in this document. When you have finished that procedure, resume this procedure at the next step.

   If the PM load tape does not include any new firmware for the IOP circuit pack, continue to the next step of this procedure.

4. If the PM load tape includes new firmware for the HIOP circuit pack (a load of loadtype FW and/or a load of loadtypeDLL), perform the procedure titled “Upgrading HIOP firmware on the occasion of a software upgrade”, found in this document. When you have finished that procedure, resume this procedure at the next step.

   If the PM load tape does not include any new firmware for the HIOP circuit pack, continue to the next step of this procedure.

5. If the PM load tape includes a new firmware load of loadtype FW for the HCMIC circuit pack, perform the procedure titled “Upgrading HCMIC firmware on the occasion of a software upgrade”, found in this document. When you have finished that procedure, resume this procedure at the next step.

   If the PM load tape does not include any new firmware for the HCMIC circuit pack, continue to the next step of this procedure.

6. If the PM load tape includes include a new firmware load of loadtype FW for the NTLX05AB version of the CMIC packlet, perform the procedure titled “Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade”, found in this document. When you have finished that procedure, resume this procedure at the next step.

   If the PM load tape does not include any new firmware for the NTLX05AB version of the CMIC packlet, continue to the next step of this procedure.
Upgrading firmware on the occasion of a software upgrade (end)

7 If the PM load tape includes include a new firmware load of loadtype FW for the AMDI packlet, perform the procedure titled “Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade”, found in this document. When you have finished that procedure, resume this procedure at the next step.

If the PM load tape does not include any new firmware for the AMDI packlet, continue to the next step of this procedure.

8 If the PM load tape includes include a new firmware load of loadtype FW for the Ethernet packlet, perform the procedure titled “Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade”, found in this document. When you have finished that procedure, resume this procedure at the next step.

If the PM load tape does not include any new firmware for the Ethernet packlet, continue to the next step of this procedure.

9 You have completed this procedure.
This page is left blank intentionally.
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

Application

Use this procedure only when directed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not use this procedure on any other occasion.

Use this procedure to upgrade the firmware in all NTLX02CA PE circuit packs in the XA-Core shelf.

Note: If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

Here are answers to frequently asked questions.

• The sequence of steps in the procedure directs you to upgrade the firmware in one PE circuit pack at a time. That is the proper sequence. Do not try to upgrade two or more PE circuit packs in parallel.

• In all cases in which a soak is necessary, the system performs the soak automatically. You do not need to take any action regarding soak.

Interval

Perform this procedure only when instructed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not perform this procedure on any other occasion.

For information about when to upgrade firmware, see the “Interval” section of procedure “Upgrading firmware on the occasion of a software upgrade”.

Common procedures

This procedure does not refer to any common procedures.

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

Summary of upgrading NTLX02CA firmware on the occasion of a software upgrade

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

Start

Update XAFWLOAD so that the new FW firmware load is listed as “new”

Select an NTLX02CA PE circuit pack in which to upgrade the firmware

Upgrade the firmware in the selected circuit pack

More of these still to be upgraded?

YES

NO

Update XAFWLOAD so that the new FW firmware load is listed as “current”

End
Upgrading NTLX02CA firmware on the occasion of a software upgrade

CAUTION
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

CAUTION
File/volume/version names
The file names, volume names, and version names used in this procedure are only examples. For the correct names to use, refer to the Peripheral Module Software Release Document and refer to table XAFWLOAD.

At the MAP terminal

1. Access table XAFWLOAD. Type
   >TABLE XAFWLOAD
   and press the Enter key.
   Map response
   TABLE: XAFWLOAD

2. List all the tuples in table XAFWLOAD. Type
   >LIST ALL
   and press the Enter key.
   Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS PEFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS PEFW958 FW</td>
<td>current</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01PA</td>
<td>F02LFWLOADS IOPFW588 FW</td>
<td>current</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAI003RA</td>
<td>F02LFWLOADS XHIO01XC FW</td>
<td>current</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAI003RB</td>
<td>F02LFWLOADS XHIO01XD DLL</td>
<td>current</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHI003XA</td>
<td>F02LFWLOADS XHIO01GG FW</td>
<td>current</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS HCFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS HCFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS ETPW322 FW</td>
<td>current</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The firmware load names shown throughout this procedure are fictitious and are for illustrative purposes only. For information on the actual firmware loads, see the Peripheral Module Software Release Document.
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

3 Look for tuples listing the new and current firmware loads of loadtype FW for PE circuit packs of model NTLX02CA. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

   Note: If you do not find a “new” tuple or a “current” tuple for loadtype FW for PE circuit packs of model NTLX02CA, that is not a problem.

4 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype FW for PE circuit packs of model NTLX02CA</td>
<td>step 5</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype FW for PE circuit packs of model NTLX02CA</td>
<td>step 10</td>
</tr>
</tbody>
</table>

5 Use the POS command to move to the tuple listing the new firmware load of loadtype FW. Type

>POS <key-value>

and press the Enter key

where

<key-value> is the index value identifying the tuple

6 You are going to change the tuple to point to the newly delivered FW load for PE circuit packs of model NTLX02CA. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

7 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered FW firmware load for PE circuit packs of model NTLX02CA. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

   Example

   FRU: PE
   >
   PEC: NTLX02CA
   >
   VERSION: XAPE01MA
   >XAPE01MB
   VOLUME: F02LFWLOADS
   >
   FILE: PEFW421
   >PEFW626
   LOADTYPE: FW
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

> STATUS: new
> SOAK: 48

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
13 PE NTLX02CA XDPE01MB F02LFWLOADS PEFW626 FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

8 Confirm the change. Type
>Y
and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 519

9 You found and updated a tuple listing a new firmware load of type FW for PE circuit packs of model NTLX02CA. Therefore, you do not need to add such a tuple. Go to step 12.

10 You are going to add a tuple listing the newly delivered FW firmware load for PE circuit packs of model NTLX02CA. Indicate that you intend to add a tuple. Type
>ADD
and press the Enter key.

In response, the system prompts you to specify the values for the fields that compose the tuple. The following example uses sample values to show how you might respond to the prompts:

Example

FRU:
>PE
PEC:
>NTLX02CA
VERSION:
>XAPE01MB
VOLUME:
>F02LFWLOADS
FILE:
>PEFW626
LOADTYPE:
>FW
STATUS:
>new
SOAK:
>48

Note: If the table already contains a tuple listing the current firmware load for the component, use the same soak value as found in that tuple. Otherwise, call the next level of support for advice about the soak time.
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

After obtaining the field values, the system responds as follows.

*Map response*

TUPLE TO BE ADDED:
10 PE NTLX02CA XAPE01MB F02LFWLOADS PEFW626 FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

11 Confirm the addition. Type

>Y

and press the Enter key.

*Map response*

TUPLE ADDED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 597

12 Exit from the table editor. Type

>QUIT

and press the Enter key.

13 Go to the MAP level for the PE circuit pack. Type

>MAPCI;MTC;XAC;PE

and press the Enter key.

14 Select a PE circuit pack of model NTLX02CA whose firmware needs to be upgraded.

15 Find out which FW firmware load is currently in the PE circuit pack that you selected in step 14. Type

>QUERY CARD <nn> <s>

and press the Enter key.

where

<n> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packet - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

*Map response*

Command submitted.

.
.
.

Pos   Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------
<version>

where

<version> identifies the firmware load currently in the circuit pack
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

Manually busy the PE circuit pack. Type

>BSY <nn> <s> FORCE

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)
For example, to busy the PE circuit pack in slot 4, front, type

>BSY 4 F FORCE

and press the Enter key.

Map response

Warning: Bsy command will take it out of service.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

Confirm the action. Type

>Y

and press the Enter key.

If the response indicates that the Bsy Force command

<table>
<thead>
<tr>
<th></th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 18</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

18. Load the new FW firmware version. Type

>`LOADFW <nn> <s> FILE NEW`

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

For example, to load new firmware into the PE circuit pack at slot 4, front, type

>`LOADFW 4 F FILE NEW`

and press the Enter key.

In response, the system asks you to confirm the LOADFW command.

19. Confirm the LOADFW command. Type

>`Y`

and press the Enter key.

Map response, assuming you entered the example command from the preceding step

Command submitted
LoadFW 4 Front fw copied to SM
LoadFW 4 Front bank 1 erased
LoadFW 4 Front bank 1 programmed
LoadFW 4 Front bank 1 loaded and tested
LoadFW 4 Front bank 0 erased
LoadFW 4 Front bank 0 programmed
LoadFW 4 Front bank 0 loaded and tested
LoadFW 4 Front completed

<table>
<thead>
<tr>
<th>If the response indicates that the LOADFW command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 20</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

20 Return the PE circuit pack to service. Type
>RTS <nn> <s>
and press the Enter key.
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 22</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>

21 For additional help, call the next level of support.

22 If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the appropriate alarm-clearing procedure and return to this point when finished. If no alarms other than FWVERS and FWSOAK occur, go to step 23.

Note 1: The FWVERS alarm will occur during this procedure. The alarm will clear only when (1) all items of a particular FRU and PEC have been upgraded and (2) you have updated table XAFWLOAD to change the status of the newly delivered FW firmware load from “new” to “current”. (You change the status to “current” in step 35.)

Note 2: The FWSOAK alarm will occur during this procedure if table XAFWLOAD lists a non-zero soak time for the newly delivered firmware load. If there is a non-zero soak value, the system raises the FWSOAK alarm when the circuit pack or packlet is returned to service, and clears the alarm when the soak time expires.

23 Check that the new firmware load is now in the PE circuit pack. Type
>QUERY CARD <nn> <s>
and press the Enter key.
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet - 1 to 18
<s> is the side parameter value - front (f) or rear (r)
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

Map response
Command submitted.
.
.
.
Pos   Type   PEC+   HW   Rel   BL   OK   Serial Number   FW   Vers.
----- ---- ------ ----- --- --- ------- --------
<version>

where
<version> identifies the firmware load currently in the circuit pack

24 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you have upgraded the firmware in all</td>
<td>step 25</td>
</tr>
<tr>
<td>the PE circuit packs of model NTLX02CA</td>
<td></td>
</tr>
<tr>
<td>in the XA-Core shelf</td>
<td></td>
</tr>
<tr>
<td>you have not yet upgraded the firmware</td>
<td>step 14</td>
</tr>
<tr>
<td>in all the PE circuit packs of model</td>
<td></td>
</tr>
<tr>
<td>NTLX02CA in the XA-Core shelf</td>
<td></td>
</tr>
</tbody>
</table>

25 Access table XAFWLOAD. Type
>TABLE XAFWLOAD
and press the Enter key.

Map response
TABLE XAFWLOAD

26 List all the tuples. Type
>LIST ALL
and press the Enter key.

Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAI001PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAI003RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAI003RB</td>
<td>F02LFWLOADS</td>
<td>XHIO01XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHI003XA</td>
<td>F02LFWLOADS</td>
<td>XCIO01GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHER</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MB</td>
<td>F02LFWLOADS</td>
<td>PEFW626</td>
<td>FW</td>
<td>new</td>
<td>48</td>
</tr>
</tbody>
</table>
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

27 Look for tuples listing the current and new FW firmware loads for PE circuit packs of model NTLX02CA. (The FRU and PEC fields identify the component; the STATUS field indicates new, current, or old.) Write down the index values of the tuples.

Note: If you do not find a “current” tuple matching the component/loadtype combination, that is not a problem.

28 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a current FW firmware load for the component</td>
<td>step 29</td>
</tr>
<tr>
<td>NOT a tuple listing a current FW firmware load for the component</td>
<td>step 33</td>
</tr>
</tbody>
</table>

29 Use the POS command to move to the tuple listing the current firmware load. Type

>POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

30 You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

31  Update the tuple by changing the value of the STATUS field from “current” to “old”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: PE
> PEC: NTLX02CA
> VERSION: XAPE01MA
> VOLUME: F02LFWLOADS
> FILE: PEFW421
> LOADTYPE: FW
> STATUS: current
> old
> SOAK: 48
>
After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
1 PE NTLX02CA XAPE01MA F02LFWLOADS PEFW421 FW old 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

32  Confirm the change. Type

>Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 604

33  Use the POS command to move to the tuple listing the new firmware load. Type

>POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

34  You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading NTLX02CA firmware on the occasion of a s/w upgrade

35 Update the tuple by changing the value of the STATUS field from “new” to “current”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

<table>
<thead>
<tr>
<th>FRU: PE</th>
<th>PEC: NTLX02CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERSION: XAPE01MB</td>
<td>VOLUME: F02LFWLOADS</td>
</tr>
<tr>
<td>FILE: PEFW626</td>
<td>LOADTYPE: FW</td>
</tr>
<tr>
<td>STATUS: new</td>
<td>SOAK: 48</td>
</tr>
<tr>
<td>current</td>
<td></td>
</tr>
</tbody>
</table>

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
10 PE NTLX02CA XAPE01MB F02LFWLOADS PEFW626 FW current 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

36 Confirm the change. Type

> Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 520

37 Exit from the table editor. Type

> QUIT

and press the Enter key.

38 You have completed the procedure.
This page is left blank intentionally.
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

Application

Use this procedure only when directed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not use this procedure on any other occasion.

Use this procedure to upgrade the firmware in all instances of the NTLX02DA PE circuit pack in the XA-Core shelf.

Note: If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

Here are answers to frequently asked questions.

• The sequence of steps in the procedure directs you to upgrade the firmware in one NTLX02DA PE circuit pack at a time. That is the proper sequence. Do not try to upgrade two or more NTLX02DA PE circuit packs in parallel.

• In all cases in which a soak is necessary, the system performs the soak automatically. You do not need to take any action regarding soak.

Interval

Perform this procedure only when instructed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not perform this procedure on any other occasion.

For information about when to upgrade firmware, see the “Interval” section of procedure “Upgrading firmware on the occasion of a software upgrade”.

Common procedures

This procedure does not refer to any common procedures.

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

Summary of upgrading NTLX02DA firmware on the occasion of a software upgrade

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

Start

Update XAFWLOAD so that the new FW firmware load is listed as “new”

Select an NTLX02DA PE circuit pack in which to upgrade the firmware

Upgrade the firmware in the selected circuit pack

More of these still to be upgraded?

YES

NO

Update XAFWLOAD so that the new FW firmware load is listed as “current”

End
Upgrading NTLX02DA firmware on the occasion of a software upgrade

CAUTION
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

CAUTION
File/volume/version names
The file names, volume names, and version names used in this procedure are only examples. For the correct names to use, refer to the Peripheral Module Software Release Document and refer to table XAFWLOAD.

At the MAP terminal

1. Access table XAFWLOAD. Type
   >TABLE XAFWLOAD
   and press the Enter key.
   Map response
   TABLE: XAFWLOAD

2. List all the tuples in table XAFWLOAD. Type
   >LIST ALL
   and press the Enter key.
   Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RB</td>
<td>F02LFWLOADS</td>
<td>XHIO01XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHIO03XA</td>
<td>F02LFWLOADS</td>
<td>XHIO01GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
</tbody>
</table>

Note: The firmware load names shown throughout this procedure are fictitious and are for illustrative purposes only. For information on the actual firmware loads, see the Peripheral Module Software Release Document.
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

3 Look for tuples listing the new and current firmware loads of loadtype FW for NTLX02DA PE circuit packs. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

Note: If you do not find a “new” tuple or a “current” tuple for loadtype FW for NTLX02DA PE circuit packs, that is not a problem.

4 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype FW for NTLX02DA PE circuit packs</td>
<td>step 5</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype FW for NTLX02DA PE circuit packs</td>
<td>step 10</td>
</tr>
</tbody>
</table>

5 Use the POS command to move to the tuple listing the new firmware load of loadtype FW. Type

>`POS <key-value>`

and press the Enter key

where

<key-value> is the index value identifying the tuple

6 You are going to change the tuple to point to the newly delivered FW load for NTLX02DA PE circuit packs. Indicate that you intend to change the tuple. Type

>`CHA`

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

7 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered FW firmware load for NTLX02DA PE circuit packs. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: PE
>
PEC: NTLX02DA
>
VERSION: XAPE01N
>XAPE01NB
VOLUME: F02LFWLOADS
>
FILE: PEFW958
>PEFW959
LOADTYPE: FW
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

>  
> STATUS: new  
> SOAK: 48  
> 

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
19 PE NTLX02DA XAPE01NB F02LFWLOADS PEFW959 FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

8 Confirm the change. Type
>Y
and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 519

9 You found and updated a tuple listing a new firmware load of type FW for
NTLX02DA PE circuit packs. Therefore, you do not need to add such a tuple.
Go to step 12.

10 You are going to add a tuple listing the newly delivered FW firmware load for
NTLX02DA PE circuit packs. Indicate that you intend to add a tuple. Type
>ADD
and press the Enter key.

In response, the system prompts you to specify the values for the fields that
compose the tuple. The following example uses sample values to show how
you might respond to the prompts:

Example

FRU:
>PE
PEC:
>NNAPX02DA
VERSION:
>XPMAPE01NB
VOLUME:
>F02LFWLOADS
FILE:
>PEFW959
LOADTYPE:
>FW
STATUS:
>NEW
SOAK:
>48

Note: If the table already contains a tuple listing the current firmware load
for the component, use the same soak value as found in that tuple.
Otherwise, call the next level of support for advice about the soak time.

After obtaining the field values, the system responds as follows.
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

Map response
TUPLE TO BE ADDED:
10 PE NTLX02DA XAPE21AG F02LFWLOADS PEFW959 FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

11 Confirm the addition. Type
>Y
and press the Enter key.

Map response
TUPLE ADDED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 597

12 Exit from the table editor. Type
>QUIT
and press the Enter key.

13 Go to the MAP level for the PE circuit pack. Type
>MAPCI;MTC;XAC;PE
and press the Enter key.

14 Select an NTLX02DA PE circuit pack whose firmware needs to be upgraded.

15 Find out which FW firmware load is currently in the NTLX02DA PE circuit pack that you selected in step 14. Type
>QUERY CARD <nn> <s>
and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packet - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

Map response
Command submitted.
.
.
Pos   Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------

where

<version> identifies the firmware load currently in the circuit pack
Manually busy the NTLX02DA PE circuit pack. Type

>BSY <nn> <s> FORCE

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

For example, to busy the PE circuit pack in slot 4, front, type

>BSY 4 F FORCE

and press the Enter key.

Map response

Warning: Bsy command will take it out of service.

Proceed (Y or N)?

Please confirm ("YES", "Y", "NO", or "N"):

17 Confirm the action. Type

>Y

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 18</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

18 Load the new FW firmware version. Type
   \texttt{>LOADFW <nn> <s> FILE NEW}
   and press the Enter key.
where
\(<\text{nn}>\) is the slot number parameter value to indicate the number of the
physical shelf slot containing the circuit pack or packlet that is to be upgraded
\(-1\ to \ 18\)
\(<\text{s}>\) is the side parameter value - front (\textit{f}) or rear (\textit{r})
For example, to load new firmware into the PE circuit pack at slot 4, front, type
\texttt{>LOADFW 4 F FILE NEW}
   and press the Enter key.
In response, the system asks you to confirm the LOADFW command.

19 Confirm the LOADFW command. Type
   \texttt{>Y}
   and press the Enter key.
   \textit{Map response, assuming you entered the example command from the}
   \textit{preceding step}
   Command submitted
   LoadFW 4 Front fw copied to SM
   LoadFW 4 Front bank 1 erased
   LoadFW 4 Front bank 1 programmed
   LoadFW 4 Front bank 1 loaded and tested
   LoadFW 4 Front bank 0 erased
   LoadFW 4 Front bank 0 programmed
   LoadFW 4 Front bank 0 loaded and tested
   LoadFW 4 Front completed

<table>
<thead>
<tr>
<th>If the response indicates that the LOADFW command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 20</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

20  Return the NTLX02DA PE circuit pack to service. Type
   \texttt{>RTS <nn> <s>}
   and press the Enter key.
   \text{where}
   \texttt{<nn>} is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18
   \texttt{<s>} is the side parameter value - front (f) or rear (r)

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 22</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>

21  For additional help, call the next level of support.

22  If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the appropriate alarm-clearing procedure and return to this point when finished. If no alarms other than FWVERS and FWSOAK occur, go to step 23.

   \textit{Note 1:} The FWVERS alarm will occur during this procedure. The alarm will clear only when (1) all items of a particular FRU and PEC have been upgraded and (2) you have updated table XAFWLOAD to change the status of the newly delivered FW firmware load from “new” to “current”. (You change the status to “current” in step 35.)

   \textit{Note 2:} The FWSOAK alarm will occur during this procedure if table XAFWLOAD lists a non-zero soak time for the newly delivered firmware load. If there is a non-zero soak value, the system raises the FWSOAK alarm when the circuit pack or packet is returned to service, and clears the alarm when the soak time expires.

23  Check that the new firmware load is now in the NTLX02DA PE circuit pack. Type
   \texttt{>QUERY CARD <nn> <s>}
   and press the Enter key.
   \text{where}
   \texttt{<nn>} is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet - 1 to 18
   \texttt{<s>} is the side parameter value - front (f) or rear (r)
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

Map response
Command submitted.
.
.
Pos  Type  PEC+  HW  Rel  BL  OK  Serial Number  FW  Vers.
-----  ----  -----------  --  --  -------------  --------

where

<version> identifies the firmware load currently in the circuit pack

Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you have upgraded the firmware in all the NTLX02DA PE circuit packs in the XA-Core shelf</td>
<td>step 25</td>
</tr>
<tr>
<td>you have not yet upgraded the firmware in all the NTLX02DA PE circuit packs in the XA-Core shelf</td>
<td>step 14</td>
</tr>
</tbody>
</table>

Access table XAFWLOAD. Type

> TABLE XAFWLOAD

and press the Enter key.

Map response

TABLE XAFWLOAD

List all the tuples. Type

> LIST ALL

and press the Enter key.

Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RA</td>
<td>F02LFWLOADS</td>
<td>XH1001XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RB</td>
<td>F02LFWLOADS</td>
<td>XH1001XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHI003XA</td>
<td>F02LFWLOADS</td>
<td>XC1001GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NB</td>
<td>F02LFWLOADS</td>
<td>PEFW959</td>
<td>FW</td>
<td>new</td>
<td>48</td>
</tr>
</tbody>
</table>
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

27 Look for tuples listing the current and new FW firmware loads for NTLX02DA PE circuit packs. (The FRU and PEC fields identify the component; the STATUS field indicates new, current, or old.) Write down the index values of the tuples.

   Note: If you do not find a “current” tuple matching the component/loadtype combination, that is not a problem.

28 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a current FW firmware load for</td>
<td>step 29</td>
</tr>
<tr>
<td>the component</td>
<td></td>
</tr>
<tr>
<td>NOT a tuple listing a current FW firmware load</td>
<td>step 33</td>
</tr>
<tr>
<td>for the component</td>
<td></td>
</tr>
</tbody>
</table>

29 Use the POS command to move to the tuple listing the current firmware load. Type

   >POS <key-value>

   and press the Enter key.

   where

   <key-value> is the index value identifying the tuple

30 You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

   >CHA

   and press the Enter key.

   In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade

31 Update the tuple by changing the value of the STATUS field from “current” to “old”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: PE
> PEC: NTLX02DA
> VERSION: XAPE01NA
> VOLUME: F02LFWLOADS
> FILE: PEFW958
> LOADTYPE: FW
> STATUS: current
>old
SOAK: 48
>

After obtaining the edited field values, the system responds as follows.

Map response
TUPLE TO BE CHANGED:
25 PE NTLX02DA XAPE01NA F02LFWLOADS PEFW958 FW old 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

32 Confirm the change. Type

>Y

and press the Enter key.

Map response
TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 523

33 Use the POS command to move to the tuple listing the new firmware load. Type

>POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

34 You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading NTLX02DA firmware on the occasion of a s/w upgrade (end)

35 Update the tuple by changing the value of the STATUS field from “new” to “current”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: PE
> PEC: NTLX02DA
> VERSION: XAPE01NB
> VOLUME: F02LFWLOADS
> FILE: PEFW959
> LOADTYPE: FW
> STATUS: new
> **current**
SOAK: 48
>
After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
10 PE NTLX02DA XAPE01NB F02LFWLOADS PEFW959 FW current 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

36 Confirm the change. Type

>Y
and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 524

37 Exit from the table editor. Type

>QUIT
and press the Enter key.

38 You have completed the procedure.
This page is left blank intentionally.
Upgrading IOP firmware on the occasion of a software upgrade

Application

Use this procedure only when directed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not use this procedure on any other occasion.

Use this procedure to upgrade the firmware in all instances of the NTLX03 input-output processor (IOP) circuit pack in the XA-Core shelf.

Note: If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

Here are answers to frequently asked questions.

• The sequence of steps in the procedure directs you to upgrade the firmware in one IOP circuit pack at a time. That is the proper sequence. Do not try to upgrade two or more IOP circuit packs in parallel.

• In all cases in which a soak is necessary, the system performs the soak automatically. You do not need to take any action regarding soak.

Interval

Perform this procedure only when instructed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not perform this procedure on any other occasion.

For information about when to upgrade firmware, see the “Interval” section of procedure “Upgrading firmware on the occasion of a software upgrade”.

Prerequisite

On each of the disk packlets in the XA-Core shelf, there must be a copy of the disk volume containing the files that contain the newly delivered firmware for the IOP circuit pack.

If the new IOP firmware does not exist on both disk packlets, do not try to upgrade the firmware in the IOP circuit packs. Call the next level of support.

Common procedures

This procedure does not refer to any common procedures.
Upgrading IOP firmware on the occasion of a software upgrade

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.

Summary of upgrading IOP firmware on the occasion of a software upgrade

Start

Update XAFWLOAD so that the new FW firmware load is listed as “new”

Select an IOP circuit pack in which to upgrade the firmware

Upgrade the firmware in the selected IOP circuit pack

IOPs remaining to be upgraded?

YES

NO

Update XAFWLOAD so that the new FW firmware load is listed as “current”

End
Introduction to routine maintenance procedures

Upgrading IOP firmware on the occasion of a software upgrade

Upgrading IOP firmware on the occasion of a software upgrade

**CAUTION**
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

**CAUTION**
File/volume/version names
The file names, volume names, and version names used in this procedure are only examples. For the correct names to use, refer to the Peripheral Module Software Release Document and refer to table XAFWLOAD.

**At the MAP terminal**

1. Access table XAFWLOAD. Type 
   >TABLE XAFWLOAD
   and press the Enter key.
   Map response
   TABLE: XAFWLOAD

2. List all the tuples in table XAFWLOAD. Type
   >LIST ALL
   and press the Enter key.
   Map response

```
INDEX FRU PEC VERSION VOLUME FILE LOADTYPE STATUS SOAK
1 PE NTLX02CA XAPE01MA F02LFWLOADS PEFW421 FW current 48
2 PE NTLX02DA XAPE01NA F02LFWLOADS PEFW958 FW current 48
3 IOP NTLX03AA XAIO001PA F02LFWLOADS IOPFW588 FW current 48
4 HIOP NTLX04BA XAIO003RA F02LFWLOADS XHIO01XC FW current 0
5 HIOP NTLX04BA XAIO003RB F02LFWLOADS XHIO01XD DLL current 0
6 HIOP NTLX17AA XHIO03XA F02LFWLOADS XCI001GG FW current 72
7 CMIC NTLX05AB PK12CE93 F02LFWLOADS HCPF421 FW current 48
8 AMDI NTLX05BA PK12CE93 F02LFWLOADS HCPF421 FW current 48
9 ETHR NTLX09AA EP14DO95 F02LFWLOADS ETPW322 FW current 48
```

**Note:** The firmware load names shown throughout this procedure are fictitious and are for illustrative purposes only. For information on the actual firmware loads, see the Peripheral Module Software Release Document.
Upgrading IOP firmware on the occasion of a software upgrade

3 Look for tuples listing the new and current firmware loads of loadtype FW for the IOP circuit pack. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

Note: If you do not find a “new” tuple or a “current” tuple for loadtype FW for the IOP circuit pack, that is not a problem.

4 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype FW for the IOP circuit pack</td>
<td>step 5</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype FW for the IOP circuit pack</td>
<td>step 11</td>
</tr>
</tbody>
</table>

5 Use the POS command to move to the tuple listing the new firmware load of loadtype FW. Type

>POS <key-value>

and press the Enter key

where

<key-value> is the index value identifying the tuple

6 You are going to change the tuple to point to the newly delivered FW load for the IOP circuit pack. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

7 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered FW firmware load for the IOP circuit pack. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: IOP
>
PEC: NTLX03AA
>
VERSION: XAIO01PA
>XAIO01PB
> VOLUME: F02LFWLOADS
> FILE: IOPFW588
>IOPFW672
LOADTYPE: FW
>
STATUS: new
Upgrading IOP firmware on the occasion of a software upgrade

> SOAK: 0
> 

After obtaining the edited field values, the system responds as follows.

*Map response*

**TUPLE TO BE CHANGED:**
23 IOP NTLX03AA XAIO01PB F02LFWLOADS IOPFW672 FW new 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

8 Make note of the following information items: the index value of the tuple that refers to the firmware load for the IOP circuit pack (the first value in the tuple, 23 in the example), and the location of the IOP that contains the firmware load. The location is shown by the first, second, and third characters in the volume number. In the example, the volume name is F02LFWLOADS. The first three characters indicate front, slot 02. Write these values down and save them. You will use this information in subsequent steps.

9 Confirm the change. Type

> Y

and press the Enter key.

*Map response*

**TUPLE CHANGED.**
**WRITTEN TO JOURNAL FILE AS JF NUMBER 519**

10 You found and updated a tuple listing a new firmware load of type FW for the IOP circuit pack. Therefore, you do not need to add such a tuple. Go to step 14.

11 You are going to add a tuple listing the newly delivered FW firmware load for the IOP circuit pack. Indicate that you intend to add a tuple. Type

> ADD

and press the Enter key.

In response, the system prompts you to specify the values for the fields that compose the tuple. The following example uses sample values to show how you might respond to the prompts:

**Example**

FRU:
> IOP
PEC:
> NTLX03AA
VERSION:
> XAIO01PB
VOLUME:
> F02LFWLOADS
FILE:
> IOPFW672
LOADTYPE:
> FW
STATUS:
> new
SOAK:
> 0
Upgrading IOP firmware on the occasion of a software upgrade

**Note:** If the table already contains a tuple listing the current firmware load for the component, use the same soak value as found in that tuple. Otherwise, call the next level of support for advice about the soak time.

After obtaining the field values, the system responds as follows.

*Map response*

TUPLE TO BE ADDED:
10 IOP NTLX03AA XAIO01PB F02LFWLOADS IOFW672 FW new 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

12 Make note of the following information items: the index value of the tuple that refers to the firmware load for the IOP circuit pack (the first value in the tuple, 10 in the example), and the location of the IOP that contains the firmware load. The location is shown by the first, second, and third characters in the volume number. In the example, the volume name is F02LFWLOADS. The first three characters indicate front, slot 02. Write these values down and save them. You will use this information in subsequent steps.

13 Confirm the addition. Type

>Y
and press the Enter key.

*Map response*

TUPLE ADDED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 597

14 Exit from the table editor. Type

>QUIT
and press the Enter key.

15 Go to the MAP level for the IOP circuit pack. Type

>MAPCI;MTC;XAC;<chosen-level>
and press the Enter key.

16 Decide on the sequence in which you will upgrade the IOP circuit packs. The LAST ONE must be the IOP that is pointed to by the tuples in table XAFWLOAD. (You recorded the slot number that IOP circuit pack in step 8 or in step 12.) As for the IOPs that come before the LAST ONE, you can put them in any sequence.

17 Select an IOP circuit pack whose firmware needs to be upgraded. Select the next IOP in the sequence you made up in step 16.

18 In the IOP MAP level, take note of the packlets that occupy the upper and lower positions in the IOP circuit pack that you selected in step 17.

19 Select the next step as follows:

<table>
<thead>
<tr>
<th>If the selected IOP is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the LAST ONE</td>
<td>step 42</td>
</tr>
<tr>
<td>not the LAST ONE</td>
<td>step 20</td>
</tr>
</tbody>
</table>
Upgrading IOP firmware on the occasion of a software upgrade

20 Move to the MAP level for the packlet that occupies the upper position in the IOP circuit pack, as identified in step 18. Type
   `<level>`
   and press the Enter key
   where
   `<level>` is
   - Disk if the packlet is a disk packlet (NTLX06)
   - Tape if the packlet is a tape packlet (NTLX07)
   - AMDI if the packlet is an AMDI packlet (NTLX05BA)
   - CMIC is the packlet is a CMIC packlet (NTLX05AA or NTLX05AB)
   - ETHR is the packlet is an ethernet packlet (NTLX09AA)
   - RTIF if the packlet is an RTIF packlet (NTLX08AA)
   In response, the system displays to the specified MAP level.

21 Manually busy the packlet. Type
   `>BSY <nn> <s> U FORCE`
   and press the Enter key.
   where
   `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18
   `<s>` is the side parameter value - front (f) or rear (r)
   For example, to busy the packlet in slot 4, rear, upper, type
   `>BSY 4 R U FORCE`
   and press the Enter key.

   **Map response**
   Warning: Bsy command will take it out of service.
   Proceed (Y or N)?
   Please confirm ("YES", "Y", "NO", or "N"):

22 Confirm the action. Type
   `>Y`
   and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 23</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>
Upgrading IOP firmware on the occasion of a software upgrade

23 Move to the MAP level for the packlet that occupies the lower position in the IOP circuit pack, as identified in step 18. Type

```
<level>
```

and press the Enter key

where

```
<level>
```

- Disk if the packlet is a disk packlet (NTLX06)
- Tape if the packlet is a tape packlet (NTLX07)
- AMDI if the packlet is an AMDI packlet (NTLX05BA)
- CMIC is the packlet is a CMIC packet (NTLX05AA or NTLX05AB)
- ETHR is the packet is an ethernet packet (NTLX09AA)
- RTIF if the packet is an RTIF packet (NTLX08AA)

In response, the system displays the specified MAP level.

24 Manually busy the packlet. Type

```
>BSY <nn> <s> L FORCE
```

and press the Enter key.

where

```
<nn>
```

is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18

```
<s>
```

is the side parameter value - front (f) or rear (r)

For example, to busy the packlet in slot 4, rear, lower, type

```
>BSY 4 R L FORCE
```

and press the Enter key.

Map response

Warning: Bsy command will take it out of service. Proceed (Y or N)? Please confirm ("YES", "Y", "NO", or "N"):

25 Confirm the action. Type

```
>Y
```

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 26</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>
Introduction to routine maintenance procedures  4-53

Upgrading IOP firmware on the occasion of a software upgrade

26  Move to the IOP MAP level. Type
    >IOP
    and press the Enter key.
In response, the system displays the IOP MAP level.

27  Find out which FW firmware load is currently in the IOP circuit pack that you
    selected in step 17. Type
    >QUERY CARD <nn> <s>
    and press the Enter key.

    where
    <nn> is the slot number parameter value to indicate the number of the
    physical shelf slot containing the circuit pack or packlet - 1 to 18
    <s> is the side parameter value - front (f) or rear (r)

    Map response
    Command submitted.
    .
    .
    Pos   Type PEC+ HW Rel BL OK Serial Number FW Vers.
    ----- ---- ----------- -- -- ------------- --------
    <version>

    where
    <version> identifies the firmware load currently in the circuit pack

28

CAUTION
Possible service impact
The busy command may jeopardize redundancy.
Perform this procedure during time periods of low traffic.

Manually busy the IOP circuit pack. Type
    >BSY <nn> <s> FORCE
    and press the Enter key.

    where
    <nn> is the slot number parameter value to indicate the number of the
    physical shelf slot containing the packlet - 1 to 18
    <s> is the side parameter value - front (f) or rear (r)

    For example, to busy the IOP circuit pack in slot 17, front, type
    >BSY 17 F FORCE
    and press the Enter key.
Upgrading IOP firmware on the occasion of a software upgrade

Map response
Warning: Bsy command will take it out of service. Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

Confirm the action. Type
>Y
and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 30</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

Load the new FW firmware version. Type
>LOADFW <nn> <s> FILE NEW
and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

For example, to load new firmware into the IOP circuit pack at slot 17, front, type

>LOADFW 17 F FILE NEW

and press the Enter key.

In response, the system asks you to confirm the LOADFW command.

Confirm the LOADFW command. Type
>Y
and press the Enter key.

Map response, assuming you entered the example command from the preceding step

Command submitted
LoadFW 17 Front fw copied to SM
LoadFW 17 Front bank 1 erased
LoadFW 17 Front bank 1 programmed
LoadFW 17 Front bank 1 loaded and tested
LoadFW 17 Front bank 0 erased
LoadFW 17 Front bank 0 programmed
### Upgrading IOP firmware on the occasion of a software upgrade

LoadFW 17 Front bank 0 loaded and tested  
LoadFW 17 Front completed

<table>
<thead>
<tr>
<th>If the response indicates that the LOADFW command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 32</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 34</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

32 Return the IOP circuit pack to service. Type  
>RTS <nn> <s>  
and press the Enter key.  
where  
<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18  
<s> is the side parameter value - front (f) or rear (r)

33 For additional help, call the next level of support.

34 If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the appropriate alarm-clearing procedure and return to this point when finished. If no alarms other than FWVERS and FWSOAK occur, go to step 35.

#### Note 1:  
The FWVERS alarm will occur during this procedure. The alarm will clear only when (1) all items of a particular FRU and PEC have been upgraded and (2) you have updated table XAFWLOAD to change the status of the newly delivered FW firmware load from “new” to “current”. (You change the status to “current” in step 73.)

#### Note 2:  
The FWSOAK alarm will occur during this procedure if table XAFWLOAD lists a non-zero soak time for the newly delivered firmware load. If there is a non-zero soak value, the system raises the FWSOAK alarm when the circuit pack or packet is returned to service, and clears the alarm when the soak time expires.

35 Check that the new firmware load is now in the IOP circuit pack. Type  
>QUERY CARD <nn> <s>  
and press the Enter key.  
where  
<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packet - 1 to 18  
<s> is the side parameter value - front (f) or rear (r)
Upgrading IOP firmware on the occasion of a software upgrade

Map response

Command submitted.

Pos   Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------

where

<version> identifies the firmware load currently in the circuit pack

36 Move to the MAP level for the packlet that occupies the upper position in the IOP circuit pack, as identified in step 18. Type

<level>

and press the Enter key

where

<level> is

• Disk if the packlet is a disk packlet (NTLX06)
• Tape if the packlet is a tape packlet (NTLX07)
• AMDI if the packlet is an AMDI packlet (NTLX05BA)
• CMIC is the packlet is a CMIC packet (NTLX05AA or NTLX05AB)
• ETHR is the packet is an ethernet packet (NTLX09AA)
• RTIF if the packet is an RTIF packet (NTLX08AA)

In response, the system displays the specified MAP level.

37 Return the packlet to service. Type

>RTS <nn> <s> U

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

For example, to return to service the packlet in slot 4, rear, upper, type

>RTS 4 R U

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 38</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>
## Upgrading IOP firmware on the occasion of a software upgrade

38. Move to the MAP level for the packet that occupies the lower position in the IOP circuit pack, as identified in step 18. Type

\[
<\text{level}>
\]

and press the Enter key.

where

\[
<\text{level}>
\]

is

- Disk if the packet is a disk packet (NTLX06)
- Tape if the packet is a tape packet (NTLX07)
- AMDI if the packet is an AMDI packet (NTLX05BA)
- CMIC is the packet is a CMIC packet (NTLX05AA or NTLX05AB)
- ETHR is the packet is an ethernet packet (NTLX09AA)
- RTIF if the packet is an RTIF packet (NTLX08AA)

In response, the system displays the specified MAP level.

39. Return the packet to service. Type

\[
>\text{RTS} <\text{nn}> <\text{s}> \text{ L}
\]

and press the Enter key.

where

\[
<\text{nn}>
\]

is the slot number parameter value to indicate the number of the physical shelf slot containing the packet - 1 to 18

\[
<\text{s}>
\]

is the side parameter value - front (f) or rear (r)

For example, to return to service the packet in slot 4, rear, lower, type

\[
>\text{RTS} 4 \text{ R L}
\]

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 40</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

40. Move to the IOP MAP level. Type

\[
>\text{IOP}
\]

and press the Enter key.

In response, the system displays the IOP MAP level.

41. Go to step 17 to select the next IOP circuit pack to upgrade.
Upgrading IOP firmware on the occasion of a software upgrade

42 Edit table XAFWLOAD to indicate that the new IOP firmware is in a volume on the disk in the other IOP circuit pack (that is the IOP circuit pack other than the LAST ONE). Proceed as follows.

a Access table XAFWLOAD. Type

>TABLE XAFWLOAD

and press the Enter key.

Map response:

TABLE: XAFWLOAD

b Use the POS command to move to the tuple listing the new FW firmware load for the IOP circuit pack. Type

POS <key-value>

and press the Enter key

where

<key-value> is the index value that you recorded in step 8 or in step 12

c Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

d Update the VOLUME field. Change the second and third characters in the field, to point to the volume on the disk packlet in the other IOP circuit pack.

Note: There are two possibilities here. If the volume name begins F02, change it so it begins F17. If the volume name begins F17, change it so it begins F02.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: IOP

>PEC: NTLX03AA

>VERSION: XAIO01PB

>VOLUME: F02LFWLOADS

>F17LFWLOADS

FILE: IOPFW672

>LOADTYPE: FW

>STATUS: new

>SOAK: 0

>
Upgrading IOP firmware on the occasion of a software upgrade

After obtaining the edited field values, the system responds as follows:

TUPLE TO BE CHANGED:
10 IOP NTLX03AA XA1001PB F17FWLOADS IOPFW672 FW new 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

e Confirm the change. Type
>Y
and press the Enter key.
Map response:
TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 520

f Exit from the table editor. Type
>QUIT
and press the Enter key.

43 Move to the MAP level for the packlet that occupies the upper position in the IOP circuit pack, as identified in step 18. Type
[level]
and press the Enter key
where
[level] is
• Disk if the packlet is a disk packlet (NTLX06)
• Tape if the packlet is a tape packlet (NTLX07)
In response, the system displays to the specified MAP level.

44 Manually busy the packlet. Type
>BSY <nn> <s> U FORCE
and press the Enter key.

where
<br> is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18
<s> is the side parameter value - front (f) or rear (r)
For example, to busy the packlet in slot 2, front, upper, type
>BSY 2 F U FORCE
and press the Enter key.

Map response
Warning: Bsy command will take it out of service.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):
Upgrading IOP firmware on the occasion of a software upgrade

45  Confirm the action. Type
    >Y
    and press the Enter key.

        | If the response indicates that the Bsy Force command | Do |
        |-----------------------------------------------|----|
        | completed                                     | step 46 |
        | failed                                        | step 33 |

46  Move to the MAP level for the packlet that occupies the lower position in the IOP circuit pack, as identified in step 18. Type
    <level>
    and press the Enter key
    where
    <level> is
    • Disk if the packlet is a disk packlet (NTLX06)
    • Tape if the packlet is a tape packlet (NTLX07)
    In response, the system displays the specified MAP level.

47  Manually busy the packlet. Type
    >BSY <nn> <s> L FORCE
    and press the Enter key.
    where
    <nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18
    <s> is the side parameter value - front (f) or rear (r)
    For example, to busy the packlet in slot 2, front, lower, type
    >BSY 2 F L FORCE
    and press the Enter key.

Map response

Warning: Bsy command will take it out of service.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"): 
Upgrading IOP firmware on the occasion of a software upgrade

48 Confirm the action. Type
>Y
and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 49</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

49 Move to the IOP MAP level. Type
>IOP
and press the Enter key.
In response, the system displays the IOP MAP level.

50 Find out which FW firmware load is currently in the IOP circuit pack that you selected in step 17. Type
>QUERY CARD <nn> <s>
and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packet - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

Map response
Command submitted.
.
.
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- -------------- -- -- -------------- --------
<version>

where

<version> identifies the firmware load currently in the circuit pack
Upgrading IOP firmware on the occasion of a software upgrade

51

CAUTION
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

Manually busy the IOP circuit pack. Type

>BSY <nn> <s> FORCE

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

For example, to busy the IOP circuit pack in slot 2, front, type

>BSY 2 F FORCE

and press the Enter key.

Map response

Warning: Bsy command will take it out of service. Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

52

Confirm the action. Type

>Y

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command completed</th>
<th>Do step 53</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

53

Load the new FW firmware version. Type

>LOADFW <nn> <s> FILE NEW

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)
Upgrading IOP firmware on the occasion of a software upgrade

For example, to load new firmware into the IOP circuit pack at slot 2, front, type

```
>LOADFW 2 F FILE NEW
```

and press the Enter key.

In response, the system asks you to confirm the LOADFW command.

54 Confirm the LOADFW command. Type

```
>Y
```

and press the Enter key.

*Map response, assuming you entered the example command from the preceding step*

Command submitted
LoadFW 2 Front fw copied to SM
LoadFW 2 Front bank 1 erased
LoadFW 2 Front bank 1 programmed
LoadFW 2 Front bank 1 loaded and tested
LoadFW 2 Front bank 0 erased
LoadFW 2 Front bank 0 programmed
LoadFW 2 Front bank 0 loaded and tested
LoadFW 2 Front completed

<table>
<thead>
<tr>
<th>If the response indicates that the LOADFW command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 55</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

55 Return the IOP circuit pack to service. Type

```
>RTS <nn> <s>
```

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 56</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>
If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the appropriate alarm-clearing procedure and return to this point when finished. If no alarms other than FWVERS and FWSOAK occur, go to step 57.

**Note 1:** The FWVERS alarm will occur during this procedure. The alarm will clear only when (1) all items of a particular FRU and PEC have been upgraded and (2) you have updated table XAFWLOAD to change the status of the newly delivered FW firmware load from “new” to “current”. (You change the status to “current” in step 73.)

**Note 2:** The FWSOAK alarm will occur during this procedure if table XAFWLOAD lists a non-zero soak time for the newly delivered firmware load. If there is a non-zero soak value, the system raises the FWSOAK alarm when the circuit pack or packet is returned to service, and clears the alarm when the soak time expires.

Check that the new firmware load is now in the IOP circuit pack. Type

```
>QUERY CARD <nn> <s>
```

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packet - 1 to 18
- `<s>` is the side parameter value - front (f) or rear (r)

**Map response**

Command submitted.

```
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------
<version>
```

where

- `<version>` identifies the firmware load currently in the circuit pack

Move to the MAP level for the packlet that occupies the upper position in the IOP circuit pack, as identified in step 18. Type

```
<level>
```

and press the Enter key

where

- `<level>` is
  - Disk if the packlet is a disk packlet (NTLX06)
  - Tape if the packlet is a tape packlet (NTLX07)
  - AMDI if the packlet is an AMDI packlet (NTLX05BA)
  - CMIC is the packlet is a CMIC packlet (NTLX05AA or NTLX05AB)
  - ETHR is the packlet is an ethernet packlet (NTLX09AA)
  - RTIF if the packlet is an RTIF packlet (NTLX08AA)

In response, the system displays the specified MAP level.
Upgrading IOP firmware on the occasion of a software upgrade

59 Return the packlet to service. Type

>RTS <nn> <s> U

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

For example, to return to service the packlet in slot 2, front, upper, type

>RTS 2 F U

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 60</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

60 Move to the MAP level for the packlet that occupies the lower position in the IOP circuit pack, as identified in step 18. Type

[level]

and press the Enter key

where

[level] is

• Disk if the packlet is a disk packlet (NTLX06)
• Tape if the packlet is a tape packlet (NTLX07)
• AMDI if the packlet is an AMDI packlet (NTLX05BA)
• CMIC is the packlet is a CMIC packlet (NTLX05AA or NTLX05AB)
• ETHR is the packlet is an ethernet packlet (NTLX09AA)
• RTIF if the packlet is an RTIF packlet (NTLX08AA)

In response, the system displays the specified MAP level.

61 Return the packlet to service. Type

>RTS <nn> <s> L

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18
<s> is the side parameter value - front (f) or rear (r)
Upgrading IOP firmware on the occasion of a software upgrade

For example, to return to service the packlet in slot 4, rear, lower, type

>RTS 4 R L

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 40</td>
</tr>
<tr>
<td>failed</td>
<td>step 33</td>
</tr>
</tbody>
</table>

62 Move to the IOP MAP level. Type

>IOP

and press the Enter key.

In response, the system displays the IOP MAP level.

63 Edit table XAFWLOAD to reverse what you did in step 42. Proceed as follows.

a Access table XAFWLOAD. Type

>TABLE XAFWLOAD

and press the Enter key.

Map response:

TABLE: XAFWLOAD

b Use the POS command to move to the tuple listing the new firmware load for the IOP circuit pack. Type

POS <key-value>

and press the Enter key

where

<key-value> is the index value that you recorded in step 8 or in step 12

c Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading IOP firmware on the occasion of a software upgrade

d  Update the VOLUME field. Change the second and third characters in the field, to reverse the change you made in step 42d.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: IOP
> PEC: NTLX03AA
> VERSION: XAIO01PB
> VOLUME: F17LFWLOADS
  F02LFWLOADS
FILE: IOPFW672
> LOADTYPE: FW
> STATUS: new
> SOAK: 0

After obtaining the edited field values, the system responds as follows:

TUPLE TO BE CHANGED:
10 IOP NTLX03AA XAIO01PB F02LFWLOADS IOPFW672 FW
new 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

e  Confirm the change. Type

>Y

and press the Enter key.

Map response:

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 521
Upgrading IOP firmware on the occasion of a software upgrade

64  List all the tuples. Type

   >LIST ALL

   and press the Enter key.

   Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RA</td>
<td>F02LFWLOADS</td>
<td>XHO01X0C</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RB</td>
<td>F02LFWLOADS</td>
<td>XHO01X0D</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHIO03AA</td>
<td>F02LFWLOADS</td>
<td>XCI001GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AM01</td>
<td>NTLX05AA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01PB</td>
<td>F02LFWLOADS</td>
<td>IOPFW672</td>
<td>FW</td>
<td>new</td>
<td>48</td>
</tr>
</tbody>
</table>

65  Look for tuples listing the current FW firmware load for the IOP circuit pack. (The FRU and PEC fields identify the component; the STATUS field indicates new, current, or old.) Write down the index value of the tuple.

   Note: If you do not find a “current” tuple, that is not a problem.

66  Select the next step as follows:

   If there is | Do
   |---------------|--------|
   a tuple listing a current FW firmware load for the component | step 67 |
   NOT a tuple listing a current FW firmware load for the component | step 71 |

67  Use the POS command to move to the tuple listing the current firmware load. Type

   >POS <key-value>

   and press the Enter key.

   where

   <key-value> is the index value identifying the tuple

68  You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

   >CHA

   and press the Enter key.

   In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading IOP firmware on the occasion of a software upgrade

Update the tuple by changing the value of the STATUS field from “current” to “old”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

```
FRU: IOP
> PEC: NTLX03AA
> VERSION: XAIO01PA
> VOLUME: F02LFWLOADS
> FILE: IOPFW588
> LOADTYPE: FW
> STATUS: current
> old
> SOAK: 0
>
```

After obtaining the edited field values, the system responds as follows.

Map response

```
TUPLE TO BE CHANGED:
3 IOP NTLX03AA XAIO01PA F02LFWLOADS IOPFW588 FW old 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
```

Confirm the change. Type

```
> Y
```

and press the Enter key.

Map response

```
TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 604
```

Use the POS command to move to the tuple listing the new firmware load. Type

```
> POS <key-value>
```

where

```
<key-value> is the index value that you recorded in step 8 or in step 12
```

You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

```
> CHA
```

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading IOP firmware on the occasion of a software upgrade (end)

73 Update the tuple by changing the value of the STATUS field from “new” to “current”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: IOP
PEC: NTLX03AA
VERSION: XAIO01PB
VOLUME: F02LFWLOADS
FILE: IOPFW672
LOADTYPE: FW
STATUS: new
>current
SOAK: 0

After obtaining the edited field values, the system responds as follows.

Map response
TUPLE TO BE CHANGED:
10 IOP NTLX03AA XAIO01PB F02LFWLOADS IOPFW672 FW current 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

74 Confirm the change. Type
>Y
and press the Enter key.

Map response
TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 522

75 Exit from the table editor. Type
>QUIT
and press the Enter key.

76 You have completed the procedure.
Upgrading HIOP firmware on the occasion of a software upgrade

Application

Use this procedure only when directed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not use this procedure on any other occasion.

Use this procedure to upgrade the firmware in all instances of the NTLX04 HIOP circuit pack in the XA-Core shelf.

*Note:* If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

HIOP circuit packs have two firmware loads: the FW load, also referred to as ROM, and the DLL load, also referred to as RAM. You may need to upgrade only one of the loads, or both of the loads. This procedure covers all the possibilities: FW only, DLL only, both FW and DLL.

Here are answers to frequently asked questions.

- The sequence of steps in the procedure directs you to upgrade the firmware in one HIOP circuit pack at a time. That is the proper sequence. Do not try to upgrade two or more HIOP circuit packs in parallel.
- In all cases in which a soak is necessary, the system performs the soak automatically. You do not need to take any action regarding soak.

Interval

Perform this procedure only when instructed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not perform this procedure on any other occasion.

For information about when to upgrade firmware, see the “Interval” section of procedure “Upgrading firmware on the occasion of a software upgrade”.

Common procedures

This procedure does not refer to any common procedures.

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Upgrading HIOP firmware on the occasion of a software upgrade

Summary of upgrading the HIOP firmware on the occasion of a software upgrade

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.

Start

Is there new FW firmware?

YES

Update XAFWLOAD so that the new FW firmware load is listed as “new”

NO

Is there new DLL firmware?

YES

Update XAFWLOAD so that the new DLL firmware load is listed as “current”

NO

Select an HIOP circuit pack in which to upgrade the firmware

Upgrade the firmware in the selected HIOP circuit pack

YES

HIOPs remaining to be upgraded?

NO

FW firmware has been upgraded?

YES

Update XAFWLOAD so that the new FW firmware load is listed as “current”

NO

End
Upgrading HIOP firmware on the occasion of a software upgrade

CAUTION
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

CAUTION
File/volume/version names
The file names, volume names, and version names used in this procedure are only examples. For the correct names to use, refer to the Peripheral Module Software Release Document and refer to table XAFWLOAD.

At the MAP terminal

1  Access table XAFWLOAD. Type
   >TABLE XAFWLOAD
   and press the Enter key.
   Map response
   TABLE: XAFWLOAD

2  Select the next step as follows:

<table>
<thead>
<tr>
<th>If the PM load tape</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>contained a new firmware load of loadtype FW for HIOP circuit packs</td>
<td>step 3</td>
</tr>
<tr>
<td>did not contain a new firmware load of loadtype FW for HIOP circuit packs</td>
<td>step 13</td>
</tr>
</tbody>
</table>

3  List all the tuples in table XAFWLOAD. Type
   >LIST ALL
   and press the Enter key.
# Upgrading HIOP firmware on the occasion of a software upgrade

## Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>PENLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>PENLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>PENLX03AA</td>
<td>XAI001PA</td>
<td>F02LFWLOADS</td>
<td>IOFW5588 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>PENLX04BA</td>
<td>XAI003RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XC FW</td>
<td>current</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>PENLX04BA</td>
<td>XAI003RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XD DLL</td>
<td>current</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>PENLX17AA</td>
<td>XHI003XA</td>
<td>F02LFWLOADS</td>
<td>XCI001GG FW</td>
<td>current</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>PENLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>PENLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>PENLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>EFW322 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The firmware load names shown throughout this procedure are fictitious and are for illustrative purposes only. For information on the actual firmware loads, see the Peripheral Module Software Release Document.

4. Look for tuples listing the new and current firmware loads of loadtype FW for HIOP circuit packs. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

**Note:** If you do not find a “new” tuple or a “current” tuple for loadtype FW for HIOP circuit packs, that is not a problem.

5. Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype FW for HIOP circuit packs</td>
<td>step 6</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype FW for HIOP circuit packs</td>
<td>step 11</td>
</tr>
</tbody>
</table>

6. Use the POS command to move to the tuple listing the new firmware load of loadtype FW. Type

```
>POS <key-value>
```

and press the Enter key

where

<key-value> is the index value identifying the tuple

7. You are going to change the tuple to point to the newly delivered FW load for HIOP circuit packs. Indicate that you intend to change the tuple. Type

```
>CHA
```

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading HIOP firmware on the occasion of a software upgrade

8 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered FW firmware load for HIOP circuit packs. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: HIOP
> PEC: NTLX04BA
> VERSION: XHIO03RA
> XHIO03RC
VOLUME: F02LFWLOADS
> FILE: XAI001XC
> XAI001XR
LOADTYPE: FW
> STATUS: new
> SOAK: 0

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
21 HIOP NTLX04BA XHIO03RC F02LFWLOADS XAI001XR FW new 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

9 Confirm the change. Type

>Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 519

10 You found and updated a tuple listing a new firmware load of type FW for the HIOP circuit pack. Therefore, you do not need to add such a tuple. Go to step 13.

11 You are going to add a tuple listing the newly delivered FW firmware load for the HIOP circuit pack. Indicate that you intend to add a tuple. Type

>ADD

and press the Enter key.
Upgrading HIOP firmware on the occasion of a software upgrade

In response, the system prompts you to specify the values for the fields that compose the tuple. The following example uses sample values to show how you might respond to the prompts:

Example

FRU:     >HIOP
PEC:      >NTLX04BA
VERSION: >XHIO03RC
VOLUME:   >F02LFWLOADS
FILE:     >XAI001XR
LOADTYPE: >FW
STATUS:   >new
SOAK:     >0

Note: If the table already contains a tuple listing the current firmware load for the component, use the same soak value as found in that tuple. Otherwise, call the next level of support for advice about the soak time.

After obtaining the field values, the system responds as follows.

Map response

TUPLE TO BE ADDED:
10 HIOP NTLX04BA XHIO03RC F02LFWLOADS XAI001XR FW new 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

12 Confirm the addition. Type

>Y

and press the Enter key.

Map response

TUPLE ADDED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 597

13 Select the next step as follows:

<table>
<thead>
<tr>
<th>If the PM load tape</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>contained a new firmware load of loadtype DLL for HIOP</td>
<td>step 14</td>
</tr>
<tr>
<td>circuit packs</td>
<td></td>
</tr>
<tr>
<td>did not contain a new firmware load of loadtype DLL for</td>
<td></td>
</tr>
<tr>
<td>HIOP circuit packs</td>
<td>step 33</td>
</tr>
</tbody>
</table>

14 List all the tuples in table XAFWLOAD. Type

>LIST ALL

and press the Enter key.
Upgrading HIOP firmware on the occasion of a software upgrade

Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO001PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO003RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO003RB</td>
<td>F02LFWLOADS</td>
<td>XHIO01XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHIO003X</td>
<td>F02LFWLOADS</td>
<td>XCI001GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO003RC</td>
<td>F02LFWLOADS</td>
<td>XHI001YR</td>
<td>FW</td>
<td>NEW</td>
<td>0</td>
</tr>
</tbody>
</table>

15 Look for tuples listing the new and current firmware loads of loadtype DLL for HIOP circuit packs. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

Note: If you do not find a “new” tuple or a “current” tuple for loadtype DLL for HIOP circuit packs, that is not a problem.

16 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype DLL for HIOP circuit packs</td>
<td>step 17</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype DLL for HIOP circuit packs</td>
<td>step 22</td>
</tr>
</tbody>
</table>

17 Use the POS command to move to the tuple listing the new firmware load of loadtype DLL. Type

>`POS <key-value>`

and press the Enter key

where

`<key-value>` is the index value identifying the tuple

18 You are going to change the tuple to point to the newly delivered DLL load for HIOP circuit packs. Indicate that you intend to change the tuple. Type

>`CHA`

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

19 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered DLL firmware load for HIOP circuit packs. For the other fields, just press the Enter key to retain the existing values.
Upgrading HIOP firmware on the occasion of a software upgrade

The following example uses sample values to show how you might respond to the prompts:

**Example**

```
FRU: HIOP
> PEC: NTLX04BA
> VERSION: XHIO03RB
> XHIO03RD
VOLUME: F02LFWLOADS
> FILE: XAIO01XD
> XAIO01XS
LOADTYPE: FW
> STATUS: new
> SOAK: 0
>
```

After obtaining the edited field values, the system responds as follows.

**Map response**

```
TUPLE TO BE CHANGED:
21 HIOP NTLX04BA XHIO03RD F02LFWLOADS XAIO01XS FW new 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
```

20 **Confirm the addition. Type**

```
> Y
```

and press the Enter key.

**Map response**

```
TUPLE ADDED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 520
```

21 **You found and updated a tuple listing a new firmware load of type DLL for HIOP circuit packs. Therefore, you do not need to add such a tuple. Go to step 24.**
Upgrading HIOP firmware on the occasion of a software upgrade

22  You are going to add a tuple listing the newly delivered DLL firmware load for the HIOP circuit pack. Indicate that you intend to add a tuple. Type

\>ADD

and press the Enter key.

In response, the system prompts you to specify the values for the fields that compose the tuple. The following example uses sample values to show how you might respond to the prompts:

Example

FRU:
>HIOP
PEC:
>NTLX04BA
VERSION:
>XHIO03RD
VOLUME:
>F02LFWLOADS
FILE:
>XAIO01XS
LOADTYPE:
>DLL
STATUS:
>new
SOAK:
>0

Note: If the table already contains a tuple listing the current firmware load for the component, use the same soak value as found in that tuple. Otherwise, call the next level of support for advice about the soak time.

After obtaining the field values, the system responds as follows.

Map response

TUPLE TO BE ADDED:
11 HIOP NTLX04BA XHIO03RD F02LFWLOADS XAIO01XS DLL new 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

23  Confirm the addition. Type

\>Y

and press the Enter key.

Map response

TUPLE ADDED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 598

Note: There will be a delay of up to one minute before the MAP response and prompt return.

24  Select the next step as follows:

<table>
<thead>
<tr>
<th>If, for the DLL firmware for HIOP circuit packs</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>table XAFWLOAD already contains a “current” tuple</td>
<td>step 25</td>
</tr>
<tr>
<td>table XAFWLOAD does not contain a “current” tuple</td>
<td>step 29</td>
</tr>
</tbody>
</table>
Upgrading HIOP firmware on the occasion of a software upgrade

25 Use the POS command to move to the tuple listing the current DLL firmware load for HIOP circuit packs. Type

>POS <key-value>

and press the Enter key

where

<key-value> is the index value identifying the tuple

26 You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

27 Update the STATUS field to specify that this is an old DLL load. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

**Example**

<table>
<thead>
<tr>
<th>FRU: HIOP</th>
<th>&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC: NTLX04BA</td>
<td>&gt;</td>
</tr>
<tr>
<td>VERSION: XHIO03RB</td>
<td>&gt;</td>
</tr>
<tr>
<td>VOLUME: F02LFWLOADS</td>
<td>&gt;</td>
</tr>
<tr>
<td>FILE: XHIO01XD</td>
<td>&gt;</td>
</tr>
<tr>
<td>LOADTYPE: DLL</td>
<td>&gt;</td>
</tr>
<tr>
<td>STATUS: current</td>
<td>&gt;old</td>
</tr>
<tr>
<td>SOAK: 0</td>
<td>&gt;</td>
</tr>
</tbody>
</table>

After obtaining the edited field values, the system responds as follows.

**Map response**

TUPLE TO BE CHANGED:

5 HIOP NTLX04BA XHIO03RB F02LFWLOADS XHIO01XD DLL old 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

28 Confirm the change. Type

>Y

and press the Enter key.

**Map response**

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 599
Upgrading HIOP firmware on the occasion of a software upgrade

29 Use the POS command to move to the tuple listing the newly delivered DLL firmware load. Type

>`POS <key-value>

and press the Enter key

where

<key-value> is the index value identifying the tuple

30 You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

>`CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

31 Update the STATUS field to specify that this is the current DLL load. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

**Example**

FRU: HIOP

>`PEC: NTLX04BA

>`VERSION: XHIO03RD

>`VOLUME: F02LFWLOADS

>`FILE: XHIO01XS

>`LOADTYPE: DLL

>`STATUS: current

>`current

SOAK: 0

After obtaining the edited field values, the system responds as follows.

**Map response**

TUPLE TO BE CHANGED:

11 HIOP NTLX04BA XHIO03RD F02LFWLOADS XHIO01XS DLL current 0

ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

32 Confirm the change. Type

>`Y

and press the Enter key.

**Map response**

TUPLE CHANGED.

WRITTEN TO JOURNAL FILE AS JF NUMBER 600
Upgrading HIOP firmware on the occasion of a software upgrade

33 Exit from the table editor. Type
>QUIT
and press the Enter key.

34 Go to the MAP level for the HIOP circuit pack. Type
>MAPCI;MT;XAC;IO
and press the Enter key.

35 Select an HIOP circuit pack whose firmware needs to be upgraded.

36 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>there is a new FW load but not a new DLL load</td>
<td>step 39</td>
</tr>
<tr>
<td>there is a new FW load and a new DLL load</td>
<td>step 39</td>
</tr>
<tr>
<td>there is a new DLL load but not a new FW load</td>
<td>step 37</td>
</tr>
</tbody>
</table>

37

**CAUTION**
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

Manually busy the HIOP circuit pack. Type
>BSY <nn> <s> FORCE
and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack that is to be upgraded - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

For example, to busy the HIOP circuit pack in slot 5, rear, type
>BSY 5 R FORCE
and press the Enter key.

*Map response*

Warning: Bsy command will take it out of service.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

38 Go to step 44.
Upgrading HIOP firmware on the occasion of a software upgrade

39 Find out which FW firmware load is currently in the HIOP circuit pack that you selected in step 35. Type

>QUERY CARD <nn> <s>
and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

Map response

Command submitted.


Pos Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------

Für <FW_version>
<DLL_version>

where

<FW_version> identifies the FW firmware load currently in the circuit pack
<DLL_version> identifies the DLL firmware load currently in the circuit pack

40

CAUTION
Possible service impact
The busy command may jeopardize redundancy.
Perform this procedure during time periods of low traffic.

Manually busy the HIOP circuit pack. Type

>BSY <nn> <s> FORCE
and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack that is to be upgraded - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

For example, to busy the HIOP circuit pack in slot 5, rear, type

>BSY 5 R FORCE
and press the Enter key.
Upgrading HIOP firmware on the occasion of a software upgrade

Map response
Warning: Bsy command will take it out of service.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

41 Confirm the action. Type
>Y
and press the Enter key.

If the response indicates that the Bsy Force command

<table>
<thead>
<tr>
<th>completed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 42</td>
</tr>
<tr>
<td></td>
<td>step 45</td>
</tr>
</tbody>
</table>

42 Load the new FW firmware version. Type
>LOADFW <nn> <s> FILE NEW
and press the Enter key.
where

<n> is the slot number parameter value to indicate the number of the
physical shelf slot containing the circuit pack that is to be upgraded - 1 to 18
<s> is the side parameter value - front (f) or rear (r)
For example, to load new firmware into the HIOP circuit pack at slot 5, rear,
type
>LOADFW 5 R FILE NEW
and press the Enter key.
In response, the system asks you to confirm the LOADFW command.

43 Confirm the LOADFW command. Type
>Y
and press the Enter key.

Map response, assuming you entered the example command from the preceding step
Command submitted
LoadFW 5 Rear fw copied to SM
LoadFW 5 Rear bank 1 erased
LoadFW 5 Rear bank 1 programmed
LoadFW 5 Rear bank 1 loaded and tested
LoadFW 5 Rear bank 0 erased
LoadFW 5 Rear 0 programmed
LoadFW 5 Rear bank 0 loaded and tested
LoadFW 5 Rear completed
Upgrading HIOP firmware on the occasion of a software upgrade

<table>
<thead>
<tr>
<th>If the response indicates that the LOADFW command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 44</td>
</tr>
<tr>
<td>failed</td>
<td>step 45</td>
</tr>
</tbody>
</table>

44 Return the HIOP circuit pack to service. (During the return to service, the system automatically loads the DLL firmware whose status is “current”.) Type 

>RTS <nn> <s>

and press the Enter key.

where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack that is to be upgraded - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 46</td>
</tr>
<tr>
<td>failed</td>
<td>step 45</td>
</tr>
</tbody>
</table>

45 For additional help, call the next level of support.

46 If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the appropriate alarm-clearing procedure and return to this point when finished. If no alarms other than FWVERS and FWSOAK occur, go to step 47.

Note 1: The FWVERS alarm will occur during this procedure. The alarm will clear only when (1) all items of a particular FRU and PEC have been upgraded and (2) you have updated table XAFWLOAD to change the status of the newly delivered FW firmware load from “new” to “current”. (You change the status to “current” in step 60.)

Note 2: The FWSOAK alarm will occur during this procedure if table XAFWLOAD lists a non-zero soak time for the newly delivered firmware load. If there is a non-zero soak value, the system raises the FWSOAK alarm when the circuit pack is returned to service, and clears the alarm when the soak time expires.

47 Check that the new firmware load is now in the HIOP circuit pack. Type 

>QUERY CARD <nn> <s>

and press the Enter key.

where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack - 1 to 18
<s> is the side parameter value - front (f) or rear (r)
Upgrading HIOP firmware on the occasion of a software upgrade

Map response
Command submitted.
.
.
Pos   Type    PEC+   HW   Rel   BL   OK   Serial Number   FW Vers.
----- ---- ----------- -- -- ------------- --------

<FW_version>
<DLL_version>

where
<FW_version> identifies the FW firmware load currently in the circuit pack
<DLL_version> identifies the DLL firmware load currently in the circuit pack

Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you have upgraded the firmware in all the HIOP</td>
<td>step 49</td>
</tr>
<tr>
<td>circuit packs in the XA-Core shelf</td>
<td></td>
</tr>
<tr>
<td>you have not yet upgraded the firmware in all the HIOP</td>
<td>step 35</td>
</tr>
<tr>
<td>circuit packs in the XA-Core shelf</td>
<td></td>
</tr>
</tbody>
</table>

Select the next step as follows:

If you have upgraded

<table>
<thead>
<tr>
<th>Do</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>only the DLL firmware for</td>
<td>step 63</td>
</tr>
<tr>
<td>HIOP circuit packs</td>
<td></td>
</tr>
<tr>
<td>only the FW firmware for</td>
<td>step 50</td>
</tr>
<tr>
<td>HIOP circuit packs</td>
<td></td>
</tr>
<tr>
<td>both the FW firmware and</td>
<td>step 50</td>
</tr>
<tr>
<td>the DLL firmware for</td>
<td></td>
</tr>
<tr>
<td>HIOP circuit packs</td>
<td></td>
</tr>
</tbody>
</table>

Access table XAFWLOAD. Type
>TABLE XAFWLOAD
and press the Enter key.

Map response
TABLE XAFWLOAD

List all the tuples. Type
>LIST ALL
and press the Enter key.
Upgrading HIOP firmware on the occasion of a software upgrade

Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01PA</td>
<td>F02LFWLOADS</td>
<td>IOFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03BB</td>
<td>F02LFWLOADS</td>
<td>XHIO01XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHI003XA</td>
<td>F02LFWLOADS</td>
<td>XCI001GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETAB</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>EFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RC</td>
<td>F02LFWLOADS</td>
<td>XCI001XR</td>
<td>FW</td>
<td>new</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RD</td>
<td>F02LFWLOADS</td>
<td>XCI001XS</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
</tbody>
</table>

52 Look for tuples listing the current and new FW firmware loads for HIOP circuit packs. (The FRU and PEC fields identify the component; the STATUS field indicates new, current, or old.) Write down the index values of the tuples.

Note: If you do not find a “current” tuple matching the component/loadtype combination, that is not a problem.

53 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a current FW firmware load for the component</td>
<td>step 54</td>
</tr>
<tr>
<td>NOT a tuple listing a current FW firmware load for the component</td>
<td>step 58</td>
</tr>
</tbody>
</table>

54 Use the POS command to move to the tuple listing the current FW firmware load. Type

>POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

55 You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading HIOP firmware on the occasion of a software upgrade

56 Update the tuple by changing the value of the STATUS field from “current” to “old”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: HIOP
> PEC: NTLX04BA
> VERSION: XAIO03RA
> VOLUME: F02LFWLOADS
> FILE: XHIO01XC
> LOADTYPE: FW
> STATUS: current
> old
> SOAK: 0
>

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
4 HIOP NTLX04BA XAIO03RA F02LFWLOADS XHIO01XC FW old 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

57 Confirm the change. Type

> Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 604

58 Use the POS command to move to the tuple listing the new FW firmware load. Type

> POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

59 You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

> CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading HIOP firmware on the occasion of a software upgrade (end)

60 Update the tuple by changing the value of the STATUS field from “new” to “current”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: HIOP
> PEC: NTLX04BA
> VERSION: XAIO03RC
> VOLUME: F02LFWLOADS
> FILE: XHI001YR
> LOADTYPE: FW
> STATUS: new
> **current**
> SOAK: 0
>

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
10 HIOP NTLX04BA XXIO03RC F02LFWLOADS XHI001YR FW current 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

61 Confirm the change. Type

>Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 605

62 Exit from the table editor. Type

>QUIT

and press the Enter key.

63 You have completed the procedure.
This page is left blank intentionally.
Upgrading HCMIC firmware on the occasion of a software upgrade

Application

Use this procedure only when directed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not use this procedure on any other occasion.

Use this procedure to upgrade the firmware in all instances of the NTLX17 HCMIC circuit pack in the XA-Core shelf.

Note: If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

Here are answers to frequently asked questions.

• The sequence of steps in the procedure directs you to upgrade the firmware in one HCMIC circuit pack at a time. That is the proper sequence. Do not try to upgrade two or more HCMIC circuit packs in parallel.

• In all cases in which a soak is necessary, the system performs the soak automatically. You do not need to take any action regarding soak.

Interval

Perform this procedure only when instructed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not perform this procedure on any other occasion.

For information about when to upgrade firmware, see the “Interval” section of procedure “Upgrading firmware on the occasion of a software upgrade”.

Common procedures

This procedure does not refer to any common procedures.

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Upgrading HCMIC firmware on the occasion of a software upgrade

Summary of upgrading the HCMIC firmware on the occasion of a software upgrade

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

Start

Update XAFWLOAD so that the new FW firmware load is listed as “new”

Select an HCMIC circuit pack in which to upgrade the firmware

Upgrade the firmware in the selected HCMIC circuit pack

YES

HCMICs remaining to be upgraded?

NO

Update XAFWLOAD so that the new FW firmware load is listed as “current”

End
Upgrading HCMIC firmware on the occasion of a software upgrade

Introduction to routine maintenance procedures

Upgrading the HCMIC firmware on the occasion of a software upgrade

**CAUTION**
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

**CAUTION**
File/volume/version names
The file names, volume names, and version names used in this procedure are only examples. For the correct names to use, refer to the Peripheral Module Software Release Document and refer to table XAFWLOAD.

**At the MAP terminal**

1. Access table XAFWLOAD. Type

   ```
 >TABLE XAFWLOAD
   ```

   and press the Enter key.

   **Map response**

   ```
 TABLE: XAFWLOAD
   ```

2. List all the tuples in table XAFWLOAD. Type

   ```
 >LIST ALL
   ```

   and press the Enter key.

   **Map response**

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAI001PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAI003RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAI003RB</td>
<td>F02LFWLOADS</td>
<td>XHIO01XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHI003XA</td>
<td>F02LFWLOADS</td>
<td>XCI001GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
</tbody>
</table>

**Note:** The firmware load names shown throughout this procedure are fictitious and are for illustrative purposes only. For information on the actual firmware loads, see the Peripheral Module Software Release Document.
Upgrading HCMIC firmware on the occasion of a software upgrade

3 Look for tuples listing the new and current firmware loads of loadtype FW for the HCMIC circuit pack. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

   Note: If you do not find a “new” tuple or a “current” tuple for loadtype FW for the HCMIC circuit pack, that is not a problem.

4 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype FW for the HCMIC circuit pack</td>
<td>step 5</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype FW for the HCMIC circuit pack</td>
<td>step 10</td>
</tr>
</tbody>
</table>

5 Use the POS command to move to the tuple listing the new firmware load of loadtype FW. Type

>POS <key-value>

and press the Enter key
where

<key-value> is the index value identifying the tuple

6 You are going to change the tuple to point to the newly delivered FW load for the HCMIC circuit pack. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

7 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered FW firmware load for the HCMIC circuit pack. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: HIOP
>
PCE: NTLX17AA
>
VERSION: XHIO03XA
> XHIO03XB
VOLUME: F02LFWLOADS
>
FILE: XClO01GG
> XClO01GK5
LOADTYPE: FW
>
STATUS: new
Upgrading HCMIC firmware on the occasion of a software upgrade

> SOAK: 48
>
After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
18 HIOPI NTLX17AA XHIO03XB F02LFWLOADS XCI001GK FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

8 Confirm the change. Type
> Y
and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 519

9 You found and updated a tuple listing a new firmware load of type FW for the HCMIC circuit pack. Therefore, you do not need to add such a tuple. Go to step 12.

10 You are going to add a tuple listing the newly delivered FW firmware load for the HCMIC circuit pack. Indicate that you intend to add a tuple. Type

> ADD

and press the Enter key.

In response, the system prompts you to specify the values for the fields that compose the tuple. The following example uses sample values to show how you might respond to the prompts:

Example

FRU:
> HIOPI
PEC:
> NTLX17AA
VERSION:
> XHIO03XB
VOLUME:
> F02LFWLOADS
FILE:
> XCI001GK
LOADTYPE:
> FW
STATUS:
> new
SOAK:
> 48

Note: If the table already contains a tuple listing the current firmware load for the component, use the same soak value as found in that tuple. Otherwise, call the next level of support for advice about the soak time.
Upgrading HCMIC firmware on the occasion of a software upgrade

After obtaining the field values, the system responds as follows.

Map response
TUPLE TO BE ADDED:
10 HIOP NTLX17AA XHIO03XB F02LFWLOADS XCI001GK FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

11 Confirm the addition. Type
>Y
and press the Enter key.

Map response
TUPLE ADDED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 597

12 Exit from the table editor. Type
>QUIT
and press the Enter key.

13 Go to the MAP level for the HCMIC circuit pack. Type
>MAPCI;MTC;XAC;IO
and press the Enter key.

14 Select an HCMIC circuit pack whose firmware needs to be upgraded.

15 Find out which FW firmware load is currently in the HCMIC circuit pack that you selected in step 14. Type
>QUERY CARD <nn> <s>
where
<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack - 1 to 18
<s> is the side parameter value - front (f) or rear (r)

Map response
Command submitted.

Pos   Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------

where
<version> identifies the firmware load currently in the circuit pack
Upgrading HCMIC firmware on the occasion of a software upgrade

16

**CAUTION**
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

Manually busy the HCMIC circuit pack. Type

```
>BSY <nn> <s> FORCE
```

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack that is to be upgraded - 1 to 18
- `<s>` is the side parameter value - front (f) or rear (r)

For example, to busy the HCMIC circuit pack in slot 4, rear, type

```
>BSY 4 R FORCE
```

and press the Enter key.

**Map response**

Warning: Bsy command will take it out of service. Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

17

Confirm the action. Type

```
>Y
```

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 18</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>

18

Load the new FW firmware version. Type

```
>LOADFW <nn> <s> FILE NEW
```

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack that is to be upgraded - 1 to 18
- `<s>` is the side parameter value - front (f) or rear (r)
Upgrading HCMIC firmware on the occasion of a software upgrade

For example, to load new firmware into the HCMIC circuit pack at slot 4, rear, type

>`LOADFW 4 R FILE NEW`

and press the Enter key.

In response, the system asks you to confirm the LOADFW command.

19 Confirm the LOADFW command. Type

>`Y`

and press the Enter key.

*Map response, assuming you entered the example command from the preceding step*

<table>
<thead>
<tr>
<th>Command submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoadFW 4 Rear fw copied to SM</td>
</tr>
<tr>
<td>LoadFW 4 Rear bank 1 erased</td>
</tr>
<tr>
<td>LoadFW 4 Rear bank 1 programmed</td>
</tr>
<tr>
<td>LoadFW 4 Rear bank 1 loaded and tested</td>
</tr>
<tr>
<td>LoadFW 4 Rear bank 0 erased</td>
</tr>
<tr>
<td>LoadFW 4 Rear 0 programmed</td>
</tr>
<tr>
<td>LoadFW 4 Rear bank 0 loaded and tested</td>
</tr>
<tr>
<td>LoadFW 4 Rear completed</td>
</tr>
</tbody>
</table>

If the response indicates that the LOADFW command

| completed | Do | failed | step 20 | step 21 |

20 Return the HCMIC circuit pack to service. Type

>`RTS <nn> <s>`

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

If the response indicates that the RTS command

| passed | Do | failed | step 22 | step 21 |

21 For additional help, call the next level of support.
### Upgrading HCMIC firmware on the occasion of a software upgrade

22 If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the appropriate alarm-clearing procedure and return to this point when finished. If no alarms other than FWVERS and FWSOAK occur, go to step 23.

**Note 1:** The FWVERS alarm will occur during this procedure. The alarm will clear only when (1) all items of a particular FRU and PEC have been upgraded and (2) you have updated table XAFWLOAD to change the status of the newly delivered FW firmware load from “new” to “current”. (You change the status to “current” in step 35.)

**Note 2:** The FWSOAK alarm will occur during this procedure if table XAFWLOAD lists a non-zero soak time for the newly delivered firmware load. If there is a non-zero soak value, the system raises the FWSOAK alarm when the circuit pack is returned to service, and clears the alarm when the soak time expires.

23 Check that the new firmware load is now in the HCMIC circuit pack. Type

```
>QUERY CARD <nn> <s>
```

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack - 1 to 18
- `<s>` is the side parameter value - front (f) or rear (r)

**Map response**

```
Command submitted.
.
.
.
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------
<version>
```

where

`<version>` identifies the firmware load currently in the circuit pack

24 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you have upgraded the firmware in all the HCMIC circuit packs in the XA-Core shelf</td>
<td>step 25</td>
</tr>
<tr>
<td>you have not yet upgraded the firmware in all the HCMIC circuit packs in the XA-Core shelf</td>
<td>step 14</td>
</tr>
</tbody>
</table>

25 Access table XAFWLOAD. Type

```
>TABLE XAFWLOAD
```

and press the Enter key.

**Map response**

```
TABLE XAFWLOAD
```
Upgrading HCMIC firmware on the occasion of a software upgrade

26 List all the tuples. Type

>LIST ALL

and press the Enter key.

Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAI001PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAI003RA</td>
<td>F02LFWLOADS</td>
<td>XH1001XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAI003RB</td>
<td>F02LFWLOADS</td>
<td>XH1001XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XH1003XAA</td>
<td>F02LFWLOADS</td>
<td>XCI001G</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XH1003XB</td>
<td>F02LFWLOADS</td>
<td>XCI001GK</td>
<td>FW</td>
<td>new</td>
<td>48</td>
</tr>
</tbody>
</table>

27 Look for tuples listing the current and new FW firmware loads for the HCMIC circuit pack. (The FRU and PEC fields identify the component; the STATUS field indicates new, current, or old.) Write down the index values of the tuples.

Note: If you do not find a “current” tuple matching the component/loadtype combination, that is not a problem.

28 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a current FW firmware load for the component</td>
<td>step 29</td>
</tr>
<tr>
<td>NOT a tuple listing a current FW firmware load for the component</td>
<td>step 33</td>
</tr>
</tbody>
</table>

29 Use the POS command to move to the tuple listing the current firmware load. Type

>POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

30 You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading HCMIC firmware on the occasion of a software upgrade

31 Update the tuple by changing the value of the STATUS field from “current” to “old”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: HIOP
PEC: NTLX17AA
VERSION: XHIO03XA
VOLUME: F02LFWLOADS
FILE: XCI001GG
LOADTYPE: FW
STATUS: current
old
SOAK: 48

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
6 HIOP NTLX17AA XHIO03XA F02LFWLOADS XCI001GG FW old 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

32 Confirm the change. Type

>Y
and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 604

33 Use the POS command to move to the tuple listing the new firmware load. Type

>POS <key-value>
and press the Enter key.

where

<key-value> is the index value identifying the tuple

34 You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

>CHA
and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading HCMIC firmware on the occasion of a software upgrade

35 Update the tuple by changing the value of the STATUS field from “new” to “current”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example
FRU: HIOP
> PEC: NTLX17AA
> VERSION: XHIO03XB
> VOLUME: F02LFWLOADS
> FILE: XCI001GK
> LOADTYPE: FW
> STATUS: new
>current
> SOAK: 48
>
After obtaining the edited field values, the system responds as follows.

Map response
TUPLE TO BE CHANGED:
10 HIOP NTLX17AA XHIO03XB F02LFWLOADS XCI001GK FW
current 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

36 Confirm the change. Type
>Y
and press the Enter key.

Map response
TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 520

37 Exit from the table editor. Type
>QUIT
and press the Enter key.

38 You have completed the procedure.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

Application
Use this procedure only when directed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not use this procedure on any other occasion.

Use this procedure to upgrade the firmware in all instances of the NTLX05AB CMIC packlet in the XA-Core shelf.

Note 1: If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

Note 2: In the NTLX05AA CMIC packlet, the firmware is not upgradeable.

Here are answers to frequently asked questions.

• The sequence of steps in the procedure directs you to upgrade the firmware in one NTLX05AB CMIC packlet at a time. That is the proper sequence. Do not try to upgrade two or more NTLX05AB CMIC packlets in parallel.

• In all cases in which a soak is necessary, the system performs the soak automatically. You do not need to take any action regarding soak.

Interval
Perform this procedure only when instructed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not perform this procedure on any other occasion.

For information about when to upgrade firmware, see the “Interval” section of procedure “Upgrading firmware on the occasion of a software upgrade”.

Common procedures
This procedure does not refer to any common procedures.

Action
The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

Summary of upgrading the CMIC-packlet firmware on the occasion of a software upgrade

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

1. **Start**
   - Update XAFWLOAD so that the new FW firmware load is listed as “new”
   - Select a CMIC packlet in which to upgrade the firmware
   - Upgrade the firmware in the selected CMIC packlet
   - **CMICs remaining to be upgraded?**
     - **YES**
       - Update XAFWLOAD so that the new FW firmware load is listed as “current”
     - **NO**
       - End
Upgrading CMIC-packlet firmware on the occasion of a software upgrade

**CAUTION**

Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

**CAUTION**

File/volume/version names
The file names, volume names, and version names used in this procedure are only examples. For the correct names to use, refer to the Peripheral Module Software Release Document and refer to table XAFWLOAD.

**At the MAP terminal**

1. Access table XAFWLOAD. Type
   
   >TABLE XAFWLOAD
   
   and press the Enter key.

   *Map response*
   
   TABLE: XAFWLOAD

2. List all the tuples in table XAFWLOAD. Type
   
   >LIST ALL
   
   and press the Enter key.

   *Map response*

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01PA</td>
<td>F02LFWLOADS</td>
<td>IOFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOIP</td>
<td>NTLX04BA</td>
<td>XAIO03RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RB</td>
<td>F02LFWLOADS</td>
<td>XHIO01XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHIO03XA</td>
<td>F02LFWLOADS</td>
<td>XCI001GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
</tbody>
</table>

**Note:** The firmware load names shown throughout this procedure are fictitious and are for illustrative purposes only. For information on the actual firmware loads, see the Peripheral Module Software Release Document.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

3 Look for tuples listing the new and current firmware loads of loadtype FW for the NTLX05AB CMIC packlet. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

Note: If you do not find a “new” tuple or a “current” tuple for loadtype FW for the NTLX05AB CMIC packlet, that is not a problem.

4 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype FW for the NTLX05AB CMIC packlet</td>
<td>step 5</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype FW for the NTLX05AB CMIC packlet</td>
<td>step 10</td>
</tr>
</tbody>
</table>

5 Use the POS command to move to the tuple listing the new firmware load of loadtype FW. Type

>POS <key-value>

where

<key-value> is the index value identifying the tuple

6 You are going to change the tuple to point to the newly delivered FW load for the NTLX05AB CMIC packlet. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

7 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered FW firmware load for the NTLX05AB CMIC packlet. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: CMIC
>
PEC: NTLX05AB
>
VERSION: PK12CE93
>PK12CE94
VOLUME: F02LFWLOADS
>
FILE: HCFW421
>HCFW425
LOADTYPE: FW
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

> STATUS: new
> SOAK: 48
>
After obtaining the edited field values, the system responds as follows.

*Map response*

TUPLE TO BE CHANGED:
16 CMIC NTLX05AB PK12CE94 F02LFWLOADS HCFW425 FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

8 Confirm the change. Type
>Y
and press the Enter key.

*Map response*

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 519

9 You found and updated a tuple listing a new firmware load of type FW for the
NTLX05AB CMIC packlet. Therefore, you do not need to add such a tuple.
Go to step 12.

10 You are going to add a tuple listing the newly delivered FW firmware load for
the NTLX05AB CMIC packlet. Indicate that you intend to add a tuple. Type
>ADD
and press the Enter key.

In response, the system prompts you to specify the values for the fields that
compose the tuple. The following example uses sample values to show how
you might respond to the prompts:

*Example*

FRU:
> CMIC
PEC:
> NTLX05AB
VERSION:
> PK12CE94
VOLUME:
> F02LFWLOADS
FILE:
> HCFW425
LOADTYPE:
> FW
STATUS:
> new
SOAK:
> 48

*Note:* If the table already contains a tuple listing the current firmware load
for the component, use the same soak value as found in that tuple.
Otherwise, call the next level of support for advice about the soak time.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

After obtaining the field values, the system responds as follows.

*Map response*

**TUPLE TO BE ADDED:**

10 CMIC NTLX05AB PK12CE94 F02LFWLOADS HCFW425 FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

11 Confirm the addition. Type

> Y

and press the Enter key.

*Map response*

**TUPLE ADDED.**

**WRITTEN TO JOURNAL FILE AS JF NUMBER 597**

12 Exit from the table editor. Type

> QUIT

and press the Enter key.

13 Go to the MAP level for the CMIC packlet. Type

> MAPCI;MTC;XAC;CMIC

and press the Enter key.

14 Select an NTLX05AB CMIC packlet whose firmware needs to be upgraded.

15 Find out which FW firmware load is currently in the NTLX05AB CMIC packlet that you selected in step 14. Type

> QUERY CARD <nn> <s> <p>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

*Map response*

Command submitted.

.
.
.

Pos Type PEC+ HW Rel BL OK Serial Number FW Vers.

<version>

where

<version> identifies the firmware load currently in the packlet.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

Manually busy the CMIC packlet. Type

>`BSY <nn> <s> <p> FORCE`

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

For example, to busy the CMIC packlet in slot 5, rear, lower, type

>`BSY 4 R L FORCE`

and press the Enter key.

**Map response**

Warning: Bsy command will take it out of service.
Heroose (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

Confim the action. Type

>`Y`

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 18</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>

CAUTION

Possible service impact

The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

18 Load the new FW firmware version. Type
   \texttt{>LOADFW \langle nn \rangle \ \langle s \rangle \ \langle p \rangle \ FILE \ NEW}
   and press the Enter key.

   where
   \texttt{\langle nn \rangle} is the slot number parameter value to indicate the number of the
   physical shelf slot containing the circuit pack or packlet that is to be upgraded
   - 1 to 18
   \texttt{\langle s \rangle} is the side parameter value - front \texttt{(f)} or rear \texttt{(r)}
   \texttt{\langle p \rangle} indicates the packlet location in an input/output processor (IOP) - upper
   \texttt{(u)} or lower \texttt{(l)}

   For example, to load new firmware into the CMIC packlet at slot 4, rear, lower,
   type
   \texttt{>LOADFW 4 R L FILE \ NEW}
   and press the Enter key.

   In response, the system asks you to confirm the LOADFW command.

19 Confirm the LOADFW command. Type
   \texttt{>Y}
   and press the Enter key.

   \textit{Map response, assuming you entered the example command from the preceding step}

   Command submitted
   LoadFW 4 Rear Lower fw copied to SM
   LoadFW 4 Rear Lower bank 1 erased
   LoadFW 4 Rear Lower bank 1 programmed
   LoadFW 4 Rear Lower bank 1 loaded and tested
   LoadFW 4 Rear Lower bank 0 erased
   LoadFW 4 Rear Lower 0 programmed
   LoadFW 4 Rear Lower bank 0 loaded and tested
   LoadFW 4 Rear Lower completed

<table>
<thead>
<tr>
<th>If the response indicates that the LOADFW command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 20</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

20 Return the CMIC packet to service. Type
   \texttt{>RTS <nn> <s> <p>}
   
   and press the Enter key.

   where
   
   \(<nn>\) is the slot number parameter value to indicate the number of the
   physical shelf slot containing the circuit pack or packet that is to be upgraded
   - 1 to 18
   
   \(<s>\) is the side parameter value - front (f) or rear (r)
   
   \(<p>\) indicates the packet location in an input/output processor (IOP) - upper
   (u) or lower (l)

   
<table>
<thead>
<tr>
<th>If the response indicates that the RTS command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>passed</td>
<td>step 22</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>

21 For additional help, call the next level of support.

22 If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the
   appropriate alarm-clearing procedure and return to this point when finished.
   If no alarms other than FWVERS and FWSOAK occur, go to step 23.

   \textbf{Note 1:} The FWVERS alarm will occur during this procedure. The alarm
   will clear only when (1) all items of a particular FRU and PEC have been
   upgraded and (2) you have updated table XAFWLOAD to change the
   status of the newly delivered FW firmware load from “new” to “current”.
   (You change the status to “current” in step 35.)

   \textbf{Note 2:} The FWSOAK alarm will occur during this procedure if table
   XAFWLOAD lists a non-zero soak time for the newly delivered firmware
   load. If there is a non-zero soak value, the system raises the FWSOAK
   alarm when the circuit pack or packet is returned to service, and clears the
   alarm when the soak time expires.

23 Check that the new firmware load is now in the CMIC packet. Type
   \texttt{>QUERY CARD <nn> <s> <p>}
   
   and press the Enter key.

   where
   
   \(<nn>\) is the slot number parameter value to indicate the number of the
   physical shelf slot containing the packet - 1 to 18
   
   \(<s>\) is the side parameter value - front (f) or rear (r)
   
   \(<p>\) indicates the packet location in an input/output processor (IOP) - upper
   (u) or lower (l)
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

Map response

Command submitted.
.
.
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------

where

(version) identifies the firmware load currently in the packet

24 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you have upgraded the firmware in all</td>
<td>step 25</td>
</tr>
<tr>
<td>the NTLX05AB CMIC packlets in the XA-Core shelf</td>
<td></td>
</tr>
<tr>
<td>you have not yet upgraded the firmware</td>
<td>step 14</td>
</tr>
<tr>
<td>in all the NTLX05AB CMIC packlets in the</td>
<td></td>
</tr>
<tr>
<td>XA-Core shelf</td>
<td></td>
</tr>
</tbody>
</table>

25 Access table XAFWLOAD. Type

>TABLE XAFWLOAD

and press the Enter key.

Map response

TABLE XAFWLOAD

26 List all the tuples. Type

>LIST ALL

and press the Enter key.

Map response

INDEX FRU PEC VERSION VOLUME FILE LOADTYPE STATUS SOAK
1 PE NTLX02CA XAPE01MA F02LFWLOADS PEFW421 FW current 48
2 PE NTLX02DA XAPE01NA F02LFWLOADS PEFW958 FW current 48
3 IOP NTLX03AA XAI001PA F02LFWLOADS I0FFW588 FW current 48
4 HIOP NTLX04BA XAI003RA F02LFWLOADS XH1001XC FW current 0
5 HIOP NTLX04BA XAI003RB F02LFWLOADS XH1001XD DLL current 0
6 HIOP NTLX17AA XH1003XA F02LFWLOADS XC1001GG FW current 72
7 CMIC NTLX05AB PK12CE93 F02LFWLOADS HCFW421 FW current 48
8 AMDI NTLX05BA PK12CE93 F02LFWLOADS HCFW421 FW current 48
9 ETHR NTLX09AA EP14DO95 F02LFWLOADS ETPW3Z2 FW current 48
10 CMIC NTLX05AB PK12CE94 F02LFWLOADS HCFW425 FW new 48
.
.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

27 Look for tuples listing the current and new FW firmware loads for the NTLX05AB CMIC packlet. (The FRU and PEC fields identify the component; the STATUS field indicates new, current, or old.) Write down the index values of the tuples.

*Note:* If you do not find a “current” tuple matching the component/loadtype combination, that is not a problem.

28 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a current FW firmware load for the component</td>
<td>step 29</td>
</tr>
<tr>
<td>NOT a tuple listing a current FW firmware load for the component</td>
<td>step 33</td>
</tr>
</tbody>
</table>

29 Use the POS command to move to the tuple listing the current firmware load. Type

>`POS <key-value>`

and press the Enter key.

where

<key-value> is the index value identifying the tuple

30 You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

>`CHA`

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

31 Update the tuple by changing the value of the STATUS field from “current” to “old”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

December 2005

FRU: CMIC
PECT: NTLX05AB
VERSION: PK12CE93
VOLUME: F02LFWLOADS
FILE: HCFW421
LOADTYPE: FW
STATUS: current
>old
SOAK: 48
>

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
7 CMIC NTLX05AB PK12CE93 F02LFWLOADS HCFW421 FW old 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

32 Confirm the change. Type

>Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 604

33 Use the POS command to move to the tuple listing the new firmware load. Type

>POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

34 You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading CMIC-packlet firmware on the occasion of a s/w upgrade

35 Update the tuple by changing the value of the STATUS field from “new” to “current”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: CMIC
> PEC: NTLX05AB
> VERSION: PK12CE94
> VOLUME: F02LFWLOADS
> FILE: HCFW425
> LOADTYPE: FW
> STATUS: new
> **current**
> SOAK: 48
>

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
10 CMIC NTLX05AB PK12CE94 F02LFWLOADS HCFW425 FW
current 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

36 Confirm the change. Type

>Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 520

37 Exit from the table editor. Type

>QUIT

and press the Enter key.

38 You have completed the procedure.
This page is left blank intentionally.
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

Application
Use this procedure only when directed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not use this procedure on any other occasion.

Use this procedure to upgrade the firmware in all instances of the NTLX05BA AMDI packlet in the XA-Core shelf.

Note: If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

Here are answers to frequently asked questions.

• The sequence of steps in the procedure directs you to upgrade the firmware in one NTLX05BA AMDI packlet at a time. That is the proper sequence. Do not try to upgrade two or more NTLX05BA AMDI packlets in parallel.

• In all cases in which a soak is necessary, the system performs the soak automatically. You do not need to take any action regarding soak.

Interval
Perform this procedure only when instructed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not perform this procedure on any other occasion.

For information about when to upgrade firmware, see the “Interval” section of procedure “Upgrading firmware on the occasion of a software upgrade”.

Common procedures
This procedure does not refer to any common procedures.

Action
The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

Summary of upgrading the AMDI-packlet firmware on the occasion of a software upgrade

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

Start

Update XAFWLOAD so that the new FW firmware load is listed as “new”

Select an AMDI packlet in which to upgrade the firmware

Upgrade the firmware in the selected AMDI packlet

YES

AMDIs remaining to be upgraded?

NO

Update XAFWLOAD so that the new FW firmware load is listed as “current”

End
Upgrading the AMDI-packlet firmware on the occasion of a software upgrade

CAUTION
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

CAUTION
File/volume/version names
The file names, volume names, and version names used in this procedure are only examples. For the correct names to use, refer to the Peripheral Module Software Release Document and refer to table XAFWLOAD.

At the MAP terminal

1. Access table XAFWLOAD. Type
   $>\text{TABELE} \text{XAFWLOAD}$
   and press the Enter key.
   Map response
   $\text{TABLE: XAFWLOAD}$

2. List all the tuples in table XAFWLOAD. Type
   $>\text{LIST ALL}$
   and press the Enter key.
   Map response

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RA</td>
<td>F02LFWLOADS</td>
<td>XHIO01XC</td>
<td>FW</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO03RB</td>
<td>F02LFWLOADS</td>
<td>XHIO01XD</td>
<td>DLL</td>
<td>current</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHIO03XA</td>
<td>F02LFWLOADS</td>
<td>XCI001GG</td>
<td>FW</td>
<td>current</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322</td>
<td>FW</td>
<td>current</td>
<td>48</td>
</tr>
</tbody>
</table>

Note: The firmware load names shown throughout this procedure are fictitious and are for illustrative purposes only. For information on the actual firmware loads, see the Peripheral Module Software Release Document.
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

3 Look for tuples listing the new and current firmware loads of loadtype FW for the NTLX05BA AMDI packlet. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

**Note:** If you do not find a “new” tuple or a “current” tuple for loadtype FW for the NTLX05BA AMDI packlet, that is not a problem.

4 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype FW for the NTLX05BA AMDI packlet</td>
<td>step 5</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype FW for the NTLX05BA AMDI packlet</td>
<td>step 10</td>
</tr>
</tbody>
</table>

5 Use the POS command to move to the tuple listing the new firmware load of loadtype FW. Type

>`POS <key-value>`

and press the Enter key.

where

<key-value> is the index value identifying the tuple

6 You are going to change the tuple to point to the newly delivered FW load for the NTLX05BA AMDI packlet. Indicate that you intend to change the tuple. Type

>`CHA`

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

7 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered FW firmware load for the NTLX05BA AMDI packlet. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

**Example**

```
FRU: AMDI
> PEC: NTLX05BA
> VERSION: PK12CE93
>PK12CE94
VOLUME: F02LFWLOADS
> FILE: HCFW421
>HCFW425
LOADTYPE: FW
```
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

>  
>  
> STATUS: new  
>  
> SOAK: 48  
>  
> After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:  
15 AMDI NTLX05BA PK12CE94 F02LFWLOADS HCFW425 FW new 48  
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

8 Confirm the change. Type

> Y  
and press the Enter key.

Map response

TUPLE CHANGED.  
WRITTEN TO JOURNAL FILE AS JF NUMBER 519

9 You found and updated a tuple listing a new firmware load of type FW for the NTLX05BA AMDI packlet. Therefore, you do not need to add such a tuple. Go to step 12.

10 You are going to add a tuple listing the newly delivered FW firmware load for the NTLX05BA AMDI packlet. Indicate that you intend to add a tuple. Type

> ADD  
and press the Enter key.

In response, the system prompts you to specify the values for the fields that compose the tuple. The following example uses sample values to show how you might respond to the prompts:

Example

FRU:  
> AMDI  
P EC:  
> NTLX05BA  
VERSION:  
> PK12CE94  
VOLUME:  
> F02LFWLOADS  
FILE:  
> HCFW425  
LOADTYPE:  
> FW  
STATUS:  
> new  
SOAK:  
> 48

Note: If the table already contains a tuple listing the current firmware load for the component, use the same soak value as found in that tuple. Otherwise, call the next level of support for advice about the soak time.
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

After obtaining the field values, the system responds as follows.

*Map response*

**TUPLE TO BE ADDED:**
10 AMDI NTLX05BA PK12CE94 F02LFWLOADS HCFW425 FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

11 Confirm the addition. Type

> Y

and press the Enter key.

*Map response*

**TUPLE ADDED.**
**WRITTEN TO JOURNAL FILE AS JF NUMBER 597**

12 Exit from the table editor. Type

> QUIT

and press the Enter key.

13 Go to the MAP level for the AMDI packlet. Type

> MAPCI;MTC;XAC;AMDI

and press the Enter key.

14 Select an AMDI packlet whose firmware needs to be upgraded.

15 Find out which FW firmware load is currently in the AMDI packlet that you selected in step 14. Type

> QUERY CARD <nn> <s> <p>

and press the Enter key.

*where*

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

*Map response*

Command submitted.

```
 Pos Type PEC+ HW Rel BL OK Serial Number FW Vers.
 ----- ---- ------------ -- -- -------------- --------
```

*where*

<version> identifies the firmware load currently in the packlet
### Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

**CAUTION**

Possible service impact

The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

Manually busy the AMDI packet. Type

> BSY <nn> <s> <p> FORCE

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded

<1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

For example, to busy the AMDI packlet in slot 5, rear, lower, type

> BSY 5 R L FORCE

and press the Enter key.

**Map response**

Warning: Bsy command will take it out of service.

Proceed (Y or N)?

Please confirm ("YES", "Y", "NO", or "N"):

Confirm the action. Type

> Y

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command completed</th>
<th>Do step 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

18 Load the new FW firmware version. Type

>`LOADFW <nn> <s> <p> FILE NEW`

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

For example, to load new firmware into the AMDI packlet at slot 5, rear, lower, type

>`LOADFW 5 R L FILE NEW`

and press the Enter key.

In response, the system asks you to confirm the LOADFW command.

19 Confirm the LOADFW command. Type

>`Y`

and press the Enter key.

*Map response, assuming you entered the example command from the preceding step*

Command submitted
LoadFW 5 Rear Lower fw copied to SM
LoadFW 5 Rear Lower bank 1 erased
LoadFW 5 Rear Lower bank 1 programmed
LoadFW 5 Rear Lower bank 1 loaded and tested
LoadFW 5 Rear Lower bank 0 erased
LoadFW 5 Rear Lower 0 programmed
LoadFW 5 Rear Lower bank 0 loaded and tested
LoadFW 5 Rear Lower completed

<table>
<thead>
<tr>
<th>If the response indicates that the LOADFW command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 20</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

20 Return the AMDI packet to service. Type

\texttt{>RTS <nn> <s> <p>}

and press the Enter key.

where

\(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

\(<s>\) is the side parameter value - front (f) or rear (r)

\(<p>\) is used only if you are in the CMIC, AMDI, or ETHR MAP level, and indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

If the response indicates that the RTS command

<table>
<thead>
<tr>
<th>Passed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>step 22</td>
</tr>
<tr>
<td></td>
<td>failed</td>
</tr>
</tbody>
</table>

21 For additional help, call the next level of support.

22 If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the appropriate alarm-clearing procedure and return to this point when finished. If no alarms other than FWVERS and FWSOAK occur, go to step 23.

\textbf{Note 1:} The FWVERS alarm will occur during this procedure. The alarm will clear only when (1) all items of a particular FRU and PEC have been upgraded and (2) you have updated table XAFWLOAD to change the status of the newly delivered FW firmware load from “new” to “current”. (You change the status to “current” in step 35.)

\textbf{Note 2:} The FWSOAK alarm will occur during this procedure if table XAFWLOAD lists a non-zero soak time for the newly delivered firmware load. If there is a non-zero soak value, the system raises the FWSOAK alarm when the circuit pack or packet is returned to service, and clears the alarm when the soak time expires.

23 Check that the new firmware load is now in the AMDI packet. Type

\texttt{>QUERY CARD <nn> <s> <p>}

and press the Enter key.

where

\(<nn>\) is the slot number parameter value to indicate the number of the physical shelf slot containing the packlet - 1 to 18

\(<s>\) is the side parameter value - front (f) or rear (r)

\(<p>\) indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

Map response
Command submitted.
...
Pos   Type  PEC+  HW  Rel  BL  OK  Serial Number  FW  Vers.
----- ---- ----------- -- -- ------------- --------
        <version>

where

<version> identifies the firmware load currently in the packet

Select the next step as follows:

If                                      Do
you have upgraded the firmware in all the      step 25
NTLX05BA AMDI packlets in the XA-Core shelf
you have not yet upgraded the firmware in all the
NTLX05BA AMDI packlets in the XA-Core shelf     step 14

Access table XAFWLOAD. Type
>TABLE XAFWLOAD
and press the Enter key.

Map response
TABLE XAFWLOAD

List all the tuples. Type
>LIST ALL
and press the Enter key.

Map response

INDEX  FRU  PEC  VERSION  VOLUME  FILE  LOADTYPE  STATUS  SOAK
1  PE  NTLX02CA  XAPE01MA  F02LFWLOADS  PEFW421  FW  current  48
2  PE  NTLX02DA  XAPE01NA  F02LFWLOADS  PEFW958  FW  current  48
3  IOP  NTLX03AA  XAI001PA  F02LFWLOADS  IOPFW588  FW  current  48
4  HIOP  NTLX04BA  XAI003RA  F02LFWLOADS  XH1001XC  FW  current  0
5  HIOP  NTLX04BA  XAI003RB  F02LFWLOADS  XH1001XD  DLL  current  0
6  HIOP  NTLX17AA  XH1003XA  F02LFWLOADS  XC1001GG  FW  current  72
7  CMIC  NTLX05AB  PK12CE93  F02LFWLOADS  HCFW421  FW  current  48
8  AMDI  NTLX05BA  PK12CE93  F02LFWLOADS  HCFW421  FW  current  48
9  ETHR  NTLX09AA  EP14DO95  F02LFWLOADS  ETFW322  FW  current  48
10  AMDI  NTLX05BA  PK12CE94  F02LFWLOADS  HCFW425  FW  new  48
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

27 Look for tuples listing the current and new FW firmware loads for the NTLX05BA AMDI packlet. (The FRU and PEC fields identify the component; the STATUS field indicates new, current, or old.) Write down the index values of the tuples.

**Note:** If you do not find a “current” tuple matching the component/loadtype combination, that is not a problem.

28 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a current FW firmware load for the component</td>
<td>step 29</td>
</tr>
<tr>
<td>NOT a tuple listing a current FW firmware load for the component</td>
<td>step 33</td>
</tr>
</tbody>
</table>

29 Use the POS command to move to the tuple listing the current firmware load. Type

```
>POS <key-value>
```

and press the Enter key.

where

<key-value> is the index value identifying the tuple

30 You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

```
>CHA
```

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

31 Update the tuple by changing the value of the STATUS field from “current” to “old”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: AMDI
> PEC: NTLX05BA
> VERSION: PK12CE93
> VOLUME: F02LFWLOADS
> FILE: HCFW421
> LOADTYPE: FW
> STATUS: current
> **old**
> SOAK: 48
>
After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
8 AMDI NTLX05BA PK12CE93 F02LFWLOADS HCFW421 FW **old** 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

32 Confirm the change. Type

> Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 604

33 Use the POS command to move to the tuple listing the new firmware load. Type

> POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

34 You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

> CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading AMDI-packlet firmware on the occasion of a s/w upgrade

35  Update the tuple by changing the value of the STATUS field from “new” to “current”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

```
FRU: AMDI
> PEC: NTLX05BA
> VERSION: PK12CE94
> VOLUME: F02LFWLOADS
> FILE: HCFW425
> LOADTYPE: FW
> STATUS: new
> current
> SOAK: 48
>
```

After obtaining the edited field values, the system responds as follows.

```
Map response
TUPLE TO BE CHANGED:
10 AMDI NTLX05BA PK12CE94 F02LFWLOADS HCFW425 FW current 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
```

36  Confirm the change. Type

```
>Y
```

and press the Enter key.

```
Map response
TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 520
```

37  Exit from the table editor. Type

```
>QUIT
```

and press the Enter key.

38  You have completed the procedure.
This page is left blank intentionally.
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

Application

Use this procedure only when directed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not use this procedure on any other occasion.

Use this procedure to upgrade the firmware in all instances of the NTLX09 Ethernet packlet in the XA-Core shelf.

*Note:* If you replace a downloadable component in the XA-Core and want to load the current firmware into that component, follow the instructions in the procedure titled “Loading current firmware into a newly installed XA-Core component”.

Here are answers to frequently asked questions.

- The sequence of steps in the procedure directs you to upgrade the firmware in one Ethernet packlet at a time. That is the proper sequence. Do not try to upgrade two or more Ethernet packlets in parallel.
- In all cases in which a soak is necessary, the system performs the soak automatically. You do not need to take any action regarding soak.

Interval

Perform this procedure only when instructed to do so by procedure “Upgrading firmware on the occasion of a software upgrade” in this document. Do not perform this procedure on any other occasion.

For information about when to upgrade firmware, see the “Interval” section of procedure “Upgrading firmware on the occasion of a software upgrade”.

Common procedures

This procedure does not refer to any common procedures.

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

Summary of upgrading ETHR-packlet firmware on the occasion of a software upgrade

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

Start

Update XAFWLOAD so that the new FW firmware load is listed as “new”

Select an Ethernet packlet in which to upgrade the firmware

Upgrade the firmware in the selected Ethernet packlet

ETHRs remaining to be upgraded?

YES

NO

Update XAFWLOAD so that the new FW firmware load is listed as “current”

End
Upgrading ETHR-packlet firmware on the occasion of a software upgrade

**CAUTION**
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

**CAUTION**
File/volume/version names
The file names, volume names, and version names used in this procedure are only examples. For the correct names to use, refer to the Peripheral Module Software Release Document and refer to table XAFWLOAD.

**At the MAP terminal**

1. Access table XAFWLOAD. Type
   
   >TABLE XAFWLOAD
   
   and press the Enter key.

   **Map response**
   
   **TABLE: XAFWLOAD**

2. List all the tuples in table XAFWLOAD. Type
   
   >LIST ALL
   
   and press the Enter key.

   **Map response**

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02CA</td>
<td>XAPE01MA</td>
<td>F02LFWLOADS</td>
<td>PEFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02DA</td>
<td>XAPE01NA</td>
<td>F02LFWLOADS</td>
<td>PEFW958 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO001PA</td>
<td>F02LFWLOADS</td>
<td>IOPFW588 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO003RA</td>
<td>F02LFWLOADS</td>
<td>XHI001XC FW</td>
<td>current</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>HIOP</td>
<td>NTLX04BA</td>
<td>XAIO003RB</td>
<td>F02LFWLOADS</td>
<td>XHI001XD DLL</td>
<td>current</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HIOP</td>
<td>NTLX17AA</td>
<td>XHI003XA</td>
<td>F02LFWLOADS</td>
<td>XCI001GG FW</td>
<td>current</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CMIC</td>
<td>NTLX05AB</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AMDI</td>
<td>NTLX05BA</td>
<td>PK12CE93</td>
<td>F02LFWLOADS</td>
<td>HCFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ETHR</td>
<td>NTLX09AA</td>
<td>EP14DO95</td>
<td>F02LFWLOADS</td>
<td>ETFW322 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The firmware load names shown throughout this procedure are fictitious and are for illustrative purposes only. For information on the actual firmware loads, see the Peripheral Module Software Release Document.
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

3 Look for tuples listing the new and current firmware loads of loadtype FW for the NTLX09 Ethernet packlet. (The FRU and PEC fields identify the component; the STATUS field indicates new or current.) If you find a tuple listing a “new” load, write down the contents of the tuple. If you find a tuple listing the “current” load, write down the contents of the tuple.

Note: If you do not find a “new” tuple or a “current” tuple for loadtype FW for the NTLX09 Ethernet packlet, that is not a problem.

4 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a new firmware load of loadtype FW for the NTLX09 Ethernet packlet</td>
<td>step 5</td>
</tr>
<tr>
<td>NOT a tuple listing a new firmware load of loadtype FW for the NTLX09 Ethernet packlet</td>
<td>step 10</td>
</tr>
</tbody>
</table>

5 Use the POS command to move to the tuple listing the new firmware load of loadtype FW. Type

>POS <key-value>

and press the Enter key

where

<key-value> is the index value identifying the tuple

6 You are going to change the tuple to point to the newly delivered FW load for the NTLX09 Ethernet packlet. Indicate that you intend to change the tuple. Type

>CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.

7 Update the VERSION, VOLUME, and FILE fields to specify the name and location of the newly delivered FW firmware load for the NTLX09 Ethernet packlet. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: ETHR
>
PEC: NTLX09AA
>
VERSION: EP14DO95
>EP14DO96
>VERSION: F02LFWLOADS
>
FILE: ETFW322
>ETFW329
LOADTYPE: FW
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

>  
> STATUS: new  
> >  
> SOAK: 48  
> >

After obtaining the edited field values, the system responds as follows.

*Map response*

**TUPLE TO BE CHANGED:**
17 ETHR NTLX09AA EP14DO96 F02LFWLOADS ETFW329 FW new 48  
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

8 Confirm the change. Type  
>Y

and press the Enter key.

*Map response*

**TUPLE CHANGED.**  
**WRITTEN TO JOURNAL FILE AS JF NUMBER 519**

9 You found and updated a tuple listing a new firmware load of type FW for the NTLX09 Ethernet packlet. Therefore, you do not need to add such a tuple. Go to step 12.

10 You are going to add a tuple listing the newly delivered FW firmware load for the NTLX09 Ethernet packlet. Indicate that you intend to add a tuple. Type  
>ADD

and press the Enter key.

In response, the system prompts you to specify the values for the fields that compose the tuple. The following example uses sample values to show how you might respond to the prompts:

**Example**

**FRU:**
>ETHR

**PEC:**
>NTLX09AA

**VERSION:**
>EP14DO96

**VOLUME:**
>F02LFWLOADS

**FILE:**
>ETFW329

**LOADTYPE:**
>FW

**STATUS:**
>new

**SOAK:**
>48

*Note:* If the table already contains a tuple listing the current firmware load for the component, use the same soak value as found in that tuple. Otherwise, call the next level of support for advice about the soak time.
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

After obtaining the field values, the system responds as follows.

*Map response*

**TUPLE TO BE ADDED:**
10 ETHR NTLX09AA EP14DO96 F02LFWLOADS ETFW329 FW new 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

11 Confirm the addition. Type

>`Y`

and press the Enter key.

*Map response*

**TUPLE ADDED.**
**WRITTEN TO JOURNAL FILE AS JF NUMBER 597**

12 Exit from the table editor. Type

>`QUIT`

and press the Enter key.

13 Go to the MAP level for the Ethernet packet. Type

>`MAPCI;MTC;XAC;ETHR`

and press the Enter key.

14 Select an Ethernet packet whose firmware needs to be upgraded.

15 Find out which FW firmware load is currently in the Ethernet packet that you selected in step 14. Type

>`QUERY CARD <nn> <s> <p>`

and press the Enter key.

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot containing the packet - 1 to 18
- `<s>` is the side parameter value - front (f) or rear (r)
- `<p>` indicates the packet location in an input/output processor (IOP) - upper (u) or lower (l)

*Map response*

**Command submitted.**

```
----- ---- ----------- -- -- ------------- --------
Pos Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ------------------ ---- -------------------
<version>
```

where

- `<version>` identifies the firmware load currently in the packet
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

Manually busy the Ethernet packlet. Type

>BSY <nn> <s> <p> FORCE

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

For example, to busy the Ethernet packlet in slot 5, rear, lower, type

>BSY 5 R L FORCE

and press the Enter key.

Map response

Warning: Bsy command will take it out of service. Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

Confirm the action. Type

>Y

and press the Enter key.

<table>
<thead>
<tr>
<th>If the response indicates that the Bsy Force command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 18</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

18 Load the new FW firmware version. Type

>`LOADFW <nn> <s> <p> FILE NEW

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

For example, to load new firmware into the Ethernet packlet at slot 5, rear, lower, type

>`LOADFW 5 R L FILE NEW

and press the Enter key.

In response, the system asks you to confirm the LOADFW command.

19 Confirm the LOADFW command. Type

>`Y

and press the Enter key.

Map response, assuming you entered the example command from the preceding step

Command submitted
LoadFW 5 Rear Lower fw copied to SM
LoadFW 5 Rear Lower bank 1 erased
LoadFW 5 Rear Lower bank 1 programmed
LoadFW 5 Rear Lower bank 1 loaded and tested
LoadFW 5 Rear Lower bank 0 erased
LoadFW 5 Rear Lower bank 0 programmed
LoadFW 5 Rear Lower bank 0 loaded and tested
LoadFW 5 Rear Lower completed

<table>
<thead>
<tr>
<th>If the response indicates that the LOADFW command</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 20</td>
</tr>
<tr>
<td>failed</td>
<td>step 21</td>
</tr>
</tbody>
</table>
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

20  Return the Ethernet packlet to service. Type
    
    >RTS <nn> <s> <p>
    
    and press the Enter key.

    where

    <nn> is the slot number parameter value to indicate the number of the
        physical shelf slot containing the circuit pack or packlet that is to be upgraded
        - 1 to 18

    <s> is the side parameter value - front (f) or rear (r)

    <p> indicates the packlet location in an input/output processor (IOP) - upper
        (u) or lower (l)

    If the response indicates that the RTS command  Do
    
    passed  step 22
    
    failed  step 21

21  For additional help, call the next level of support.

22  If an alarm other than the FWVERS or FWSOAK alarm occurs, perform the
    appropriate alarm-clearing procedure and return to this point when finished.
    If no alarms other than FWVERS and FWSOAK occur, go to step 23.

    Note 1: The FWVERS alarm will occur during this procedure. The alarm
        will clear only when (1) all items of a particular FRU and PEC have been
        upgraded and (2) you have updated table XAFWLOAD to change the
        status of the newly delivered FW firmware load from “new” to “current”.
        (You change the status to “current” in step 35.)

    Note 2: The FWSOAK alarm will occur during this procedure if table
        XAFWLOAD lists a non-zero soak time for the newly delivered firmware
        load. If there is a non-zero soak value, the system raises the FWSOAK
        alarm when the circuit pack or packlet is returned to service, and clears the
        alarm when the soak time expires.

23  Check that the new firmware load is now in the Ethernet packlet. Type
    
    >QUERY CARD <nn> <s> <p>
    
    and press the Enter key.

    where

    <nn> is the slot number parameter value to indicate the number of the
        physical shelf slot containing the packlet - 1 to 18

    <s> is the side parameter value - front (f) or rear (r)

    <p> indicates the packlet location in an input/output processor (IOP) - upper
        (u) or lower (l)
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

Map response
Command submitted.
.
.
Pos   Type PEC+ HW Rel BL OK Serial Number FW Vers.
----- ---- ----------- -- -- ------------- --------
where

<version> identifies the firmware load currently in the packlet

Select the next step as follows:

If                                      Do

you have upgraded the firmware in all the NTLX09 Ethernet packlets in the XA-Core shelf  step 25
you have not yet upgraded the firmware in all the NTLX09 Ethernet packlets in the XA-Core shelf  step 14

Access table XAFWLOAD. Type

>TABLE XAFWLOAD
and press the Enter key.

Map response
TABLE XAFWLOAD

List all the tuples. Type

>LIST ALL
and press the Enter key.

Map response

INDEX FRU PEC VERSION VOLUME FILE LOADTYPE STATUS SOAK
1 PE NTLX02CA XAPE01MA F02LFWLOADS PEFW421 FW current 48
2 PE NTLX02DA XAPE01NA F02LFWLOADS PEFW958 FW current 48
3 IOP NTLX03AA XAIO01PA F02LFWLOADS IOFW588 FW current 48
4 HIOP NTLX04BA XAIO03RA F02LFWLOADS XH001XC FW current 0
5 HIOP NTLX04BA XAIO03RB F02LFWLOADS XH001XD DLL current 0
6 HIOP NTLX17AA XH003XA F02LFWLOADS XCIO01GG FW current 72
7 CMIC NTLX05AB PK12CE93 F02LFWLOADS HCFW421 FW current 48
8 AMDI NTLX05BA PK12CE93 F02LFWLOADS HCFW421 FW current 48
9 ETHR NTLX09AA EP14DO95 F02LFWLOADS ETFW322 FW current 48
10 ETHR NTLX09AA EP14DO96 F02LFWLOADS ETFW329 FW new 48
.  
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

27 Look for tuples listing the current and new FW firmware loads for the NTLX09 Ethernet packlet. (The FRU and PEC fields identify the component; the STATUS field indicates new, current, or old.) Write down the index values of the tuples.

   Note: If you do not find a “current” tuple matching the component/loadtype combination, that is not a problem.

28 Select the next step as follows:

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tuple listing a current FW firmware load for the component</td>
<td>step 29</td>
</tr>
<tr>
<td>NOT a tuple listing a current FW firmware load for the component</td>
<td>step 33</td>
</tr>
</tbody>
</table>

29 Use the POS command to move to the tuple listing the current firmware load. Type

>`POS <key-value>`

and press the Enter key.

where

<key-value> is the index value identifying the tuple

30 You are going to change the status from “current” to “old”. Indicate that you intend to change the tuple. Type

>`CHA`

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

31 Update the tuple by changing the value of the STATUS field from “current” to “old”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

FRU: ETHR
> PEC: NTLX09AA
> VERSION: EP14DO95
> VOLUME: F02LFWLOADS
> FILE: ETFW322
> LOADTYPE: FW
> STATUS: current
> old
> SOAK: 48
>

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
9 ETHR NTLX09AA EP14DO95 F02LFWLOADS ETFW322 FW old 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

32 Confirm the change. Type

> Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 604

33 Use the POS command to move to the tuple listing the new firmware load. Type

> POS <key-value>

and press the Enter key.

where

<key-value> is the index value identifying the tuple

34 You are going to change the status from “new” to “current”. Indicate that you intend to change the tuple. Type

> CHA

and press the Enter key.

In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Upgrading ETHR-packlet firmware on the occasion of a s/w upgrade

35 Update the tuple by changing the value of the STATUS field from “new” to “current”. For the other fields, just press the Enter key to retain the existing values.

The following example uses sample values to show how you might respond to the prompts:

Example

<table>
<thead>
<tr>
<th>FRU: ETHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC: NTLX09AA</td>
</tr>
<tr>
<td>VERSION: EP14DO96</td>
</tr>
<tr>
<td>VOLUME: F02LFWLOADS</td>
</tr>
<tr>
<td>FILE: ETFW329</td>
</tr>
<tr>
<td>LOADTYPE: FW</td>
</tr>
<tr>
<td>STATUS: new</td>
</tr>
<tr>
<td><strong>current</strong></td>
</tr>
<tr>
<td>SOAK: 48</td>
</tr>
</tbody>
</table>

After obtaining the edited field values, the system responds as follows.

Map response

TUPLE TO BE CHANGED:
10 ETHR NTLX09AA EP14DO96 F02LFWLOADS ETFW329 FW
Current 48
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

36 Confirm the change. Type

>Y

and press the Enter key.

Map response

TUPLE CHANGED.
WRITTEN TO JOURNAL FILE AS JF NUMBER 520

37 Exit from the table editor. Type

>QUIT

and press the Enter key.

38 You have completed the procedure.
This page is left blank intentionally.
Loading current firmware into a newly installed XA-Core component

Application

After replacing a downloadable XA-Core component, use this procedure to load the current firmware onto that component.

*Note:* If you need to upgrade firmware on the occasion of a release-to-release software upgrade, follow the instructions in the procedure titled “Upgrading firmware on the occasion of a software upgrade”.

You can load current firmware into the following components:

- PE circuit packs
- IOP circuit packs
- HIOP circuit packs
- CMIC packlets
- AMDI packlets
- ETHR packlets
- HCMIC circuit packs

This procedure is applicable only to offices equipped with CSP14 or higher based software releases.

Interval

Perform this procedure after replacing a downloadable component.

Common procedures

This procedure does not refer to any common procedures.

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Loading current firmware into a newly installed XA-Core component

Summary of Upgrade firmware on an XA-Core component

Want to load firmware from a file or from another card?

From file

Want to inspect the list of versions available?

Y

Inspect the contents of table XAFWLOAD

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

N

Access the appropriate MAP level

From card

Busy the card

Passed?

N

Passed?

Load the firmware

N

Check FRU and log XAC333. Repeat loadFW once.

1

Y

N

RTS the card

Passed?

N

Contact next level of support

1

Y

2

Done

Alarm?

N

Go to the appropriate alarm clearing procedure.

Y
Loading current firmware into a newly installed XA-Core component

Upgrade firmware on an XA-Core component

At the MAP terminal

1

If
you want to inspect table XAFWLOAD to see what firmware versions are available for loading
you know which version you want to load

Do
step 10
step 2

Note: For an HIOP or HCMIC circuit pack, go to the IO level.

2

Go to the appropriate MAP level. Type

>MAPCI;MTC;XAC;<chosen-level>

where
<chosen-level> is PE, IO, CMIC, AMDI, or ETHR

and press the Enter key.

Note: For an HIOP or HCMIC circuit pack, go to the IO level.

3

CAUTION
Possible service impact
The busy command may jeopardize redundancy. Perform this procedure during time periods of low traffic.

To manually busy the circuit pack or packlet, type

>BSY <nn> <s> <p>

and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> is used only if you are in the CMIC, AMDI, or ETHR MAP level, and indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

Note: If this command reduces redundancy, you must use the Force option. Use the Force option with caution.
Loading current firmware into a newly installed XA-Core component

Map response
Warning: Bsy command will take it out of service.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

4 To confirm the action, type
>Y
and press the Enter key.

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the response is Command Submitted.</td>
<td>step 5</td>
</tr>
<tr>
<td>Bsy 4 front completed</td>
<td></td>
</tr>
<tr>
<td>the response is Command Submitted.</td>
<td>step 7</td>
</tr>
<tr>
<td>Bsy 4 front failed</td>
<td></td>
</tr>
</tbody>
</table>

5 To load a firmware version, type
>LOADFW <nn> <s> <p> FILE <version>
and press the Enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18
<s> is the side parameter value - front (f) or rear (r)
<p> is used only if you are in the CMIC, AMDI, or ETHR MAP level, and indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)
<version> is CURRENT or NEW

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the response is Command Submitted.</td>
<td>step 6</td>
</tr>
<tr>
<td>LoadFW 4 front completed</td>
<td></td>
</tr>
<tr>
<td>the response is Command Submitted.</td>
<td>Confirm the FRU information in table XAFWLOAD and record log XAC333 then repeat this step again. If the loading process continues to fail, go to step 7.</td>
</tr>
<tr>
<td>LoadFW 4 front failed</td>
<td></td>
</tr>
<tr>
<td>and, for example, reason is Volume nonexistent.</td>
<td></td>
</tr>
</tbody>
</table>

6 To return the circuit pack or packlet to service, type
>RTS <nn> <s> <p>
and press the Enter key.

where
Loading current firmware into a newly installed XA-Core component

<nn> is the slot number parameter value to indicate the number of the physical shelf slot containing the circuit pack or packlet that is to be upgraded - 1 to 18

<s> is the side parameter value - front (f) or rear (r)

<p> is used only if you are in the CMIC, AMDI, or ETHR MAP level, and indicates the packlet location in an input/output processor (IOP) - upper (u) or lower (l)

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the response is</td>
<td>step 8</td>
</tr>
<tr>
<td>Command Submitted.</td>
<td></td>
</tr>
<tr>
<td>RTS 4 front passed</td>
<td></td>
</tr>
<tr>
<td>the response is</td>
<td>step 7</td>
</tr>
<tr>
<td>Command Submitted.</td>
<td></td>
</tr>
<tr>
<td>RTS 4 front failed</td>
<td></td>
</tr>
</tbody>
</table>

7 For additional help, call the next level of support.
8 If an alarm occurs, perform the appropriate alarm-clearing procedure from Chapter 1 of this document and return to this point when finished. If no alarm occurs, go to step 9.
9 You have completed the procedure.
10 To access the table XAFWLOAD, type
   >TABLE XAFWLOAD
   and press the Enter key.
   Map response
   TABLE: XAFWLOAD

11 To find out the number of tuples in the table, type
   >COUNT
   and press the Enter key.
   Map response
   BOTTOM
   SIZE = 40

   Note: The size will be 40 tuples or fewer.
12 To move to the top of the table, type
   >TOP
   and press the Enter key.
Loading current firmware into a newly installed XA-Core component

13. To display the tuples, type

>`LIST <size>`

and press the Enter key.

where

`<size>` is the number of tuples, from step 11.

**Map response**

<table>
<thead>
<tr>
<th>INDEX</th>
<th>FRU</th>
<th>PEC</th>
<th>VERSION</th>
<th>VOLUME</th>
<th>FILE</th>
<th>LOADTYPE</th>
<th>STATUS</th>
<th>SOAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PE</td>
<td>NTLX02AA</td>
<td>XAPE01AC</td>
<td>F02LFWLOADS</td>
<td>PEFW413 FW</td>
<td>old</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>NTLX02AA</td>
<td>XAPE01AF</td>
<td>F02LFWLOADS</td>
<td>PEFW421 FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PE</td>
<td>NTLX02AA</td>
<td>XAPE01BA</td>
<td>F02LFWLOADS</td>
<td>PEFW424 FW</td>
<td>new</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01AA</td>
<td>F02LFWLOADS</td>
<td>ISEFW41 FW</td>
<td>old</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IOP</td>
<td>NTLX03AA</td>
<td>XAIO01AC</td>
<td>F02LFWLOADS</td>
<td>ISEFW44 FW</td>
<td>current</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CMIC</td>
<td>NTLX05AA</td>
<td>XAIO01AC</td>
<td>F02LFWLOADS</td>
<td>0C3FW75 FW</td>
<td>current</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>HIOP</td>
<td>NTLX04AA</td>
<td>XHIO01YC</td>
<td>F02LPMLOADS</td>
<td>XHIO001YD FW</td>
<td>current</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>HIOP</td>
<td>NTLX04AA</td>
<td>XHIO01YD</td>
<td>F02LPMLOADS</td>
<td>XHIO001YD DLL</td>
<td>current</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** If there are more tuples than will fit on the screen, proceed as follows. Type `LIST 10` to display tuples 1 to 10. Then type `DOWN 1` to move to tuple 11. Then type `LIST 10` to display tuples 11 to 20. Continue until you have displayed all the tuples.

14. Table XAFWLOAD lists firmware loads of loadtypes FW and DLL. Disregard the DLL (downloadable loader) firmware because it loads automatically, and is outside the control of the LOADFW command. For each type of circuit pack and packet that accepts a firmware load, table XAFWLOAD can list new, current, and old versions of loadtype FW. For a given combination of FRU and PEC (for example, for PE NTLX02AA) there can be one current version of loadtype FW, one new version of loadtype FW, and any number of old versions. You can choose to load the current version of loadtype FW or the new version of loadtype FW. Decide which version you want to load into the circuit pack or packet.

15. To exit from the table editor, type

>`QUIT`

and press the Enter key.

How to backup an XA-Core office image from disk to tape

Application
Use this procedure to copy the office image files of an eXtended Architecture Core (XA-Core). Use this procedure to copy the office image files from a disk to a digital audio tape (DAT) cartridge in an XA-Core shelf.

Interval
Perform this procedure each week or as indicated in the routine maintenance schedule for your office.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as a summary of the procedure. Follow the exact steps to perform this procedure.
How to backup an XA-Core office image from disk to tape (continued)

Summary of How to backup an XA-Core office image from disk to tape

- Determine boot files for XA-Core and MS in ITOC
- Get backup tape and insert into DAT tape drive
- Insert tape in DISKUT
- Backup XA-Core image file from disk to tape
- XA-Core image copy successful?
  - Y: Backup MS image file from disk to tape
  - N: Contact next level of support
- MS image copy successful?
  - Y: Eject tape in DISKUT
  - N: Remove and store tape
- End
How to backup an XA-Core office image from disk to tape (continued)

How to backup an XA-Core office image from disk to tape

At the MAP

1 To access the MAP CI level display, type:
   >QUIT ALL
   and press the enter key.
   Example of a MAP response:
   CI:

2 To access the image table of contents (ITOC) user interface, type:
   >ITOCCI
   and press the enter key.
   Example of a MAP response:
   ITOC User Interface is now active.
   ITOCCI:

3 To list the boot file for the XA-Core in ITOC, type:
   >LISTBOOTFILE XA
   and press the enter key.
   Example of a MAP response:
   Image Table Of Contents for XA:

   A Registered          Generic Device       File
   L Date       Time                          Name
   R MM/DD/YYYY HH:MM:SS
   -- - ------------------- -------------------- -----------
   0 * 05/17/1999 19:26:29 F02LIMAGE IMG0517CY_XA

   Note: The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.
How to backup an XA-Core office image from disk to tape (continued)

4. To list the boot file for the message switch (MS) in ITOC, type:
   
   `>LISTBOOTFILE MS`

   and press the enter key.

   Example of a MAP response:
   
   Image Table Of Contents for MS :

<table>
<thead>
<tr>
<th>A Registered</th>
<th>Generic Device</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Date</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>MM/DD/YYYY</td>
<td>HH:MM:SS</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>0 * 05/17/1999 19:26:29 F02LIMAGE IMG0517CY_MS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Determine if the XA-Core and MS have image files that are autoload registered (ALR). The examples of a MAP response in steps 3 and 4 identify the ALR image files by an asterisk (*) in the ALR column.

<table>
<thead>
<tr>
<th>If the image files are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR</td>
<td>step 6</td>
</tr>
<tr>
<td>not ALR</td>
<td>step 24</td>
</tr>
</tbody>
</table>

6. Record the names of the office image files for XA-Core and MS that are ALR. Also record the volume name that has these office image files. The ALR image file is the file that you copy to the XA-Core tape.

   **Note 1:** In the example of a MAP response in step 3, the name of the office image file for XA-Core is IMG0517CY_XA. Image file IMG0517CY_XA is ALR. Image file IMG0517CY_XA is in volume F02LIMAGE.

   **Note 2:** In the example of a MAP response in step 4, the name of the office image file for the MS is IMG0517CY_MS. Image file IMG0517CY_MS is ALR. Image file IMG0517CY_MS is in volume F02LIMAGE.

7. To quit the ITOCCI user interface, type:
   
   `>QUIT`

   and press the enter key.

   Example of a MAP response:
   
   CI: |     |

   **At the shelf**

8. Determine from office records or office personnel if the DAT tape drive is clean. Refer to the XA-Core procedure "How to clean the XA-Core tape drive".
How to backup an XA-Core office image from disk to tape (continued)

9

WARNING
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) when you handle the tape and packlet. The use of the wrist strap protects the packlets against damage caused by electrostatic discharge (ESD).

Get a tape cartridge that has the approval of Nortel Networks. Determine the tape planned for a backup of an office image. Determine the tape to use from the office records or from office personnel.

10 Make sure the tape write protection is at the position that permits recording (closed). The tape write protection is an entrance on one side of the tape that has a sliding door. The sliding door is open for write protection and closed to allow a write to the tape.

Write protection of DAT cartridge

![Side-view of DAT cartridge](image)

11 Insert the DAT tape cartridge into the XA-Core tape drive and close the drive door. The XA-Core tape drive is in the input/output processor (IOP) card of the XA-Core shelf.

Note: Copy the XA-Core image file to tape first and the MS image file second.

At the MAP

12 To access the MAP disk utility, type:

>DISKUT

and press the enter key.

Example of a MAP response:

Disk utility is now active.

DISKUT:
How to backup an XA-Core office image from disk to tape (continued)

To insert the tape in the MAP disk utility, type

```
>INSERTTAPE snpTAPE WRITELABEL label_name
```

where

- s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.
- nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.
- p is the upper (U) or lower (L) packet position of the IOP that has the tape device.

WRITELABEL is a parameter to format a tape.

label_name is the alphanumeric name of the tape label that records the data. The name can be up to 32 characters long. If blank spaces are in the label name then enclose the label name with quotation marks.

Example of MAP input:

```
>INSERTTAPE F02UTAPE WRITELABEL IMAGE_1
```

Example of a MAP response:

```
***** WARNING *****
```

Writing the label IMAGE_1 to tape volume F02UTAPE on node CM will destroy all files stored on this tape volume.

Do you want to continue?
Please confirm ("YES", "Y", "NO", or "N"):

To confirm the command type:

```
>YES
```

and press the enter key.
How to backup an XA-Core office image from disk to tape (continued)

Example of a MAP response:

The INSERT operation may take up to 5 minutes to tension the tape. A tape is now available to user on unit 0, node CM. Name IMAGE_1 has been written to the tape label.

To list the files in the volume that contains the office image, type:

>LISTFL vol_name

and press the enter key

where

<vol_name> is the name of the disk volume that contains the office image files.

Example of MAP input:

>LISTFL F02LIMAGE

Example of a MAP response:

File information for volume F02LIMAGE:
{NOTE: 1 BLOCK = 512 BYTES }

-------------------------------------------------------
-------------------------
FILE NAME O R I O O V FILE MAX
NUM OF FILE LAST R E T P L L CODE REC
RECORDS SIZE MODIFY G C O E D D LEN
IN IN DATE C N FILE
BLOCKS

-------------------------------------------------------
-------------------------
IMG0517CY_MS FY FY 0 1020
7542 15360 990517
IMG0517CY_XA FY FY 0 1020
165180 329728 990517

Note: A volume can have more files listed by command LISTVOLS than by command LISTFL in the MAP disk utility. The difference in the number of files between the commands is because of directory files not displayed by command LISTFL.

Begin the disk to tape backup process. To create a backup copy of the XA-Core image file, type:

>BACKUP FILE file_name snnpTAPE

and press the enter key

where

file_name is the name of the XA-Core image file that requires backup to tape and s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.
How to backup an XA-Core office image from disk to tape (continued)

nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.

p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.

Example of MAP input:

>BACKUP FILE IMG0517CY_XA F02UTAPE

Example of a MAP response:

FTFS file IMG0517CY_XA on disk volume F02LIMAGE on node CM backed up as file IMG0517CY_XA on tape device F02UTAPE on node CM.

<table>
<thead>
<tr>
<th>If the command was</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 17</td>
</tr>
<tr>
<td>not successful</td>
<td>step 24</td>
</tr>
</tbody>
</table>

17 To create a backup copy of the MS image file, type:

>BACKUP FILE file_name snnpTAPE

and press the enter key

where

file_name is the name of the MS image file that requires backup to tape

s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.

nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.

p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.

Example of MAP input:

>BACKUP FILE IMG0517CY_MS F02UTAPE

Example of a MAP response:

FTFS file IMG0517CY_MS on disk volume F02LIMAGE on node CM backed up as file IMG0517CY_MS on tape device F02UTAPE on node CM.

<table>
<thead>
<tr>
<th>If the command was</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 18</td>
</tr>
<tr>
<td>not successful</td>
<td>step 24</td>
</tr>
</tbody>
</table>
How to backup an XA-Core office image from disk to tape (continued)

18 To check the backup copies of the image files on the tape, type:

>`LISTFL snnpTAPE`

and press the enter key

where

s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.

nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.

p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.

**Example**

Example of MAP input:

>`LISTFL F02UTAPE`

---

**Example of a MAP response:**

File information for tape volume F02UTAPE, node CM:

(Note: 1 BLOCK = 512 BYTES)

```plaintext
CREATE ORG FILE V FILE NUM OF REC FILE NAME
DATE TYPE CODE L SIZE IN RECORDS LEN
D BLOCKS IN FILE

990520 IMAG 0 329070 165180 1020 IMG0517CY_XA
990520 IMAG 0 15026 7542 1020 IMG0517CY_MS
```

19 To eject the tape from the MAP disk utility after the backup procedure completes, type:

>`EJECTTAPE snnpTAPE`

and press the enter key

where

s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.

nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.

p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.

**Example**

Example of MAP input:

>`EJECTTAPE F02UTAPE`
How to backup an XA-Core office image from disk to tape

Example of a MAP response:
The EJECT operation may take up to 5 minutes to position the tape to the beginning.
Rewind of tape F02UTAPE, unit 0, on node CM is completed. This tape device is not available to the user now.

20 To exit the MAP disk utility and return to the MAP CI level, type:
and press the enter key.

>&QUIT
Example of a MAP response:

CI:

At the shelf

21

WARNING
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) when you handle the tape and packlet. The use of the wrist strap protects the packlets against damage caused by electrostatic discharge (ESD).

Remove the tape cartridge from the tape drive. Set the tape write protection to the position that does not permit recording (open). The tape write protection is an entrance on one side of the tape that has a sliding door. The sliding door is open for write protection and closed to allow a write to the tape.

Example

Write protection of DAT cartridge

Side-view of DAT cartridge

Position for write protection

22 Store tape cartridge per office procedure.
23 Go to step 25.
24 For additional help, call the next level of support.
25 You have completed the backup procedure.
How to change XA-Core REx test intensity

Application

Use this procedure to change the intensity of the system REx tests. System REx tests are also referred to as SREx tests. SREx tests are REx tests that the system runs automatically each day. The “intensity” of the SREx tests controls which class of REx tests the system runs. The classes are described below.

Note 1: For a full explanation of all REx commands, see the description of the XACMtc MAP level, in the chapter titled “XA-Core MAP levels and user interfaces”, in the XA-Core Reference Manual, 297-8991-810.

Note 2: If you never change the REx test intensity, then SREx tests occur according to the default SREx schedule. For a description of that schedule, see the section titled “SREx” in the chapter titled “Preventive maintenance” in this document.

The classes of REx tests have the following differences:

- PE class of REx test is:
  — A REx test on a processor element (PE) card that is a different PE card for each REx test performed.
  — The REx tests are out-of-service tests.

- SM class of REx test is:
  — A REx test on a shared memory (SM) card that is a different SM card for each REx test performed.
  — The REx tests are out-of-service tests.

- IO class of REx test is:
  — A REx test on an input/output processor (IOP) card and related packlets. The REx test is on a different IOP card and related packlets for each REx test performed.
  — The REx tests are out-of-service tests.

- BASE class of REx test is:
  — A REx test while in service on all PE, SM, and IOP cards (with related packlets).
  — The BASE class also performs an image test.
How to change XA-Core REx test intensity (continued)

- **ALL** class of REx test is:
  - A REx test while in service on all PE, SM, and IOP cards, and on all packlets.
  - A REx test while out of service on a different PE card, a different SM card, and a different IOP card (with related packlets) for each REx test.

- **FULL** class of REx test is:
  - A REx test while in service on all PE, SM, and IOP cards, and on all packlets.
  - A REx test while out of service on a different PE card, a different SM card, and a different IOP card (with related packlets) for each REx test.
  - The **FULL** class also performs an image test.

**Interval**
Perform this procedure when the schedule or intensity of the XA REx test requires a change. Schedule REx tests for times in the day when call volume is low.

**Common procedures**
There are no common procedures.

**Action**
This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to change XA-Core REx test intensity

At the MAP terminal

1. Access the XACMtc MAP level. At the CI MAP prompt, type:
   >MAPCI;MTC;XAC;XACMTC
   and press the enter key.

   The following is a sample MAP display.
How to change XA-Core REx test intensity (continued)

XACMtc MAP level

Display the current REx intensity schedule and REx test class assignment. At the XACMtc MAP level type:

>REXINT STATUS

and press the enter key.

The XACMtc MAP level displays the schedule for full and base REx tests.

Example of MAP response:

RExInt Status completed
Mon Tue Wed Thu Fri Sat Sun
base full full full full base base

To change the REx test class for any day, type:

>REXINT SETDAY <rex_day> <rex_class>

and press the enter key.

where

<rex_day> is the day of the week when a full REx test is on a schedule (rex_day values = mon, tue, wed, thu, fri, sat, sun)
<rex_class> is the type of REx test class (rex_class values = all, full, base, io, pe, sm)

Example of command use:
How to change XA-Core REx test intensity  (end)

>REXINT SETDAY mon all

*Example of MAP response:*

rexint setday mon all
Warning: the RExInt SetDay command may alter REx Intensity.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

4 To confirm the change, type:

>`Y`

and press the enter key.

5 To check that the switch accepted and saved changes to the REx schedule, type:

>`REXINT STATUS`

and press the enter key.

*Example*

---

6 Confirm that the REx intensity is changed. Examine the XACMtc MAP level.

<table>
<thead>
<tr>
<th>If the XACMtc MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the REx intensity is not changed</td>
<td>step 7</td>
</tr>
<tr>
<td>the REx intensity is changed</td>
<td>step 8</td>
</tr>
</tbody>
</table>

7 Call the next level of support.

8 Quit from the XACMtc MAP level and return to the CI MAP level, type:

>`QUIT ALL`

and press the Enter key.

9 You have completed this procedure. Return to the main procedure that sent you to this procedure and continue as directed.
How to check and adjust the XA-Core TOD

Application
Use this procedure to check and adjust the setting of the time-of-day (TOD) in the XA-Core.

Interval
Perform this procedure daily.

Common procedures
There are no common procedures.

Action
The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of How to check and adjust the XA-Core TOD

<table>
<thead>
<tr>
<th>Check date and time settings on the switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and time correct?</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Set date and time</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Date and time set?</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Call the next level of support</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>This flowchart summarizes the procedure.</td>
</tr>
<tr>
<td>Use the instructions in the procedure</td>
</tr>
<tr>
<td>that follows this flowchart to perform</td>
</tr>
<tr>
<td>the procedure.</td>
</tr>
</tbody>
</table>
How to check and adjust the XA-Core TOD

At the MAP terminal

1. Determine if the switch has the correct date. At the CI MAP prompt, type:
   
   `>DATE`
   and press the Enter key.

   *Example of a MAP response:*
   
   `Date is TUE. 29/JUN/1999 20:59:29:`

2. Compare the time of day to the standard office time reference.

<table>
<thead>
<tr>
<th>If the date is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>wrong</td>
<td>step 3</td>
</tr>
<tr>
<td>correct</td>
<td>step 4</td>
</tr>
</tbody>
</table>

3. Enter the correct date. At the CI MAP prompt type

   `>SETDATE <dd> <mm> <yyyy>`
   and press the Enter key
   
   where
   
   - dd is the day (01 to 31)
   - mm is the month (01 to 12)
   - yyyy is the year (1976 to 2039)

---

**CAUTION**

**Possible loss or damage of AMA data**

If you fail either to use this procedure or to follow it correctly, you can lose or damage automatic message accounting (AMA) data. Because AMA data produces billings, loss or damage to AMA data results in revenue loss for the operating company. Call your next level of support before you start this procedure.

**CAUTION**

**All customers must follow the sequence of steps set out in this procedure.**

If the system uses the Network Time Protocol (NTP) as the timing reference, you must follow the sequence of steps as set out in this procedure. (For information on NTP, see step 6.)

---
How to check and adjust the XA-Core TOD (continued)

Example input:

>SETDATE 30 06 1999

*Example of system response:*

Date is WED. 30/JUN/1999 20:59:29

4 Determine if the time is correct. At the CI MAP prompt type

>TIME

and press the Enter key.

*Example of a MAP response:*

Time is 20:59:29

<table>
<thead>
<tr>
<th>If the time of day is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not correct</td>
<td>step 5</td>
</tr>
<tr>
<td>correct</td>
<td>step 6</td>
</tr>
</tbody>
</table>

5 Set the correct system time. At the CI MAP prompt, type

>SETTIME <hh> <mm> [timezone]

and press the Enter key.

where
<br>
<hh> is the hour (00 to 23)
<br>
<mm> is the minutes (00 to 59)
<br>
[timezone] is the offset time (in minutes) relative to Greenwich Mean Time (GMT). The default value is zero minutes.

Example of command use:

>SETTIME 08 24 1999

*Example of system response:*

Time is 08:24:00 on WED. 1999/06/30

<table>
<thead>
<tr>
<th>If the time of day is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not set</td>
<td>step 11</td>
</tr>
<tr>
<td>set</td>
<td>step 6</td>
</tr>
</tbody>
</table>
How to check and adjust the XA-Core TOD

6 Determine the next step as follows:

<table>
<thead>
<tr>
<th>If the timing reference used by the system is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP</td>
<td>step 7</td>
</tr>
<tr>
<td>not NTP</td>
<td>step 12</td>
</tr>
</tbody>
</table>

Note: In the German market only, switches can use Network Time Protocol (NTP) as the timing reference for the time-of-day clock. The system uses Network Time Protocol if the value of the SNTP_CLIENT office parameter in table OFCENG has been set to Y. For information on the office parameter, see the chapter titled "XA-Core data schema overview" in the XA-Core Reference Manual, 297-8991-810.

7 Go to the NTPCI directory. Enter the following command:

```bash
>CI;NTPCI
```

and press the Enter key.

The prompt changes to the following:

```bash
>NTPCI
```

Note: If the NTPCI prompt does not appear and the system displays a message stating that the feature is not available, that indicates that the NTP is not being used as the timing reference for the time-of-day clock.

8 Start the collection of time samples. At the NTPCI MAP prompt, type:

```bash
>STARTNTP <timezone>
```

where

[timezone] is the offset time (in minutes) relative to Greenwich Mean Time (GMT). The range is -780 minutes to +720 minutes. The default value is zero minutes.

Example of command use:

```bash
>STARTNTP +60
```

Example of system response:

SNTP client started collecting samples from its NTP source for given time zone value.
How to check and adjust the XA-Core TOD

9 Set the time-of-day value to the NTP time. At the NTPCI MAP prompt, type:

>`SETTIMETONTP`

and press the Enter key.

*Example of a MAP response:*

The TOD is adjusted to NTP time; synchronization successful.

Along with the confirmation message, the system displays the following values:

- **TOD offset.** This is the number of milliseconds by which the TOD differs from the NTP time. The value can be positive or negative
- **Round-trip delay.** This is the number of milliseconds it took for the message to go from the computing module to the SuperNode Data Manager (SDM), and to return.
- **The daylight-savings time offset.** The number of minutes offset applied to the local time for daylight savings time.
- **Time zone.** The difference in minutes between local time and Greenwich Mean Time.
- **Best sample age.** The age (in minutes) of the NTP time sample that was used to adjust the time-of-day clock.
- **TOD time.** The TOD time after adjusting with the TOD offset.

10 Exit from the NTPCI Map level. At the NTPCI MAP prompt, type

>`QUIT`

and press the Enter key.

<table>
<thead>
<tr>
<th>If the time of day is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not set</td>
<td>step 11</td>
</tr>
<tr>
<td>set</td>
<td>step 12</td>
</tr>
</tbody>
</table>

11 Call the next level of support.

12 You have completed this procedure.
This page is left blank intentionally.
How to clean the XA-Core tape drive

Application
Use this procedure to clean the recording heads in the digital audio tape (DAT) drive.

Interval
Perform this procedure as follows:

- If the tape cassette is new, clean the recording heads once after the first four hours of read/write operation. After the first cleaning, clean the recording heads after 25 hours of read/write operation or according to office standards.
- If the tape cassette is not new, clean after 25 hours of read/write operation or according to office standards

Common procedures
Refer to common procedure Selection of DAT tapes approved by Nortel Networks.

Action
This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to clean the XA-Core tape drive (continued)

Summary of How to clean the XA-Core tape drive

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.

1. Examine Tape MAP level
2. Tape packet in use?
   - Y: Wait for tape device process to complete
   - N: Manually busy the Tape packet
3. Tape packet in use?
   - Y: Clean a different Tape packet
   - N: Remove tape cassette from Tape packet
4. Clean Tape packet recording heads
5. Return Tape packet to service
6. End
How to clean the XA-Core tape drive (continued)

How to clean the DAT drive

WARNING
Possible DAT failure
Do not use an audio DAT cleaning cassette. The DAT drive cannot identify an audio cleaning cassette. Use only an approved Nortel Networks (Northern Telecom) DAT cleaning cassette.

WARNING
Possible tape failure
If dust or particles collect at one or more of the recording heads, the heads cannot read or write to the tape.

At your current location
1 Get a Nortel Networks approved tape head cleaner (refer to common procedure).

At the MAP terminal
2 Access the XA-Core Tape MAP level. At the CI MAP prompt, type:
   >MAPCI;MTC;XAC;TAPE
   and press the Enter key.
3 Examine the Tape MAP level. Record the location of the Tape packet that you want to clean.
   Note: The Tape MAP level displays the following information in the command interpreter output area:
   • the user name under the User Name header
   • the tape drive status under the Drive header (mounted/unmounted)

The following is a sample MAP display.
How to clean the XA-Core tape drive (continued)

Tape MAP level

4. Record the user name and drive state as shown on the Tape MAP level. There are four possible tape device user conditions:

- The system is using the tape device. The Tape MAP level displays “System” as the user name. The system software is performing an activity such as an ONP or software upgrade. The tape drive state is mounted.
- Another user is performing a backup or restore at a different location. The tape drive state is mounted.
- You are the user of the tape device. The tape drive state is mounted.
- There are no users. The tape drive state is unmounted.

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the system software is the user</td>
<td>step 5</td>
</tr>
<tr>
<td>another user is using the tape device</td>
<td>step 6</td>
</tr>
<tr>
<td>you are the user of the tape device</td>
<td>step 9</td>
</tr>
<tr>
<td>there are no users</td>
<td>step 11</td>
</tr>
</tbody>
</table>
How to clean the XA-Core tape drive (continued)

5 Wait for the system software to complete the ONP or upgrade process. When the system software activities are complete, the MAP deletes the “System” user name and the tape drive state changes to unmounted.

<table>
<thead>
<tr>
<th>If the system software process is complete and the Tape MAP level indicates that</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 10</td>
</tr>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 11</td>
</tr>
</tbody>
</table>

6 Notify the other user that you intend to clean the tape heads. The other user needs to complete tape device activities and perform an EJECTTAPE. Wait for the Tape MAP level to delete the other user name and indicate that the tape drive state is unmounted.

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates that</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and that the tape drive state is mounted</td>
<td>step 7</td>
</tr>
<tr>
<td>the tape is rewound and that the tape drive state is unmounted</td>
<td>step 11</td>
</tr>
</tbody>
</table>

7 Call the other user to make sure that all tape drive activities are complete.

<table>
<thead>
<tr>
<th>If the other user has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not completed tape drive activities</td>
<td>step 8</td>
</tr>
<tr>
<td>completed tape drive activities and rewound the tape</td>
<td>step 10</td>
</tr>
</tbody>
</table>

8 Clean a different tape drive. Continue to 3.

9 Access the DISKUT MAP level and rewind the tape.

   a At the Tape MAP level type:
      >QUIT all
      and press the enter key.

   b Access the DISKUT MAP level. At the CI MAP prompt type:
      >DISKUT
      and press the enter key.

   c Rewind the tape. Use the tape location information from 3. At the DISKUT MAP level type:
      >EJECTTAPE <device>
      and press the enter key.

   where
How to clean the XA-Core tape drive (continued)

<device> is the name of the tape device.

Note: The system rejects the EJECTTAPE command if the system cannot identify you as the user of the tape device.

Example of command use:

>`EJECTTAPE F02UTAPE`

*Example of system response:*

Rewind of tape F02UTAPE on node <node_name> is completed. The tape device is not available to the user now

d Exit from the DISKUT MAP level. At the DISKUT MAP prompt, type

>`QUIT`

and press the enter key.

e Access the XA-Core Tape MAP level. At the CI MAP prompt, type

>`MAPCI;MTC;XAC;TAPE`

and press the enter key.

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 10</td>
</tr>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 11</td>
</tr>
</tbody>
</table>

10 Clear the tape drive state on the Tape MAP level. Manually busy the Tape packlet and return the Tape packlet to service.

a Manually busy the Tape packlet. At the Tape MAP level type

>`BSY <nn> <s> <p>`

and press the enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command use:

>`BSY 2 f u`

*Example of system response:*

BSY 2 front upper complete

b Return the Tape packlet to service. At the Tape MAP level type
How to clean the XA-Core tape drive (continued)

>RTS <nn> <s> <p>
and press the Enter key

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command use:

>RTS 2 f u

Example of system response:

RTS 2 front upper passed

<table>
<thead>
<tr>
<th>If the Tape MAP level indicates that</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the tape is rewound and the tape drive state is unmounted</td>
<td>step 11</td>
</tr>
<tr>
<td>the tape is not rewound and the tape drive state is mounted</td>
<td>step 19</td>
</tr>
</tbody>
</table>

11 At the Tape MAP level, manually busy the Tape packlet.

a Manually busy the Tape packlet. At the Tape MAP level type

>BSY <nn> <s> <p>
and press the enter key.

where

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command use:

>BSY 2 f u

Example of system response:

BSY 2 front upper complete
How to clean the XA-Core tape drive (continued)

**At the XA-Core physical shelf**

12 Indicate the ManB Tape packlet. At the Tape MAP level, type

```
>INDICAT card <nn> <s> <p>
```

and press the Enter key

where

- `<nn>` is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18
- `<s>` is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)
- `<p>` is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

Example of command usage:

```
>INDICAT card 2 f u
```

Example of system response:

Card 2 front upper LED is indicating.

---

**WARNING**

Static electricity damage

Wear a wrist strap connected to the wrist-wrap grounding point of the frame supervisory panel (FSP) when you handle the packlet. The use of the wrist strap protects the packlets against damage caused by electrostatic discharge (ESD).

---

Locate the correct Tape packlet on the physical shelf. Use the location information recorded from 3.

<table>
<thead>
<tr>
<th>If there is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a tape cassette in the tape</td>
<td>step 14</td>
</tr>
<tr>
<td>cassette slot</td>
<td></td>
</tr>
<tr>
<td>no tape cassette in the tape</td>
<td>step 15</td>
</tr>
<tr>
<td>cassette slot</td>
<td></td>
</tr>
</tbody>
</table>

14 Remove the tape cassette from the Tape packlet (see the diagrams in this step). Perform the following steps:

a Push the door lock in the direction of the arrow to unlock. The cassette door unlocks. Open the cassette door.

b Press the tape eject button. Wait for the tape cassette to partially eject for removal.
How to clean the XA-Core tape drive (continued)

- Remove the tape cassette and place it in tape cassette case. Place the cassette in a safe location away from the physical shelf.

**Open the tape cassette door**

**Eject and remove the tape cassette**

15 Insert the tape cleaning cassette into the tape cassette slot. Push on the tape cassette until it locks in position. Do not close the tape door.
How to clean the XA-Core tape drive (continued)

Insert the tape cleaning cassette

16 Wait until the tape cleaning cassette ejects from the tape slot. The tape cleaning process is automatic.

   Note: If the tape cleaning cassette does not eject automatically, that indicates that the cleaning tape has wound all the way to the end, and the cassette is of no further use. Press and release the eject button on the tape packlet to eject the tape cleaning cassette, discard the cassette and start using a new tape cleaning cassette.

17 Remove the tape cleaning cassette from the tape slot. Close the tape cassette door. Place the tape cleaning cassette in the tape cleaning case.

Eject and remove the tape cleaner cassette
Close the tape cassette door

At the MAP terminal

18 Return the Tape packet to service. At the Tape MAP level type
   >RTS <nn> <s> <p>
   and press the Enter key
   where
   <nn> is the slot number parameter value to indicate the number of the
   physical shelf slot - 1 to 18
   <s> is the side parameter value to indicate the CP or packet location in the
   physical shelf - front (f) or rear (r)
   <p> is the upper (u) or lower (l) physical slot location of the packet in an
   input/output processor (IOP).
   Example of command use:
   >RTS 2 f u
   
   Example of system response:
   RTS of card <nn> <s> <p> Completed.

   If the tape device | Do
   ------------------|------------------
   does not return to service | step 19
   returns to service | step 20

19 Call the next level of support.

20 You have completed this procedure.
This page is left blank intentionally.
How to copy all files of an XA-Core disk volume to tape

Application

Use this procedure to copy all the files of a disk volume in an eXtended Architecture Core (XA-Core). Use this procedure to copy the files from a disk to a digital audio tape (DAT) cartridge in an XA-Core shelf. Do not use this procedure to copy the office image files from disk to tape for an XA-Core. To copy the office image files, use the procedure “How to backup an XA-Core office image from disk to tape”.

CAUTION

Maximum one volume per tape

Copy no more than one volume onto a tape. To copy multiple volumes, use a separate tape for each volume.

Interval

Perform this procedure when required by your office.

Common procedures

There are no common procedures.

Action

This procedure contains a summary flowchart as a summary of the procedure. Follow the exact steps to perform this procedure.
How to copy all files of an XA-Core disk volume to tape (continued)

Summary of How to copy all files of an XA-Core disk volume to tape

This flowchart summarizes the procedure.
Use the instructions in the procedure that follows this flowchart to perform the procedure.
How to copy all files of an XA-Core disk volume to tape (continued)

At the shelf

1

CAUTION
Use SCANF in this procedure with caution
SCANF is a powerful tool that is used to perform file operations, one of which is to allow open files to be copied. Use this command during periods of low activity to avoid loss of data.

CAUTION
Do not copy office image files
Do not use this procedure to copy the office image files from disk to tape for an XA-Core. To copy the office image files, use the procedure “How to backup an XA-Core office image from disk to tape”.

CAUTION
Maximum one volume per tape
Copy no more than one volume onto a tape. To copy multiple volumes, use a separate tape for each volume.

Determine the volume of the XA-Core that requires a copy of all files to a tape. Determine the volume from office records or from office personnel. Record the volume name.

2 Determine from office records or office personnel if the DAT tape drive is clean. Refer to the XA-Core procedure “How to clean the XA-Core tape drive”.

3 Get a tape cartridge that has the approval of Nortel Networks. Determine the tape planned for storage of all the files from a disk volume. Determine the tape to use from the office records or from office personnel. The tape must not have files that the office requires.
How to copy all files of an XA-Core disk volume to tape (continued)

4 Make sure the tape write protection is at the position that permits recording (closed). The tape write protection is an entrance on one side of the tape that has a sliding door. The sliding door is open for write protection and closed to allow a write to the tape.

Example

Terminating

Write protection of DAT cartridge

![Side-view of DAT cartridge and Position for write protection]

5

**WARNING**

**Static electricity damage**

Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) when you handle the tape and packlet. The use of the wrist strap protects the packlets against damage caused by electrostatic discharge (ESD).

Insert the DAT tape cartridge into the XA-Core tape drive and close the drive door. The XA-Core tape drive is in the input/output processor (IOP) card of the XA-Core shelf.

**At the MAP**

6 To access the MAP CI level display, type:

>`QUIT ALL`

and press the enter key.

*Example of a MAP response:*

CI:

7 To access the MAP disk utility, type:

>`DISKUT`

and press the enter key.

*Example of a MAP response:*

Disk utility is now active.

DISKUT:
How to copy all files of an XA-Core disk volume to tape (continued)

8 To insert the tape for access by the MAP disk utility, type

   >INSERTTAPE snnpTAPE WRITELABEL label_name

   and press the enter key

   where

   s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.

   nn is the number of the slot position on the XA-Core shelf of the IOP that has the tape device.

   p is the upper (U) or lower (L) packet position of the IOP that has the tape device.

   WRITELABEL is a parameter to format a tape. The tape must not have files that the office requires. A formatted tape has all the files on the tape deleted.

   label_name is the alphanumeric name of the tape label that records the data. The name can be up to 32 characters long.

   Example of MAP input:

   >INSERTTAPE F02UTAPE WRITELABEL IMAGE_1

   Example of a MAP response:

   ****** WARNING ******

   Writing the label IMAGE_1 to tape volume F02UTAPE on node CM will destroy all files stored on this tape volume.

   Do you want to continue?

   Please confirm ("YES", "Y", "NO", or "N"):

9 To confirm the command type:

   >YES

   and press the enter key.

   Example of a MAP response:

   The INSERT operation may take up to 5 minutes to tension the tape.

   A tape is now available to user on unit 0, node CM.

   Name IMAGE_1 has been written to the tape label.

10 Determine if the INSERTTAPE command completed correctly.

<table>
<thead>
<tr>
<th>If the INSERTTAPE command completed</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>correctly</td>
<td>step 11</td>
</tr>
<tr>
<td>not correctly</td>
<td>step 24</td>
</tr>
</tbody>
</table>

11 To list the volumes contained on the node, type:

   >LISTVOLS

   and press the enter key.
How to copy all files of an XA-Core disk volume to tape (continued)

Example of a MAP response:

Volumes found on the node CM:

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>TOTAL BLOCKS</th>
<th>FREE BLOCKS</th>
<th>TOTAL FILES</th>
<th>FREE FILES</th>
<th>TOTAL ITOC FILES</th>
<th>LARGEST BLOCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F02LV1</td>
<td>FTFS</td>
<td>131072</td>
<td>130080</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>128032</td>
</tr>
<tr>
<td>F02LDLOG</td>
<td>FTFS</td>
<td>129024</td>
<td>2144</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>1536</td>
</tr>
<tr>
<td>F17LV1</td>
<td>FTFS</td>
<td>61440</td>
<td>60512</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60512</td>
</tr>
<tr>
<td>F17LDLOG</td>
<td>FTFS</td>
<td>61440</td>
<td>1632</td>
<td>71</td>
<td>2</td>
<td>0</td>
<td>512</td>
</tr>
</tbody>
</table>

Total number of volumes found on node CM : 4

12 Check the list of volumes in step 11 for the volume name that you recorded in step.

<table>
<thead>
<tr>
<th>If the volume name is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in the volume list</td>
<td>step 13</td>
</tr>
<tr>
<td>not in the volume list</td>
<td>step 24</td>
</tr>
</tbody>
</table>

13 To list the files in the disk volume that you need to copy to tape, type:

>`LISTFL vol_name`

and press the enter key.

where

<vol_name> is the name of the disk volume that contains the files to copy to tape.

Example of MAP input:

>`LISTFL F02LV1`

Example of a MAP response:

File information for volume F02LV1:

<table>
<thead>
<tr>
<th>NOTE: 1 BLOCK = 512 BYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>FILE NAME</td>
</tr>
<tr>
<td>NUM OF RECORDS</td>
</tr>
<tr>
<td>IN</td>
</tr>
<tr>
<td>BLOCKS</td>
</tr>
<tr>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>OLD_RECORD_FILES_01</td>
</tr>
<tr>
<td>1020</td>
</tr>
<tr>
<td>OLD_RECORD_FILES_02</td>
</tr>
<tr>
<td>1020</td>
</tr>
</tbody>
</table>

14 Record the file names in the disk volume. In the example of a MAP response in step 13, the file names are OLD_RECORD_FILES_01 and OLD_RECORD_FILES_02.
How to copy all files of an XA-Core disk volume to tape (continued)

15 To copy all the files from the disk volume to the tape, type:

```bash
>SCANF vol_name COPY snnpTAPE
```

and press the enter key.

where

vol_name is the name of the disk volume that contains the files to copy to tape.

s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.

nn is the number of the slot position on the XA-Core shelf of the IOP that has the tape device.

p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.

**Example**

Example of MAP input:

```bash
>SCANF F02LV1 COPY F02UTAPE
```

**Example of a MAP response:**

Copy file: IMG0517CY_XA
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
OLD_RECORD_FILES_01: 165180 records copied with success.
Copy file: IMG0517CY_MS
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
OLD_RECORD_FILES_02: 7542 records copied with success.
Scanf: matched 2 of the 2 files encountered.

16 Determine if the SCANF command completed. In the MAP response of step 15, the completed SCANF command responded with the text, Scanf: matched 2 of the 2 files encountered.

<table>
<thead>
<tr>
<th>If the SCANF command has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>completed</td>
<td>step 17</td>
</tr>
<tr>
<td>not completed</td>
<td>step 24</td>
</tr>
</tbody>
</table>
How to copy all files of an XA-Core disk volume to tape (continued)

17 To check the copies of files on the tape, type:
    >LISTFL snnpTAPE
    and press the enter key.
where
s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.

nn is the number of the slot position on the XA-Core shelf of the IOP that has the tape device.

p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.

Example of MAP input:
    >LISTFL F02UTAPE

    Example of a MAP response:

    File information for tape volume F02UTAPE, node CM:
    {Note: 1 BLOCK = 512 BYTES}
    -------------------------------------------------------
    CREATE ORG FILE V FILE NUM OF REC FILE NAME
    DATE TYPE CODE L SIZE IN RECORDS LEN
    D BLOCKS IN FILE
    -------------------------------------------------------
    -----------------------------------------------
    990520 IMAG 0 329070 165180 1020
    OLD_RECORD_FILES_01
    990520 IMAG 0 15026 7542 1020
    OLD_RECORD_FILES_02

18 Determine if all the files from the disk volume copied correctly to the tape. Check the file names in the MAP response of step 17 with the file names you recorded in step 14.

If all the files copied to tape | Do
-----------------------------  |---------
    correctly                 | step 19
    not correctly             | step 24

19 To eject the tape from the DAT tape drive after the backup procedure completes, type:
    >EJECTTAPE <tape_device>
    and press the enter key.
where
    <tape_device> is the name of the DAT device

    Example
    Example of MAP input:
    >EJECTTAPE F02UTAPE
How to copy all files of an XA-Core disk volume to tape

Example of a MAP response:
The EJECT operation may take up to 5 minutes
to position the tape to the beginning.
Rewind of tape F02UTAPE, unit 0, on node CM is completed.
This tape device is not available to the user now.

To exit the MAP disk utility and return to the MAP CI level, type:
and press the enter key.

>QUIT

Example of a MAP response:

At the shelf

WARNING
Static electricity damage
Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) when you handle the tape and packlet. The use of the wrist strap protects the packlets against damage caused by electrostatic discharge (ESD).

Remove the tape cartridge from the tape drive. Set the tape write protection to the position that does not permit recording (open). The tape write protection is an entrance on one side of the tape that has a sliding door. The sliding door is open for write protection and closed to allow a write to the tape.

Write protection of DAT cartridge

Store the tape cartridge per office procedure.
Go to step 25.
For additional help, call the next level of support.
You have completed the backup procedure.
This page is left blank intentionally.
How to create a test volume on XA-Core disks

Application
Use this procedure to create a test volume on a disk of the eXtended Architecture Core (XA-Core).

The test volume performs file transfer tests on a disk drive packlet. The tests make sure that the disk drive packlet functions correctly.

Interval
Perform this procedure on a new disk. Perform this procedure after installation of the new disk in the disk drive packlet in the input/output processor (IOP) card.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as a summary of the procedure. Follow the exact steps to perform this procedure.
How to create a test volume on XA-Core disks

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.

1. Manually busy disk drive packet
2. Format disk at Disk level of MAP
3. Return disk drive packet to service
4. Access DISKADM
5. Create test volume
6. Check test volume
7. End
How to create a test volume on XA-Core disks

DANGER
This procedure is for use on a new disk only
Perform this procedure on a new disk only. Perform this procedure after installation of the new disk in the disk drive packlet in the input/output processor (IOP) card. If you fail either to use this procedure or follow it exactly, you can lose or damage automatic message accounting (AMA) data. Because AMA data produces billings, loss or damage to AMA data results in revenue loss for the operating company. Call your next level of support before you start this procedure.

CAUTION
Risk of service interruption
Call your next level of support before you start this procedure.

At the MAP terminal
1 To access the XA-Core Disk MAP level, type:
   >MAPCI;MTC;XAC;DISK
   and press the enter key.
   *The following is a sample MAP display.*
How to create a test volume on XA-Core disks (continued)

To manually busy the disk drive packlet, type:

```plaintext
>BSY nn s p
```

and press the enter key

where

- `nn` is the number of the slot position of the input/output processor (IOP) card that contains the disk drive packlet (number can have one digit or two digits)
- `s` is the front (F) or rear (R) shelf position of the IOP card that contains the disk drive packlet
- `p` is the upper (U) or lower (L) position of the IOP card that contains the disk drive packlet

Example of command:

```plaintext
BSY 2 F L
```

Example of a MAP response:

```plaintext
bsy 2 f l
Warning: Bsy command will take it out of service. Proceed (Y or N)? Please confirm ("YES", "Y", "NO", or "N"):
```
How to create a test volume on XA-Core disks (continued)

3 To confirm the command from step 2, type:
   >>YES
   and press the enter key

   Example of a MAP response:
   yes
   Command Submitted.
   Bsy 2 front lower completed

4 CAUTION
Risk of data loss from disk
When you format the disk, you lose all files and volumes from the disk. Call your next level of support before you start this procedure.

To format the disk, type:

   >>FORMAT nn s p

   and press the enter key

   where

   nn  is the number of the slot position of the input/output processor (IOP) card that contains the disk drive packlet (number can have one digit or two digits)

   s  is the front (F) or rear (R) shelf position of the IOP card that contains the disk drive packlet

   p  is the upper (U) or lower (L) position of the IOP card that contains the disk drive packlet

   Example of command:

   FORMAT 2 F L

   Example of a MAP response:

   format 2 f l
   Warning: Format of the disk will result in LOST DATA. Proceed?
   Please confirm ("YES", "Y", "NO", or "N"): 
How to create a test volume on XA-Core disks (continued)

5 To confirm the format command from step, type:
   >YES
   and press the enter key
   Example of a MAP response:
   yes
   Command Submitted.
   Format 2 front lower checking data
   Format 2 front lower formatting disk
   Format 2 front lower initializing
   Format 2 front lower completed

6 To return the disk drive packlet to service, type:
   >RTS nn s p
   and press the enter key
   where
   nn  is the number of the slot position of the input/output processor (IOP) card
   that contains the disk drive packlet (number can have one digit or two digits)
   s  is the front (F) or rear (R) shelf position of the IOP card that contains the
   disk drive packlet
   p is the upper (U) or lower (L) position of the IOP card that contains the disk
   drive packlet
   Example of command:
   RTS 2 F L
   Example of a MAP response:
   rts 2 f l
   Command Submitted.
   RTS 2 front lower completed

<table>
<thead>
<tr>
<th>If the disk drive packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service (.)</td>
<td>step 7</td>
</tr>
<tr>
<td>another state</td>
<td>step 18</td>
</tr>
</tbody>
</table>

7 To display the CI level of the MAP, type:
   >QUIT ALL
   and press the enter key.
   Example of a MAP response:
   CI:
How to create a test volume on XA-Core disks (continued)

8 To access the administration of the disk device, type:

>DISKADM snnp

and press the enter key

where

s  is the front (F) or rear (R) shelf position of the IOP card that contains the disk drive packet

nn  is the number of the slot position of the input/output processor (IOP) card that contains the disk drive packet (requires a two-digit number)

p is the upper (U) or lower (L) position of the IOP card that contains the disk drive packet

Example of command:

DISKADM F02L

Example of a response to the disk administration command:

Start up command sequence is in progress.
This may take a few minutes.
Administration of device F02L on CM is now active.
DISKADM;  CM

9 To display the disk data space that is available, type:

>DD

and press the enter key

Example of a response to the display disk command:

Disk drive information for F02L

Date last formatted : 1999/02/18 12:25:03.716 THU.
Date last modified  : 1999/02/18 12:25:03.986 THU.
Total space for volumes : 266221 blocks
Total Free space       : 266221 blocks
Size of largest free segment : 266221 blocks
Total number of volumes : 0

1 Block = 512 bytes

Note: The number of blocks varies according to the total disk storage capacity.

10 To display the information of all the volumes on the disk, type:

>DV

and press the enter key

Example of a response to the display volumes command:

F02L contains no volumes.
How to create a test volume on XA-Core disks (continued)

11  To create a test volume on the disk, type:

>CV name size FTFS LBLOCK

and press the enter key

where

name  is the name you call the test volume (eight characters maximum).

size  is the size of the volume in megabytes.

FTFS  is the type of volume described as fault tolerant file system (FTFS).

LBLOCK is the size of the logical volume. The size can have 1, 2, 4, 8, or 16 kbytes when a number 1, 2, 4, 8, or 16 added after LBLOCK and a space. Default is 16 kbytes. A recommended size for one disk user is 16 kbytes. A recommended size for the maximum amount of disk users is 1 kbytes.

Example of command:

CV TEST 50 FTFS LBLOCK 16

Example of a response to the create volume command that requests a confirmation is as follows:

FTFS volume TEST will be created on F02L.

Volume size:                  50 megabytes
First FID table extent size:  2047 entries
Volume Free Space Map size:   7936 segments

Do you want to continue?
Please confirm ("YES", "Y", "NO", or "N"):

12  Determine if the volume creation exceeds a maximum.

An example of the response to the create volume command that exceeds a maximum is as follows:

CREATEVOL-1 command is aborted
Not enough space on disk.

Retry command OR Quit and reenter DISKADM.

<table>
<thead>
<tr>
<th>If the response to the create volume command indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a prompt to confirm the command that the volume exceeds a maximum</td>
<td>step 13</td>
</tr>
<tr>
<td>a prompt to confirm the command</td>
<td>step 18</td>
</tr>
</tbody>
</table>

13  To confirm the create volume command from step 11, type:

>YES

and press the enter key

Example of a MAP response:

Creation of the volume is completed.
How to create a test volume on XA-Core disks

**14** To display the information of all the volumes on the disk, type:

```
>DV
```

and press the enter key.

*Example of a response to the display volumes command:*

```
Information about FTFS volumes on F02L.
```

<table>
<thead>
<tr>
<th>Volume</th>
<th>Create</th>
<th>Modify</th>
<th>Size</th>
<th>LBLK</th>
<th>Max</th>
<th>Max</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Date</td>
<td>Date</td>
<td>Mega</td>
<td>Size</td>
<td>No. of</td>
<td>No. of</td>
<td>Boot</td>
</tr>
<tr>
<td>Cache</td>
<td>Cache</td>
<td>Cache</td>
<td>Bytes</td>
<td>kBytes</td>
<td>Files</td>
<td>Segmnts</td>
<td></td>
</tr>
<tr>
<td>Files</td>
<td>Pages</td>
<td>Pages</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>TEST</td>
<td>99/02/18</td>
<td>99/02/18</td>
<td>50</td>
<td>16</td>
<td>2047</td>
<td>7936</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>6</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>

*Note:* In the example of a MAP response, the test volume is TEST.

**15** To quit the DISKADM utility, type:

```
>QUIT
```

and press the enter key.

**16** To check for the test volume, type:

```
>PRINT ROOTDIR
```

and press the enter key.

*Example of a MAP response:*

```
MAP Device Copy 1800
F02LTEST Device Copy 84C2
```

*Note:* The test volume has the disk device identified as a prefix to the volume name. In the example of a MAP response, the test volume is F02LTEST.

**17** Determine if the administration of the disk device created the test volume.

<table>
<thead>
<tr>
<th>If the administration of the disk device created the test volume</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>correctly</td>
<td>step 19</td>
</tr>
<tr>
<td>failed</td>
<td>step 18</td>
</tr>
</tbody>
</table>

**18** For additional help, call the next level of support.

**19** You have completed this procedure.
This page is left blank intentionally.
How to create volumes on XA-Core disks

Application
Use this procedure to create volumes on a disk of the eXtended Architecture Core (XA-Core).

Interval
Perform this procedure on a disk that is not formatted or on an earlier formatted disk. Perform this procedure after installation of the disk in the disk drive packlet in the input/output processor (IOP) card.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as a summary of the procedure. Follow the exact steps to perform this procedure.
How to create volumes on XA-Core disks (continued)

How to create volumes on XA-Core disks

This flowchart summarizes the procedure.
Use the instructions in the procedure that follows this flowchart to perform the procedure.

- Disk formatted?
  - Y: Perform procedure How to copy all files of an XA-Core disk volume to tape
  - N: Require backup copies of disk files?
    - Y: Manually busy disk drive packlet
    - N: Format disk at Disk level of MAP
      - Y: Return disk drive packlet to service
      - N: Access DISKADM
        - Create volumes
          - Check volumes
            - Y: End
            - N: Contact next level of support
              - N: Volume created correctly?
                - N: End
                - Y: Perform procedure How to copy all files of an XA-Core disk volume to tape
**How to create volumes on XA-Core disks**

**At the MAP terminal**

1. Determine if the disk to create volumes on is formatted or not formatted. Determine if the disk is formatted from office records or office personnel.

<table>
<thead>
<tr>
<th>If the disk is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>formatted</td>
<td>step 2</td>
</tr>
<tr>
<td>not formatted</td>
<td>step 8</td>
</tr>
</tbody>
</table>

2. To access the MAP disk utility, type:

   >DISKUT

   and press the enter key.

   *Example of a MAP response:*

   Disk utility is now active.

   DISKUT:
How to create volumes on XA-Core disks (continued)

3 To list the volumes contained on the node, type:

>LISTVOLS

and press the enter key.

*Example of a MAP response:*

Volumes found on the node CM:

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>TOTAL</th>
<th>FREE</th>
<th>TOTAL</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITOC</td>
<td>LARGE</td>
<td>BLOCKS</td>
<td>BLOCKS</td>
<td>FILES</td>
<td>FILES</td>
</tr>
<tr>
<td>FILES</td>
<td>FREE</td>
<td>SEGMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a MAP response:

Volumes found on the node CM:

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>TOTAL</th>
<th>FREE</th>
<th>TOTAL</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITOC</td>
<td>LARGE</td>
<td>BLOCKS</td>
<td>BLOCKS</td>
<td>FILES</td>
<td>FILES</td>
</tr>
<tr>
<td>FILES</td>
<td>FREE</td>
<td>SEGMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Determine if volumes are on the XA-Core disk.

<table>
<thead>
<tr>
<th>If the disk has</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>volumes</td>
<td>step 5</td>
</tr>
<tr>
<td>no volumes</td>
<td>step 6</td>
</tr>
</tbody>
</table>

5 Make a backup copy of all files from the XA-Core disk to tape. Perform procedure, “How to copy all files of an XA-Core disk volume to tape”. Perform this procedure one time on a separate tape for each disk volume. When you complete the procedure, return to this step.

6 To exit the MAP disk utility and return to the MAP CI level, type:

>QUIT

*Example of a MAP response:*

CI:

7 Go to step 15.

8 To access the XA-Core Disk MAP level, type:

>MAPCI;MTC;XAC;DISK

and press the enter key.
How to create volumes on XA-Core disks (continued)

The following is a sample MAP display.

Example of a DISK MAP display

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Disk</td>
<td>0</td>
<td>Quit</td>
<td></td>
<td></td>
<td>1</td>
<td>1111111111</td>
<td>Rear: 111111</td>
<td>SM PE IO PKLT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Front: 123456789012345678 456789012345</td>
<td>.</td>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Sta: -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Dep:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Typ:</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tst_</td>
<td>Slot: Side: Packlet: Status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bsy_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS_</td>
<td>2 Front Lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>17 Front Lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Alarm_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Indicat_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Query_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>14:12</td>
<td>&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To manually busy the disk drive packet, type:

>BSY nn s p

and press the enter key

where

- nn is the number of the slot position of the input/output processor (IOP) card that contains the disk drive packet (number can have one digit or two digits)
- s is the front (F) or rear (R) shelf position of the IOP card that contains the disk drive packet
- p is the upper (U) or lower (L) position of the IOP card that contains the disk drive packet

Example of command input:

BSY 2 F L

Example of a MAP response:

b sy 2 f l

Warning: Bsy command will take it out of service.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):
How to create volumes on XA-Core disks (continued)

10 To confirm the command from step 9, type:
   \texttt{\textgreater YES}
   and press the enter key.
   \textit{Example of a MAP response:}
   \begin{quote}
   yes \\
   Command Submitted. \\
   Bsy 2 front lower completed
   \end{quote}

11 \textbf{CAUTION}

\textbf{Risk of data loss from disk}
When you format the disk, you lose all files and volumes from the disk. Call your next level of support before you start this procedure.

To format the disk, type:

\texttt{\textgreater FORMAT \textit{nn} \textit{s} \textit{p} \textit{FORCE}}

and press the enter key

\textit{where}

\begin{itemize}
   \item \textit{nn} is the number of the slot position of the input/output processor (IOP) card that contains the disk drive packlet (number can have one digit or two digits)
   \item \textit{s} is the front (\textit{F}) or rear (\textit{R}) shelf position of the IOP card that contains the disk drive packlet
   \item \textit{p} is the upper (\textit{U}) or lower (\textit{L}) position of the IOP card that contains the disk drive packlet
\end{itemize}

\textit{Example of command input:}

\texttt{FORMAT 2 F L FORCE}

\textit{Example of a MAP response:}

\begin{quote}
format 2 f l \\
Warning: Format of the disk will result in LOST DATA. Proceed? \\
Please confirm ("YES", "Y", "NO", or "N"): 
\end{quote}
12 To confirm the format command from step 12, type:
>YES
and press the enter key.

*Example of a MAP response:*

yes
Command Submitted.
Format 2 front lower checking data
Format 2 front lower formatting disk
Format 2 front lower initializing
Format 2 front lower completed

13 To return the disk drive packlet to service, type:
>RTS nn s p
and press the enter key.

where

nn is the number of the slot position of the input/output processor (IOP) card that contains the disk drive packlet (number can have one digit or two digits)

s is the front (F) or rear (R) shelf position of the IOP card that contains the disk drive packlet

p is the upper (U) or lower (L) position of the IOP card that contains the disk drive packlet

Example of command input:

**RTS 2 F L**

*Example of a MAP response:*

rt s f l
Command Submitted.
RTS 2 front lower completed

<table>
<thead>
<tr>
<th>If the disk drive packlet is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service (.)</td>
<td>step 14</td>
</tr>
<tr>
<td>another state</td>
<td>step 25</td>
</tr>
</tbody>
</table>

14 To display the CI level of the MAP, type:

>QUIT ALL
and press the enter key.

*Example of a MAP response:*

CI:
How to create volumes on XA-Core disks (continued)

15  To access the administration of the disk device, type:
    >DISKADM snnp
    and press the enter key

where

  s  is the front (F) or rear (R) shelf position of the IOP card that contains the
disk drive packet

  nn is the number of the slot position of the input/output processor (IOP) card
  that contains the disk drive packet (requires a two-digit number)

  p is the upper (U) or lower (L) position of the IOP card that contains the disk
  drive packet

Example of command input:
	DISKADM F02L

Example of a MAP response:
Start up command sequence is in progress.
This may take a few minutes.
Administration of device F02L on CM is now active.
DISKADM;  CM

16  To display the disk data space that is available, type:
    >DISPLAYDISK
    and press the enter key

Example of a MAP response:

    Disk drive information for F02L

    Date last formatted     : 1999/05/17 09:58:03.277
    MON.
    Date last modified      : 1999/05/17 10:21:54.822
    MON.
    Total space for volumes : 4095 Mbytes
    Total Free space        : 3695 Mbytes
    Size of largest free segment : 3695 Mbytes
    Total number of volumes : 0

    1 Block = 512 bytes

    Note:  The number of blocks varies according to the total disk storage
capacity.

17  To display the information of all the volumes on the disk, type:
    >DISPLAYVOLS
    and press the enter key

Example of a MAP response

    F02L contains no volumes.
How to create volumes on XA-Core disks (continued)

18 To create a volume on the disk, type:

```
>CREATEVOL vol_name vol_size FTFS LBLOCK logical_size
```

and press the enter key

where

- **vol_name** is the name you call the volume (eight characters maximum).
- **vol_size** is the size of the volume in megabytes.
- **logical_size** is the block size of the logical volume. The block size can have 1, 2, 4, 8, or 16 kbytes when a number 1, 2, 4, 8, or 16 is after LBLOCK and a space. The recommended size is the default value of 16 kbytes. A recommended size for a disk volume that has peripheral module (PM) load files is 4 kbytes. The same disk volume can support concurrent loading of more than one PM load file. A decrease in the block size from 16 kbytes supports an increased number of concurrent loading processes but with less performance.

Example of command input:

```
CREATEVOL VOLUME_1 70 FTFS LBLOCK 4
```

Example of a MAP response:

```
FTFS volume VOLUME_1 will be created on F02L.
```

| Volume size: | 70 megabytes |
| First FID table extent size: | 2047 entries |
| Volume Free Space Map size: | 7936 segments |

Do you want to continue?
Please confirm ("YES", "Y", "NO", or "N"):

19 Determine if the volume creation exceeds the largest free segment..

*An example of a MAP response to the create volume command that exceeds a maximum is as follows:*

```
CREATEVOL-1 command is aborted
Not enough space on disk.
```

Retry command OR Quit and reenter DISKADM.

<table>
<thead>
<tr>
<th>If the response to the create volume command indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a prompt to confirm the command</td>
<td>step 20</td>
</tr>
<tr>
<td>that the volume exceeds the largest free segment</td>
<td>step 25</td>
</tr>
</tbody>
</table>

20 To confirm the create volume command from step 18, type:

```
>YES
```

and press the enter key

*Example of a MAP response:*

Creation of the volume is completed.
How to create volumes on XA-Core disks

21 To display the information of all the volumes on the disk, type:

>`DISPLAYVOLS`

and press the enter key.

*Example of a MAP response:*

Information about FTFS volumes on F02L.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Create</th>
<th>Modify</th>
<th>Size</th>
<th>LBLK</th>
<th>Max</th>
<th>Max</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Data</td>
<td>Name</td>
<td>Date</td>
<td>Date</td>
<td>Mega</td>
<td>Size</td>
<td>No. of</td>
<td>No. of</td>
</tr>
<tr>
<td>Cache</td>
<td>Cache</td>
<td>Y/M/D</td>
<td>Y/M/D</td>
<td>Bytes</td>
<td>kBytes</td>
<td>Files</td>
<td>Segmnts</td>
</tr>
<tr>
<td>Files</td>
<td>Pages</td>
<td>Pages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>VOLUME_1</td>
<td>99/02/18</td>
<td>99/02/18</td>
<td>70</td>
<td>4</td>
<td>22047</td>
<td>7936</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: In the example of a MAP response, the test volume is VOLUME_1.*

22 To quit the DISKADM utility, type:

>`QUIT`

and press the enter key.

23 To check for the volume that you created, type:

>`PRINT ROOTDIR`

and press the enter key.

*Example of a MAP response:*

```
MAP Device Copy 1800
F02LVOLUME_1 Device Copy 84C2
```

*Note: The volume has the disk device identified as a prefix to the volume name. In the example of a MAP response, the volume is F02LVOLUME_1.*

24 Determine if the administration of the disk device created the volume. Check for the MAP response of step 23 to list the created volume.

<table>
<thead>
<tr>
<th>If the administration of the disk device created the volume</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>correctly</td>
<td>step 26</td>
</tr>
<tr>
<td>failed</td>
<td>step 25</td>
</tr>
</tbody>
</table>

25 For additional help, call the next level of support.

26 You have completed this procedure.
How to delete a volume on an XA-Core disk

Application
Use this procedure to delete a volume from a disk of the eXtended Architecture Core (XA-Core).

Interval
Perform this procedure as required.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as a summary of the procedure. Follow the exact steps to perform this procedure.
How to delete a volume on an XA-Core disk

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.

Are there open files on the volume?  

Yes (Y) → Close the open files

No (N) → Delete the volume

End
How to delete a volume on an XA-Core disk (continued)

How to delete a volume on an XA-Core disk

CAUTION
Some applications can open files automatically
Before deleting a volume, you must ensure that all files in
the volume are closed. Step 2 in this procedure instructs
you to close any open files. However, some applications
(for example, DIRP) can open files automatically, and it is
possible that such applications may open files between the
time that the lv command reports zero open files and the
time that you enter the DELETEVOL command. You can
avoid such problems only if you understand the following
things: what the volume is used for; which applications use
the volume; how those applications work. If you do not
feel confident that you understand these things, call the
next level of support.

CAUTION
FIDB and F2DB volumes contain valuable information
Volumes whose names contain FIDB and F2DB hold
information that the system stores as a record of its
operation (“footprint and fault data”). If a problem occurs
and you contact Nortel for assistance, the information in
these volumes may help Nortel personnel to correct the
problem. We advise you not to delete these volumes.

At the MAP terminal
1 Check the volume to find out whether it has any files that are currently open.
Proceed as follows.
   a Initiate the MAP disk utility. Type
      >DISKUT
      and press the Enter key.
      Example of MAP response:
      Disk utility is now active.
      DISKUT:
   b Display the list of volumes. Type
      >lv
      and press the Enter key.
      In response, the system displays a list of volumes.
Example of MAP response:

```
NAME TYPE TOTAL BLOCKS FREE BLOCKS TOTAL FILES OPEN FILES ITOC FILES LARGEST BLOCKS FREE SEGMENT
---------- --------- ------------- ----------- ------------ ----------- ------- -----------------
F17LIMAGE1 FTFS 3072000 570368 14 0 5 416768
F17LIMAGE2 FTFS 3072000 919136 13 0 4 615424
F17LPLOADS FTFS 512000 456376 7 0 0 456376
F17LPATCH FTFS 204800 200160 29 0 0 200160
F17LAMA FTFS 102400 2080 13 0 0 2080
F17LDLOG FTFS 102400 1600 193 0 0 608
F17LPERM FTFS 204800 187688 39 0 0 185824
F17LTEMP FTFS 204800 156096 59 0 0 136640
F17LFIDB FTFS 378880 177952 1 0 0 177952
F17LSPECTRUM FTFS 409600 404832 20 0 0 404576
F17CUSTIMG FTFS 204800 104448 11 0 7 97280
F17LEUROPC FTFS 204800 705536 7 0 0 428032
F17LCMPATCH FTFS 614400 396320 846 0 0 393312
F17LXPMPATCH FTFS 409600 407904 2 0 0 407776
F17LSPMPATCH FTFS 614400 575072 1 0 0 536672
F02LIMAGE1 FTFS 3072000 514048 13 0 3 349184
--
Do you wish to continue?
Please confirm ("YES", "Y", "NO", or "N"):
>Y
Volumes found on node CM:

NAME TYPE TOTAL BLOCKS FREE BLOCKS TOTAL FILES OPEN FILES ITOC FILES LARGEST BLOCKS FREE SEGMENT
---------- --------- ------------- ----------- ------------ ----------- ------- -----------------
F02LIMAGE2 FTFS 3072000 457312 15 0 8 270336
F02LPLOADS FTFS 512000 269280 30 0 0 169984
F02LPATCH FTFS 204800 198112 38 0 0 198112
F02LAMA FTFS 102400 2720 61 0 0 1024
F02LDLOG FTFS 102400 1088 175 0 0 1056
F02LPERM FTFS 204800 177760 81 0 0 177504
F02LTEMP FTFS 204800 158432 46 0 0 158432
F02LF2DB FTFS 368640 367712 0 0 0 367712
F02LSPECTRUM FTFS 409600 360544 4 0 0 360544
F02LABCDE FTFS 409600 408672 0 0 0 408672
F02CUSTIMG FTFS 204800 1201152 7 0 2 502192
F02LEUROPC FTFS 3072000 1727328 11 0 0 1727328
F02LFIDB FTFS 368640 132192 2 1 0 132192
F02LNODEATIMG FTFS 614400 614400 1 0 0 201824
--
Total number of volumes found on node CM : 30
```

*Note:* If the list is a long one, you will need to respond to the “Do you wish to continue?” prompt, as shown in the figure.
How to delete a volume on an XA-Core disk (continued)

c In the list of volumes, find the “OPEN FILES” value displayed for the volume that you intend to delete.

d Close the MAP disk utility. Type

>QUIT

and press the Enter key.

e Select the next step as follows.

<table>
<thead>
<tr>
<th>If the “OPEN FILES” value that you found in step 1c</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>is greater than 0 (zero)</td>
<td>step 2</td>
</tr>
<tr>
<td>is 0 (zero)</td>
<td>step 3</td>
</tr>
</tbody>
</table>

2 Close each open file from the application from which it was opened. After closing the files, proceed to step 3.

Note: If you have not already done so, read the caution that precedes these instructions.

3 Delete the volume.

Proceed as follows.

a Initiate DISKADM. Type

>DISKADM <s><nn><p>

and press the Enter key

where

<s> is the front (F) or rear (R) shelf position of the IOP card that contains the disk drive packet

<nn> is the number of the slot position of the input/output processor (IOP) card that contains the disk drive packetlet (requires a two-digit number)

<p> is the upper (U) or lower (L) position of the IOP card that contains the disk drive packetlet

For example, to if you want to delete a volume from the disk packlet in the IOP circuit pack in slot 2, front, type

>DISKADM F02L

Example of MAP response:

Start up command sequence is in progress.
This may take a few minutes.
Administration of device F02L on CM is now active.
DISKADM; CM
How to delete a volume on an XA-Core disk (end)

b  Delete the volume. Type
   \texttt{\textgreater DELETEVOL \textless volume-name\textgreater}
   and press the Enter key
   where
   \textless volume-name\textgreater{} is the name of the volume
   For example, to delete the volume named ABCDE, type
   \textbf{\texttt{\textgreater DELETEVOL ABCDE}}
   and press the Enter key.
   \textit{Example of MAP response:}
   \texttt{WARNING}
   Deleting volume ABCDE on F02L
   will DESTROY the contents of the volume.
   Please confirm (“YES”, “Y”, “NO”, or “N”):

c  Confirm the deletion. Type
   \texttt{\textgreater Y}
   and press the Enter key
   \textit{Example of MAP response:}
   Volume ABCDE has been deleted on F02L.

d  Quit the DISKADM utility. Type
   \texttt{\textgreater QUIT}
   and press the Enter key.

4  You have completed this procedure.
How to perform XA-Core LED maintenance

Application
Use this procedure to check that light-emitting diodes (LEDs) function correctly on all XA-Core circuit packs (CPs) and packlets. The LEDs indicate the working state and physical slot location of the CPs and packlets. If a red LED is not working, you cannot locate the CP or packlet on the physical shelf. If a red, amber or green LED is not working, you cannot accurately define the working state of the CP or packlet.

Use the Indicat_ menu command with the <testall> parameter to light all LEDs on all CPs and packlets. Use the Indicat_ command with the <card> and location parameters to light LEDs on a single CP or packlet. For a complete explanation of the Indicat_ command, refer to the documents that describe XA-Core MAP level commands.

Interval
Perform this procedure once every month.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to perform XA-Core LED maintenance (continued)

Summary of How to perform XA-Core LED maintenance

This flowchart summarizes the procedure.

Use the instructions in the procedure that follows this flowchart to perform the procedure.

Display an XA-Core MAP level

Alarms shown?

Y

Perform correct alarm clearing procedure

Test CP and packet LEDs

Alarm clear?

N

Call the next level of support

Y

N

Replace CPs or packlets that have faults

Retest replaced CPs or packlets

Visually inspect the XA-Core shelf

All LEDs lit?

N

Y

Clear the Indicat_test

End

297-8991-510 Standard 12.02 December 2005
How to perform XA-Core LED maintenance (continued)

How to perform LED maintenance

At the MAP terminal

1. Access any XA-Core MAP level (such as the XACMtc MAP level). At the CI MAP prompt, type:

   `>MAPCI;MTC;XAC;XAMTC`

   and press the Enter key.

2. Examine the MAP level. Record any alarms and the location of any OOS CPs or packetets.

   The following is a sample MAP display.

   XACMtc MAP level

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| XACMtc | Front: 111111111 Rear: 111111 SM PE IO PKLT
| 0    | Quit |
| 2    |     |
| 3    |     |
| 4    |     |
| 5    |     |
| 6    |     |
| 7    |     |
| 8    |     |
| 9    |     |
| 10   |     |
| 11   | Image |
| 12   | RExTst_ |
| 13   | RExInt_ |
| 14   | Alarm_ |
| 15   |       |
| 16   |       |
| 17   | Indicat_ |
| 18   | Query_ |

   XACMTC:

   XMAP0
   Time 14:12 >

   Traps: Per Minute: = 0 Total = 1
   Last Image run at: 1999/02/15 13:13
   restart type= reload
   Result = pass
   Last XARExTst run at: 1999/03/15 14:25
   Last XARExTst Type: full
   Last XARExTst Result: notRun

   If the MAP alarm banner displays
<p>| |
|                |</p>
<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>an alarm</td>
</tr>
<tr>
<td>no alarm</td>
</tr>
</tbody>
</table>

   3 Perform the correct alarm clearing procedure. Return to this point when complete.
4. **Test all CP and packet LED indicators.** At the MAP level type:

```
>INDICAT <testall> [timer]
```

and press the Enter key

where

- `<testall>` is the parameter used to cause all LEDs to light. The `<testall>` parameter does not cause an audible alarm nor alarm notification on the MAP terminal. The amber LEDs on the shelf interface modules (SIM) CPs do not light. CP or packet LEDs now under test continue to flash. You can use this parameter for all CP or packet states (SysB, ManB, Cbsy, IsTb).

- `[timer]` is the option used to indicate the time (in minutes) to light or flash LEDs. The XA-Core system turns the LEDs off when the time expires. The maximum time period is 999 min. If you do not define a time period, the default time period is 120 min.

Example of command use:

```
>INDICAT testall 5
```

*Example of system response:*

Indicate testall passed

---

**At the XA-Core physical shelf**

5. **Perform a visual inspection of LEDs on all the CPs and packetets.** Make sure that all LEDs light-up on all CPs and packetets.

*Note:* The amber LEDs on the SIMs do not light.

6. **Record the physical slot location of any CP or packet that does not have all LEDs lit.**

<table>
<thead>
<tr>
<th>If one or more LEDs are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not lit on one or more different CP or packetet types</td>
<td>step 7</td>
</tr>
<tr>
<td>not lit on similar CP or packetet types</td>
<td>step 9</td>
</tr>
<tr>
<td>lit on all CPs and packetets</td>
<td>step 10</td>
</tr>
</tbody>
</table>
How to perform XA-Core LED maintenance (continued)

At the MAP terminal

7 Test each of the suspect CPs or packlets individually. Use the CP or packet location information recorded from 6. Perform the following:

a Clear the Indicat_<testall> command. At the MAP level type

>INDICAT <clearall>

and press the Enter key

where

<clearall> is the parameter used to return all winking or testing LEDs on all CPs or packlets to a normal working state.

Example of command use:

>INDICAT clearall

Example of system response:

Indicate clearall passed

b Light all the LEDs on the suspect CP or packlet. At the MAP level type

>INDICAT <test> <nn> <s> [timer]

or

>INDICAT <test> <nn> <s> <p> [timer]

and press the Enter key

where

<test> is the parameter used to cause all LEDs on a single CP or packlet to light. The <test> parameter does not cause an audible alarm nor alarm notification on the MAP terminal. The amber LEDs on the shelf interface modules (SIM) CPs do not light. CP or packet LEDs now under test continue to flash. You can use this parameter for all CP or packet states (SysB, ManB, Cbsy, IsTb). You can use the <test> parameter with the [timer] option.

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packet location in the physical shelf - front (f) or rear (r)

<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

[timer] is the option used to indicate the time (in minutes) to light or flash LEDs. The XA-Core system turns the LEDs off when the time expires. The maximum time period is 999 min. If you do not define a time period,
How to perform XA-Core LED maintenance (continued)

the default time period is 120 min. The Indicat_ <clear> or <clearall> command returns CPs or packlets to a normal working state.

Example of command use:

->INDICAT test 2 f 5

or

->INDICAT test 2 f u 5

*Example of system response:*

Indicate test 2 front upper passed

c Record the physical slot location of the CP or packlet that does not have all LEDs lit.

If one or more LEDs are  | Do
-------------------------|-----------------------
not lit on one or more CP or packet | step 8

| lit on all CPs and packlets | step 10 |

Perform the correct CP or packet replacement procedure. Return to this point when complete. Test the replacement CP or packet individually. Use the CP or packet location information recorded from 7. Perform the following steps:

8

a Use the Indicat <clearall> command. At the MAP level type

->INDICAT <clearall>

and press the Enter key

where

<clearall> is the parameter used to return all winking or testing LEDs on all CPs or packlets to a normal working state.

Example of command use:

->INDICAT clearall

*Example of system response:*

Indicate clearall passed
How to perform XA-Core LED maintenance

b Light all the LEDs on the replacement CP or packlet. At the MAP level type

>INDICAT <test> <nn> <s> [timer]

or

>INDICAT <test> <nn> <s> <p> [timer]

and press the Enter key

where

<test> is the parameter used to cause all LEDs on a single CP or packlet to light. The <test> parameter does not cause an audible alarm nor alarm notification on the MAP terminal. The amber LEDs on the shelf interface modules (SIM) CPs do not light. CP or packlet LEDs now under test continue to flash. You can use this parameter for all CP or packlet states (SysB, ManB, Cbsy, IsTb). You can use the <test> parameter with the [timer] option.

<nn> is the slot number parameter value to indicate the number of the physical shelf slot - 1 to 18

<s> is the side parameter value to indicate the CP or packlet location in the physical shelf - front (f) or rear (r)

<p> is the upper (u) or lower (l) physical slot location of the packlet in an input/output processor (IOP).

[timer] is the option used to indicate the time (in minutes) to light or flash LEDs. The XA-Core system turns the LEDs off when the time expires. The maximum time period is 999 min. If you do not define a time period, the default time period is 120 min.

Example of command use:

>INDICAT test 2 f 5

or

>INDICAT test 2 f u 5

Example of system response:

Indicate test 2 front (upper) passed

c Record the physical slot location of any replacement CP or packlet that does not have all LEDs lit.

<table>
<thead>
<tr>
<th>If one or more LEDs are lit</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not lit</td>
<td>step 9</td>
</tr>
<tr>
<td>lit on all CPs and packlets</td>
<td>step 10</td>
</tr>
</tbody>
</table>

9 Call the next level of support.

10 You have completed this procedure.
This page is left blank intentionally.
How to record an XA-Core office image on a disk

Application
Use this procedure to record the office image files of an eXtended Architecture Core (XA-Core). Use this procedure to record the office image on to a disk in an XA-Core shelf.

Interval
Perform this procedure each day if the XA-Core has no automatic image taking. Perform this procedure as required by your office if the XA-Core has automatic image taking.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as a summary of the procedure. Follow the exact steps to perform this procedure.
How to record an XA-Core office image on a disk (continued)

Summary of How to record an XA-Core office image on a disk

This flowchart summarizes the procedure.
Use the instructions in the procedure that follows this flowchart to perform the procedure.
How to record an XA-Core office image on a disk

At the MAP

1  To access the MAP CI level display, type:

   >QUIT ALL

   and press the enter key.

   Example of a MAP response:

   CI:

2  To check the status of automatic image taking, type:

   >AUTODUMP STATUS

   and press the enter key.

   Example of a MAP response

   Successful Image: 990215_XA
   Taken: 1999/03/17 21:47:32:04.138 WED.
   On Volume: F17LIMAGE

   Successful Image: 990215_MS
   Taken: 1999/03/17 21:47:32:04:138 WED.
   On Volume: F17LIMAGE

   SCHEDULED-Image Dump is ON.
   RETAIN option is OFF.

   Next scheduled dump is MONDAY at 22:30 hours.
   Next image to be dumped on F02LIMAGE.

3  Determine if the retain option is off. XA-Core has the retain option on or off.

   In the example of a MAP response of step 2, the text RETAIN option is OFF
   indicates the retain option is off..

<table>
<thead>
<tr>
<th>If RETAIN option is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>step 4</td>
</tr>
<tr>
<td>OFF</td>
<td>step 8</td>
</tr>
</tbody>
</table>

CAUTION
Call your next level of support
Do not try this procedure before you call your next level of support.

If RETAIN option is ON, go to step 4.
If RETAIN option is OFF, go to step 8.

Do not try this procedure before you call your next level of support.

XA-Core Maintenance Manual
How to record an XA-Core office image on a disk (continued)

4  To change the retain option, type:
   >AUTODUMP RETAIN
   and press the enter key.
   
   Example of a MAP response:
   
   *** WARNING ***
   This option RETAINS the PRIMARY LOAD ROUTE. The PRIMARY LOAD ROUTE should be initially set per NTP.
   The RETAIN option will be ENABLED.
   Please confirm ("YES", "Y", "NO", or "N"):

5  To confirm the command, type:
   >YES
   and press the enter key.
   
   Example of a MAP response:
   RETAIN option DISABLED.

6  To check the status of automatic image taking, type:
   >AUTODUMP STATUS
   and press the enter key.
   
   Example of a MAP response
   
   Successful Image: 990215_XA
   Taken: 1999/03/17 21:47:32:04.138 WED.
   On Volume: F17LIMAGE
   
   Successful Image: 990215_MS
   Taken: 1999/03/17 21:47:32:04:138 WED.
   On Volume: F17LIMAGE
   
   SCHEDULED-Image Dump is ON.
   RETAIN option is OFF.

   Next scheduled dump is MONDAY at 22:30 hours.
   Next image to be dumped on F02LIMAGE.

7  Determine if the retain option is off. XA-Core has the retain option on or off. In the example of a MAP response of step 2, the text RETAIN option is OFF indicates the retain option is off.

<table>
<thead>
<tr>
<th>If If RETAIN option is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>step 40</td>
</tr>
<tr>
<td>OFF</td>
<td>step 8</td>
</tr>
</tbody>
</table>
Introduction to routine maintenance procedures

How to record an XA-Core office image on a disk (continued)

8 Determine if the XA-Core has automatic image taking on or off. In the example of a MAP response of step 2, the text SCHEDULED-Image Dump is ON indicates the automatic image taking is on.

<table>
<thead>
<tr>
<th>If SCHEDULED-Image Dump is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>step 27</td>
</tr>
<tr>
<td>OFF</td>
<td>step 9</td>
</tr>
</tbody>
</table>

9 To access the MAP disk utility, type:

>DISKUT
and press the enter key.

*Example of a MAP response:*

Disk utility is now active.

DISKUT:

10 Determine and record the XA-Core disk volume that the image dump goes on to. Determine the disk volume from office records or office personnel.

11 To list the files in the disk volume that you recorded in step 10, type:

>LISTFL vol_name

and press the enter key.

where

<vol_name> is the name of the disk volume that contains the office image files.

*Example of MAP input:*

>LISTFL F02LIMAGE

*Example of a MAP response:*

File information for volume F02LIMAGE:

(Note: 1 BLOCK = 512 BYTES)

<table>
<thead>
<tr>
<th>FILE NAME</th>
<th>RECORDS</th>
<th>SIZE MODIFY</th>
<th>ORI FILE MAX</th>
<th>NUM OF FILE</th>
<th>LAST IN</th>
<th>IN</th>
<th>ORI DATE</th>
<th>REC</th>
<th>LEN</th>
<th>C N FILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMG0504CX_XA</td>
<td>165180</td>
<td>329728</td>
<td>990506</td>
<td>I F</td>
<td>0</td>
<td>1020</td>
<td>15360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMG0504CX_MS</td>
<td>7542</td>
<td>15360</td>
<td>990506</td>
<td>I F</td>
<td>0</td>
<td>1020</td>
<td>329728</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMG0501CU_XA</td>
<td>165180</td>
<td>329728</td>
<td>990501</td>
<td>I F</td>
<td>0</td>
<td>1020</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMG0501CU_MS</td>
<td>7542</td>
<td>15360</td>
<td>990501</td>
<td>I F</td>
<td>0</td>
<td>1020</td>
<td>329728</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to record an XA-Core office image on a disk (continued)

12 Determine and record the file names of the oldest XA-Core and message switch (MS) images. The XA-Core image files have a CM suffix. The MS image files have an MS suffix.

   **Note:** In the example of a MAP response in step 11, the oldest image file for XA-Core is IMG0501CU_XA. In the example of a MAP response in step 11, the oldest image file for the MS is IMG0501CU_MS

13 Determine if you can delete the files of the oldest XA-Core and MS images. Determine if file deletion is correct from office records or office personnel.

<table>
<thead>
<tr>
<th>If file deletion of oldest XA-Core and MS images is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct</td>
<td>step 14</td>
</tr>
<tr>
<td>not correct</td>
<td>step 40</td>
</tr>
</tbody>
</table>

14 To access the user interface for the image table of contents (ITOC) table, type:

`>ITOCCI`  
and press the enter key.

*Example of a MAP response:*

ITOC User Interface is now active.  
ITOCCI:

15

**WARNING**  
Do not leave ITOC table empty  
The ITOC table must not be empty of image files to boot the switch. Do not clear from the ITOC the last image files for the XA-Core and message switch (MS). Each XA-Core disk must have an XA-Core image file and an MS image file.

To list the image files for the XA-Core in the ITOC, type:

`>LISTBOOTFILE XA`  
and press the enter key.
### Example of a MAP response:

**Image Table Of Contents for XA:**

<table>
<thead>
<tr>
<th>A Registered</th>
<th>Generic Device</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Date</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>R MM/DD/YYYY HH:MM:SS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 * 05/04/1999 19:16:21 F02LIMAGE
IMG0504CX_XA
0 05/01/1999 19:21:19 F02LIMAGE
IMG0501CU_XA

**Note:** The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.

#### 16 Determine if the ITOC table has more than one XA-Core image file.

<table>
<thead>
<tr>
<th>If more than one XA-Core image file is in the ITOC table</th>
<th>Do step 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in the ITOC table</td>
<td>step 40</td>
</tr>
</tbody>
</table>

#### 17 To clear the oldest image file for the XA-Core from the ITOC table, type:

```map
clearbootfile xa file xacore_image_file
```

where

<xacore_image_file> is the name of the XA-Core image file that you recorded in step 12.

Example of MAP input:

```map
clearbootfile xa file IMG0501CU_XA
```

#### 18 To list the image files for the MS in the ITOC table, type:

```map
listbootfile ms
```

and press the Enter key.
How to record an XA-Core office image on a disk (continued)

Example of a MAP response:

```
Image Table Of Contents for XA:

<table>
<thead>
<tr>
<th></th>
<th>Registered</th>
<th>Generic Device</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Date</td>
<td>Time</td>
<td>Name</td>
</tr>
<tr>
<td>R</td>
<td>MM/DD/YYYY</td>
<td>HH:MM:SS</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>* 05/04/1999 19:16:21</td>
<td>F02LIMAGE</td>
<td>IMG0504CX_MS</td>
</tr>
<tr>
<td>1</td>
<td>05/01/1999 19:21:19</td>
<td>F02LIMAGE</td>
<td>IMG0501CU_MS</td>
</tr>
</tbody>
</table>
```

**Note:** The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.

19 Determine if the ITOC table has more than one MS image file.

<table>
<thead>
<tr>
<th>If more than one MS image file is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in the ITOC table</td>
<td>step 20</td>
</tr>
<tr>
<td>not in the ITOC table</td>
<td>step 40</td>
</tr>
</tbody>
</table>

20 To clear the oldest image file for the MS from the ITOC table, type:

```
> CLEARBOOTFILE MS FILE ms_image_file
```

and press the Enter key.

where

<ms_image_file> is the name of the MS image file that you recorded in step 12.

Example of MAP input:

```
> CLEARBOOTFILE MS FILE IMG0501CU_MS
```

21 To quit the MAP user interface for the ITOC table, type:

```
> QUIT
```

and press the enter key.

Example of a MAP response:

```
DISKUT:
```

22 To delete the oldest image file for XA-Core, type:

```
> DELETE FL xacore_image_file
```

and press the enter key.
How to record an XA-Core office image on a disk (continued)

where

<xacore_image_file> is the name of the XA-Core image file that you recorded in step 12.

Example of MAP input:

>`DELETEFL IMG0501CU_XA`

23 To confirm the command type:

>`YES`

and press the enter key.

24 To delete the oldest image file for the MS, type:

>`DELETEFL ms_image_file`

and press the enter key.

where

<ms_file> is the name of the MS image file that you recorded in step 12.

Example of MAP input:

>`DELETEFL IMG0501CU_MS`

25 To confirm the command type:

>`YES`

and press the enter key.

26 To quit the MAP disk utility, type:

>`QUIT`

and press the enter key.

Example of a MAP response:

CI:

27 To start an image taking record, type:

>`AUTODUMP MANUAL`

and press the enter key.

Example of a MAP response:

*SCHEDULED Image Dump in approximately 5 minutes...*

Please refrain from using dump unsafe commands during the CM image dump.
Quit to CI if possible.
If you cannot refrain from using dump unsafe commands use the STOPDUMP command to abort AUTODUMP.
Querying image size on node: MS0. Waiting for reply...
Reply received.
Querying image size on node: CM. Waiting for reply...
Reply received.
Checking to see if anyone using dump unsafe commands.
Image Dump STARTED: 1999/06/18 03:52:20.150 FRI.
Please refrain from using dump unsafe commands during the CM image dump.Quit to CI if possible.
How to record an XA-Core office image on a disk (continued)

If you cannot refrain from using dump unsafe commands use
the STOPDUMP command to abort AUTODUMP.
Users will be notified when dump unsafe commands are
allowed to be used.
Users can now use dump unsafe commands.
Image dump completed successfully.
Successful Image: S990618035204_XA
Taken: 1999/06/18 03:52:20.150 FRI.
On Volume: F02LCUTOVER
Last Image: S990618035204_XA
Successful Image: S990618035204_MS
Taken: 1999/06/18 03:52:20.150 FRI.
On Volume: F02LCUTOVER
Last Image: S990618035204_MS

To check the performance of the image taking record of step 27, type:

> AUTODUMP HISTORY

and press the enter key.

Example of a MAP response.

Autodump begins...
WARNING: Only 1 percent space left in the volume after
this image is taken. There may not be enough space for
subsequent images. Ensure that only recent CM and MS image
and history file exist in the volume. Increase the volume
size if necessary.
Stopping Journal File...
Journal File stopped.
Beginning Dump. START time: 1999/06/18 03:52:20.237 FRI.
Timeout initialized.
CM: Estimated image size is 155288 Kbytes.
CM: Unloading modules that are loaded as TEMPORARY...
CM: None found.
CM: Current autoload file: F02LPATCHES
TAM_UNITCNA114DC_W24_XA
CM:
CM: Dumping Data Store.
CM:
CM: Dumping Program Store.
CM:
CM: Dumping Entry Record.
CM:
CM: Checking Data Store.
CM:
CM: Checking Program Store.
CM:
CM: Checking Entry Record.
CM:
CM: Successful DUMP and CHECK.
CM: 155287 blocks with 1033 corrections.
CM:
CM: Image from XA registered as file 11 in ITOC for XA.
CM: Active entry in ITOC for XA was NOT updated.
Image Dump Completed.
Timeout initialized.
MS0: Estimated image size is 7543 Kbytes.
MS0: Unloading modules that are loaded as TEMPORARY...
MS0: None found.
MS0: Current autoload file: F02LPATCHES TAMP_UNITCNA114DC_W24_C
MS0:
MS0: Dumping Data Store
MS0: .
MS0: Dumping Program Store.
MS0: Dumping Entry Record.
MS0:
MS0: Checking Data Store.
MS0:
MS0: Checking Program Store.
MS0: Checking Entry Record.
MS0: Successful DUMP and CHECK.
MS0: 7542 blocks with 101 corrections.
MS0:
MS0: Image from MS registered as file 3 in ITOC for MS.
MS0: Active entry in ITOC for MS was NOT updated.
Image Dump Completed.
Dump END time: 1999/06/18 04:17:37.297 FRI..
Renaming CM Image File from ACTIVE to SAFE:
CM Image File Renamed.
Renaming MS Image File from ACTIVE to SAFE:
MS Image File Renamed.
Rotating Journal File...
ROTATE Journal File Completed.
Store Usage:
DS: USED = 151357Kb AVAIL = 45699Kb TOTAL = 197056Kb
% USED
PS: USED = 95672Kb AVAIL = 31240Kb TOTAL = 126912Kb
% USED =
Starting Journal File...
Completed START Journal File.
Autodump ends...

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Determine if the image taking record completed correctly.</td>
</tr>
<tr>
<td></td>
<td><strong>If</strong> image taking record completed</td>
</tr>
<tr>
<td></td>
<td>Do</td>
</tr>
<tr>
<td></td>
<td>correctly</td>
</tr>
<tr>
<td></td>
<td>not correctly</td>
</tr>
</tbody>
</table>

30 To find additional information about the image taking record that completed not correctly, type:

> AUTODUMP DEBUG

and press the enter key.
Example of a MAP response.

Creating image file name: A990618035204
Attempting to determine disk volume to use for dump:
BEGIN: get_image_size for node MS0:
Allocating MTS resources... Done.
Allocating event... Done.
Searching for dump controller... Done.
Sending query_image_size_ msg to dump controller... Done.
Image size for MS0 is 7724032 bytes.
Releasing MTS resources.
END: get_image_size - deallocating event.
BEGIN: get_image_size for node CM:
Allocating MTS resources... Done.
Allocating event... Done.
Searching for dump controller... Done.
Sending query_image_size_ msg to dump controller... Done.
Image size for CM is 159014912 bytes.
Releasing MTS resources.
END: get_image_size - deallocating event.
Total image size (CM + MS) is: 166738944 bytes.
Calculating disk block requirements for a 166738944 byte image
Beginning search for disk volume to use for dump:
Getting volume name for next volume in table: Done.
Getting volume id for F02LCUTOVER... Done.
Checking available disk space:
Getting volume information... Done.
Calculating requirements in disk blocks:
Image size: 325662 Disk space: 331648
Enough space exists to take an image
Updating protected variable active_volume
Updating protected variables for last image.
BEGIN: perform_autodump
Setting up dump parms.
Update_mode is: update
Allocating MTA resources... Done.
Allocating cleanup event... Done.
Searching for dump controller mailbox... Done.
BEGIN: over_nodes loop:
Preparing to dump CM:
Requesting permission from SAC to dump node CM Permission received
*** Sending DUMP request to dump controller... Message sent.
Timeout time is: 1999/06/18 06:52:21.590 FRI..
Waiting for messages from DUMP controller... Message received:
Waiting for messages from DUMP controller... Timed out.
Continuing...
Waiting for messages from DUMP controller... Message received:
Waiting for messages from DUMP controller... Message received:
Sending event stopped notification to SAC. RC: 0
Preparing to dump MS:
Requesting permission from SAC to dump node MS0
Permission received
*** Sending DUMP request to dump controller... Message sent.
Timeout time is: 1999/06/18 04:58:44.186 FRI..
Waiting for messages from DUMP controller... Message received:
Waiting for messages from DUMP controller... Message received:
Waiting for messages from DUMP controller... Timed out.
Continuing...
Waiting for messages from DUMP controller... Message received:
Waiting for messages from DUMP controller... Timed out.
Continuing...
Waiting for messages from DUMP controller... Timed out.
Continuing...
Waiting for messages from DUMP controller... Message received:
Sending event stopped notification to SAC. RC: 0
END: over_nodes loop
Deallocating autodump event
END: perform_autodump
Attempting to rename image file:
Searching for image file: A990618035204_XA...
Found image file: A990618035204_XA
Getting file information... Done.
Attempting to clear ITOC entry...
Done.
Renaming file: A990618035204_XA TO: S990618035204_XA...
Done.
Getting volume information... Done.
Getting file information... Done.
Retain option is UPDATE: Setting ACTIVE bootfile...
Setting bootfile...
Done.
Updating protected variables for last successful image.
Getting MS image file info:
Found image file: A990618035204_MS
Getting file information... Done.
Attempting to clear ITOC entry...
Done.
Renaming file: A990618035204_MS TO: S990618035204_MS...
Failed. Reason: File not found
Updating protected variables for successful dump.
How to record an XA-Core office image on a disk (continued)

31 Record the information about the image taking record that completed not correctly.
Go to step 40.

32 To access the image table of contents (ITOC) user interface, type:
>ITOCCI
and press the enter key.
Example of a MAP response:
ITOC User Interface is now active.
ITOCCI:

33 To list the image files for the XA-Core in the ITOC, type:
>LISTBOOTFILE XA
and press the enter key.
Example of a MAP response:

<table>
<thead>
<tr>
<th>A Registered</th>
<th>Generic Device</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Date</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>R MM/DD/YYYY</td>
<td>HH:MM:SS</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0 * 05/04/1999 19:16:21</td>
<td>F02LIMAGE</td>
<td></td>
</tr>
<tr>
<td>IMG0504CX_XA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 05/17/1999 19:26:29</td>
<td>F02LIMAGE</td>
<td></td>
</tr>
<tr>
<td>IMG0517CY_XA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.

34 Determine if the XA-Core image file is in the ITOC correctly.

<table>
<thead>
<tr>
<th>If If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the XA-Core image file is in the ITOC correctly</td>
<td>step 35</td>
</tr>
<tr>
<td>the XA-Core image file is not in the ITOC correctly</td>
<td>step 40</td>
</tr>
</tbody>
</table>
How to record an XA-Core office image on a disk

To list the image files for the MS in the ITOC, type:

```
>LISTBOOTFILE MS
```

and press the enter key.

*Example of a MAP response:*

```
Image Table Of Contents for XA:

<table>
<thead>
<tr>
<th>A Registered</th>
<th>Generic Device</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Date</td>
<td>Time</td>
<td>Name</td>
</tr>
<tr>
<td>R MM/DD/YYYY</td>
<td>HH:MM:SS</td>
<td>-------------</td>
</tr>
<tr>
<td>0 *</td>
<td>05/04/1999 19:16:21</td>
<td>F02LIMAGE</td>
</tr>
<tr>
<td>IMG0504CX_MS</td>
<td>05/17/1999 19:26:29</td>
<td>F02LIMAGE</td>
</tr>
<tr>
<td>IMG0517CY_MS</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
```

*Note:* The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.

Determine if the MS image file is in the ITOC correctly.

<table>
<thead>
<tr>
<th>If the MS image file is in the ITOC</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>correctly</td>
<td>step 37</td>
</tr>
<tr>
<td>not correctly</td>
<td>step 40</td>
</tr>
</tbody>
</table>

Determine if office procedures require a backup copy on tape of the office image files of XA-Core that you recorded.

<table>
<thead>
<tr>
<th>If office procedures require</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a backup copy</td>
<td>step 38</td>
</tr>
<tr>
<td>no backup copy</td>
<td>step 41</td>
</tr>
</tbody>
</table>

Perform the procedure “How to backup an XA-Core office image from disk to tape”. When you have completed this procedure, return to this step.

Go to step 41

For additional help, call the next level of support.

You have completed the procedure.
This page is left blank intentionally.
How to replace XA-Core cooling unit air filters

Application
Use this procedure to replace a cooling unit filter in XA-Core, in a standard C-42 cabinet frame. The part number of the cooling unit filter is A0662028.

The cooling unit filter is a single, slide-out tray assembly located above the cooling unit fan drawers. Access the cooling unit filter from the front of the cabinet. The fan drawers of the cooling unit are in the lower front section of the cabinet.

Interval
Replace the cooling unit filter every six weeks.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to replace XA-Core cooling unit air filters (continued)

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to perform the procedure.

Open cabinet doors

Attach ground wrist strap

Slide cooling unit fans partially out of cabinet

Slide cooling unit filter out of cabinet

Insert replacement filter

Slide cooling unit fans into the cabinet

Fan RTS pass?

Perform correct fan maintenance procedure

Fan RTS pass?

Y

Call the next level of support

N

Remove ground wrist strap

Close cabinet doors

End

1
How to replace XA-Core cooling unit air filters (continued)

How to replace an XA Core cooling unit filter

**WARNING**

Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packet.

**CAUTION**

Loss of service
Read and make sure you thoroughly understand the instructions in this procedure before performing the filter replacement. Do not allow the cooling unit to remain un-powered for more than 2 min.

**At the XA-Core cabinet**

1. Get a new, replacement cooling unit filter (part number A0662028). Do not re-use old filters.
2. Open the front doors of the XA-Core cabinet completely.
3. Locate the following in the lower front section of the cabinet.
   - The cooling unit fans.
   - The cooling unit filter. The cooling unit filter is a single, slide-out tray assembly.
How to replace XA-Core cooling unit air filters (continued)

XA-Core cooling unit fan drawer and filter door locations

4 Loosen the locking screws on the cooling unit fan drawers. Turn the locking screws in a counter-clockwise direction.
How to replace XA-Core cooling unit air filters (continued)

5 Pull all three fan drawers partially away from the cabinet. Wait 30 sec. to allow the cooling unit fans to spin down.

   **Note:** The FSP blower LED will light. An FSP major alarm appears on the MAP level under the EXT alarm banner header.

Open the cooling unit fan drawers

6 Open the cooling unit filter door as shown in the diagram in this step.

Open the cooling unit filter door
How to replace XA-Core cooling unit air filters (continued)

7 Hold the tabs of the cooling unit filter and carefully pull the filter toward you. Pull the filter completely away from the cooling unit. Make sure that you do not hit the filter during removal. Sudden movement of the filter can cause dust to fall into the cabinet.

   Note: Before you remove the cooling unit filter, note the position of the filter in the cabinet. Make sure that the wire mesh side of the replacement filter is face-up.

Remove the cooling unit filter

8 Insert the replacement cooling unit filter. Align the replacement filter with the filter guides. Carefully push the filter until the filter is completely in the cabinet. Make sure that the wire mesh side is face-up.

Insert the replacement cooling unit filter
How to replace XA-Core cooling unit air filters (continued)

9 Close the cooling unit filter door as shown in the diagram in this step. Push on the filter door until it locks into place.

Close the cooling unit filter door

10 Power up all three cooling unit fans. Push all three fan drawers one at a time completely into the cabinet.

Close the cooling unit fan drawers
How to replace XA-Core cooling unit air filters (end)

11 Make sure that the fans power up. Make sure that the green LEDs light on all fan drawers.

<table>
<thead>
<tr>
<th>If the cooling unit fans are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>not in service</td>
<td>step 12</td>
</tr>
<tr>
<td>in service</td>
<td>step 13</td>
</tr>
</tbody>
</table>

12 Refer to the correct cooling unit maintenance procedure. Return to this point when complete.

13 Tighten the locking screws on the cooling unit fan drawers. Turn the locking screws in a clockwise direction.

Tighten the locking screws on the cooling unit fan drawers

14 Disconnect the wrist strap lead from the FSP.

15 Close the cabinet doors completely.

16 You have completed this procedure. Return to the procedure that sent you to this procedure and continue as indicated.
How to restore an XA-Core office image from tape to disk

Application
Use this procedure to copy the office image files of an eXtended Architecture Core (XA-Core). Use this procedure to copy the office image files from a digital audio tape (DAT) cartridge to a disk in an XA-Core shelf.

Interval
Perform this procedure as required.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to restore an XA-Core office image from tape to disk (continued)

Summary of How to restore an XA-Core office image from tape to disk heads

- Determine the backup tape and image files for restoration
  - Get backup tape and insert into XA-Core tape drive
    - Insert tape in DISKUT
      - Determine disk volume and check free space
        - Restore XA-Core image file from tape to disk
          - XA-Core image file restored?
            - Y
            - MS image file restored?
              - Y
              - Eject tape in DISKUT
              - Y
              - Register image files in ITOC
              - Y
              - Remove and store tape
              - End
            - N
            - Contact next level of support
          - N
          - Restore XA-Core image file from tape to disk
How to restore an XA-Core office image from tape to disk

(continued)

At the shelf

1 Determine the DAT tape that contains the office images for restoration to the XA-Core. Determine the tape from office records or office personnel.

2 Determine the tape files that have the images for the XA-Core and the message switch (MS). These tape files are for restoration to the XA-Core.

3 Determine from office records or office personnel if the DAT tape drive is clean. Refer to the XA-Core procedure “How to clean the XA-Core tape drive”.

4

WARNING

Static electricity damage

Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) when you handle the tape and packlet. The use of the wrist strap protects the packlets against damage caused by electrostatic discharge (ESD).

Get the tape cartridge that contains the office images for restoration found in step 1.

5 Make sure that the protection tab for tape write permission is at the position that does not permit recording (open). The tape write protection is an entrance on one side of the tape that has a sliding door. The sliding door is open for write protection and closed to allow a write to the tape.

Write protection of DAT cartridge

6 Insert the tape cartridge into the XA-Core tape drive and close the drive door. The XA-Core tape drive is in the input/output processor (IOP) card of the XA-Core shelf.

Note: Restore the XA-Core image file first and the MS image file second.
How to restore an XA-Core office image from tape to disk (continued)

At the MAP

7 To access the MAP CI level display, type:
   >QUIT ALL
   and press the enter key.
   Example of a MAP response:
   CI:

8 To access the MAP disk utility, type:
   >DISKUT
   and press the enter key.
   Example of a MAP response:
   Disk utility is now active.
   DISKUT:

9 To insert the tape, type
   >INSERTTAPE snnpTAPE
   and press the enter key
   where
   s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.
   nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.
   p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.
   Example of MAP input:
   >INSERTTAPE F02UTAPE
   Example MAP response:
   The INSERT operation may take up to 5 minutes to tension the tape.
   Tape IMAGE_1, unit 0, is now available to user on node CM

10 To list the files in the tape, type:
   >LISTFL snnpTAPE
   and press the enter key.
   where
   s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.
   nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.
   p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.
How to restore an XA-Core office image from tape to disk (continued)

Example of MAP input:

>`LISTFL F02UTAPE`

Example of a MAP response:

File information for tape volume F02UTAPE, node CM:
(Note: 1 BLOCK = 512 BYTES)

<table>
<thead>
<tr>
<th>CREATE</th>
<th>ORG</th>
<th>FILE</th>
<th>V</th>
<th>FILE</th>
<th>NUM OF</th>
<th>REC</th>
<th>FILE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>TYPE</td>
<td>CODE</td>
<td>L</td>
<td>SIZE IN</td>
<td>RECORDS</td>
<td>LEN</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>BLOCKS</td>
<td>IN FILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>990520</td>
<td>IMAG</td>
<td>0</td>
<td>329070</td>
<td>165180</td>
<td>1020</td>
<td>IMG0517CY_XA</td>
<td></td>
</tr>
<tr>
<td>990520</td>
<td>IMAG</td>
<td>0</td>
<td>15026</td>
<td>7542</td>
<td>1020</td>
<td>IMG0517CY_MS</td>
<td></td>
</tr>
</tbody>
</table>

**Note 1:** In the example of a MAP response, IMG0517CY_XA is the name of the XA-Core image file on tape. The name of the XA-Core image file is the same name as recorded in step 2.

**Note 2:** In the example of a MAP response, IMG0517CY_MS is the name of the MS image file on tape. The name of the MS image file is the same name as recorded in step 2.

11 Determine the name of the disk volume for the restoration of the image from tape. Determine the disk volume from office records or office personnel. Record the disk volume name.

12 To list the volumes contained on the node, type:

>`LISTVOLS`

and press the enter key.

Example of a MAP response:

Volumes found on the node CM:

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>TOTAL BLOCKS</th>
<th>FREE BLOCKS</th>
<th>TOTAL FILES</th>
<th>FREE FILES</th>
<th>OPEN FILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITOC</td>
<td>LARGEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILES</td>
<td>FREE SEGMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>F02LIMAGE_1</td>
<td>FTFS</td>
<td>819200</td>
<td>473088</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>F02LIMAGE_2</td>
<td>FTFS</td>
<td>409600</td>
<td>408672</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total number of volumes found on node CM: 2

13 To check the free space of the disk volume for restoration, type:

>`VOLINFO vol_name`

and press the enter key.

where

vol_name is the name of the disk volume for image restoration.
How to restore an XA-Core office image from tape to disk (continued)

Example of MAP input:

> VOLINFO F02LIMAGE_2

Example MAP response:

Information for disk volume F02LIMAGE_2 on node CM :

<table>
<thead>
<tr>
<th>Type Code</th>
<th>Version</th>
<th>Name</th>
<th>Number</th>
<th>Valid</th>
<th>When Created</th>
<th>When last modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTFS</td>
<td>2</td>
<td>IMAGE_RES</td>
<td>1</td>
<td>YES</td>
<td>1999/05/20 11:06:24.278</td>
<td>1999/05/20 11:06:31.835</td>
</tr>
<tr>
<td>Logical block size in Kbytes</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume Size in Kbytes</td>
<td>204800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total free space in Kbytes</td>
<td>204336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total free space in blocks</td>
<td>408672</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Free segments</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largest free area in Kbytes</td>
<td>204336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Data cache pages</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># System cache pages</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Files on volume</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Open files</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Max open files</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FID table version</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FID table last modified</td>
<td>1999/05/20 11:06:24.278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># extents in FID table</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FID table init alloc size</td>
<td>352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FID table incr alloc size</td>
<td>352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Space Map Version</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD version</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In the example of a MAP response in step 12, the image restoration is on disk volume F02LIMAGE_2.

To restore the XA-Core image file from tape to disk, type:

> RESTORE FILE vol_name snnpTAPE xa_file_name

and press the enter key.

where

vol_name is the name of the disk volume to receive the restored file
s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.
nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.
p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.
xa_file_name is the name of the XA-Core image file on tape
How to restore an XA-Core office image from tape to disk (continued)

Example of MAP input:

>RESTORE FILE F02LIMAGE_2 F02UTAPE IMG0517CY_XA

<table>
<thead>
<tr>
<th>If the command was</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 15</td>
</tr>
<tr>
<td>not successful</td>
<td>step 28</td>
</tr>
</tbody>
</table>

To restore the MS image file from tape to disk, type:

>RESTORE FILE vol_name snnpTAPE ms_file_name

and press the enter key.

where

vol_name is the name of the disk volume to receive the restored file
s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.
n is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.
p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.
ms_file_name is the name of the MS image file on tape

Example of MAP input:

>RESTORE FILE F02LIMAGE_2 F02UTAPE IMG0517CY_MS

<table>
<thead>
<tr>
<th>If the command was</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 16</td>
</tr>
<tr>
<td>not successful</td>
<td>step 28</td>
</tr>
</tbody>
</table>

To list the office image files in the disk volume that contains the restored office image, type:

>LISTFL vol_name

and press the enter key.

where

<vol_name> is the name of the disk volume that contains the office image files.

Example of MAP input:

>LISTFL F02LIMAGE_2
How to restore an XA-Core office image from tape to disk (continued)

Example of a MAP response:

File information for volume F02LIMAGE_2:
{NOTE: 1 BLOCK = 512 BYTES }
-------------------------------------------------------
FILE NAME OR I O O V FILE MAX
NUM OF FILE LAST RET PLL CODE REC
RECORDS SIZE MODIFY G C O E D D LEN
IN IN DATE C N FILE
BLOCS

-------------------------------------------------------
IMG0517CY_XA  I F  0  1020
165180  329728 990520
IMG0517CY_MS  I F  0  1020
7542  15360 990520

To eject the tape from the tape drive, type:

>EJECTTAPE snnpTAPE

and press the enter key.

where

s is the front (F) or rear (R) shelf position of the input output processor (IOP) that has the tape device.

nn is the number of the slot position on the XA-Core shelf for the IOP that has the tape device.

p is the upper (U) or lower (L) packlet position of the IOP that has the tape device.

Example of MAP input:

>EJECTTAPE F02UTAPE

Example of a MAP response:

The EJECT operation may take up to 5 minutes to position the tape to the beginning.
Rewind of tape F02UTAPE, unit 0, on node CM is completed. This tape device is not available to the user now.

To exit the MAP disk utility and return to the CI MAP level, type:

>QUIT

and press the enter key.

Example of a MAP response:

CI:

To access the image table of contents (ITOC) user interface, type:

>ITOCCI

and press the enter key.
**Example of a MAP response:**

ITOCC User Interface is now active.

**ITOCCI:**

To register the restored image file for the XA-Core to the ITOC type:

```plaintext
>SETBOOTFL XA xa_file_name entry_no alr_or_notalr
```

and press the enter key.

where

- `xa_file_name` is the name of the XA-Core image file restored from the tape.
- `entry_no` is the entry number in the ITOC to insert the XA-Core image file into (range is from 0 to 15).
- `alr_or_notalr` indicates if the file is the autoload registered (ALR) image file or not the ALR file (NOTALR) for the XA-Core. The default value is NOTALR.

**Example of MAP input:**

```plaintext
>SETBOOTFL XA IMG0517CY_XA 0 ALR
```

**Example of a MAP response:**

IMG0517CY_XA is registered in XA ITOC.
The updated ITOC is listed directly below.

**Image Table Of Contents for XA:**

<table>
<thead>
<tr>
<th>Registered</th>
<th>Generic Device</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Date</td>
<td>Time</td>
<td>Name</td>
</tr>
<tr>
<td>R MM/DD/YYYY HH:MM:SS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
0 * 05/20/1999 13:23:22 F02LIMAGE_2 IMG0517CY_XA
1 05/15/1999 11:19:41 F02LIMAGE_1 IMG0517CX_XA
```

**Note 1:** The example of a MAP response identifies the autoload registered (ALR) image file by an asterisk (*) in the ALR column. Each image file has an index number at the beginning of the tuple line. The ALR image in the example of a MAP response has an index number of 0. The XA-Core selects the ALR image file first to boot the switch. If the ALR image file does not boot the switch then the XA-Core selects the next image file. The next image file is by sequence of the index number from the top of the table.

**Note 2:** The command `LISTBOOTFL XA` in ITOCCI produces the same MAP response as this step.

**Determine if the restored image file for the XA-Core is in ITOC correctly.**

<table>
<thead>
<tr>
<th>If the</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 22</td>
</tr>
<tr>
<td>not successful</td>
<td>step 28</td>
</tr>
</tbody>
</table>
How to restore an XA-Core office image from tape to disk (continued)

22 To register the restored image file for the MS to the ITOC type:

>SETBOOTFL MS ms_file_name entry_no alr_or_notalr
and press the enter key.

where

ms_file_name is the name of the MS image file restored from the tape.

entry_no is the entry number in the ITOC to insert the MS image file into
(range is from 0 to 15).

alr_or_notalr indicates if the file is the autoload registered (ALR) image file or
not the ALR file (NOTALR) for the MS. The default value is NOTALR.

Example of MAP input:

>SETBOOTFL MS IMG0517CY_MS 0 ALR

Example of a MAP response:

IMG0517CY_MS is registered in MS ITOC.
The updated ITOC is listed directly below.

<table>
<thead>
<tr>
<th>R</th>
<th>L</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>05/20/1999 13:24:38 F17LIMAGE_2 IMG0517CY_MS</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The example of a MAP response identifies the autoload
registered (ALR) image file by an asterisk (*) in the ALR column. Each
image file has an index number at the beginning of the tuple line. The ALR
image in the example of a MAP response has an index number of 0. The
XA-Core selects the ALR image file first to boot the switch. If the ALR
image file does not boot the switch then the XA-Core selects the next
image file. The next image file is by sequence of the index number from the
top of the table.

Note 2: The command LISTBOOTFL MS in ITOCCI produces the same
MAP response as this step.

23 Determine if the restored image file for the MS is in ITOC correctly.

<table>
<thead>
<tr>
<th>If the command was</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful</td>
<td>step 24</td>
</tr>
<tr>
<td>not successful</td>
<td>step 28</td>
</tr>
</tbody>
</table>
How to restore an XA-Core office image from tape to disk (end)

24 To quit the ITOCCI user interface, type:

>QUIT

and press the enter key.

Example of a MAP response:

CI:

At the shelf

25

WARNING

Static electricity damage

Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) when you handle the tape and packlet. The use of the wrist strap protects the packlets against damage caused by electrostatic discharge (ESD).

Remove tape cartridge from the tape drive. Set the tape write protection to the position that does not permit recording (open). The tape write protection is an entrance on one side of the tape that has a sliding door. The sliding door is open for write protection and closed to allow a write to the tape.

Write protection of DAT tape cartridge

26 Store tape cartridge per office procedure.

27 Go to step 29.

28 For additional help, call the next level of support.

29 You have completed the backup procedure.
This page is left blank intentionally.
How to return an XA-Core circuit pack, packet, or assembly to Nortel Networks (Canada)

Application
Use this procedure to return a circuit pack (CP), packet or assembly to Nortel Networks for repair or replacement in Canada.

Interval
Perform this procedure as required.

Common procedures
There are no common procedures.

Action
The following flowchart is only a summary of this procedure. Use the instructions in the steps follow the flowchart to perform the procedure.
Summary of How to return an XA-Core circuit pack, packet, or assembly to Nortel Networks (Canada)

This flowchart summarizes the procedure.
Use the instructions in the procedure that follows this flowchart to perform the procedure.

1. Complete a return label for each item
2. Attach a copy of each label to each item
3. Pack item(s) carefully
4. Address container
5. Return carton to Nortel Networks
6. End
How to return an XA-Core circuit pack, packlet, or assembly to Nortel

How to return a circuit pack (CP), packlet, or assembly to Nortel Networks

At your current location

1. Place the CP, packlet, or assembly into an electrostatic discharge (ESD) protective bag.

2. Complete one repair/return tag for each CP, packlet, or assembly that you return.
   Include the following information on the repair/return tag:
   - fault code that best describes the indications of the CP, packlet or assembly failure
   - summary description of the failure
   - return material authorization (RMA) number from customer service
   - peripheral module (PM) software load name, if a PM-type failure
   - unit serial number
   - Nortel Networks product engineering code (PEC)
   - unit release number
   - name of your company
   - office identifier code (shipping address)
   - your name
   - your site code (point of installation)
   - any other relevant information

Note: If you need assistance to complete the repair/return tag, call 1-800-668-5511.
How to return an XA-Core circuit pack, packlet, or assembly to Nortel

Example repair/return tag (front and rear views)

<table>
<thead>
<tr>
<th>In Service Return Tag</th>
<th>○</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT Code</td>
<td>○</td>
</tr>
<tr>
<td>Release</td>
<td>○</td>
</tr>
<tr>
<td>Ticket No.</td>
<td>123456</td>
</tr>
<tr>
<td>Serial Number</td>
<td>○</td>
</tr>
<tr>
<td>Simplex</td>
<td>○</td>
</tr>
<tr>
<td>Duplex</td>
<td>○</td>
</tr>
<tr>
<td>PM Load / PM</td>
<td>○</td>
</tr>
<tr>
<td>PCL - LSP Load</td>
<td>○</td>
</tr>
<tr>
<td>PCL - CSP</td>
<td>○</td>
</tr>
<tr>
<td>MTX - Base Load</td>
<td>○</td>
</tr>
<tr>
<td>Fault Identification codes</td>
<td></td>
</tr>
<tr>
<td>Subscriber</td>
<td>○</td>
</tr>
<tr>
<td>1 No Dialtone</td>
<td>Failure Freq.</td>
</tr>
<tr>
<td>2 Noisy</td>
<td>23 Intermittent</td>
</tr>
<tr>
<td>3 Cut off</td>
<td>24 Permanent</td>
</tr>
<tr>
<td>4 Pre trip</td>
<td>Failure Located By</td>
</tr>
<tr>
<td>5 Can't hear</td>
<td>25 Logutil Report</td>
</tr>
<tr>
<td>6 Can't be heard</td>
<td>26 System Check</td>
</tr>
<tr>
<td>7 Transmission fades</td>
<td>27 Extended Diagnostic Monitor</td>
</tr>
<tr>
<td></td>
<td>28 Card - Shell Alarm</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>○</td>
</tr>
<tr>
<td>8 BSY - RTS</td>
<td>Failure Mode</td>
</tr>
<tr>
<td>9 Built in Test Failure</td>
<td>A ALT - LTP Failure</td>
</tr>
<tr>
<td>10 Automatic passes</td>
<td>B Bad Audio Path</td>
</tr>
<tr>
<td>11 Automatic fails</td>
<td>C C/O relay</td>
</tr>
<tr>
<td>12 Manual passes</td>
<td>D Drop Call</td>
</tr>
<tr>
<td>13 Manual fails</td>
<td>F Flux Cancel</td>
</tr>
<tr>
<td>Maintenance</td>
<td>I Fails to Load (Flash, etc)</td>
</tr>
<tr>
<td>14 Routine trouble-shooting</td>
<td>K PLL Fault</td>
</tr>
<tr>
<td>15 Change on spec</td>
<td>L Loop Detect</td>
</tr>
<tr>
<td>16 Dead on arrival</td>
<td>M No Communication</td>
</tr>
<tr>
<td>29 Old Rel - Update</td>
<td>N Noise</td>
</tr>
<tr>
<td>30 Surplus</td>
<td>P Pad Test</td>
</tr>
<tr>
<td>Card List</td>
<td>Q RAM-ROM Test</td>
</tr>
<tr>
<td>18 No list</td>
<td>R Cannot Reset</td>
</tr>
<tr>
<td>19 1st pack on list</td>
<td>S RSSI / SINAD</td>
</tr>
<tr>
<td>20 Other pack on list</td>
<td>T Transhybrid loss</td>
</tr>
<tr>
<td>21 Not on list</td>
<td>U No Power Up</td>
</tr>
<tr>
<td></td>
<td>O Other (Specify)</td>
</tr>
<tr>
<td>Log Message</td>
<td>○</td>
</tr>
<tr>
<td>Confirmed ALT / LTP test results</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Failure Description</td>
<td>○</td>
</tr>
<tr>
<td>Return Authorization Number</td>
<td>○</td>
</tr>
<tr>
<td>R M A</td>
<td>○</td>
</tr>
<tr>
<td>Frame Type / Shelf &amp; Slot Nos.</td>
<td>○</td>
</tr>
<tr>
<td>Office ID</td>
<td>○</td>
</tr>
<tr>
<td>Office name:</td>
<td>○</td>
</tr>
<tr>
<td>Returned by: (Telco)</td>
<td>○</td>
</tr>
<tr>
<td>Craftsperson</td>
<td>○</td>
</tr>
<tr>
<td>Phone No.</td>
<td>○</td>
</tr>
</tbody>
</table>

Instructions

Instructions to fill in Return Tag (To be completed upon replacement of failure unit or circuit pack).

1. Provide description of pack and fault at time of failure.
2. Write down the Return Material Authorization (RMA) Number in the Box provided.
3. Check appropriate box in each category, and the log message number if applicable.
4. Obtain the PM Load name via the Query PM command at a map location.
5. Copy the pack serial no. (bar code label on face plate). Older vintage packs have an ink stamp on the solder side of the PC board.
6. Print the name and date (bottom line).
7. Attach original copy to circuit pack.
8. Place circuit pack in appropriate packing material (antistatic bag). This must be done directly after the pack is extracted from the operating environment to prevent additional component failure.
How to return an XA-Core circuit pack, packet, or assembly to Nortel

3 Attach the original copy of the return/repair tag to each unit that you return.
4 Keep a copy of each label and store it in a safe place for later reference.
5 Place the CP, packet, or assembly in a Nortel Networks shipping carton and close the carton. Provide enough protection for the unit you are returning. If you cannot locate a Nortel Networks shipping carton, use any suitable carton. Perform the following:
   • include packing paper in carton
   • surround CP, packet, or assembly in bubble pack or foam
   • fasten the CP, packet, or assembly to the sides of the carton to prevent movement during shipment
6 Address the shipping carton as follows:
   Nortel Networks Canada Limited,
   Customer Service Operations,
   c/o Wesbell Distribution Resources Inc,
   2365 Matheson Blvd. East,
   Rec. Door #1-4
   Mississauga, Ontario, Canada
   L4W 5C2
   Phone/Tel 1-800-668-5511
   ATTN: Replacement/Repair Operations
7 Call Wesbell Distribution Resources for carton pickup.
   **Note:** Wesbell Distribution Resources Inc. (Ph: 905-624-8410) (Fax: 905-624-2522).
8 You have completed this procedure.
This page is left blank intentionally.
How to schedule automatic image taking for XA-Core

Application
Use this procedure to enable and schedule the automatic image taking for the eXtended Architecture Core (XA-Core). This procedure makes a record of the office image to a disk in the XA-Core shelf.

Interval
This procedure is a task performed on the decision of the office manager.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to schedule automatic image taking for XA-Core (continued)

Summary of How to schedule automatic image taking for XA-Core

This flowchart summarizes the procedure. Use the instructions in the procedure that follows this flowchart to perform the procedure.

1. Determine when image dump required
2. Determine disk volume for image dump
3. Volume in table IMAGEDEV?
   - Y: Update table IMGSCHE
     - Activate AUTODUMP
       - End
   - N: Enter volume in table IMAGEDEV
     - Volume in table IMAGEDEV?
       - Y: Contact next level of support
         - N: Update table IMGSCHE
           - Activate AUTODUMP
             - End
How to schedule automatic image taking for XA-Core (continued)

How to schedule automatic image taking for XA-Core

At your current location

1. Determine and record the days and times to have an office image dump.
   Determine the days and times from office personnel or office records.

2. Determine and record the volume names that stores the image files.
   Determine the volume names from office personnel or office records.

At the MAP

3. To access the CI level of the MAP display, type:
   >QUIT ALL
   and press the Enter key

4. To access the MAP disk utility, type:
   >DISKUT
   and press the enter key.

   Example of a MAP response:
   Disk utility is now active.
   DISKUT:

5. To list the volumes on the XA-Core node, type:
   >LISTVOLS CM
   and press the enter key.

   Example of a MAP response:
   Volumes found on the node CM:

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>TOTAL BLOCKS</th>
<th>FREE BLOCKS</th>
<th>TOTAL FILES</th>
<th>FREE FILES</th>
<th>OPEN FILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARGEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILES</td>
<td>FREE</td>
<td>SEGMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRУIMAGE</td>
<td>FTFS</td>
<td>819200</td>
<td>473088</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>473088</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   Total number of volumes found on node CM: 1

   Note: The XA-Core node is node CM.

6. Determine if the list of volumes on node CM in step 5 has the volume name
   that stores the image files. You recorded the volume name that stores the
   image files in step 2.

   If node CM has the volume of image files, do step 7
   If node CM has no volume of image files, do step 37
How to schedule automatic image taking for XA-Core (continued)

7 To quit the MAP disk utility, type:
   >QUIT
   and press the enter key.

8 To access table IMAGEDEV, type:
   >TABLE IMAGEDEV
   and press the enter key.
   Example of a MAP response:
   TABLE: IMAGEDEV

9 To list the tuples in table IMAGEDEV, type:
   >LIST ALL
   and press the enter key.
   Example of a MAP response:
   TOP
   VOLNAME       ACTIVE
   ----------------------------
   F17LVOLUME_1     Y
   BOTTOM
   Example of a MAP response to an empty table IMAGEDEV:
   EMPTY TABLE

10 Check if the image volume from office records is in the list of table IMAGEDEV in step 9. You recorded the name of the image volume that stores the image files in step 2.

<table>
<thead>
<tr>
<th>If the image volumes is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in table IMAGEDEV</td>
<td>step 15</td>
</tr>
<tr>
<td>not in table IMAGEDEV</td>
<td>step 11</td>
</tr>
</tbody>
</table>

11 To add a tuple for the image volume recorded in step 2, type.
   >ADD volume_name Y
   and press the enter key.
   where
   volume_name is the name of the volume used for automatic image dumps
   Y is confirmation that the volume is active.
   Example of MAP input:
   >ADD F02LIMAGE Y
   Example of a MAP response:
   TUPLE TO BE ADDED:
   F02LIMAGE   Y
   ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
How to schedule automatic image taking for XA-Core (continued)

12 To confirm the command, type:
   >Y
   and press the enter key.
   *Example of a MAP response:*
   TUPLE ADDED

13 To check the tuple addition to table IMAGEDEV, type:
   >LIST ALL
   and press the enter key.
   *Example of a MAP response:*
   
<table>
<thead>
<tr>
<th>VOLNAME</th>
<th>ACTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F17LVOLUME_1</td>
<td>Y</td>
</tr>
<tr>
<td>F02LIMAGE</td>
<td>Y</td>
</tr>
</tbody>
</table>
   BOTTOM

   If addition of the image volume is _______________
   Do
   
   | completed       | step 14 |
   | not completed   | step 37 |

14 To quit from table IMAGEDEV, type:
   >QUIT
   and press the enter key.

15 To access table IMGSCHED, type
   >TABLE IMGSCHED
   and press the Enter key.
   *Example of MAP response:*
   Table: IMGSCHED
How to schedule automatic image taking for XA-Core (continued)

16 To display the table of contents, type:
   >LIST ALL
   and press the Enter key.

   Example of a MAP display:

<table>
<thead>
<tr>
<th>DAY</th>
<th>DUMPHOUR</th>
<th>DUMPMIN</th>
<th>CMMS</th>
<th>ISN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>TUESDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>WEDNESDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>THURSDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>FRIDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>SATURDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>SUNDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

   Note 1: Fields DUMPHOUR and DUMPMIN control the time at which the
dump performs. The default time is 21:00. You can modify the time
according to separate office requirements. You must perform image dumps
during hours that have minimum traffic.

   Note 2: You can not set the ACTIVE field to Y if both the CMMS and ISN
fields are N.

17 To access the tuple for the first day you must activate an automatic image
dump, type:
   >POSITION day
   and press the Enter key.

   where
day is the day for which you must activate automatic image taking, for
example, MONDAY

   Note: You recorded the days and times for office image dumps in step 2.

   Example of MAP input:
   POSITION MONDAY

   Example of a MAP response:
   MONDAY 21 0 N N N

18 To start an edit of the tuple, type:
   >CHANGE
   and press the Enter key.

   Example of a MAP response:
   Enter Y to continue processing or N to quit.
How to schedule automatic image taking for XA-Core (continued)

19 To confirm the command, type:
   >Y
   and press the Enter key.
   *Example of a MAP response:*
   DUMPHOUR: 21

20 To enter the required dump hour, type:
   >dump_hour
   and press the Enter key.
   where
   dump_hour is the dump hour you must enter, for example 21,
   *Note:* You recorded the days and times for office image dumps in step 2.
   *Example of a MAP response:*
   DUMPMIN: 0

21 To enter the required dump minutes, type:
   >dump_minutes
   and press the Enter key.
   where
   dump_minutes is the dump minutes, for example 30, you must enter
   *Note:* You recorded the days and times for office image dumps in step 2.
   *Example of a MAP response:*
   CMMS: N

22 To enable the automatic image dump on nodes CM and MS, type:
   >Y or N
   and press the Enter key.
   *Note:* You can not set the ACTIVE field to Y if both the CMMS and ISN fields are N.
   *Example of a MAP response:*
   ISN: N

23 To enable the automatic image dump on node ISN, type:
   >Y or N
   and press the Enter key.
   *Note:* You can not set the ACTIVE field to Y if both the CMMS and ISN fields are N.
   *Example of a MAP response:*
   ACTIVE: N
How to schedule automatic image taking for XA-Core (continued)

24 To make the automatic image dump active for the selected day, type:
>Y
and press the Enter key.

*Example of a MAP response:*

```
TUPLE TO BE CHANGED:
MONDAY 22 30 Y Y Y
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
```

25 To confirm the tuple change, type:
>Y
and press the Enter key.

*Example of a MAP response:*

```
TUPLE CHANGED
```

26 To check the tuple revisions to table IMGSCHED, type:
>`LIST   ALL
and press the Enter key.

*Example of a MAP response:*

```
TOP
<table>
<thead>
<tr>
<th>DAY</th>
<th>DUMPHOUR</th>
<th>DUMPMIN</th>
<th>CMMS</th>
<th>ISN</th>
<th>ACTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>MONDAY</td>
<td>22</td>
<td>30</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>TUESDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>WEDNESDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>THURSDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>FRIDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>SATURDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>SUNDAY</td>
<td>21</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

BOTTOM
```

If all the tuple entries are

<table>
<thead>
<tr>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete</td>
</tr>
<tr>
<td>not complete</td>
</tr>
</tbody>
</table>

27 Repeat steps 17 to 25 for each day you must have an automatic image dump. You recorded the days and times for office image dumps in step 2.

28 To quit from table IMGSCHED, type:
>`QUIT
and press the Enter key.
How to schedule automatic image taking for XA-Core (continued)

29 To activate the autodump facility for the days and times you indicated, type:  

```
> AUTODUMP ON
```

and press the Enter key.

*Example of a MAP response:*

```
SCHEDULED-Image Dump is ON.

Next scheduled dump is MONDAY at 22:30 hours.
Next image to be dumped on F02LIMAGE.
```

*Note:* The MAP response identifies the disk and volume name that the image dumps to. The switch software selects from table IMAGEDEV the disk and volume to dump the image to.

30 To check the status of automatic image taking, type:  

```
> AUTODUMP STATUS
```

and press the enter key.

*Example of a MAP response*

```
Successful Image: 990215_XA
Taken: 1999/03/17 21:47:32.04.138 WED.
On Volume: F17LIMAGE

Successful Image: 990215_MS
Taken: 1999/03/17 21:47:32.04:138 WED.
On Volume: F17LIMAGE

SCHEDULED-Image Dump is ON.

RETAIN option is ON.

Next scheduled dump is MONDAY at 22:30 hours.
Next image to be dumped on F02LIMAGE.
```

31 Determine if the XA-Core has automatic image taking on or off. In the example of a MAP response of step 30, the text SCHEDULED-Image Dump is ON indicates the automatic image taking is on.

<table>
<thead>
<tr>
<th>If SCHEDULED-Image Dump is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>step 32</td>
</tr>
<tr>
<td>OFF</td>
<td>step 37</td>
</tr>
</tbody>
</table>

32 Determine if the retain option is off. XA-Core has the retain option on or off. In the example of a MAP response of step 30, the text RETAIN option is OFF indicates the retain option is off.

<table>
<thead>
<tr>
<th>If RETAIN option is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>step 33</td>
</tr>
<tr>
<td>OFF</td>
<td>step 37</td>
</tr>
</tbody>
</table>
How to schedule automatic image taking for XA-Core (end)

33 To change the retain option, type:

> AUTODUMP RETAIN

and press the enter key.

*Example of a MAP response:*

*** WARNING ***
This option RETAINS the PRIMARY LOAD ROUTE.
The PRIMARY LOAD ROUTE should be initially
set per NTP.
The RETAIN option will be ENABLED.
Please confirm ("YES", "Y", "NO", or "N"):

34 To confirm the command, type:

> YES

and press the enter key.

*Example of a MAP response:*

REMAIN option DISABLED.

35 To check the status of automatic image taking, type:

> AUTODUMP STATUS

and press the enter key.

*Example of a MAP response:

Successful Image: 990215_XA
Taken: 1999/03/17 21:47:32:04.138 WED.
On Volume: F17LIMAGE

Successful Image: 990215_MS
Taken: 1999/03/17 21:47:32:04:138 WED.
On Volume: F17LIMAGE

SCHEDULED-Image Dump is ON.
REMAIN option is OFF.

Next scheduled dump is MONDAY at 22:30 hours.
Next image to be dumped on F02LIMAGE.

36 Determine if the retain option is off. XA-Core has the retain option on or off. In the example of a MAP response of step 35, the text RETAIN option is OFF indicates the retain option is off.

<table>
<thead>
<tr>
<th>If RETAIN option is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>step 37</td>
</tr>
<tr>
<td>OFF</td>
<td>step 38</td>
</tr>
</tbody>
</table>

37 For additional help, call the next level of support.

38 You have completed this procedure.
How to schedule tape drive maintenance in XA-Core

Application
Use the following procedure to schedule maintenance for the digital audio tape (DAT) drive.

Interval
Perform this procedure approximately every 180 days (6 months).

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.

Summary of How to schedule tape drive maintenance in XA-Core

At your current location
1. Set up a routine maintenance schedule according to the information contained in the manufacturer’s equipment manual.
2. You have completed this procedure.
This page is left blank intentionally.
How to test wrist-strap grounding cords in XA-Core

Application

Use this procedure to test the resistance of wrist-strap grounding cords. The resistance must have minimum and maximum values as follows.

- The resistance must be low enough to allow static electricity to discharge from the human body.
- The resistance must be high enough to prevent electrocution if the equipment develops a short circuit while you are wearing the wrist strap.

Interval

Perform this procedure every 30 days (monthly).

Common procedures

There are no common procedures.

Action

This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.

How to test wrist-strap grounding cords in XA-Core

```
 Obtain Ohmmeter

 Determine the resistance of grounding cord

 Resistance between 800 and 1200 KΩ?

 N Replace grounding cord

 Y End

This flowchart summarizes the procedure.
Use the instructions in the procedure that follows this flowchart to perform the procedure.
```
How to test wrist-strap grounding cords for XA-Core

**DANGER**

**Risk of electrocution**

Do not use a grounding cord with a resistance less than 800 KW. A resistance lower than 800 KW opens you to the risk of electrocution. Electrocution can occur if the equipment short-circuits while you are wearing the wrist strap.

**WARNING**

**Risk of static damage to electronic equipment**

Do not use a grounding cord with a resistance greater than 1200 KW. A resistance greater than 1200 KW cannot conduct static charges correctly to ground nor protect electronic equipment against possible damage from electrostatic discharge.

*At the XA-Core shelf*

1. Get an ohmmeter.
2. Disconnect the grounding cord from the wrist strap.
3. Use the ohmmeter to measure the resistance between the opposite ends of the grounding cord.

<table>
<thead>
<tr>
<th>If the resistance is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>between 800 KW and 1200 KW</td>
<td>step 7</td>
</tr>
<tr>
<td>less than 800 KW or greater than 1200 KW</td>
<td>step 4</td>
</tr>
</tbody>
</table>

4. Discard the grounding cord that has faults.
5. Get a new grounding cord.
6. Test the new grounding cord.

<table>
<thead>
<tr>
<th>If the resistance is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>between 800 KW and 1200 KW</td>
<td>step 7</td>
</tr>
<tr>
<td>less than 800 KW or greater than 1200 KW</td>
<td>step 4</td>
</tr>
</tbody>
</table>

7. Connect again the wrist strap to the grounding cord.
8. You have completed this procedure.
Selection of DAT tapes approved by Nortel Networks

Application
Use this procedure to select digital audio tape (DAT) drive tapes approved by Nortel Networks. This procedure is to be used whenever a DAT tape is replaced, and whenever a new DAT tape is used following the cleaning of DAT drive tape heads.

Interval
Tapes are replaced based on office usage routines and on the DAT drive head cleaning frequency recommended by Nortel Networks for new and used tapes.

Common procedures
This procedure does not refer to any common procedures.

Action
Follow the recommendations provided in these paragraphs.

Recommended tapes for use in the NTLX07AA tape packet
The brands approved by Nortel Networks are:
Hewlett Packard (HP), Maxell, Verbatim, Imation

The tape lengths approved by Nortel Networks are:
60-meter (60M), 90-meter (90M), and 120-meter (120M) tapes from any of the manufacturers listed above.

Recommended tapes for use in the NTLX07BA tape packet
The brands approved by Nortel Networks are:
Hewlett Packard (HP), Maxell, Verbatim, Imation

The tape lengths approved by Nortel Networks are:
90-meter (90M) tapes and 120-meter (120M) tapes from any of the manufacturers listed above.

Note: The NTLX07BA tape packet does not support 60-meter (60M) tapes.

Recommended tape drive head cleaning cartridges
The types of DAT drive head cleaning cartridges approved by Nortel Networks are listed under CPC code A0627569.
This page is left blank intentionally.
Adding, removing, or re-arranging ethernet links

Application

Use this procedure to change the XA-Core’s ethernet links on an occasion when you are neither adding nor removing circuit packs or packlets. The shelf equipment remains the same, but you make changes to the ethernet links.

This procedure covers only those changes to ethernet links that you will need to perform without assistance from Nortel Networks. This procedure covers scenarios in which you must add links, remove links, or re-arrange links (that is, move the connections of existing links from one set of circuit packs to another set of circuit packs in the XA-Core shelf).

Note: If hardware is being added or removed from the XA-Core shelf, an installer does the work. As part of that work, the installer makes required changes to the ethernet links.

What this procedure does not cover

This procedure does not cover the following scenarios.

• Any changes to ethernet links that occur when an installer adds or removes hardware in the XA-Core.

• Any changes to ethernet links involving adding connections to ethernet packlets, or removing connections from ethernet packlets, or moving links between ethernet packlets and other types of hardware.

  — Ethernet links to ethernet packlets are added only when the packlets are installed. Therefore, the installer does the work.

  — Ethernet links to ethernet packlets are removed only when the packlets are removed. The packlets are removed when HIOP circuit packs and/or HCMIC circuit packs are installed. Therefore, the installer does the work.

  — It will never be possible to move links from ethernet packlets to HIOP or HCMIC circuit packs, or from those circuit packs to ethernet packlets. The reason is that ethernet packlets are not allowed to co-exist with HIOP circuit packs and/or HCMIC circuit packs in an XA-Core.

Rules governing ethernet links

The following rules govern ethernet links.

• There can be a maximum of four ethernet links per XA-Core shelf.

• If ethernet packlets are used, all links must be on packlets, and the shelf cannot contain any HCMIC circuit packs.

• If the XA-Core shelf contains HIOP circuit packs, then it cannot contain any ethernet packlets.
Adding, removing, or re-arranging ethernet links (continued)

- If the XA-Core shelf contains HCMIC circuit packs, then it cannot contain any ethernet packlets.
- If the XA-Core shelf contains two HIOP circuit packs and two HCMIC circuit packs, and if four ethernet links are required, then each of the four circuit packs can support an ethernet link.
- If the XA-Core shelf contains four HIOP circuit packs, and if four ethernet links are required, then each HIOP circuit pack can support an ethernet link. If the shelf also contains two HCMIC circuit packs, the HCMICs cannot support ethernet links.

Note: The XA-Core shelf can contain four HIOP circuit packs only if those circuit packs are NTLX04CA models.

Scenarios that you can perform

You can change the ethernet links in the following ways

- Addition. Go from zero links to two links. The two links connect to HIOP circuit packs if the XA-Core shelf contains HIOP circuit packs. The two links connect to HCMIC circuit packs only if the XA-Core shelf does not contain any HIOP circuit packs.
- Addition. Go from zero links to four links. If the XA-Core contains four HIOP circuit packs, then the four links connect to those circuit packs. If the XA-Core contains two HIOP circuit packs and two HCMIC circuit packs, then the four links connect to those circuit packs.
- Addition. Go from two links to four links. If the XA-Core contains four HIOP circuit packs, then the two new links connect to HIOP circuit packs. If the XA-Core contains two HIOP circuit packs and two HCMIC circuit packs, then the two new links connect to the HCMICs.
- Removal. Go from four links to zero links.
- Removal. Go from two links to zero links.
- Removal. Go from four links to two links. The two links that remain must connect to HIOP circuit packs.
- Re-arrangement. Note that we include re-arrangement scenarios in this list for the sake of completeness, but all possible re-arrangements are either pointless or prohibited. The possibilities are as follows.
  — Move connections from one pair of HIOP circuit packs to another pair of HIOP circuit packs. This is possible, and does not violate the rules
Adding, removing, or re-arranging ethernet links (continued)

governing ethernet links. Such a re-arrangement would seem to be pointless.

— Move connections from a pair of HIOP circuit packs to a pair of HCMIC circuit packs. Such a re-arrangement would violate the rules governing ethernet links.

— Move connections from a pair of HCMIC circuit packs to a pair of HIOP circuit packs. This re-arrangement should be impossible because it assumes that you start with an arrangement that is prohibited. Ethernet links are connected to HCMIC circuit packs only if the XA-Core shelf does not contain enough HIOP circuit packs to support the required number of links, that is, if two links are required, but no HIOPs are present, or if four links are required, and only two HIOPs are present.

Prerequisites

Prerequisites are as follows.

- Obtain the Network Specification Book for your office. You will need to obtain information from this document if you add ethernet links or re-arrange ethernet links.

- Write down the following facts:
  — the number of existing ethernet links: (0, 2, or 4)
  — the names and slot numbers of the circuit packs that the existing ethernet links connect to
  — the number of ethernet links you want to have after you change the links (0, 2, or 4)
  — the names and slot numbers of the circuit packs that the ethernet links will connected to after you make the change

- Write down the answers to the following questions:
  — Question 1. Do you plan a net increase in the number of ethernet links (0 to 2, or 0 to 4, or 2 to 4)?
  — Question 2. Do you plan a net increase from 2 links to 4 links, and do you plan to change the connectivity of the two existing links?
  — Question 3. Do you plan a net decrease in the number of ethernet links (4 to 0, or 2 to 0, or 4 to 2)?
Adding, removing, or re-arranging ethernet links (continued)

— Question 4. Do you plan a net decrease from 4 links to 2 links, and do you plan to change the connectivity of the two links that will remain?

— Question 5. Do you plan to keep the same number of ethernet links, but to change the connectivity of two of the links?

• Classify and write down the type of change that you are planning, according to the following rules:
  — If you answered yes to question 1 but did not answer yes to question 2, you are planning a one-part change, an addition.
  — If you answered yes to question 2, you are planning a two-part change, in which part 1 is re-arrangement and part 2 is an addition.
  — If you answered yes to question 3 but did not answer yes to question 4, you are planning a one-part change, a removal.
  — If you answered yes to question 4, you are planning a two-part change, on which part 1 is a re-arrangement and part 2 is a removal.
  — If you answered yes to question 5, you are planning a one-part change, a re-arrangement.

Interval

Perform this procedure as required.

Common procedures

This procedure refers to the following common procedures:
• “Adding tuples to table CMIPADDR”
• “Deleting tuples from table CMIPADDR”
• “Changing tuples in table CMIPADDR”
• “Establishing cable connections for new ethernet links”
• “Removing cable connections for ethernet links”
• “Moving the cable connections for existing ethernet links”
• “Testing ethernet links”

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Adding, removing, or re-arranging ethernet links

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.

Start

Edit table CMIPADDR for links added, removed, or re-arranged in part 1.

Change the cabling for links added, removed, or re-arranged in part 1.

If links were added or re-arranged in part 1, test those links.

Is this a 2-part change?

NO

End

YES

Edit table CMIPADDR for links added or removed in part 2.

Change the cabling for links added or removed in part 2.

If links were added in part 2, test those links.
Adding, removing, or re-arranging ethernet links (continued)

**Adding, removing, or re-arranging ethernet links**

*At the MAP terminal*

1. Select the next step as follows:

<table>
<thead>
<tr>
<th>If you are doing</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a two-part change, in which part 1 is a re-arrangement</td>
<td>step 2</td>
</tr>
<tr>
<td>a one-part change, a re-arrangement</td>
<td>step 2</td>
</tr>
<tr>
<td>a one-part change, an add</td>
<td>step 4</td>
</tr>
<tr>
<td>a one-part change, a removal</td>
<td>step 6</td>
</tr>
</tbody>
</table>

2. For each ethernet link that you are re-arranging, perform the procedure titled “Changing tuples in table CMIPADD”.

3. Go to step 7.

4. For each ethernet link that you are adding, perform the procedure titled “Adding tuples to table CMIPADD”.

5. Go to step 7.

6. For each ethernet link that you are removing, perform the procedure titled “Deleting tuples from table CMIPADD”.

7. Select the next step as follows:

<table>
<thead>
<tr>
<th>If you are doing</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a two-part change, in which part 1 is a re-arrangement</td>
<td>step 8</td>
</tr>
<tr>
<td>a one-part change, a re-arrangement</td>
<td>step 8</td>
</tr>
<tr>
<td>a one-part change, an add</td>
<td>step 10</td>
</tr>
<tr>
<td>a one-part change, a removal</td>
<td>step 12</td>
</tr>
</tbody>
</table>

8. For each ethernet link that you are re-arranging, perform the procedure titled “Moving the cable connections for existing ethernet links”.


10. For each ethernet link that you are adding, perform the procedure titled “Establishing cable connections for new ethernet links”.


12. For each ethernet link that you are removing, perform the procedure titled “Removing cable connections for ethernet links”.

---

297-8991-510 Standard 12.02 December 2005
Adding, removing, or re-arranging ethernet links  (continued)

13 Select the next step as follows:

<table>
<thead>
<tr>
<th>If you are doing</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a two-part change, in which part 1 is a re-arrangement</td>
<td>step 14</td>
</tr>
<tr>
<td>a one-part change, a re-arrangement</td>
<td>step 14</td>
</tr>
<tr>
<td>a one-part change, an add</td>
<td>step 14</td>
</tr>
<tr>
<td>a one-part change, a removal</td>
<td>step 15</td>
</tr>
</tbody>
</table>

14 Test the ethernet links that you have added or re-arranged. Perform the procedure titled “Testing ethernet links”.

15 Select the next step as follows:

<table>
<thead>
<tr>
<th>If you are doing</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a two-part change in which part 2 is an add</td>
<td>step 16</td>
</tr>
<tr>
<td>a two-part change in which part 2 is a removal</td>
<td>step 16</td>
</tr>
<tr>
<td>a one-part change of any kind</td>
<td>step 25</td>
</tr>
</tbody>
</table>

16 For each ethernet link that you are adding in part 2, perform the procedure titled “Adding tuples to table CMIPADDR”.

17 Go to step 19.

18 For each ethernet link that you are removing in part 2, perform the procedure titled “Deleting tuples from table CMIPADDR”.

19 Select the next step as follows:

<table>
<thead>
<tr>
<th>If you are doing</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a two-part change in which part 2 is an add</td>
<td>step 20</td>
</tr>
<tr>
<td>a two-part change in which part 2 is a removal</td>
<td>step 22</td>
</tr>
</tbody>
</table>

20 For each ethernet link that you are adding, perform the procedure titled “Establishing cable connections for new ethernet links”.

21 Go to step 23.

22 For each ethernet link that you are removing, perform the procedure titled “Removing cable connections for ethernet links”.

---

XA-Core Maintenance Manual
### Adding, removing, or re-arranging ethernet links (end)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Select the next step as follows</td>
</tr>
<tr>
<td></td>
<td><strong>If you are doing</strong></td>
</tr>
<tr>
<td></td>
<td>a two-part change in which part 2 is an add</td>
</tr>
<tr>
<td></td>
<td>a two-part change in which part 2 is a removal</td>
</tr>
<tr>
<td>24</td>
<td>Test the ethernet links that you have added in part 2. Perform the procedure titled “Testing ethernet links”. <strong>Note:</strong> If you tested links in step 14 of this procedure, you do not need to re-test those links.</td>
</tr>
<tr>
<td>25</td>
<td>You have completed this procedure.</td>
</tr>
</tbody>
</table>
Adding tuples to table CMIPADDR

Application

Use this procedure only when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document. Do not use this procedure on any other occasion.

Use this procedure when you are adding ethernet links. The procedure tells how to edit tuples in table CMIPADDR. The table must contain one tuple for each ethernet link. You must add the tuples for the links you are adding.

Note: For a description of table CMIPADDR, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Prerequisites

The prerequisites are listed in the procedure titled “Adding, removing, or re-arranging ethernet links” in this document.

Interval

Perform this procedure when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document.

Common procedures

This procedure does not refer to any common procedures.
**Adding tuples to table CMIPADDR (continued)**

**Action**

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.

Adding tuples to table CMIPADDR

At the MAP terminal

1. Start the table editor. At the user interface prompt on any MAP screen, type
   
   `>TABLE CMIPADDR`
   
   and press the Enter key.

   *Example of system response:*

   `TABLE:  CMIPADDR`
Adding tuples to table CMIPADDR (continued)

2 Indicate that you intend to add a tuple. Type
   >ADD ETHRLNK <entry-number>
   and press the Enter key
   where
   <entry-number> is the next unused entry number for ethernet links, 0, 1, 2, or 3
   For example, if you are adding the first ethernet link, type
   >ADD ETHRLNK 0
   and press the Enter key.
   In response, the system prompts you to supply a value for each field in the tuple, one field at a time.
   
   Example of system response:
   SELCLASS:

3 Specify the selection-class value. Type
   >ETHR
   and press the Enter key.
   
   Example of system response:
   SLOT:

4 Specify the slot value. Type
   ><slot-value>
   where
   <slot-value> is the number of the slot containing the HIOP circuit pack or HCMIC circuit pack to which the ethernet link will be connected. For HIOP circuit packs, the possible slot numbers are 5, 6, 13, and 14. For HCMIC circuit packs, the possible slot numbers are 4 and 15.
   For example, if the ethernet link will connect to an HIOP circuit pack in slot 5, type
   >5
   and press the Enter key.
   
   Example of system response:
   LOCATION:

5 Specify the location value. Type
   >REAR
   and press the Enter key.
   Example of system response:
   PACKLET:
Adding tuples to table CMIPADDR (continued)

6  Indicate that there is no packlet value. Type
   >NONE
   and press the Enter key.
   Example of system response:
   CARDIP:

7  Specify the card-IP value. Type
   ><card-IP>
   and press the Enter key
   where
   <card-IP> is the card IP address of the circuit pack to which the ethernet link
   is going to be connected. This value is stated in the Network Specification
   Book for your office. To find the card IP address, look in the section of the
   book titled "Communication Server Components".
   For example, type
   >10 40 14 100
   and press the Enter key.
   Example of system response:
   CARDNETM:

8  Specify the card-netmask value. Type
   <card-netmask>
   and press the Enter key
   where
   <card-netmask> is an integer indicating the number of leading 1’s in the
   netmask. This value is stated in the Network Specification Book for your
   office. To find the card-netmask value, look in the section of the book titled
   "Communication Server Components".
   For example, type
   >24
   and press the Enter key.
   Example of system response:
   MTCIP:
Adding tuples to table CMIPADDR (continued)

9 Specify the maintenance-IP value. Type
   \texttt{\textgreater maintenance-IP}\textless
   and press the Enter key
   where
   \texttt{maintenance-IP} is the card-maintenance IP address, of the circuit pack to
   which the ethernet link is going to be connected. This value is stated in the
   Network Specification Book for your office. To find the card-maintenance IP
   address, look in the section of the book titled “Communication Server
   Components”.
   For example, type
   \texttt{\textgreater 10 40 14 101}\textless
   and press the Enter key.
   \textit{Example of system response:}
   MTCNETM:

10 Specify the maintenance-netmask value. Type
   \texttt{\textless maintenance-netmask}\textgreater
   and press the Enter key
   where
   \texttt{maintenance-netmask} is an integer indicating the number of leading 1’s in
   the netmask. This value is stated in the Network Specification Book for your
   office. To find the maintenance-netmask value, look in the section of the book
   titled “Communication Server Components”.
   For example, type
   \texttt{\textgreater 24}\textless
   and press the Enter key.
   \textit{Example of system response:}
   EDGEIP:

11 Specify the edge-IP value, which is the IP address of the edge device. Type
   \texttt{\textgreater edge-IP}\textless
   and press the Enter key
   where
   \texttt{edge-IP} is the IP address of the edge device. This value is stated in the
   Network Specification Book for your office. To find the edge-device IP
   address, look in the section of the book titled “Communication Server
   Components”.
   For example, type
   \texttt{\textgreater 10 40 14 1}\textless
   and press the Enter key.
   \textit{Example of system response:}
   NETID:
4-300  Introduction to routine maintenance procedures

Adding tuples to table CMIPADDR (end)

12  Type
>0
and press the Enter key.

Note: Zero is the only valid value for NETID.

Example of system response:

TUPLE TO BE ADDED:
ETHRLNK 0 ETHR 5 REAR NONE (10 40 14 100) 24
(10 40 14 101) 24 (10 40 14 1) 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

13  Confirm the addition. Type
>Y
and press the Enter key.

Example of system response:

TUPLE ADDED.

14  Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to add another tuple</td>
<td>step 2</td>
</tr>
<tr>
<td>you do not need to add any more tuples</td>
<td>step 15</td>
</tr>
</tbody>
</table>

15  Exit from the table editor. Type
>QUIT
and press the Enter key.

16  You have completed this procedure.
Deleting tuples from table CMIPADDR

Application

Use this procedure only when directed to do so by one of the following procedures in this document:

- the procedure titled “Adding, removing, or re-arranging ethernet links”
- one of the procedures for clearing ETHR alarms

Do not use this procedure on any other occasion.

The procedure tells how to delete tuples from table CMIPADDR. The table contains one tuple for each ethernet link.

Note: For a description of table CMIPADDR, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Use this procedure when you are removing ethernet links. You must delete the tuples for the links you are removing. If you have been investigating an ETHR alarm and you have discovered that the table contains tuples specifying ethernet links that do not exist, you must delete those tuples.

Alternatively, use this procedure if you have been investigating an ETHR alarm and you have discovered that table CMIPADDR contains excess datafill, that is, if you have discovered that the table contains one or more tuples specifying ethernet links that do not exist. If you have discovered such tuples, you must delete them.

Prerequisites

Prerequisites are as follows.

- If you are removing ethernet links, the prerequisites are listed in the procedure titled “Adding, removing, or re-arranging ethernet links” in this document.
- If you are deleting excess datafill, there are no prerequisites.

Interval

Perform this procedure when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document, or by one of the procedures for clearing ETHR alarms, also in this document.

Common procedures

This procedure does not refer to any common procedures.
Deleting tuples from table CMIPADDR (continued)

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.

Deleting tuples from table CMIPADDR

At the MAP terminal

1. Start the table editor. At the user interface prompt on any MAP screen, type
   
   >TABLE CMIPADDR
   
   and press the Enter key.

   Example of system response:

   TABLE: CMIPADDR
Deleting tuples from table CMIPADDR (continued)

2 Display the tuples in table CMIPADDR. Type

>LIST ALL

and press the Enter key.

*Example of system response:*

```
KEY DATA

GATEWAY 0 GW (10 40 14 130) 0
CMHOST 0 HOST (10 40 14 108) 24 0
CMHOST 1 HOST (10 40 14 109) 24 0
ETHRLNK 0 ETHR 5 REAR NONE (10 40 14 100) 24 (10 40 14 101) 24 (10 40 14 1) 0
ETHRLNK 1 ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0
ETHRLNK 2 ETHR 13 REAR NONE (10 40 14 104) 24 (10 40 14 105) 24 (10 40 14 3) 0
ETHRLNK 3 ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0
```

Table CMIPADDR contains tuples for the ethernet links. Those tuples begin with the word “ETHRLNK”.

*Note:* In the ETHRLNK tuples in the example, the values in the fields beyond the location field (whose value is “REAR”) are examples, and are for illustrative purposes only.

3 Use the POS command to move to the tuple that you want to remove. Type

>POS ETHRLNK <entry-number>

and press the Enter key

where

<entry-number> is an integer such as 0, 1, 2, or 3

For example, if you are removing the tuple that specifies ethernet link 3, type

>POS ETHRLNK 3

*Example of system response:*

```
ETHRLNK 3 ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0
```

4 Delete the tuple. Type

>DEL

and press the Enter key.

*Example of system response:*

```
TUPLE TO BE DELETED:
ETHRLNK 3 ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
```
Deleting tuples from table CMIPADDR (end)

5 Confirm the deletion. Type
   >Y
   and press the Enter key.
   Example of system response:
   TUPLE DELETED.

6 Select the next step as follows:

   If                                       Do
   you need to delete another tuple         step 3
   you do not need to delete any more tuples step 7

7 Exit from the table editor. Type
   >QUIT
   and press the Enter key.

8 You have completed this procedure.
Changing tuples in table CMIPADDR

Application

Use this procedure only when directed to do so by one of the following procedures in this document:

- the procedure titled “Adding, removing, or re-arranging ethernet links”
- one of the procedures for clearing ETHR alarms

Do not use this procedure on any other occasion.

The procedure tells how to edit tuples in table CMIPADDR. The table contains one tuple for each ethernet link.

Note: For a description of table CMIPADDR, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Use this procedure when you are re-arranging ethernet links that is, moving the connections of existing links from one set of circuit packs to another set of circuit packs in the XA-Core shelf. You must edit the tuples for the links you are re-arranging.

Alternatively, use this procedure if you have been investigating an ETHR alarm and you have discovered that erroneous datafill exists in one or more tuples in table CMIPADDR. You must edit the tuples to correct the errors.

Prerequisites

Prerequisites are as follows.

- If you are re-arranging ethernet links, the prerequisites are listed in the procedure titled “Adding, removing, or re-arranging ethernet links” in this document.
- If you are correcting erroneous datafill to clear an ETHR alarm, there are no prerequisites.

Interval

Perform this procedure when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document, or by one of the procedures for clearing ETHR alarms, also in this document.

Common procedures

This procedure does not refer to any common procedures.
Changing tuples in table CMIPADDR (continued)

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.

Changing tuples in table CMIPADDR

At the MAP terminal

1. Start the table editor. At the user interface prompt on any MAP screen, type

   >TABLE CMIPADDR

   and press the Enter key.

   Example of system response:

   TABLE: CMIPADDR
Changing tuples in table CMIPADDR (continued)

2 Display the tuples in table CMIPADDR. Type

>LIST ALL

and press the Enter key.

Example of system response:

```
KEY DATA
GATEWAY 0 GW (10 40 14 130) 0
CMHOST 0 HOST (10 40 14 108) 24 0
CMHOST 1 HOST (10 40 14 109) 24 0
ETHRLNK 0 ETHR 5 REAR NONE (10 40 14 100) 24 (10 40 14 101) 24 (10 40 14 1) 0
ETHRLNK 1 ETHR 14 REAR NONE (10 40 14 106) 24 (10 40 14 107) 24 (10 40 14 4) 0
```

Table CMIPADDR contains tuples for the ethernet links. Those tuples begin with the word “ETHRLNK”.

**Note:** In the ETHRLNK tuples in the example, the values in the fields beyond the location field (that is, the values to the right of “REAR NONE”) are examples, and are for illustrative purposes only.

For illustrative purposes, we assume that the XA-Core shelf contains four HIOP circuit packs (in slots 5 rear, 6 rear, 13 rear, and 14 rear), and that there are two ethernet links, and that we are going to move the connections for the two links from the HIOP circuit packs in slots 5 rear and 14 rear to the HIOP circuit packs in slots 6 rear and 13 rear.

We will change the tuples for the ethernet links so that table CMIPADDR will be as shown below.

```
KEY DATA
GATEWAY 0 GW (10 40 14 130) 0
CMHOST 0 HOST (10 40 14 108) 24 0
CMHOST 1 HOST (10 40 14 109) 24 0
ETHRLNK 0 ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0
ETHRLNK 1 ETHR 13 REAR NONE (10 40 14 104) 24 (10 40 14 105) 24 (10 40 14 3) 0
```
Changing tuples in table CMIPADDR (continued)

3 Use the POS command to move to the tuple that you want to change. Type
>POS ETHRLNK <entry-number>
and press the Enter key
where
<entry-number> is an integer such as 0, 1, 2, or 3
For example, if you want to change the tuple that specifies ethernet link 0, type
>POS ETHRLNK 0
Example of system response:
ETHRLNK 0 ETHR 5 REAR NONE (10 40 14 100) 24
(10 40 14 101) 24 (10 40 14 1) 0

4 Indicate that you intend to change the tuple. Type
>CHA
and press the Enter key.
In response, the system prompts you to supply a new value for each field in the tuple, one field at a time. For each field you can specify a new value, or you can just press the Enter key to retain the existing value.
Example of system response:
SELCLASS: ETHR

5 Press the Enter key to retain the existing value.
Example of system response:
SLOT: 5

6 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you are re-arranging ethernet links</td>
<td>step 7</td>
</tr>
<tr>
<td>you are correcting erroneous datafill</td>
<td>step 9</td>
</tr>
</tbody>
</table>

7 Specify the new slot value. Type
> <slot-value>
where
<slot-value> is the number of the slot containing the HIOP circuit pack or HCMIC circuit pack to which the ethernet link will be connected.
For example, if the ethernet link will connect to an HIOP circuit pack in slot 6, type
>6
and press the Enter key.
Example of system response:
LOCATION: REAR
Changing tuples in table CMIPADDR (continued)

8 Go to step 10.

9 Specify the slot value. If the existing value is correct, just press the Enter key to retain that value. If the existing value is not correct, type

\[<\text{slot-value}>\]

where

<slot-value> is the number of the slot containing the hardware that supports the link.

For example, type

\[>6\]

and press the Enter key.

*Example of system response:*

LOCATION: REAR

10 Press the Enter key to retain the existing value.

*Example of system response:*

PACKLET: NONE

11 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you are re-arranging ethernet links</td>
<td>step 12</td>
</tr>
<tr>
<td>you are correcting erroneous datafill</td>
<td>step 14</td>
</tr>
</tbody>
</table>

12 Indicate that there is no packet. Press the Enter key to retain the existing value (NONE).

*Note:* If you are re-arranging ethernet links, the value is NONE because packlets are not involved. For an explanation of why this is true, look in the section titled “Adding, removing, or re-arranging ethernet links”, and look under the heading “What this procedure does not cover”.

*Example of system response:*

CARDIP: 10 40 14 100

13 Go to step 15.

14 Specify the packet value. If the existing value is correct, just press the Enter key to retain that value. If the existing value is not correct, type

\[<\text{packet}>\]

and press the Enter key

where

<packet> is NONE or UPPER or LOWER.

*Example of system response:*

CARDIP: 10 40 14 100
Changing tuples in table CMIPADDR (continued)

15 Specify the card-IP value. Type

`<card-IP>`

and press the Enter key

where

`<card-IP>` is the card IP address of the circuit pack to which the ethernet link is going to be connected. This value is stated in the Network Specification Book for your office. To find the card IP address, look in the section of the book titled “Communication Server Components”.

For example, type

`>10 40 14 102`

and press the Enter key.

Example of system response:

CARDNETM: 24

16 Specify the card-netmask value. Type

`<card-netmask>`

and press the Enter key

where

`<card-netmask>` is an integer indicating the number of leading 1’s in the netmask. This value is stated in the Network Specification Book for your office. To find the card-netmask value, look in the section of the book titled “Communication Server Components”.

If the card-netmask value for the circuit pack that the ethernet link is moving to is the same as the card-netmask value for the circuit pack that the ethernet link is moving from, you can just press the Enter key to retain the same value. If the value is different, type it and press the Enter key.

Example of system response:

MTCIP: 10 40 14 101

17 Specify the maintenance-IP value. Type

`<maintenance-IP>`

and press the Enter key

where

`<maintenance-IP>` is the card-maintenance IP address, of the circuit pack to which the ethernet link is going to be connected. This value is stated in the Network Specification Book for your office. To find the card-maintenance IP address, look in the section of the book titled “Communication Server Components”.

For example, type

`>10 40 14 103`

and press the Enter key.

Example of system response:

MTCNETM:
Changing tuples in table CMIPADDR (continued)

18 Specify the maintenance-netmask value. Type

\(<\text{maintenance-netmask}>\)

and press the Enter key

where

\(<\text{maintenance-netmask}>\) is an integer indicating the number of leading 1's in the netmask. This value is stated in the Network Specification Book for your office. To find the maintenance-netmask value, look in the section of the book titled “Communication Server Components”.

If the maintenance-netmask value for the circuit pack that the ethernet link is moving to is the same as the maintenance-netmask value for the circuit pack that the ethernet link is moving from, you can just press the Enter key to retain the same value.

If the value is different, type it and press the Enter key.

Example of system response:

EDGEIP: 10 40 14 1:

19 Specify the edge-IP value, which is the IP address of the edge device. Type

\(>\text{<edge-IP>}\)

and press the Enter key

where

\(<\text{edge-IP}>\) is the IP address of the edge device. This value is stated in the Network Specification Book for your office. To find the edge-device IP address, look in the section of the book titled “Communication Server Components”.

For example, type

\(>10 40 14 2\)

and press the Enter key.

Example of system response:

NETID: 0

20 Press the Enter key to retain the existing value.

Note: Zero is the only valid value for NETID.

Example of system response:

TUPLE TO BE CHANGED:
ETHRLNK 0 ETHR 6 REAR NONE (10 40 14 102) 24 (10 40 14 103) 24 (10 40 14 2) 0 ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

21 Confirm the change. Type

\(>\text{Y}\)

and press the Enter key.

Example of system response:

TUPLE CHANGED.
## Changing tuples in table CMIPADDR (end)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Select the next step as follows:</td>
</tr>
<tr>
<td></td>
<td><strong>If</strong></td>
</tr>
<tr>
<td></td>
<td>you need to change another tuple</td>
</tr>
<tr>
<td></td>
<td>you do not need to change any more tuples</td>
</tr>
<tr>
<td>23</td>
<td>Exit from the table editor. Type <strong>&gt;QUIT</strong> and press the Enter key.</td>
</tr>
<tr>
<td>24</td>
<td>You have completed this procedure.</td>
</tr>
</tbody>
</table>
Establishing cable connections for new ethernet links

Application

Use this procedure only when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document. Do not use this procedure on any other occasion.

Use this procedure to make the cable connections for ethernet links that you are adding.

There can be 0, 2, or 4 ethernet links to an XA-Core shelf. This procedure tells you how to establish cable connections for one pair of links at a time.

Prerequisites

For each pair of ethernet links that you intend to establish, you must have the following things.

• Parts found in the NTLX1145 ethernet cabling kit. Each kit contains the parts that carry two ethernet links between the circuit packs in the XA-Core and the bulkheads on the sides of the XA-Core shelf. Nortel ships one NTLX1145 ethernet cabling kit with each pair of HIOP circuit packs and with each pair of HCMIC circuit packs.

• Two NTRX5132 ethernet engineered cables. Each cable carries a single ethernet link between the bulkhead on the side of the XA-Core shelf and the CS LAN device or ethernet termination panel. (You use an ethernet termination panel if the CS LAN device is a third-party device.)

• The name and location of the CS LAN device or ethernet termination panel to which you must connect the far end of each NTRX5132 ethernet engineered cable.

• The location of the ethernet port to which each NTRX5132 ethernet engineered cable connects on the CS LAN device or on the ethernet termination panel.

Interval

Perform this procedure when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document.

Common procedures

This procedure does not refer to any common procedures.
Establishing cable connections for new ethernet links (continued)

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.

Establishing cable connections for new ethernet links

![Flowchart]

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.

1. Start
2. Manually busy the two circuit packs to which the two links will connect.
3. Connect ethernet cables from the two circuit packs to the XA-Core bulkheads.
4. Connect cables from bulkheads to CS LAN devices or ethernet termination panel.
5. Return the two circuit packs to service.
6. If two more links to connect, go back to step 2. If not, go to end.

End
Establishing cable connections for new ethernet links

At the MAP terminal

1. Go to the IO level of the MAP. At the user interface prompt on the MAP screen, type

`>MAPCI;MTC;XAC;IO`

and press the Enter key.

The IO MAP screen appears. In the following example, the screen indicates that there are HIOP circuit packs in slots 5 rear, 6 rear, 13 rear, and 14 rear, and HCMIC circuit packs in slots 4 rear and 15 rear. In each of these circuit packs, the middle section of the circuit pack is the ethernet section, and in each case the screen indicates that the ethernet section is not equipped: “ETHR -”. This means that currently there are no ethernet links to the XA-Core shelf.

IO MAP level

```
<table>
<thead>
<tr>
<th>Slot</th>
<th>Side</th>
<th>Status</th>
<th>Upper</th>
<th>Middle</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Quit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Front</td>
<td>Tape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rear</td>
<td>RTIF -</td>
<td>ETHR -</td>
<td>CMIC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rear</td>
<td>RTIF</td>
<td>ETHR -</td>
<td>AMDI</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear</td>
<td>RTIF -</td>
<td>ETHR -</td>
<td>AMDI</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rear</td>
<td>RTIF -</td>
<td>ETHR -</td>
<td>AMDI</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rear</td>
<td>RTIF -</td>
<td>ETHR -</td>
<td>CMIC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Time 14:12**

>
Establishing cable connections for new ethernet links (continued)

2 Manually busy the pair of the circuit packs to which you are going to establish connections for new ethernet links.

   Note: The possible pairs are as follows: HCMIC circuit packs in slots 4 rear and 15 rear; HIOP circuit packs in slots 5 rear and 14 rear; HIOP circuit packs in slots 6 rear and 13 rear.

Proceed as follows.

a Manually busy the first of the pair of circuit packs. Type

   >BSY <nn> R

   and press the Enter key

   where <nn> is 4 or 5 or 6

   For example, if you are going to establish ethernet links to the HIOP circuit packs in slots 5 rear and 14 rear, type

   >BSY 5 R

   and press the Enter key.

   Example of system response:

   BSY 5 r complete

b Manually busy the second of the pair of circuit packs. Type

   >BSY <nn> R

   and press the Enter key

   where <nn> is 13 or 14 or 15

   For example, if you are going to establish ethernet links to the HIOP circuit packs in slots 5 rear and 14 rear, type

   >BSY 14 R

   and press the Enter key.

   Example of system response:

   BSY 14 r complete

At the XA-Core shelf

3 Locate the NTLX1145 Ethernet Cabling Kit. Each kit contains two ethernet cables (NTLX1137) and two bulkhead-adapter plates (NTLX1120).

4 Go to the rear of the XA-Core shelf. Remove the screws securing the plate at location A on each bulkhead.

   The following illustration shows the locations of the plates on the bulkheads, and the routing of the NTLX1137 cables connected to HIOP circuit packs in slots 5 rear and 14 rear.
Establishing cable connections for new ethernet links (continued)

Cabling from the circuit packs to the bulkheads

5 Using the screws that you removed in step 4, install a bulkhead-adapter plate (NTLX1120) on each bulkhead. If you are establishing the first and second ethernet links to the XA-Core, install the adapter plates at location A on each bulkhead. If you are establishing the third and fourth ethernet links to the XA-Core, install the adapter plates at location B on each bulkhead.

6 Take one of the ethernet cables (NTLX1137) from the ethernet cabling kit. Snap the modular coupler of the ethernet cables into the bulkhead adapter plate on the bulkhead on your left.

7 Connect the other end of the ethernet cable to the ethernet port on the circuit pack that you busied in step 2b (the circuit pack in slot 13, 14, or 15). The ethernet port is located at the middle of the circuit pack.

8 Take the second ethernet cable (NTLX1137) from the ethernet cabling kit. Snap the modular coupler of the ethernet cable into the bulkhead adapter plate on the bulkhead on your right.

9 Connect the other end of the ethernet cable to the ethernet port on the circuit pack that you busied in step 2a (the circuit pack in slot 4, 5, or 6). The ethernet port is located at the middle of the circuit pack.

10 Connect an ethernet engineered cable (NTRX5132) to the ethernet port on the XA-Core bulkhead on your left.

11 Connect a second ethernet engineered cable (NTRX5132) to the ethernet port on the XA-Core bulkhead on your right.

At the CS LAN device or ethernet termination panel

12 Connect the other end of each ethernet engineered cable (NTRX5132) to the corresponding ethernet port of the Passport 6480 or Passport 8400, or to an ethernet termination panel if you are using a third-party CS LAN device.
Establishing cable connections for new ethernet links (continued)

At the XA-Core shelf and at the CS LAN device or ethernet termination panel  
13 Perform a visual check to verify that complete end-to-end connections are in place from the ethernet ports on the pair of circuit packs to the CS LAN device or to the ethernet termination panel.

At the MAP terminal  
14 Go to the ETHR level of the MAP. At the user interface prompt on the MAP screen, type

>ETHR

and press the Enter key.

The ETHR MAP screen appears. In the following example, the screen indicates that the following slots contain circuit packs that are capable of supporting ethernet links: 4 rear, 5 rear, 6, rear, 13 rear, 14 rear, and 15 rear.

The screen indicates that the ethernet links are not equipped. This means that currently there are no ethernet links to the XA-Core shelf.

ETHR MAP level, indicating that there are currently no ethernet links

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>ETHR</td>
<td>Front: 11111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ETHR</td>
<td>00 00 00 00</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15 Rear</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>XAC:</td>
<td>ETHR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>XMAP0</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Time 14:12</td>
<td>&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15 Return the pair of circuit packs to service.

Proceed as follows.

a Return the first circuit pack to service. Type

>RTS <nn> R

and press the Enter key

where <nn> is 4 or 5 or 6
Establishing cable connections for new ethernet links (continued)

For example, if you earlier (in step 2a) busied the HIOP circuit pack in slot 5 rear, type

>RTS 5 R

and press the Enter key.

*Example of system response:*

RTS 5 r passed

b Return the second circuit pack to service. Type

>RTS <nn> R

and press the Enter key

where <nn> is 13 or 14 or 15

For example, if you earlier (in step 2b) busied the HIOP circuit pack in slot 14 rear, type

>RTS 14 R

and press the Enter key.

*Example of system response:*

RTS 14 r passed

16 Monitor the ETHR level of the MAP to verify that the links recover properly. For example, if the circuit packs in slot 5 rear and slot 14 rear are the circuit packs that you returned to service in the preceding step, then the ETHR screen should indicate that the ethernet links have gone into service, as shown in the following illustration.

**ETHR MAP level, indicating that the ethernet links to slots 5 and 14 rear have recovered properly**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>ETHR</td>
<td>Front: 11111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sta: . . . . . . . . . . .</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Typ: *** ***</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4 Rear</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Tst_</td>
<td>5 Rear</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Bsy_</td>
<td>6 Rear</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 RTS_</td>
<td>13 Rear</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14 Rear</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 LoadFW_</td>
<td>15 Rear</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Uneq_</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>XAC:</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Alarm_</td>
<td>ETHR:</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Chtrs_</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Indicat_</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Query_</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMAP0</td>
<td>Time 14:12</td>
<td>&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Establishing cable connections for new ethernet links

Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to establish the cable connections for another pair of ethernet links</td>
<td>step 1</td>
</tr>
<tr>
<td>you do not need to establish the cable connections for any more pairs of ethernet links</td>
<td>step 18</td>
</tr>
</tbody>
</table>

18 You have completed this procedure.
Removing cable connections for ethernet links

Application
Use this procedure only when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document. Do not use this procedure on any other occasion.

Use this procedure to remove the cable connections for ethernet links that you are removing.

There can be 0, 2, or 4 ethernet links to an XA-Core shelf. This procedure tells you how to remove cable connections for one pair of links at a time.

Prerequisites
None.

Interval
Perform this procedure when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document.

Common procedures
This procedure does not refer to any common procedures.

Action
The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Removing cable connections for ethernet links

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.

Start

Manually busy the two circuit packs.

RTemove ethernet cables from the two circuit packs to the XA-Core bulkheads.

Remove cables that go from XA-Core to CS LAN devices or to the termination panel.

Return the two circuit packs to service.

YES

Two more links to remove?

NO

End
Removing cable connections for ethernet links

At the MAP terminal

1. Go to the IO level of the MAP. At the user interface prompt on the MAP screen, type

   >MAPCI;MTC;XAC;IO

   and press the Enter key.

   The IO MAP screen appears. In the following example, the screen indicates that there are HIOP circuit packs in slots 5 rear, 6 rear, 13 rear, and 14 rear, and HCMIC circuit packs in slots 4 rear and 15 rear. In each of these circuit packs, the middle section of the circuit pack is the ethernet section. The screen indicates that the ethernet section of each HIOP circuit pack is equipped: “ETHR”. This means that currently there are four ethernet links to the XA-Core shelf, and the links are connected to the HIOP circuit packs.

IO MAP level

2. Manually busy the pair of the circuit packs from which you are going to remove the ethernet links.

   Note: The possible pairs are as follows: HCMIC circuit packs in slots 4 rear and 15 rear; HIOP circuit packs in slots 5 rear and 14 rear; HIOP circuit packs in slots 6 rear and 13 rear.

   Proceed as follows.

   a. Manually busy the first of the pair of circuit packs. Type

       >BSY <nn> R

      and press the Enter key

      where <nn> is 4 or 5 or 6,

XA-Core Maintenance Manual
Removing cable connections for ethernet links (continued)

For example, if you are going to remove the ethernet links from the HIOP circuit packs in slots 5 rear and 14 rear, type

>`BSY 5 R
and press the Enter key.

*Example of system response:*

BSY 5 r complete

b Manually busy the second of the pair of circuit packs. Type

>`BSY <nn> R
and press the Enter key

where <nn> is 13 or 14 or 15

For example, if you are going to remove the ethernet links from the HIOP circuit packs in slots 5 rear and 14 rear, type

>`BSY 14 R
and press the Enter key.

*Example of system response:*

BSY 14 r complete

---

**At the XA-Core shelf**

3 Go to the rear of the XA-Core shelf. Find the ethernet cables (NTLX1137) that are connected to the pair of circuit packs from which you are removing the ethernet links.

The following illustration shows the locations of the ethernet cables connected to HIOP circuit packs in slots 5 rear and 14 rear.

---

**Cabling from the circuit packs to the bulkheads**

---
Removing cable connections for ethernet links  (continued)

4 Disconnect the ethernet cable (NTLX1137) from the ethernet port on the circuit pack that you busied in step 2b (the circuit pack in slot 13, 14, or 15). The ethernet port is located at the middle of the circuit pack.

5 Still working with the same ethernet cable as in the preceding step, disconnect the modular coupler at the other end of the cable from the bulkhead adapter plate on the bulkhead on your left.

6 Store the ethernet cable in a safe place away from the XA-Core shelf.

7 Disconnect the ethernet cable (NTLX1137) from the ethernet port on the circuit pack that you busied in step 2a (the circuit pack in slot 4, 5, or 6). The ethernet port is located at the middle of the circuit pack.

8 Still working with the same ethernet cable as in the preceding step, disconnect the modular coupler at the other end of the cable from the bulkhead adapter plate on the bulkhead on your right.

9 Store the ethernet cable in a safe place away from the XA-Core shelf.

10 Locate the ethernet engineered cable (NTRX5132) that carried the links that was formerly connected to the circuit pack that you busied in step 2a (the circuit pack in slot 4, 5, or 6). (The ethernet engineered cable carried the link between the XA-Core and the CS LAN device or the ethernet termination panel.) Disconnect the ethernet engineered cable from the ethernet port on the XA-Core bulkhead on your right.

11 Locate the ethernet engineered cable (NTRX5132) that carried the links that was formerly connected to the circuit pack that you busied in step 2b (the circuit pack in slot 13, 14, or 15). (The ethernet engineered cable carried the link between the XA-Core and the CS LAN device or the ethernet termination panel.) Disconnect the ethernet engineered cable from the ethernet port on the XA-Core bulkhead on your left.

At the CS LAN device or ethernet termination panel

12 Still working with the same ethernet engineered cables as in steps 10 and 11, disconnect the other ends of the two cables from the corresponding ethernet ports on the Passport 6480 or Passport 8400, or from the ethernet termination panel if you are using a third-party CS LAN device.

13 Store the ethernet engineered cables in a safe place.
Removing cable connections for ethernet links (continued)

At the MAP terminal

14 Go to the ETHR level of the MAP. At the user interface prompt on the MAP screen, type

>ETHR

and press the Enter key.

The ETHR MAP screen appears. In the following example, the screen indicates that the following slots contain circuit packs that are capable of supporting ethernet links: 4 rear, 5 rear, 6, rear, 13 rear, 14 rear, and 15 rear. The screen indicates that the ethernet links for slots 6 rear and 13 rear are still equipped, and the links for the other slots are not equipped. (This is what you would expect to see if you had started out with four ethernet links, as described in step 1, and if you had removed the connections to the circuit packs in slots 5 rear and 14 rear.)

ETHR MAP level, indicating that there are currently no ethernet links

When you display the ETHR MAP screen, the screen should indicate that the ethernet links for the circuit packs that you busied in step 2 are not equipped.

15 Return the pair of circuit packs to service.

Proceed as follows.

a Return the first circuit pack to service. Type

>RTS <nn> R

and press the Enter key

where <nn> is 4 or 5 or 6
Removing cable connections for ethernet links (end)

For example, if you earlier (in step 2a) busied the HIOP circuit pack in slot 5 rear, type

>RTS 5 R

and press the Enter key.

*Example of system response:*

RTS 5 r passed

b  Return the second circuit pack to service. Type

>RTS <nn> R

and press the Enter key

where <nn> is 13 or 14 or 15

For example, if you earlier (in step 2b) busied the HIOP circuit pack in slot 14 rear, type

>RTS 14 R

and press the Enter key.

*Example of system response:*

RTS 14 r passed

16  Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to establish the cable connections for another pair of ethernet links</td>
<td>step 1</td>
</tr>
<tr>
<td>you do not need to establish the cable connections for any more pairs of ethernet links</td>
<td>step 17</td>
</tr>
</tbody>
</table>

17  You have completed this procedure.
This page is left blank intentionally.
Moving the cable connections for existing ethernet links

Application

Use this procedure only when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document. Do not use this procedure on any other occasion.

Use this procedure to re-arrange a pair of existing ethernet links, that is, to move the cable connections for the pair of links. You disconnect the links from one pair of circuit packs in the XA-Core shelf, and connect the links to a different pair of circuit packs in the shelf.

Prerequisites

None.

Interval

Perform this procedure when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document.

Common procedures

This procedure does not refer to any common procedures.

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.
Moving the cable connections for existing ethernet links (continued)

Moving the cable connections for existing ethernet links

This flowchart summarizes the procedure. Use the instructions that follow this flowchart to perform the procedure.

Start

Manually busy the four circuit packs involved in the re-arrangement.

Disconnect the ethernet cables from one pair of circuit packs in the XA-Core.

Connect the ethernet cables to a different pair of circuit packs in the XA-Core.

Return the four circuit packs to service.

End
Moving the cable connections for existing ethernet links (continued)

Moving the cable connections for existing ethernet links

At the MAP terminal

1. Go to the IO level of the MAP. At the user interface prompt on the MAP screen, type

   >MAPCI;MTC;XAC;IO

   and press the Enter key.

   The IO MAP screen appears. In the following example, the screen indicates that there are HIOP circuit packs in slots 5 rear, 6, rear, 13 rear, and 14 rear, and HCMIC circuit packs in slots 4 rear and 15 rear. In each of these circuit packs, the middle section of the circuit pack is the ethernet section. The screen indicates that the ethernet sections of the circuit packs in slots 6 rear and 13 rear are equipped. This means that currently there are two ethernet links to the XA-Core shelf, supported by the circuit packs in slots 6 rear and 13 rear.

   **Note:** The possible pairs are as follows: HCMIC circuit packs in slots 4 rear and 15 rear; HIOP circuit packs in slots 5 rear and 14 rear; HIOP circuit packs in slots 6 rear and 13 rear.

    Proceed as follows.

2. Manually busy the two pairs of circuit packs that will be involved in the re-arrangement, that is, the pair of circuit packs to which the ethernet links are currently connected, and the pair of circuit packs to which you intend to move the connections.

   Proceed as follows.

   **Note:** The possible pairs are as follows: HCMIC circuit packs in slots 4 rear and 15 rear; HIOP circuit packs in slots 5 rear and 14 rear; HIOP circuit packs in slots 6 rear and 13 rear.
Moving the cable connections for existing ethernet links (continued)

a Manually busy the first circuit pack from which you are going to disconnect a link. Type

>BSY <nn> R

and press the Enter key

where <nn> is the slot number of one of the pair of circuit packs from which you are going to disconnect the ethernet links

For example, type

>BSY 6 R

and press the Enter key.

Example of system response:

BSY 6 r complete

b Manually busy the second circuit pack from which you are going to disconnect a link. Type

>BSY <nn> R

and press the Enter key

where <nn> is the slot number of the second of the pair of circuit packs from which you are going to disconnect the ethernet links

For example, type

>BSY 13 R

and press the Enter key.

Example of system response:

BSY 13 r complete

c Manually busy the first circuit pack to which you are going to connect the link. Type

>BSY <nn> R

and press the Enter key

where <nn> is the slot number of one of the pair of circuit packs to which you are going to connect the ethernet links

For example, type

>BSY 5 R

and press the Enter key.

Example of system response:

BSY 5 r complete
Moving the cable connections for existing ethernet links (continued)

d Manually busy the first circuit pack to which you are going to connect the link. Type

>`BSY <nn> R`

and press the Enter key

where <nn> is the slot number of the second of the pair of circuit packs to which you are going to connect the ethernet links

For example, type

>`BSY 14 R`

and press the Enter key.

*Example of system response:*

BSY 14 r complete

**At the XA-Core shelf**

3 Go to the rear of the XA-Core shelf and locate the two ethernet cables (NTLX1137) that will be involved in the move.

The following illustration shows the locations of the ethernet cables connected to the ethernet ports on the HIOP circuit packs in slots 6 rear and 13 rear. (In our example we are going to move the links from slots 6 rear and 13 rear to slots 5 rear and 14 rear.)

**Cabling from the circuit packs to the bulkheads**

4 Disconnect the two ethernet cables from the ethernet ports on the pair of circuit packs from which you are removing the ethernet links.
5. Connect the two ethernet cables to the ethernet ports on the pair of circuit packs to which you are going to connect the ethernet links.

The following illustration shows the cabling after the change.

**Cabling from the circuit packs to the bulkheads**

![Cabling diagram]

**At the XA-Core shelf and at the CS LAN device or ethernet termination panel**

6. Perform a visual check to verify that complete end-to-end connections are in place from the ethernet ports on the pair of circuit packs to the CS LAN devices or to the ethernet termination panel.

**At the MAP terminal**

7. Go to the ETHR level of the MAP. At the user interface prompt on the MAP screen, type

    >ETHR

    and press the Enter key.

    The ETHR MAP screen appears. In the following example, the screen indicates that the following slots contain circuit packs that are capable of supporting ethernet links: 4 rear, 5 rear, 6 rear, 13 rear, 14 rear, and 15 rear. The screen indicates that all the ethernet links are not equipped. This means that currently there are no ethernet links to the XA-Core shelf.
Moving the cable connections for existing ethernet links (continued)

**ETHR MAP level, indicating that there are currently no ethernet links**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHR</td>
<td>Front: 1111111111</td>
<td>Rear: 111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

8 Return the four circuit packs to service.

Proceed as follows.

a Return the first circuit pack to service. Type

>`RTS <nn> R`

and press the Enter key

where <nn> is the same value you used in step 2a

For example, if in step 2a you busied the HIOP circuit pack in slot 6 rear, type

>`RTS 6 R`

and press the Enter key.

*Example of system response:*

RTS 6 r passed
Moving the cable connections for existing ethernet links (continued)

b Return the second circuit pack to service. Type
   >RTS <nn> R
   and press the Enter key
   where <nn> is the same value you used in step 2b
   For example, if in step 2b you busied the HIOP circuit pack in slot 13 rear, type
   >RTS 13 R
   and press the Enter key.
   Example of system response:
   RTS 13 r passed

c Return the third circuit pack to service. Type
   >RTS <nn> R
   and press the Enter key
   where <nn> is the same value you used in step 2c
   For example, if in step 2c you busied the HIOP circuit pack in slot 5 rear, type
   >RTS 5 R
   and press the Enter key.
   Example of system response:
   RTS 5 r passed

d Return the second circuit pack to service. Type
   >RTS <nn> R
   and press the Enter key
   where <nn> is the same value you used in step 2d
   For example, if in step 2d you busied the HIOP circuit pack in slot 14 rear, type
   >RTS 14 R
   and press the Enter key.
   Example of system response:
   RTS 14 r passed
Introduction to routine maintenance procedures

Moving the cable connections for existing ethernet links (end)

9  Monitor the ETHR level of the MAP to verify that the links recover properly. For example, if the circuit packs in slot 5 rear and slot 14 rear are the circuit packs to which you connected the ethernet links in step 5, then the ETHR screen should indicate that the ethernet links for slots 5 rear and 14 rear have gone into service, as shown in the following illustration.

**ETHR MAP level, indicating that the ethernet links to slots 5 and 14 rear have recovered properly**

<table>
<thead>
<tr>
<th>XAC</th>
<th>MS</th>
<th>IOD</th>
<th>Net</th>
<th>PM</th>
<th>CCS</th>
<th>Lns</th>
<th>Trks</th>
<th>Ext</th>
<th>APPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>ETHR</td>
<td></td>
<td>Front: 111111111</td>
<td>Rear: 1111111</td>
<td>SM</td>
<td>PE</td>
<td>IO</td>
<td>PKLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Quit</td>
<td>123456789012345678</td>
<td>456789012345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**You have completed this procedure.**
This page is left blank intentionally.
Testing ethernet links

Application

Use this procedure only when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document. Do not use this procedure on any other occasion.

Use this procedure to test ethernet links that you have added or re-arranged.

Prerequisites

None.

Interval

Perform this procedure when directed to do so by the procedure titled “Adding, removing, or re-arranging ethernet links” in this document.

Common procedures

This procedure does not refer to any common procedures.

Action

The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.

Testing ethernet links

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

Start

Ping the ethernet links that you have added or re-arranged.

End
Testing ethernet links (continued)

Testing ethernet links

At the MAP terminal

1 Query one of the circuit packs to which you have connected an ethernet link, to find out the IP addresses. At the user interface prompt on any MAP screen, type

>QUERY CARD <slot-number> R

and press the Enter key.

where

<slot-number> is the slot number of the circuit pack

For example, if you have connected an ethernet link to the circuit pack in slot 4, rear (an HCMIC circuit pack), type

>QUERY CARD 4 R

and press the Enter key.

Example of system response:

Command submitted.

Port IP Address: 10.40.14.200
Assigned IP Address 1: 10.40.14.208
Assigned IP Address 2: 10.40.14.209

Note: The IP addresses shown are examples, and are for illustrative purposes only.

2 Write down the IP addresses that the system displays in the response to the QUERY CARD command.

At the SDM or at any other device connected to the CS LAN

3 Ping each of the addresses that you wrote down in step 2. To ping an address use the following command.

PING <IP-address>

For example, if the IP address is 10.40.14.200, use the following command.

PING 10.40.14.200

4 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>any one of the addresses from step 2 fails to respond to the PING command</td>
<td>step 5</td>
</tr>
<tr>
<td>each of the addresses from step 2 responds to the PING command</td>
<td>step 6</td>
</tr>
</tbody>
</table>
5 Call the next level of support.

6 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to test another link</td>
<td>step 1</td>
</tr>
<tr>
<td>you do not need to test any more links</td>
<td>step 7</td>
</tr>
</tbody>
</table>

7 You have completed this procedure.
This page is left blank intentionally.
How to specify log throttling

Application

Use this procedure if you want to throttle certain logs, that is, limit the number of log messages that the system sends to the all log devices (devices that print or display the messages), and, optionally, to Disk Log.

You specify log throttling by adding entries to table LOGTHROT. You can specify throttling against a specific log, for example, TRK113. Alternatively, you can specify throttling against a log-report group, for example, TRK. You specify a reporting interval, such as five minutes, and a threshold, such as 100.

Note: For a description of table LOGTHROT, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

You can specify throttling for logs generated in the XA-Core. For information on the log groups, see DMS-100 Log Report Reference Manual, 297-8021-840 (North American market) or 297-9051-840 (International market).

For each entry in table LOGTHROT, the system maintains a counter. If the entry specifies an individual log, for example, log TRK113, the counter counts instances of that log. If an entry specifies a log group, for example, log group TRK, the counter counts all instances of all logs in the log group, that is, all instances of all logs in the range TRK000 to TRK999. If, during the reporting interval, the number of instances reaches the threshold value specified in the entry, then the system throttles any additional such log messages. That means the system does not send those additional log messages to the log devices. Also, on a per-entry basis, you can choose to throttle log messages going to Disk Log. If you choose this option, the system applies the same limits to log messages going to that destination.

At the expiry of each reporting interval, the system resets the counter to zero, cancels any existing log throttling, and resumes sending the log messages to their destinations. Note that different entries can have different reporting intervals, for example, five minutes for one entry and one minute for another.

Co-ordination of table LOGTHROT with table LOGCLASS

You must co-ordinate tables LOGTHROT and LOGCLASS. The system will not allow you to add an entry to one table if a conflicting entry exists in the other table. A conflicting entry is one that has the same value in the REPNAME field, which exists in each table, and which contains the log-report identifier, for example, TRK113. If you try to add an entry to one of the tables, but a conflicting entry exists in the other table, the system will issue a message, telling you that such an entry already exists in the other table, and asking you to remove the entry from the other table.
How to specify log throttling (continued)

Note: For a description of table LOGTHROT, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810. For a description of table LOGCLASS, the description of the table in the Customer Data Schema Reference Manual, 297-8021-351 (North American market) or 297-9051-351 (International market).

Prerequisites
None

Interval
Perform this procedure when you please.

Common procedures
This procedure does not refer to any common procedures.

Action
The flowchart that follows provides a summary of this procedure. Use the instructions in the step action procedure that follows the flowchart to perform the routine maintenance procedure.

How to specify log throttling

This flowchart summarizes the procedure.
Use the instructions that follow this flowchart to perform the procedure.

Start

Edit table LOGTHROT. Add tuples specifying the desired log throttling.

End
How to specify log throttling

At the MAP terminal

1. Start the table editor. At the user interface prompt on any MAP screen, type
   `>TABLE LOGTHROT`
   and press the Enter key.
   
   Example of system response:
   
   `TABLE: LOGTHROT`

2. Indicate that you intend to add a tuple. Type
   `>ADD REPNAME <repname>`
   and press the Enter key
   
   where
   
   `<repname>` specifies the log or the log group that is to be throttled

   If you want to throttle a specific log, type the log-group name followed by the identification number of the log report. For example, if you want to throttle log TRK113, type
   
   `>TRK113`
   and press the Enter key.
   
   Alternatively, if you want to throttle a log group, type the log-group name followed by -1. For example, if you want to throttle the TRK log group, type
   
   `>TRK-1`
   and press the Enter key.
   
   In response, the system prompts you to supply a value for each field in the tuple, one field at a time.
   
   Example of system response:
   
   `THRSHOLD:`
3 Specify the threshold value. This is the number of log messages satisfying the REPNAME specification that the system will send during a single reporting interval. Type

$$\text{<threshold-value>}
$$

and press the Enter key

where

<threshold-value> is an integer in the range 0 to 255

For example, to specify a threshold value of ten, type

$$10
$$

and press the Enter key.

Note 1: If you enter 0, then there is no threshold value, and the system will not throttle log messages satisfying the REPNAME specification.

Note 2: If you do not want throttling to apply to a log, you do not need to specify the log and specify a threshold of 0. The absence of throttling is the default behavior.

Example of system response:

TUNITS:

4 Specify the reporting interval. Type

$$\text{<reporting-interval>}
$$

where

<reporting interval> is an integer in the range 0 to 32767, specifying the length of the reporting interval in minutes.

For example, if you want to specify a reporting interval of one minute, type

$$1
$$

and press the Enter key.

Note 1: The recommended TUNITS value is 1.

Note 2: If you enter 0 (or a negative value in the range -32768 to -1), then there is no reporting interval, and the system will not throttle log messages satisfying the REPNAME specification.

Note 3: If you do not want throttling to apply to a log, you do not need to specify the log and specify a reporting interval of 0. The absence of throttling is the default behavior.

Example of system response:

DLOG:
5 Specify whether you want the system to throttle log messages going to Disk Log. Type

>`<dlog-throttling>`

and press the Enter key
where `<dlog-throttling>` is Y or N

- Y means the system will throttle log messages going to Disk Log just as it throttles log messages going to the log devices.
- N means the system will not throttle log messages going to Disk Log.

For example, type

>`Y`

and press the Enter key.

*Example of system response:*

TUPLE TO BE ADDED:
TRK113 10 1 Y
ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.

6 Confirm the addition. Type

>`Y`

and press the Enter key.

*Example of system response:*

TUPLE ADDED.

7 Select the next step as follows:

<table>
<thead>
<tr>
<th>If</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>you need to specify throttling for other log messages</td>
<td>step 2</td>
</tr>
<tr>
<td>you do not need to specify any further log throttling</td>
<td>step 8</td>
</tr>
</tbody>
</table>

8 Exit from the table editor. Type

>`QUIT`

and press the Enter key.

9 You have completed this procedure.
5 Introduction to trouble locating and clearing procedures

Introduction

This chapter describes how to perform trouble locating and clearing maintenance procedures on the DMS SuperNode (SN) and DMS SuperNode SE (SNSE) XA-Core (XAC). Each procedure contains the following sections:

• application
• interval
• common procedures
• action

Application

This section describes the purpose of the procedure.

Interval

This section describes when to perform the procedure.

Common procedures

This section lists common procedures used during the routine maintenance procedure. A common procedure is a series of steps that repeats in maintenance procedures. Common procedures include card removal and replacement.

Action

This section provides a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.
This page is left blank intentionally.
How to perform a manual REx test on XA-Core

Application
Use this procedure to perform a manual routine exercise (REx) test on an eXtended Architecture Core (XA-Core).

Interval
A manual REx test is a test of software and hardware performed when required. Before performance of the REx test, operating company personnel must determine if the switch has stability. The switch needs stability to support testing and without a change to switch operations. Operating company personnel cannot perform a manual REx when the switch is in an E2 condition (potential degradation or outage). REx tests are available in groups called REx test classes. Perform a manual REx test on one of REx test classes. The classes are as follows:

- PE
- SM
- IO
- BASE
- ALL
- FULL

For detailed information on REx tests, see the descriptions of the REx test classes and the description of the REx test results report, in the chapter titled “Preventive maintenance” in this document.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart and a list of exact steps. Use the flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to perform a manual REx test on XA-Core

This flowchart summarizes the procedure.

Use the instructions in the procedure that follows this flowchart to perform the procedure.

Determine what needs a REx test

All of PE, SM, and IO need REx test?

Y

REx test is for InSv and image tests?

Y

Perform REx test command REXTST BASE

N

Perform REx test command REXTST FULL

REx test passed?

Y

End

N

Card list generated?

Y

Replace card(s) or packet(s). Refer to the correct NTP.

1

N

Call next level of support
How to perform a manual REx test on XA-Core

CAUTION
Possible service degradation
Confirm with office personnel to make sure that a REx test can perform now. Nortel Networks recommends that REx tests start during a low traffic period because of the high level of processing required.

CAUTION
RTIF terminals must emulate VT100 terminals.
REx tests will run only if all RTIF terminals have been set to emulate VT100 terminals.

At your current location

1 To access the XACMTC level of the MAP display, type:

>`MAPCI;MTC;XAC;XACMTC`

and press the enter key.

The following is a sample MAP display.
How to perform a manual REx test on XA-Core (continued)

2  Determine what needs a test by the REx test.

<table>
<thead>
<tr>
<th>If the REx test is for</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE cards</td>
<td>step 3</td>
</tr>
<tr>
<td>SM cards</td>
<td>step 6</td>
</tr>
<tr>
<td>IOP cards and related packlets</td>
<td>step 9</td>
</tr>
<tr>
<td>all PE, SM, and IOP cards/packets</td>
<td>step 12</td>
</tr>
</tbody>
</table>

3  To start a REx test on all of the PE cards, type:

>`REXTST RUN PE CONTINUE`

and press the enter key.

*Example of a MAP display*

Warning: the RExTst command may affect component redundancy.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the MAP response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a need to confirm</td>
<td>step 4</td>
</tr>
<tr>
<td>anything else</td>
<td>step 26</td>
</tr>
</tbody>
</table>

4  To confirm the command, type:

>`YES`

and press the enter key.

*Example of a MAP display:*

Command submitted.
RExTst  PE InSv test is running
RExTst  PE Out of Service test is running
RExTst completed
RExTst Test run at 19:06:41, Class: pe, Result: pass.

5  Go to step 21.
How to perform a manual REx test on XA-Core (continued)

6 To start a REx test on all of the SM cards, type:

>`REXTST RUN SM CONTINUE`

and press the enter key.

*Example of a MAP display*

Warning: the RExTst command may affect component redundancy.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the MAP response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a need to confirm</td>
<td>step7</td>
</tr>
<tr>
<td>anything else</td>
<td>step 26</td>
</tr>
</tbody>
</table>

7 To confirm the command, type:

>`Y`ES`

and press the enter key.

*Example of a MAP display:*

Command submitted.
RExtSt   SM InSv test is running
RExtSt   SM Out of Service test is running
RExtSt completed
RExtSt Test run at 19:08:36, Class: sm, Result: pass.

8 Go to step 21.

9 To start a REx test on all of the IO cards, type:

>`REXTST RUN IO CONTINUE`

and press the enter key.

*Example of a MAP display*

Warning: the RExTst command may affect component redundancy.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the MAP response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a need to confirm</td>
<td>step10</td>
</tr>
<tr>
<td>anything else</td>
<td>step 26</td>
</tr>
</tbody>
</table>
How to perform a manual REx test on XA-Core (continued)

To confirm the command, type:
```>
YES
``` and press the enter key.

*Example of a MAP display:*
Command submitted.
RExTst IOP InSv test is running
RExTst IOP Out of Service test is running
RExTst completed
RExTst Test run at 19:15:10, Class: io, Result: pass.

Go to step 21.

Determine the range of REx test required. The range of REx tests are:

- in-service (InSv) tests
- out-of-service (OOS) tests
- image tests

Start InSv and OOS REx tests on the cards, packlets, and links of the PE, SM, and IO subsystems. The InSv REx tests are on all the cards, packlets, and links of the PE, SM, and IO subsystems. The OOS REx tests are on one card of the PE, SM, and IO subsystems (with related packlets). To start the ALL class of REx tests, type:
```>
REXTST RUN ALL CONTINUE
``` and press the enter key.

*Example of a MAP display*
Warning: the RExTst command may affect component redundancy.
Proceed (Y or N)?
Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the REx test is for</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSv and OOS tests</td>
<td>step 13</td>
</tr>
<tr>
<td>InSv and image tests</td>
<td>step 16</td>
</tr>
<tr>
<td>InSv, OOS, and image tests</td>
<td>step 19</td>
</tr>
</tbody>
</table>

If the MAP response indicates a need to confirm, step 14
anything else step 26
How to perform a manual REx test on XA-Core (continued)

14 To confirm the command, type:

>YES

and press the enter key.

*Example of a MAP display:*

Command submitted.

RExTst  PE InSv test is running
RExTst  SM InSv test is running
RExTst  IOP InSv test is running
RExTst  PE Out of Service test is running
RExTst  SM Out of Service test is running
RExTst  IOP Out of Service test is running
RExTst completed
RExTst Test run at 19:19:17, Class: all, Result: pass.

15 Go to step 21.

16 Start InSv REx tests on all cards, packlets, and links of the PE, SM, and IO subsystems. To start the BASE class of REx tests, type:

>REXTST RUN BASE CONTINUE

and press the enter key.

*Example of a MAP display:*

Warning: the RExTst command may affect component redundancy.

Proceed (Y or N)?

Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the MAP response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a need to confirm</td>
<td>step 17</td>
</tr>
<tr>
<td>anything else</td>
<td>step 26</td>
</tr>
</tbody>
</table>
How to perform a manual REx test on XA-Core (continued)

17 To confirm the command, type:
   >YES
   and press the enter key.
   Example of a MAP display:
   Command submitted.
   RExTst  PE InSv test is running
   RExTst  SM InSv test is running
   RExTst  IOP InSv test is running
   RExTst  Image test is running
   RExTst completed

18 Go to step 21.

19 Start InSv and OOS REx tests on the cards, packlets, and links of the PE, SM, and IO subsystems. The InSv REx tests are on all the cards, packlets, and links of the PE, SM, and IO subsystems. The OOS REx tests are on one card of the PE, SM, and IO subsystems (with related packlets). An image test also starts. To start the FULL class of REx tests, type:
   >REXTST RUN FULL CONTINUE
   and press the enter key
   Example of a MAP display
   Warning: the RExTst command may affect component redundancy.
   Proceed (Y or N)?
   Please confirm ("YES", "Y", "NO", or "N"):

<table>
<thead>
<tr>
<th>If the MAP response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>a need to confirm</td>
<td>step 20</td>
</tr>
<tr>
<td>anything else</td>
<td>step 26</td>
</tr>
</tbody>
</table>
Introduction to trouble locating and clearing procedures

How to perform a manual REx test on XA-Core (end)

20 To confirm the command, type:
   >YES
   and press the enter key.

   Example of a MAP display:
   Command submitted.
   RExTst PE InSv test is running
   RExTst SM InSv test is running
   RExTst IOP InSv test is running
   RExTst PE Out of Service test is running
   RExTst SM Out of Service test is running
   RExTst IOP Out of Service test is running
   RExTst Image test is running
   RExTst completed
   RExTst Test run at 19:29:37, Class: full, Result: pass.

21 Determine from the MAP display if the REx test passed.

<table>
<thead>
<tr>
<th>If the MAP response indicates</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>the REx test passed</td>
<td>step27</td>
</tr>
<tr>
<td>the REx test failed and you have not replaced all the</td>
<td>step22</td>
</tr>
<tr>
<td>cards on the card list</td>
<td></td>
</tr>
<tr>
<td>the REx test failed and you replaced all the cards on</td>
<td>step26</td>
</tr>
<tr>
<td>the card list</td>
<td></td>
</tr>
<tr>
<td>other response</td>
<td>step26</td>
</tr>
</tbody>
</table>

22 Record the location, description, slot number, and product engineering code (PEC), including suffix, of all the cards and packlets on the list.

23 Select a card or packlet from the list of step that needs replacement.

24 Perform the correct procedure to replace the card or packlet in step 23. When you complete the procedure, return to this point.

25 Go to step 1.

26 For additional help, call the personnel responsible for the next level of support.

27 You have completed this procedure.
This page is left blank intentionally.
How to repair an XA-Core cooling unit

Application
Use this procedure to identify and correct faults in an XA-Core cooling unit.

Definition
An XA-Core cooling unit consists of three fan drawers and a cooling unit filter. Replace one or cooling unit fan drawers to repair a cooling unit fault. An XA-Core cooling unit fault can cause components in the XA-Core cabinet to overheat and fail.

Common procedures
There are no common procedures.

Action
This procedure contains a summary flowchart as an summary of the procedure. Follow the exact steps to perform this procedure.
How to repair an XA-Core cooling unit (continued)

How to repair an XA-Core cooling unit

EXT alarm?

Y

Y

Y

N

N

Call the next level of support

Framefail and Blowerfail lights on FSP lit?

Y

N

Call the next level of support

Red LED lit on fan?

Y

Slide cooling unit fan out of cabinet

N

Call the next level of support

Call the next level of support

Slide replacement cooling unit fan into the cabinet

Fan RTS pass?

N

Call the next level of support

Y

EXT alarm clear?

N

Call the next level of support

Y

End

This flowchart summarizes the procedure.
Use the instructions in the steps that follow this flowchart to perform the procedure.
How to repair an XA-Core cooling unit

**DANGER**
Next level of support
If the cooling unit configuration you find in the cabinet is different from the following description, call your next level of support.

**WARNING**
Risk of static electricity damage
Make sure that you have protection against electrostatic discharge (ESD). Wear a wrist strap connected to the wrist-strap grounding point of the frame supervisory panel (FSP) while handling circuit packs or packlets.

**CAUTION**
Loss of service
Read and make sure you thoroughly understand the instructions in this procedure before performing the cooling unit fan replacement. Do not allow the cooling unit to remain un-powered for more than 2 min.

### At the XA-Core MAP

1. Examine the EXT MAP level. Determine the location of the cabinet that has a problem cooling unit fan.

<table>
<thead>
<tr>
<th>If the EXT FSP alarm is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>step 2</td>
</tr>
<tr>
<td>not active</td>
<td>step 14</td>
</tr>
</tbody>
</table>

### At the XA-Core cabinet

2. Check that the FRAME and BLOWER FAIL alarm lamps are lit on the frame supervisory panel (FSP).

<table>
<thead>
<tr>
<th>If the FANFAIL and BLOWER-FAIL lamps are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>step 3</td>
</tr>
<tr>
<td>off</td>
<td>step 14</td>
</tr>
</tbody>
</table>
How to repair an XA-Core cooling unit (continued)

3 Open the front doors of the XA-Core cabinet completely.
4 Locate the cooling unit fan drawers in the lower front section of the cabinet.

XA-Core cooling unit fan drawer and filter door locations

5 Determine if all fans are in a working state. Check the red LEDs on the fan drawers.

<table>
<thead>
<tr>
<th>If a red LED is</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>lit</td>
<td>step 6</td>
</tr>
<tr>
<td>not lit</td>
<td>step 14</td>
</tr>
</tbody>
</table>

6 Get a replacement cooling unit fan.
7 Loosen the locking screws on the trouble cooling unit fan drawer.
   a Turn the locking screws in a counter-clockwise direction.
   b Pull the fan drawer halfway from the slot in the cooling unit.
   c Wait for the fan to spin down.
Loosen the locking screws on the cooling unit fan drawers

Open the cooling unit fan drawer
How to repair an XA-Core cooling unit (continued)

8

DANGER
Loss of cooling unit
If you leave the cooling unit disconnected for an extended period of time can cause the equipment in the cabinet to overheat.

Remove the fan drawer completely from the cooling unit shelf and place in a safe location away from the physical shelf.

9 Insert the replacement fan drawer into the empty cooling unit slot.
   a Align the fan drawer with the physical shelf slot. Slide the fan drawer into the physical slot. Do not force the fan drawer into the physical slot.
   b Use your fingers or thumbs to push on the side edges of the fan drawer faceplate. Push on the faceplate until the fan drawer is fit into position.

Close the cooling unit fan drawers

10 Make sure that the fans power up. Make sure that the green LEDs light on all fan drawers.

<table>
<thead>
<tr>
<th>If the cooling unit fans are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>in service</td>
<td>step 11</td>
</tr>
<tr>
<td>not in service</td>
<td>step 14</td>
</tr>
</tbody>
</table>
Introduction to trouble locating and clearing procedures

How to repair an XA-Core cooling unit (end)

11 Tighten the locking screws on the cooling unit fan drawers. Turn the locking screws in a clockwise direction.

Tighten the locking screws on the cooling unit fan drawers

12 Determine if the FRAME and BLOWER FAIL alarm lights are off.

<table>
<thead>
<tr>
<th>If FRAME and FAN FAIL lamps are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>step 13</td>
</tr>
<tr>
<td>on</td>
<td>step 14</td>
</tr>
</tbody>
</table>

At the XA-Core MAP terminal

13 Determine if the FSP alarm on the EXT MAP level is clear.

<table>
<thead>
<tr>
<th>If FRAME and FAN FAIL lamps are</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>step 14</td>
</tr>
<tr>
<td>off</td>
<td>step 15</td>
</tr>
</tbody>
</table>

14 Call the next level of support.

15 You have completed this procedure. Return to the procedure that sent you to this procedure and continue as indicated.
This page is left blank intentionally.
6 Preventive maintenance

This chapter describes preventive maintenance for the XA-Core.

This chapter includes the following sections:

- Routine maintenance.
- Automatic maintenance describes the system-run processes that detect, repair, and report problems.
- System recovery controller (SRC) describes the control of recovery activities by the SRC.

Routine maintenance

Routine procedures, if performed according to a schedule, prevent faults in both the hardware and the software of the switch. Refer to the chapter titled “Introduction to routine maintenance procedures” in this document.

Automatic maintenance

The XA-Core provides automatic maintenance through the following activities:

- processor bus matcher
- Audits
- Routine exercise (REx) tests
- System recovery controller (SRC)

Processor bus matcher

The processor bus matcher is in the RHINO processor which is an enhanced version of the high-speed instruction prefetcher path optimizer (Hippo) containing 512 Kilobytes of on board SRAM.

Audits

Audits are background processes that the switch runs to monitor the state of the XA-Core. Audits of software provide background processes that check the accuracy of applications and of resource data. Audits of hardware provide diagnostic tests of hardware. Audits run for both in-service and out-of-service
conditions of hardware. The in-service diagnostics of audits prevent isolation of the circuit pack or packlet under test. An in-service diagnostic checks hardware except when the hardware is under normal operation of the software. The out-of-service diagnostics of audits are complete tests of a circuit packs or packlets. Separate diagnostic tests of hardware are in the audits or in the routine exercise (REx) tests but normally not both.

**Routine exercise (REx) tests**

Routine exercise (REx) tests are maintenance tests that the switch runs to check the state of the XA-Core. REx tests of software check the accuracy of software applications and of resource data. REx tests of hardware identify hardware failures before an outage or performance degradation occurs. The correction of hardware failures that REx tests identify prevents an outage or performance degradation. The system REx (SREx) test controller has software that runs the REx tests for automatic execution at time intervals. The SREx tests run on the complete switch. Software table REXSCHED defines the time intervals for SREx tests. Table REXSCHED also provides the ability to enable or disable separate REx tests. A REXTST command at the MAP terminal can request a manual REx test on part of the XA-Core when required. A RExTst indication appears on the MAP display when the switch executes a REx test.

---

**CAUTION**

RTIF terminals must emulate VT100 terminals.

REx tests will run only if all RTIF terminals have been set to emulate VT100 terminals.

---

**REx diagnostic tests**

The REx tests perform diagnostic tests of hardware under two conditions. REx tests perform diagnostic tests on hardware that is in service and out of service. The in-service diagnostic tests of REx tests check all XA-Core functions and hardware that the XA-Core audits have not checked. The in-service diagnostics of REx tests prevent isolation of the circuit pack or packlet under test. The out-of-service diagnostic tests of REx checks fault detection of XA-Core hardware through error insertion. Error insertion for an out-of-service diagnostic on hardware requires the circuit pack or packlet to be in isolation. The out-of-service diagnostic of a REx test is not a complete test like the out-of-service diagnostic of an audit. An out-of-service diagnostic of a REx test checks hardware except when the hardware is under normal operation of the software.

REx tests have no check of the IDPROM of a circuit pack against software table PECINV. A check of the IDPROM occurs automatically in XA-Core during the addition of the circuit pack to the shelf.
SREx
System REx tests, also referred to as SREx tests, are REx tests that the system runs automatically. The SREx tests run automatically once a day, normally at the default time of 1:30 a.m. The default SREx schedule is as follows. On Saturday, Sunday, and Monday, the system runs the base REx test class. On Tuesday, Wednesday, Thursday, and Friday, the system runs the full REx test class. (For descriptions of the test classes, see “REx test classes” on page 6-4.) Entries in software tables can modify the schedule for SREx tests. The entries for REx schedule are in table REXSCHED and office parameter NODEREXCONTROL of table OFCVAR. Refer to the procedure, “How to change XA-Core REx intensity” in this document.

Before the SREx test begins, the system checks that all communication paths to the message switches are functioning. If all the paths are functioning, then the SREx test will be able to take a path out of service, and that action will not isolate a message switch. The system will run the SREx test only if all communication paths to the message switches are functioning. For example, if either of the devices supporting RTIF links (RTIF packlets or HCMIC circuit packs) is busy, the system will not run the SREx test.

Before the SREx test begins, the system checks whether the hardware and firmware against the baseline and exception-list information in tables FWINV and PECINV.

- If any SM or PE circuit pack is incompatible with the baseline and exception-list information in table PECINV, the system does not run the SREx test, and issues log XAC415.
- If the firmware in any SM or PE circuit pack is incompatible with the baseline and exception-list information in table FWINV, or if table FWINV does not contain an entry for the SM or PE circuit pack, the system does not run the SREx test, and issues log XAC415.
- If the hardware or firmware in any IOP, HIOP, or HCMIC circuit pack, or in any AMDI, CMIC, or Ethernet packet is incompatible with the baseline and exception-list information in table FWINV, but the hardware and firmware of other downloadable components is compatible with that information, the system runs the SREx test but bypasses the out-of service (OOS) IO class of tests.

Note: For information on tables FWINV and PECINV, see the chapter titled “XA-Core data schema overview” in the XA-Core Reference Manual, 297-8991-810.

Before the SREx test begins, the switch automatically checks the dedicated stability threshold counters. The stability threshold counters monitor parity faults occurring in the static random access memory (SRAM). If there are too
many SRAM parity faults in a determined time before the request for a REx test, the switch responds as follows:

- If you request a manual REx test, the MAP displays a warning and confirmation prompt. The manual REx test can abort or can execute.

- In the case of a scheduled REx test, when the scheduled time of the test arrives, the switch aborts the test and generates a log report. The log indicate the reason. When two automatic REx tests that follow one another cancel in one day, a RExSch minor alarm occurs.

A monitor of the switch stability continues during a REx test. The switch aborts the REx test when a mismatch, trap, link closure, or restart occurs during a REx test.

**REx test classes**

REx tests are available in groups called classes. The classes of REx test are as follows:

- PE
- SM
- IO
- BASE
- ALL
- FULL

The classes of REx tests have the following differences:

- PE class of REx test is:
  - A REx test on a processor element (PE) circuit pack of an XA-Core that is a different PE circuit pack for each REx test performed.
  - The REx tests are out-of-service tests.

- SM class of REx test is:
  - A REx test on a shared memory (SM) circuit pack of an XA-Core that is a different SM circuit pack for each REx test performed.
  - The REx tests are out-of-service tests.

- IO class of REx test is:
  - A REx test on a chosen input/output processor (IOP) circuit pack and REx tests on the packlets in that IOP circuit pack.
  - If any member of the IO link group or any member of the IO hardware group has gone through number of in-service (InSv) to the system-busy
(SysB) transitions that equals or exceeds the major threshold for the
group, the system does not perform the IO class of tests.

Note: When the major threshold is been equalled or exceeded, the
SysBTh major alarm is raised. For a list of the members of the IO
link group, and for a list of the members of the IO hardware group,
see the section covering the XAC SysBTh major alarm, found in
chapter 1 of this document.

— If the XA-Core does not contain any unstable IOP circuit packs or
packlet, then each time the IO class of REx test runs, the system
chooses a different IOP circuit pack, and tests that IOP and its packlets.
— The REx tests are out-of-service tests.

Note: If the firmware in any IOP, HIOP, or HCMIC circuit pack, or
in any AMDI, CMIC, or Ethernet packlet is below baseline, but the
firmware in other downloadable components is at or above baseline,
the system bypasses the IO class of tests.

• BASE class of REx test is:
  — A REx test while in service on all PE circuit packs, SM circuit packs,
IOP circuit packs, and related packlets of an XA-Core.
  — An image test is performed. During an image test, the XA-Core splits
into two sides. The image test checks the sanity of the switch’s
software within the shared memory (SM) circuit packs of the XA-Core.
The split XA-Core has an active side and an inactive side. The image
test cannot start and split the XA-Core if one SM circuit pack only is
available to the active side. The active side needs a minimum of two
SM circuit packs for the XA-Core to split. Each side of the split
XA-Core has one copy of the software image. The image test occurs on
the image copy of the inactive side.

• ALL class of REx test is:
  — A REx test while in service on all PE circuit packs, SM circuit packs,
IOP circuit packs, and related packlets of an XA-Core.
  — A REx test while out of service on a different PE circuit pack, a
different SM circuit pack, and an IOP circuit pack (with related
packlets) of an XA-Core. The PE and SM circuit packs are different for
each REx test. The system chooses the IOP circuit pack according to
the rules outlined for the IO class of REx test.

- FULL class of REx test is:
  - A REx test while in service on all PE circuit packs, SM circuit packs,
    IOP circuit packs, and related packlets of an XA-Core.
  - A REx test while out of service on a different PE circuit pack, a
different SM circuit pack, and an IOP circuit pack (with related
packlets) of an XA-Core. The PE and SM circuit packs are different for
each REx test. The system chooses the IOP circuit pack according to
the rules outlined for the IO class of REx test.
  - An image test is performed. During an image test, the XA-Core splits
into two sides. The image test checks the sanity of the switch’s
software within the shared memory (SM) circuit packs of the XA-Core.
The split XA-Core has an active side and an inactive side. The image
test cannot start and split the XA-Core if one SM circuit pack only is
available to the active side. The active side needs a minimum of two
SM circuit packs for the XA-Core to split. Each side of the split
XA-Core has one copy of the software image. The image test occurs on
the image copy of the inactive side.

REx test results report
When there is a REx test, the switch generates log report XAC415 to indicate
a pass or failure of the REx test. The switch issues a RExTst minor alarm under
the XAC header of the alarm banner when the REx test fails. Log report
XAC415 reports on a REx test failure to indicate the following:

- reason for REx test failure
- category
- list of hardware detected for possible problem

When a system REx test cannot complete, the switch generates a failure
reason. The following conditions of the switch prevent the system REx test
from completing:

- can not interrupt another maintenance activity in process
- system resources not available to run the REx test (recommend REx test
occur during low traffic periods)

When a REx test fails, another REx test that passes is the only way to clear the
RExTst minor alarm. For the detailed instructions to clear the RExTst minor
alarm, refer to the chapter, refer to the chapter titled “Understanding the alarm
system” in this document.

When a system REx test cannot start on two daily attempts that follow one
another, the switch issues a RExSch minor alarm. The RExSch minor alarm
appears under the XAC header of the alarm banner. A system REx test cancels because faults exceed the thresholds monitored by the switch. The switch monitors thresholds for stability faults to identify repeating problems. Entries in software tables list the values of the thresholds.

**Indications of automatic test results**

The following indicators warn operating company personnel of the results of automatic maintenance tests.

- alarms
- logs
- operational measurements (OM)

Operating company personnel can monitor the indicators for directions and patterns. When monitored, operating company personnel can detect and correct small problems before the small problems become larger problems.

For detail information about clearing alarms, refer to the chapter, “Problem isolation and correction” of this document. Also, refer to the chapter titled “Understanding the alarm system” in this document.

For additional information about logs, refer to the chapter titled “Understanding XA-Core log reports” in the *XA-Core Reference Manual*, 297-8991-810.

For additional information about OMs, refer to the chapter, “XA-Core operational measurements” in the *XA-Core Reference Manual*, 297-8991-810.

**System recovery controller (SRC)**

The system recovery controller (SRC) controls recovery activities in the switch. The SRC arranges the recovery of switch nodes in the correct sequence. The SRC recovers a node after recovery of other nodes that the node requires for correct recovery. The SRC plans the recovery activities to reduce the period of the outage.

The SRC makes several recovery attempts when a node cannot recover. The SRC makes more detail analysis with each recovery attempt. If needed, the SRC reloads a node’s software and return the node to service. This reload of a node’s software occurs when required because the node is out of service during the reload.

The SRC also controls recovery activities on switch nodes outside of the XA-Core module.
The SRC performs the following functions:

- SRC dependency manager controls the correct sequence of recovery of the switch nodes
- SRC group manager arranges switch nodes together in groups for broadcast loading when required
- SRC concurrent activity manager balances the amount of recovery work with other switch activities
- SRC starts recovery applications and monitors each step of the applications for quick completion

**SRC activation**

The following events make active the SRC to query and when needed, begin the recovery activities:

- warm restart of the XA-Core
- cold restart of the XA-Core
- reload restart of the XA-Core
- loss of software load in a peripheral module (PM)
- manual RESTART SW ACT, ABORT SW ACT, or NORESTART SW ACT of the XA-Core

A restart restores the software of the support operating system (SOS) of the switch to a state that has stability. The reset terminal interface (RTIF) indicates the completion of a restart. The shape of the cursor on the RTIF display changes every second to indicate a completion of the restart. This change of the cursor shape for each second indicates basic operation of the SOS.
7 Problem isolation and correction

This chapter describes the resident tools used to problem solve fault conditions on the eXtended Architecture Core (XA-Core). The XA-Core is on the DMS SuperNode and SuperNode SE switches. For information on nonresident tools, refer to the Technical Assistance Manuals.

Diagnostic tools
This chapter describes the following diagnostic tools:

- alarms
- DMS monitoring (DMSMON) tool
- log reports
- maintenance manager’s morning report (AMREPORT)
- operational measurements (OM)
- OM-log-alarm cross-reference table (Table 7-1 on page 7-5)
- Sherlock
- switch performance monitoring system (SPMS)
- TRAPINFO

Alarms
Alarms are the main indicators of problems with the system. Alarms provide information about the following types of problems:

- equipment failure
- equipment that operates at a performance degrade
- equipment reached defined capacity level of the operating company
- full or partial system sanity
- software errors
- automatic recovery attempt that is unsuccessful
- reboot that is not authorized
• auto transfer to standby
• inability to transfer from a fault condition to standby
• loss of communication between entities or subsystems
• loss of ability to store operational information (data exceeds threshold)
• failure of inter-node transmission
• loss of communication with operation support systems
• power distribution failure
• security violations
• fire and intrusion

Three levels of severity divide the alarms:
• minor
• major
• critical

A minor alarm means a problem that does not cause a loss of service. Examples of minor alarm conditions include the following:
• conditions that may lead to a major alarm if not corrected
• one piece of a pool of equipment that has been busied
• service degradation that has fallen below a threshold of an operating company

A major alarm means that one-half of a duplicated system is out of service. The major alarm may cause a loss of service. There is no backup if another fault occurs on the active system. A switch generates a major alarm when service degrades below a threshold of an operating company.

A critical alarm means a problem that causes a loss of service. Examples of critical alarm conditions include the following:
• loss of call processing capability (dead system)
• partial or full loss of system sanity
• service degradation that has fallen below a threshold of an operating company

Each alarm has a log report for reference. The log report gives more detailed information about the problem than the alarm.
XA-Core system alarms appear under the XAC header of the MTC level of the MAP. For more information on alarms, refer to the chapter titled “Understanding the alarm system” in this document.

**DMSMON**

DMSMON monitors changes in operation when operating company personnel change a release load. DMSMON formats the information into a report for manual or automatic generation. The type of information in the report includes the following:

- counts of internal events (e.g. warm and cold restarts) and downtime information
- system trap information
- counts of log reports
- hardware counts (*configuration information*)

For additional information about the DMSMON tool, refer to the *DMS Family Commands Reference Manual*, 297-1001-822.

**Log reports**

Log reports are a primary source of information about the components of the XA-Core. Some logs can isolate a problem to a single component. Other logs help to identify problems attributed to more than one component.

Log reports include the following information:

- severity of the log report (represented by the number of asterisks)
- type of log
- time and day
- suspected problem
- list of suspected cards

For information about the XA-Core related logs, refer to the chapter titled “Understanding XA-Core log reports” in the *XA-Core Reference Manual*, 297-8991-810.

**Maintenance manager’s morning report**

AMREPORT provides a 24-h summary of performance, administrative, and maintenance information. The AMREPORT information helps maintenance
programs for correction and prevention of problems. The switch produces AMREPORT as a log report that includes the following information:

- switch performance information
  - SPMS indicators
  - call processing performance
  - processor element (PE) occupancy
  - network integrity
  - peripheral module (PM) switch of activity (SWACT) information
  - software performance: trap and SWER counts
  - footprint (FP) and OM log counts
  - information on SWACT of XMS-based peripheral module (XPM)
- scheduled test results
  - automatic line test (ALT)
  - automatic trunk test (ATT)
- switch operations
  - image dump results
  - patch summary
  - outage indicators
  - integrity check of table data
  - unscheduled XPM REx test

For additional information about AMREPORT, refer to the *Digital Switching Systems DMS-100 Family Maintenance Managers Morning Report*, 297-1001-535.

**Operational measurements**

Operational measurements (OMs) provide load and performance information. The OM system controls collection, display, and report generation of OM data for the operating company.

For additional information about XA-Core related OMs, refer to the chapter titled “XA-Core operational measurements” in the *XA-Core Reference Manual*, 297-8991-810.
Alarms, log, and OM relationship

The following table displays the relations among alarms, logs, and OMs.

Table 7-1 Relations among alarms, logs, and OMs (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Alarms</th>
<th>Event Log</th>
<th>Event-clear Log</th>
<th>Related OM registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDI</td>
<td>XAC309 AMDI link problem</td>
<td>XAC609 AMDI link condition cleared</td>
<td>XAMDI, XAMDIPRT, XAMDILNK, XAMDMAJU, XAMDCRIU</td>
</tr>
<tr>
<td>Baseln</td>
<td>XAC337 Baseln alarm raised</td>
<td>XAC637 Baseln alarm cleared</td>
<td>none</td>
</tr>
<tr>
<td>Config</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Disk</td>
<td>XAC306 Disk problem</td>
<td>XAC606 Disk alarm cleared</td>
<td>XADISK</td>
</tr>
<tr>
<td>ETHR</td>
<td>XAC329 ETHR link problem</td>
<td>XAC629 ETHR link condition cleared</td>
<td>XETHRMJJU, XETHRCRU, XETHR, XETHRPRT, XETHRLNK</td>
</tr>
<tr>
<td>FWsoak</td>
<td>XAC631 FW soaking started, XAC635 FW soaking in progress</td>
<td>XAC632 FW soaking completed</td>
<td>none</td>
</tr>
<tr>
<td>FWvers</td>
<td>XAC300 FWversion mismatch</td>
<td>XAC630 FW version mismatch cleared</td>
<td>none</td>
</tr>
<tr>
<td>Image</td>
<td>XAC308 Image test report</td>
<td>XAC608 Image test passed/alarm cleared</td>
<td>XARXBASE, XARXFULL</td>
</tr>
<tr>
<td>ImgTst</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>IOflt</td>
<td>XAC312 IOP fault</td>
<td>XAC612 IOP alarm cleared</td>
<td>none</td>
</tr>
<tr>
<td>IOtrbl</td>
<td>XAC324 IOP trouble</td>
<td>XAC624 IOtrbl alarm cleared</td>
<td>none</td>
</tr>
<tr>
<td>LowPE</td>
<td>XAC302 Low Processor Element (PE)</td>
<td>XAC602 LowPE condition cleared</td>
<td>XAPE, XAPECRIU, XAPEMAJU, XARXPE</td>
</tr>
<tr>
<td>LowSM</td>
<td>XAC300 Low Shared Memory (SM)</td>
<td>XAC600 LowSM condition cleared</td>
<td>XASM, XAMSMPXU, XARSMPXU, XASSMPXU</td>
</tr>
<tr>
<td>MemLim</td>
<td>XAC801 MemLim (Memory Limit)</td>
<td>XAC601 MemLim condition cleared</td>
<td>XASM, XASMCRIU</td>
</tr>
<tr>
<td>MScomm</td>
<td>XAC303 Message Switch (MS) communication problem</td>
<td>XAC603 MScomm alarm cleared</td>
<td>XCMIC, XAIOP, XARXIO, XALKMAJU</td>
</tr>
</tbody>
</table>
### Table 7-1 Relations among alarms, logs, and OMs (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Alarms</th>
<th>Event Log</th>
<th>Event-clear Log</th>
<th>Related OM registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEtrbl</td>
<td>XAC322 PE trouble</td>
<td>XAC622 PEtrbl alarm cleared</td>
<td>none</td>
</tr>
<tr>
<td>RExFIt</td>
<td>none</td>
<td>none</td>
<td>XARXPE, XARXIO, XARXSM, XARXBASE, XARXFULL, XARXABRT, XARXALL</td>
</tr>
<tr>
<td>RExSch</td>
<td>XAC413 REx Schedule failure</td>
<td>XAC613 RExSch alarm cleared</td>
<td>none</td>
</tr>
<tr>
<td>RExTst</td>
<td>XAC615 REx started</td>
<td>XAC415 REx report</td>
<td>XARXPE, XARXIO, XARXSM, XARXBASE, XARXFULL, XARXABRT, XARXALL</td>
</tr>
<tr>
<td>RIBkey</td>
<td>XAC325 RIBKey detected</td>
<td>XAC625 RIBKey removed</td>
<td>none</td>
</tr>
<tr>
<td>RTIF</td>
<td>XAC305 Reset Terminal Interface (RTIF) problem</td>
<td>XAC605 RTIF alarm cleared</td>
<td>XRTIF, XRTIFPRT, XRTIFLNK, XAIOP</td>
</tr>
<tr>
<td>SMtrbl</td>
<td>XAC323 SM trouble</td>
<td>XAC623 SMtrbl alarm cleared</td>
<td>none</td>
</tr>
<tr>
<td>Split</td>
<td>XAC618 Split mode entered</td>
<td>XAC619 Split mode exited</td>
<td>XAPEMAJU, XAMSMPXU, XARSMPXU, XASSMPXU</td>
</tr>
<tr>
<td>SysBTh</td>
<td>XAC320 SysBTh Alarm Raised</td>
<td>XAC620 SysBTh Alarm Cleared</td>
<td>XAPE, XASM, XAIOP, XADISK, XATAPE, XRTIF, XRTIFPRT, XRTIFLNK, XCMIC, XCMICPRT, XCMICLNK, XAMDI, XAMDIPRT, XAMDILNK, XETHER, XETHERPRT, XETHERLNK</td>
</tr>
<tr>
<td>Tape</td>
<td>XAC307 Tape problem</td>
<td>XAC607 TAPE alarm cleared</td>
<td>XATAPE, XAIOP</td>
</tr>
<tr>
<td>TOD</td>
<td>XAC304 Time of Day clock (TOD) problem</td>
<td>XAC604 TOD alarm cleared</td>
<td>XAIOP, XCMIC</td>
</tr>
<tr>
<td>WgSlot</td>
<td>XAC321, XAC327 Wrong slot</td>
<td>XAC627 WgSlot alarm cleared</td>
<td>none</td>
</tr>
<tr>
<td>XATrap</td>
<td>XAC814 XATrap</td>
<td>XAC614 XATrap alarm cleared</td>
<td>XATRAP</td>
</tr>
</tbody>
</table>
Sherlock

Sherlock is a data collection tool for immediate use after a service outage. Sherlock automatically collects the data required to analyze the cause of the failure. Only one person can use Sherlock at a time.

Sherlock initiates a set of parallel processes that collect all the data available for the specified type of service failure. Sherlock sends the data to a series of temporary files. A person cannot access or control the data except if the person stops the Sherlock process before data collection completes.

Once data collection completes, Sherlock creates data and console files on a specified storage device. Sherlock also erases the temporary files. The data file name is SHRKyyymmddhhmmss(Z). The Z means the file is a compressed file. The name of the console file is SHERLOCK$OUT. The console file contains all the messages and responses sent to the terminal. The console file also contains some additional messages (e.g. time stamps).

For additional information about how to use Sherlock, refer to the NonMenu Commands Historical Reference Manual, 297-1001-820.

Switch performance monitoring system

The switch performance monitoring system (SPMS) monitors all areas of switch operation and outputs regular reports on performance. The reports show different points of view.

The base for SPMS reports is the index values of OMs that the switch generates. The time covered in the SPMS report ranges from 0.5 h to one month. This range of time provides a monitor of day-to-day events and of a longer period of switch performance.

Plans for the switch performance index use SPMS results for administration purposes. The operating company can use the overall office performance index, any section of lower-level indexes, or both.

SPMS consists of three sections as follows:

- service section
- maintenance performance section
- provided resources section

For additional information about SPMS, refer to Switch Performance Monitoring System Application Guide, 297-1001-330.
TRAPINFO

TRAPINFO displays information about software traps. TRAPINFO gets information from the log utility and displays the information in one of several formats.

For additional information about how the TRAPINFO tool, refer to the DMS Family Commands Reference Manual, 297-1001-822.
## 8 How to problem solve a MemLim alarm

### Background

#### Some commonly used terms

In this document, the following definitions are used.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory-module</td>
<td>This is the basic unit of memory managed by the maintenance software. A module is 32 megabytes in size. Maintenance transfers store to the operating system’s store-allocator when requested by the store-allocator. The amount transferred is one memory-module (32 megabytes) at a time. Any given module that has been transferred may only be used as data-store or program-store, never both types within the same module.</td>
</tr>
<tr>
<td>vast-area</td>
<td>This is the basic unit of memory managed by the operating system’s store-allocator. A vast-area is 64 kilobytes in size.</td>
</tr>
<tr>
<td>spare-memory</td>
<td>This is memory that has not been transferred to the store-allocator. It is wholly owned by Maintenance. It always exists as an integral number of memory-modules.</td>
</tr>
<tr>
<td>available-memory</td>
<td>This is memory that is owned by the store-allocator but that has not been allocated to any application software. This is always an integral number of vast-areas.</td>
</tr>
<tr>
<td>used-memory</td>
<td>This is memory that is owned by the store-allocator that has been partially or completely allocated to application software. It is always an integral number of vast-areas.</td>
</tr>
</tbody>
</table>
Addressable memory

Memory on an XA-Core is arranged such that the addressable memory range is in duplex (meaning that there are two copies of this data), and, in addition, one shared-memory card’s worth of the addressable memory range is in triplex (meaning three copies).

*Note:* For more information on triplex memory, see the section titled “Relationship between N+1 redundancy and triplex memory”, at the end of this chapter.
The amount of addressable memory (abbreviated here as AM) is defined by the following formula:

\[ AM = \left( \frac{N - 1}{2} \right) \times 384 \]

where \( N \) is the number of cards, and the result is given in megabytes. The value 384 is the number of megabytes on one SM card. For example, a five-card system (\( N=5 \)) has a addressable memory range of 768M. The following table lists the addressable memory ranges against the number of shared-memory cards for systems of various sizes (note that not all of these sizes are supported in all CSPs).

**Table 8-2 Configured address space against the number of shared-memory cards in “n+1” shared-memory configurations**

<table>
<thead>
<tr>
<th>Number of SM cards (N)</th>
<th>Shared-memory configuration</th>
<th>Addressable memory (AM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4+1</td>
<td>768</td>
</tr>
<tr>
<td>6</td>
<td>5+1</td>
<td>960</td>
</tr>
<tr>
<td>7</td>
<td>6+1</td>
<td>1152</td>
</tr>
<tr>
<td>8</td>
<td>7+1</td>
<td>1344</td>
</tr>
<tr>
<td>9</td>
<td>8+1</td>
<td>1536</td>
</tr>
<tr>
<td>10</td>
<td>9+1</td>
<td>1728</td>
</tr>
</tbody>
</table>

**The software image**

The term image used here is defined to be the total memory that is occupied by the software's instructions, rounded to the nearest 32 megabyte boundary, plus the total memory that is occupied by the data of the software, also rounded to the nearest 32 megabyte boundary.

The image is loaded into the addressable memory on boot and it may then grow (or possibly shrink) dynamically over time. As applications request store from the support operating system (SOS), the memory resources owned by SOS are depleted. When these memory resources shrink below a certain threshold, SOS requests store to be transferred from the unused portion of the addressable memory range into the image, thereby increasing the size of the image.
One way to calculate the size of the image on a given switch running a given software load is using the value for the spare memory displayed by the store all usage command. This spare memory is the total number of kilobytes in the unused portion of the addressable memory range, i.e. the part of the addressable memory range that does not belong to the image. The image then is all the memory that is not spare. For a 5-card system, for example, there could be 262144 kilobytes of spare reported by store all usage out of the total addressable memory range of 768 megabytes. We calculate the image by subtracting this from the total addressable memory as follows (note that kilobytes are converted to megabytes by dividing by 1024).

\[ I = AM - \frac{SPARE}{1024} = 768 - \left(\frac{262144}{1024}\right) = 512 \]

**Memory limits for XA-Core**

**Limits imposed by software**

The XA-Core memory configuration gives different upper bounds on the amounts of PS and DS for different software releases. The following table indicates these amounts.

<table>
<thead>
<tr>
<th>Software release</th>
<th>Start of PS</th>
<th>End of PS</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP10.4</td>
<td>#30000000</td>
<td>#4FFFFFFF</td>
<td>512M</td>
</tr>
<tr>
<td>CSP12 and subsequent releases</td>
<td>#30000000</td>
<td>#3FFFFFFF</td>
<td>256M</td>
</tr>
</tbody>
</table>

The following table defines the memory limitations for data store (DS) for the various releases of the XA-Core software. These limits are the ones imposed by the layout of the memory configuration.

<table>
<thead>
<tr>
<th>Software release</th>
<th>Start of PS</th>
<th>End of PS</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP10.4</td>
<td>#50000000</td>
<td>#7FFFFFFF</td>
<td>768M</td>
</tr>
<tr>
<td>CSP12</td>
<td>#40000000</td>
<td>#7FFFFFFF</td>
<td>1024M</td>
</tr>
<tr>
<td>CSP13 and subsequent releases</td>
<td>#40000000</td>
<td>#AFFFFFFF</td>
<td>1792M</td>
</tr>
</tbody>
</table>
Limits imposed by hardware

The above tables show the limits on the amounts of PS and DS as determined by the XA-Core memory configurations imposed by software. These limits are further constrained by hardware limitations and configurations.

The limit on the amount of shared-memory PS that may be used currently depends on the amount of local PS available on the PE. There are eight 32M modules on a PE. One of these modules is reserved. That leaves seven 32M modules or 224MB. It does not matter whether the memory configuration limits PS at address 3FFFFFFF or address 4FFFFFFF since the maximum amount of shared-memory PS is 224MB which corresponds to a maximum address of #3e000000.

Both PS and DS are limited by the number of shared-memory cards installed in the XA-Core. The maximum number of cards permitted is dependent on the particular software release. The following table gives the numbers of cards and resulting amounts of physical and addressable memory.

Table 8-5 Number of SM cards and physical and addressable memory

<table>
<thead>
<tr>
<th>Number of SM cards</th>
<th>Physical memory</th>
<th>Addressable memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1920M</td>
<td>768M</td>
</tr>
<tr>
<td>7</td>
<td>2688M</td>
<td>1152M</td>
</tr>
<tr>
<td>10</td>
<td>3840M</td>
<td>1728M</td>
</tr>
</tbody>
</table>

Each SM card has twelve 32M modules on it for a total of 384MB. The physical memory is then just the number of cards times 384MB. The amount of addressable memory takes into consideration that one card is a spare card and hence is not counted and also that each memory module has a copy (is in duplex), as discussed above.

Since shared memory includes both PS and DS, the addressable memory maximums in the above table refer to PS plus DS. Therefore, the maximum amounts of DS that can be used will depend on the amount of PS used and vice versa. The following table gives the maximum amounts of DS possible for two
example loads -- one in which the maximum amount of PS is used and one in which a typical amount of PS is used, 128MB.

Table 8-6 Maximum amount of data store for two example loads

<table>
<thead>
<tr>
<th>Addressable Memory</th>
<th>Max PS configuration</th>
<th>Max DS configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>768M</td>
<td>224M</td>
<td>544M</td>
</tr>
<tr>
<td>1152M</td>
<td>224M</td>
<td>928M</td>
</tr>
<tr>
<td>1728M</td>
<td>224M</td>
<td>1504M</td>
</tr>
</tbody>
</table>

Store allocation

The support operating system (SOS) has a store-allocator, the purpose of which is to allocate memory to applications. Figure 8-1 shows the various pools of memory maintained by SOS and Maintenance and shows the interactions between these pools.

It can be seen from the upper two-thirds of the figure, that SOS maintains separate pools for data-store (DS) and program-store (PS) and that within these categories, there is a further subdivision between available store (DS and PS) and used store (DS and PS). Within the category of used store, the store-allocator recognizes separate pools of vast-areas of specific store-types. For example, the figure lists DSPERM and DSTEMP vast-areas for DS and PSPROT and PSTEMP vast-areas for PS. There are many other store-types not shown. These used vast-areas are partially or completely allocated to application software. The parts, or blocks, of a vast-area allocated to one or more applications are collectively labeled as allocated, while the remaining fragments, or blocks, not allocated, are labeled as free.

The store allocator also keeps separate pools of vast-areas in the available store categories (DS and PS). However, unlike the used store, the pools of vast-areas in the available store categories are flexible in that, typically, vast-areas from these pools may be allocated to one of several possible store-types. The figure shows a pool of available vast-areas that may be assigned to DSPERM and DSTEMP, among others not shown. A second pool of available vast-areas is applicable to the DSSAVE store-type. On the PS side, a pool of available vast-areas is listed that may be assigned to PSPROT and PSTEMP, among others not shown. A second pool of available PS is shown that may be applied to the PSFAST store-type.

The lower portion of the figure shows the spare memory maintained by Maintenance. This memory is handled in blocks of 32 megabytes called
modules. One 32M module contains 512 vast-areas. These modules do not have any store-type associated with them while they are managed by Maintenance.

Figure 8-1 Memory pools and store allocation from spare to available to used memory pools.

When an application makes a request for a specific amount of a specific type of store, say 10 kilobytes of DSTEMP, the store-allocator first looks through its pool used vast-areas of the requested type, in this case DSTEMP, looking for a free block large enough to accommodate the request, in this case, 10 kilobytes. If such a block is found, then this block is allocated to the application.

If, however, no such block exists in the list of used vast-areas, then the store-allocator goes to the appropriate pool of available vast-areas from which
a new vast-area of the requested type may be obtained. If an available vast-area exists in the appropriate pool, in this example this is the pool from which DSPERM, DSTEMP, etc., are allocated, then this vast-area is permanently assigned the requested store-type, DSTEMP. The 10 kilobyte block is given to the application and the now-used vast-area is added to the list of used vast-areas.

If the appropriate pool of available memory is empty, the store-allocator requests a new module from the Maintenance system. Maintenance then transfers a new module to the store allocator for use as either data-store or program-store, as required. In this example, if the pool of available memory from which DSTEMP is allocated was depleted, Maintenance would transfer a module to be used as data-store. The store-allocator would replenish the pool from which DSTEMP is allocated and proceed to assign the DSTEMP store-type to a new vast-area and then allocate the requested 10K block, as discussed above. The process of transferring a module from Maintenance to the store-allocator is called store-transfer or sometimes spare-transfer (since the pool of modules owned by Maintenance is referred to as the spare-memory).

MemLim algorithm

Available-memory and store types

In order to operate properly, an XA-Core requires available resources of both data-store and program-store. There are many sub-types of memory within these two broad categories that each must be available if the switch is to be fully functional.

Program-store and data-store are allocated from a common pool of memory-modules. As discussed above, once a module has been allocated to DS or PS, the whole module must be used for this one type (DS or PS).

Not all of the DS store-types or PS store-types are allocated from a common pool of DS or PS. For example, the memory used for DSSAVE is reserved for DSSAVE alone. Similarly, DSSCRATCH is also not allocated from the common pool of available-memory for DS. Therefore, although there may be plenty of memory left for, say, DSSAVE, there may be none left for DSSTACK or DSTEMP. In this situation, the switch would not function properly. A similar argument is applicable to PS.

This is illustrated by an example. Suppose that a particular switch is configured to have five shared-memory cards, or 768 megabytes of addressable-memory. Suppose that the software load running on the switch requires 98 megabytes of program-store. The number of modules needed for PS in this case would be four, or 128 megabytes. However, of this 128 megabytes, only 100 megabytes is used, leaving 30 megabytes available.
Subtracting 128 megabytes from 768 megabytes gives 640 megabytes, the remaining memory that can be used for DS. Suppose the software requires 632 megabytes of DS. This leaves 8 megabytes of available-memory for DS.

The total available-memory is then 30 megabytes of PS plus 8 megabytes of DS, or 38 megabytes in total. However, of the 8 megabytes of available DS, a certain portion will be for DSSAVE only, say two vast-areas or 128 kilobytes, and a certain portion will be for DSSCI only, say 125 vast-areas or 8000 kilobytes. Since 8 megabytes is 128 vast-areas, this leaves 128 minus 125, minus 2, or just one vast-area of 64 kilobytes for DSTEMP, DSPROT, DSPERM, etc.

It can be seen from this example then, that in raising the MemLim alarm, it is important to treat PS and DS separately and to examine the availability of the store-types within the DS and PS categories.

**Determining the MemLim alarm level**

The MemLim alarm algorithm treats the program-store and data-store store-types separately. The minor alarm is based on the total available DS or PS memory. The major alarm pays attention to the availability of a critical set of DS types and a critical set of PS types.

The following is the algorithm for determining the MemLim alarm level based on the usage of data-store.

1. Determine if a DS store-transfer is possible.
   a. Determine if there is any spare-memory. If there is none, a store-transfer is not possible. Otherwise, proceed to step 1b).
   b. If there is some spare-memory then determine if the address-space for DS will be exceeded by a store-transfer. If yes, then a store-transfer is not possible.
   c. If a store-transfer is possible, then there is no alarm situation. Otherwise proceed to step 2.

2. Determine the amount of available DS reported by SOS.
   a. If the available DS for the critical subset of DS store types is eight vast-areas or less, then the system raises the MemLim MAJOR alarm.
   b. Otherwise, if the total available DS is less than 32 megabytes, then the system raises the MemLim MINOR alarm.

Now look at the algorithm for raising the MemLim alarm based on the usage of program store.
3. Determine if a PS store-transfer is possible.
   a. Determine if there is any spare-memory. If there is none, a
      store-transfer is not possible. Otherwise, proceed to step 3b).
   b. If there is some spare-memory, then determine if the address-space
      for PS will be exceeded by a store-transfer or if the PE cards have
      exhausted their local spare-memory. If yes, then a store-transfer is not
      possible.

   If a store-transfer is possible, then there is no alarm situation. Otherwise
   proceed to step 4.

4. Determine the amount of available PS reported by SOS.
   a. If the available PS for the critical subset of PS store types is one
      vast-area or less, then the system raises the MemLim MAJOR alarm.
   b. Otherwise, if the total available PS is less than eight megabytes, then
      the system raises the MemLim MINOR alarm.

5. These independent DS and PS alarm results are combined so that the
   highest applicable alarm level is reported on the MAP and in the logs. The
   following “truth table” defines how the DS and PS alarms are combined.

<table>
<thead>
<tr>
<th>DS Alarm Test Result</th>
<th>PS Alarm Test Result</th>
<th>MemLim Alarm Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Minor</td>
<td>none</td>
<td>Minor</td>
</tr>
<tr>
<td>Major</td>
<td>none</td>
<td>Major</td>
</tr>
<tr>
<td>none</td>
<td>Minor</td>
<td>Minor</td>
</tr>
<tr>
<td>Minor</td>
<td>Minor</td>
<td>Minor</td>
</tr>
<tr>
<td>Major</td>
<td>Minor</td>
<td>Major</td>
</tr>
<tr>
<td>none</td>
<td>Major</td>
<td>Major</td>
</tr>
<tr>
<td>Minor</td>
<td>Major</td>
<td>Major</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
<td>Major</td>
</tr>
</tbody>
</table>
Memory fragmentation

As indicated in the background section, used-memory refers to vast-areas that are at least partially allocated. The remaining parts that are not allocated are referred to as free. These free areas can be of any size. When an application needs memory, if it is looking for a small block, it the store allocator might be able to find a vast-area of the right store-type that has a free block on it large enough to satisfy the application’s request. However, if no used vast-areas of the right type have a block of sufficient size, a new available vast-area will need to be used.

The MemLim algorithm does not consider the free blocks as being available. The reason for this is that it is necessary to be sure that future requests for any store-type and of any size can be satisfied, not just smaller requests or requests for certain store-types.

XSMEMLIM diagnostic tools

XSMEMLIM command

There is a need for the ability to display the numerical data used in calculating the MemLim alarm status. The XSMEMLIM command is designed to provide this data.

Table 8-8 The XSMEMLIM command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>XSMEMLIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays information about the memory limits and related alarm status.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>xsmemlim</td>
</tr>
</tbody>
</table>

In order to display this information, use the XSMEMLIM command as follows:

Command input:

`>xsmemlim`

The following is an example MAP response display:
In the DS row there are 576 kilobytes of available store in the critical set of store-types and there are 8704 kilobytes of available store in total. The limits for the major and minor alarms are 512 kilobytes and 32768, respectively. Since 8704 is less than 32768, and 576 is greater than 512, the MemLim minor is asserted. There are more than 27 megabytes of available PS.

Suppose that another vast-area of DSTEMP was allocated on a switch in the state shown in the above XSMEMLIM sample output. The XSMEMLIM command, if run again, would show the following:

**Command input:**

```
> xsmemlim
```

The following is an example MAP response display:

```
Memory Limits Statistics
Total addressable memory: 786432 Kbytes
Spare memory: 0 Kbytes

<table>
<thead>
<tr>
<th>Store</th>
<th>Available</th>
<th>Available</th>
<th>Major</th>
<th>Minor</th>
<th>Transfers</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>576</td>
<td>8704</td>
<td>512</td>
<td>32768</td>
<td>NO</td>
</tr>
<tr>
<td>PS</td>
<td>23552</td>
<td>27712</td>
<td>64</td>
<td>8192</td>
<td>NO</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24128</td>
<td>36416</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MemLim Alarm Status: minor
```
The number of kilobytes of available-memory in the critical set of store-types is now 512 and equal to the major limit. For this reason, the MemLim major is raised.

**STORE command**

The SOS store-allocator provides a command that may be used to investigate many aspects of store-allocation. Information is available on:

- amounts of allocated and free store for each store type
- amounts of available DS and PS
- amount of spare memory
- which applications are using which type of store, and how much
- many others

A brief overview of the STORE command follows.

The syntax of the STORE command is of the form

```
store <store-type> <parameter> [option]...
```

The <store-type> argument may be any of the store-types listed in Table 8-9, or ALL, to perform the store command on all store-types; or DS, to perform the command on all data-store types; or PS to perform the command on all program-store types; or DUMPDS, to perform the command on all types of DS that are dumped; or DUMPPS, to perform the command on all types of PS that...
are dumped; or VALIDDS, to perform the command on all valid DS types; or VALIDPS, to perform the command on all valid PS types.

The <parameter> argument may be any one of the parameters listed in Table 8-10 on page 8-17. Depending on the selected parameter, there may be one or more options specified.

Table 8-9 List of store-types for the STORE command. (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Store-type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dstemp_blocking</td>
<td>Temporary data store</td>
</tr>
<tr>
<td>dsram_blocking</td>
<td>Permanent protected data store</td>
</tr>
<tr>
<td>dsperm_blocking</td>
<td>Permanent unprotected data store</td>
</tr>
<tr>
<td>pstemp_write_blocking</td>
<td>Temporary program store</td>
</tr>
<tr>
<td>dssave_blocking</td>
<td>Permanent data store saved over reboots.</td>
</tr>
<tr>
<td>psprot_write_blocking</td>
<td>Permanent program store</td>
</tr>
<tr>
<td>dssram_blockin</td>
<td>Fastest DSTEMP (68k)</td>
</tr>
<tr>
<td>pssram_write_blocking</td>
<td>Fastest PSPROT (68k)</td>
</tr>
<tr>
<td>dsipl_write_blocking</td>
<td>DS used by genimage for IPLUNLOAD modules</td>
</tr>
<tr>
<td>psipl_write_blocking</td>
<td>PS used by genimage for IPLUNLOAD modules</td>
</tr>
<tr>
<td>dsfprot_write_blocking</td>
<td>Fast DSPROT (68k)</td>
</tr>
<tr>
<td>dsfperm_blocking</td>
<td>Fast DSPERM (68k)</td>
</tr>
<tr>
<td>dsdbunprot_write_blocking</td>
<td>Unprotected DABM store similar to DSUNPROT</td>
</tr>
<tr>
<td>psfast_write_blocking</td>
<td>Fastest PSPROT unused by GENIMAGE.</td>
</tr>
<tr>
<td>dspperm_blocking</td>
<td>Permanent data store saved over reloads</td>
</tr>
<tr>
<td>dsdbtemp_blockin</td>
<td>Temporary DABM data store.</td>
</tr>
<tr>
<td>dsdbperm_blockin</td>
<td>Permanent DABM data store saved over restarts.</td>
</tr>
<tr>
<td>dsdbprot_write_blockin</td>
<td>Protected DABM data store saved over restarts.</td>
</tr>
<tr>
<td>psalien_write_blockin</td>
<td>XS store used by SOS to boot unix</td>
</tr>
<tr>
<td>dsxprot_write_blockin</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>dsxperm_blockin</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>dsxtemp_blockin</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>psxxshare_write_blockin</td>
<td>XS shared program store (SOS/VM)</td>
</tr>
<tr>
<td>dsstack_blockin</td>
<td>Process Stacks and Private Segments</td>
</tr>
<tr>
<td>dssos_blockin</td>
<td>O.S. Private Info (PCBs, PSTs, Pool headers.)</td>
</tr>
<tr>
<td>dssosprot_write_blockin</td>
<td>O.S. Protected Private Info (Robust Queues).</td>
</tr>
<tr>
<td>dssunprot_blockin</td>
<td>Unprotected store saved over all restarts except reboot</td>
</tr>
<tr>
<td>dsscratch</td>
<td>Scratch memory. Similar to DSFPERM but contents not guaranteed to survive a context switch. On XA-Core this is local memory.</td>
</tr>
<tr>
<td>dsstor_blockin</td>
<td>Reserved for those additional storetypes needed on both the old and new store allocator.</td>
</tr>
</tbody>
</table>
Table 8-9 List of store-types for the STORE command. (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Store-type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsstorprot_write_blocking</td>
<td>Reserved for those additional storetypes needed on both the old and new store allocator.</td>
</tr>
<tr>
<td>dstemp_write_blocking</td>
<td>Temporary data store</td>
</tr>
<tr>
<td>dsram_write_blocking</td>
<td>Fastest DSPERM</td>
</tr>
<tr>
<td>dsprot_blocking</td>
<td>Permanent protected data store</td>
</tr>
<tr>
<td>dsperm_write_block</td>
<td>Permanent unprotected data store</td>
</tr>
<tr>
<td>ptemp_block</td>
<td>Temporary program store</td>
</tr>
<tr>
<td>dssave_write_block</td>
<td>Permanent data store saved over reboots.</td>
</tr>
<tr>
<td>psprot_block</td>
<td>Permanent program store</td>
</tr>
<tr>
<td>dsram_write_block</td>
<td>Fastest DSTEMP (68k)</td>
</tr>
<tr>
<td>pssram_block</td>
<td>Fastest PSPROT (68k)</td>
</tr>
<tr>
<td>dipl_block</td>
<td>DS used by genimage for IPLUNLOAD modules</td>
</tr>
<tr>
<td>psipl_block</td>
<td>PS used by genimage for IPLUNLOAD modules</td>
</tr>
<tr>
<td>dsprot_block</td>
<td>Fast DSPROT (68k)</td>
</tr>
<tr>
<td>dsperm_write_block</td>
<td>Fast DSPERM (68k)</td>
</tr>
<tr>
<td>dsdbunprot_write_block</td>
<td>Unprotected DABM store similar to DSUNPROT</td>
</tr>
<tr>
<td>pfast_block</td>
<td>Fastest PSPROT unused by GENIMAGE.</td>
</tr>
<tr>
<td>dssave_write_block</td>
<td>Permanent data store saved over reboots.</td>
</tr>
<tr>
<td>dsdbtemp_write_block</td>
<td>Temporary DABM data store</td>
</tr>
<tr>
<td>dsdbperm_write_block</td>
<td>Permanent DABM data store saved over restarts.</td>
</tr>
<tr>
<td>dsdbprot_block</td>
<td>Protected DABM data store saved over restarts.</td>
</tr>
<tr>
<td>psalien_block</td>
<td>XS store used by SOS to boot unix</td>
</tr>
<tr>
<td>dsxprot_block</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>dsxperm_write_block</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>dsxtemp_write_block</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>psxshare_block</td>
<td>XS shared program store (SOS/VM)</td>
</tr>
<tr>
<td>dsstack_write_block</td>
<td>Process Stacks and Private Segments</td>
</tr>
<tr>
<td>dstack_write_block</td>
<td>Process Stacks and Private Segments</td>
</tr>
<tr>
<td>dssos_write_block</td>
<td>O.S. Private Info (PCBs, PSTs, Pool headers.)</td>
</tr>
<tr>
<td>dsprot_block</td>
<td>O.S. Protected Private Info (Robust Queues).</td>
</tr>
<tr>
<td>dsunprot_write_block</td>
<td>Unprotected store saved over all restarts except reboot</td>
</tr>
<tr>
<td>dsstorprot_block</td>
<td>Reserved for those additional storetypes needed on both the old and new store allocator.</td>
</tr>
<tr>
<td>dstemp_write_block</td>
<td>Reserved for those additional storetypes needed on both the old and new store allocator.</td>
</tr>
<tr>
<td>dstemp_mixed_block</td>
<td>Temporary data store</td>
</tr>
</tbody>
</table>
Table 8-9 List of store-types for the STORE command. (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Store-type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsram_mixed_blocking</td>
<td>Fastest DSPERM</td>
</tr>
<tr>
<td>dsprot_mixed_blocking</td>
<td>Permanent protected data store</td>
</tr>
<tr>
<td>dsperm_mixed_blocking</td>
<td>Permanent unprotected data store</td>
</tr>
<tr>
<td>pstemp_mixed_blocking</td>
<td>Temporary program store</td>
</tr>
<tr>
<td>dssave_mixed_blocking</td>
<td>Permanent data store saved over reboots.</td>
</tr>
<tr>
<td>psprot_mixed_blocking</td>
<td>Permanent program store</td>
</tr>
<tr>
<td>dssram_mixed_blocking</td>
<td>Fastest DSTEMP (68k)</td>
</tr>
<tr>
<td>pssram_mixed_blocking</td>
<td>Fastest PSPROT (68k)</td>
</tr>
<tr>
<td>dsipl_mixed_blocking</td>
<td>DS used by genimage for IPLUNLOAD modules</td>
</tr>
<tr>
<td>psipl_mixed_blocking</td>
<td>PS used by genimage for IPLUNLOAD modules</td>
</tr>
<tr>
<td>dsfprot_mixed_blocking</td>
<td>Fast DSPROT (68k)</td>
</tr>
<tr>
<td>dsfperm_mixed_blocking</td>
<td>Fast DSPERM (68k)</td>
</tr>
<tr>
<td>dsdbunprot_mixed_blocking</td>
<td>Unprotected DABM store similar to DSUNPROT</td>
</tr>
<tr>
<td>psfast_mixed_blocking</td>
<td>Fastest PSPROT unused by GENIMAGE.</td>
</tr>
<tr>
<td>dsppperm_mixed_blocking</td>
<td>Permanent data store saved over reloads</td>
</tr>
<tr>
<td>dsdbtemp_mixed_blocking</td>
<td>Temporary DABM data store</td>
</tr>
<tr>
<td>dsdbperm_mixed_blocking</td>
<td>Permanent DABM data store saved over restarts</td>
</tr>
<tr>
<td>dsdbprot_mixed_blocking</td>
<td>Protected DABM data store saved over restarts</td>
</tr>
<tr>
<td>psalien_mixed_blocking</td>
<td>XS store used by SOS to boot unix</td>
</tr>
<tr>
<td>dsxprot_mixed_blocking</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>dsxperm_mixed_blocking</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>dsxtemp_mixed_blocking</td>
<td>XS store shared by Unix and SOS</td>
</tr>
<tr>
<td>psxshare_mixed_blocking</td>
<td>XS shared program store (SOS/VM)</td>
</tr>
<tr>
<td>dstack_mixed_blocking</td>
<td>Process Stacks and Private Segments</td>
</tr>
<tr>
<td>dssos_mixed_blocking</td>
<td>O.S. Private Info (PCBs, PSTs, Pool headers.)</td>
</tr>
<tr>
<td>dsfprot_mixed_blocking</td>
<td>O.S. Protected Private Info (Robust Queues).</td>
</tr>
<tr>
<td>dsunprot_mixed_blocking</td>
<td>Unprotected store saved over all restarts except reboot</td>
</tr>
<tr>
<td>dsstor_mixed_blocking</td>
<td>Reserved for those additional storetypes needed on both the old and new store allocator.</td>
</tr>
<tr>
<td>dsstorprot_mixed_blocking</td>
<td>Reserved for those additional storetypes needed on both the old and new store allocator.</td>
</tr>
</tbody>
</table>
Table 8-10 STORE command parameter options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCAN</td>
<td>Print information about specific blocks of store.</td>
</tr>
<tr>
<td>OWNERS</td>
<td>Print information about store sorted by owner.</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>Print a summary of information about each specified store-type.</td>
</tr>
<tr>
<td>USAGE</td>
<td>Print information about the usage of the specified store-types.</td>
</tr>
<tr>
<td>AREAS</td>
<td>Print information about each specified store area.</td>
</tr>
<tr>
<td>FRAGMENTATION</td>
<td>Print statistics about the current levels of fragmentation.</td>
</tr>
<tr>
<td>INFO</td>
<td>Print miscellaneous information about the specified store-types.</td>
</tr>
<tr>
<td>BLOCKADDR</td>
<td>Print information about the block of store at a specific address.</td>
</tr>
<tr>
<td>PROBE</td>
<td>Probe for memory hardware configuration information at the specified address.</td>
</tr>
<tr>
<td>ATTRIBUTES</td>
<td>Print the memory attributes (blocking, write_blocking, etc.) for the store at the specified address.</td>
</tr>
</tbody>
</table>

Forms of the STORE SCAN command

The following tables show the available forms of the STORE SCAN command.

Table 8-11 The STORE SCAN BLOCKS command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; SCAN BLOCKS &lt;from&gt; &lt;to&gt; [VERBOSE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>This form of the STORE SCAN command displays information about all the blocks of store that lie between the &lt;from&gt; address and the &lt;to&gt; address. The optional flag VERBOSE may be specified to display more information.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store ds scan blocks #4012366a #4012ffff</td>
</tr>
</tbody>
</table>
### Table 8-12 The STORE SCAN RANGE command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; SCAN RANGE &lt;from&gt; &lt;to&gt; [VERBOSE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>This form of the STORE SCAN command displays a summary of information about each store-type represented in the set of blocks that lie between the address &lt;from&gt; and the address &lt;to&gt;. The optional flag VERBOSE may be specified to display more information.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store ds scan range #4012366a #4012ffff</td>
</tr>
</tbody>
</table>

### Table 8-13 The STORE SCAN BLKSIZE command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; SCAN BLKSIZE [&lt;from&gt;] [&lt;to&gt;] [VERBOSE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>This form of the STORE SCAN command displays information about blocks that have a size within the specified bounds &lt;from&gt; bytes up to &lt;to&gt; bytes. The optional flag VERBOSE may be specified to display more information.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store ds scan blksize #00000010 #00000050</td>
</tr>
</tbody>
</table>

### Table 8-14 The STORE SCAN MODULE command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; SCAN MODULE &lt;name&gt; [VERBOSE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>This form of the STORE SCAN command displays information about the blocks owned by the specified module. The optional flag VERBOSE may be specified to display more information.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store ds scan module 'willtrap'</td>
</tr>
</tbody>
</table>

### Table 8-15 The STORE SCAN PROCESS command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; SCAN PROCESS &lt;name&gt; [VERBOSE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>This form of the STORE SCAN command displays information about the blocks owned by the specified process. The optional flag VERBOSE may be specified to display more information.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store ds scan process 'daddy'</td>
</tr>
</tbody>
</table>
Table 8-16 The STORE SCAN USER command

| SYNTAX | STORE <store-type> SCAN USER <name> [VERBOSE] |
| DESCRIPTION | This form of the STORE SCAN command displays information about the blocks of store owned by the specified user. The optional flag VERBOSE may be specified to display more information. |
| EXAMPLE | store ds scan user 'someuser' |

Table 8-17 The STORE SCAN ID command

| SYNTAX | STORE <store-type> SCAN ID <id1> <id2> [VERBOSE] |
| DESCRIPTION | This form of the STORE SCAN command displays information about the blocks of store owned by the specified numeric owner ID. The optional flag VERBOSE may be specified to display more information. |
| EXAMPLE | store ds scan id #030B #0000 |

Table 8-18 The STORE SCAN ALL command

| SYNTAX | STORE <store-type> SCAN ALL [VERBOSE] |
| DESCRIPTION | This version of the STORE SCAN command displays information about all of the blocks of the specified store-type. The optional flag VERBOSE may be specified to display more information. |
| EXAMPLE | store ps scan all |

Table 8-19 The STORE SCAN FREE command

| SYNTAX | STORE <store-type> SCAN FREE [VERBOSE] |
| DESCRIPTION | This version of the STORE SCAN command displays information about all of the free blocks of the specified store-type. The optional flag VERBOSE may be specified to display more information. |
| EXAMPLE | store ps scan free |
**STORE OWNERS command**

The STORE OWNERS command displays information about blocks of memory where the block information is listed in sorted-order to that the owners with the most store can be easily determined.

**Table 8-20 The STORE OWNERS command**

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; OWNERS [&lt;n&gt;] [&lt;min&gt;] [&lt;max&gt;]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>This command displays the information about blocks of store sorted in decreasing order of total store allocated by owner. The option &lt;n&gt; may be used to limit the display to n owners. The options &lt;min&gt; and &lt;max&gt; may be used to select only owners of blocks of size ranging from &lt;min&gt; bytes to &lt;max&gt; bytes.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store dstemp owners 10</td>
</tr>
</tbody>
</table>

**STORE SUMMARY command**

The STORE SUMMARY command displays summary information about all the blocks the blocks of the specified store-types. The summary data includes information on free and allocated blocks in terms of their maximum, minimum, and total sizes.

**Table 8-21 The STORE SUMMARY command**

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Display a summary of information on all the blocks of the specified store-type.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store dstemp_blocking summary</td>
</tr>
</tbody>
</table>

**STORE USAGE command**

The STORE USAGE command displays information about the current usage of the specified store-types. This information includes the numbers of allocated and free kilobytes for each store-type.

**Table 8-22 The STORE USAGE command**

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays information about the usage of the specified store-types.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store dstemp_blocking usage</td>
</tr>
</tbody>
</table>
STORE AREAS command
The STORE AREAS command displays information about all the vast-areas of the specified store-types. Note that this can be a very large display that might take many minutes to display on a MAP terminal. There are options to this command that can filter the output to display only those areas of interest.

Table 8-23 The STORE AREAS command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; AREAS [&lt;from&gt;] [&lt;to&gt;] [&lt;status&gt;]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays information about all the vast-areas of the specified store-types. The option starting and ending address &lt;from&gt; and &lt;to&gt; may be specified to narrow the set of areas displayed. The optional status selector may be any one of avail, beingformed, inuse, or corrupted.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store pstemp areas inuse</td>
</tr>
</tbody>
</table>

STORE FRAGMENTATION command
The STORE FRAGMENTATION command displays statistics about the fragmentation present in the memory-system.

Table 8-24 The STORE FRAGMENTATION command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; FRAGMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays the fragmentation statistics.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store all fragmentation</td>
</tr>
</tbody>
</table>

STORE INFO command
The STORE INFO command displays information about each specified store-type.

Table 8-25 The STORE INFO command

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; INFO [VERBOSE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays information about the specified store-types.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store dstemp info verbose</td>
</tr>
</tbody>
</table>
**STORE BLOCKADDR command**

The STORE BLOCKADDR command display information about the block of memory at the specified address.

**Table 8-26 The STORE BLOCKADDR command**

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; BLOCKADDR &lt;address&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays information about the block of memory at the given address.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store ds blockaddr #4489FC00</td>
</tr>
</tbody>
</table>

**STORE PROBE command**

The STORE PROBE command displays memory hardware related information for the specified address.

**Table 8-27 The STORE PROBE command**

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; PROBE &lt;address&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays memory hardware information about the specified address.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store ds probe #4489E000</td>
</tr>
</tbody>
</table>

**STORE ATTRIBUTES command**

The STORE ATTRIBUTES command displays the memory attribute for the memory-line at the specified address. Use this command to determine the memory at the specified address is write blocking, or blocking, etc.

**Table 8-28 The STORE ATTRIBUTES command**

<table>
<thead>
<tr>
<th>SYNTAX</th>
<th>STORE &lt;store-type&gt; ATTRIBUTES &lt;address&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays the attribute for the memory line at the given address.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>store ds attributes #419D0000</td>
</tr>
</tbody>
</table>

**Using the STORE command**

The following are some examples showing how the STORE command can be used to display information about memory.

To display information about store usage across all store-types, use the STORE command as follows:
## Command input:

```
>store all usage
```

The following is an example MAP response display:

```
<table>
<thead>
<tr>
<th>Storetype</th>
<th>Used</th>
<th>Free</th>
<th>Total</th>
<th>% Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSTEMP_B</td>
<td>14525Kb</td>
<td>66Kb</td>
<td>14591Kb</td>
<td>99%</td>
</tr>
<tr>
<td>DSPROT_W</td>
<td>17114Kb</td>
<td>165Kb</td>
<td>17279Kb</td>
<td>99%</td>
</tr>
<tr>
<td>DSPERM_B</td>
<td>70159Kb</td>
<td>48Kb</td>
<td>70207Kb</td>
<td>99%</td>
</tr>
<tr>
<td>DSSAVE_B</td>
<td>1306Kb</td>
<td>37Kb</td>
<td>1343Kb</td>
<td>97%</td>
</tr>
<tr>
<td>DSPROT_W</td>
<td>26Kb</td>
<td>38Kb</td>
<td>64Kb</td>
<td>40%</td>
</tr>
<tr>
<td>DSPPERM_B</td>
<td>2Kb</td>
<td>61Kb</td>
<td>63Kb</td>
<td>3%</td>
</tr>
<tr>
<td>DSSTACK_B</td>
<td>5076Kb</td>
<td>108Kb</td>
<td>5184Kb</td>
<td>97%</td>
</tr>
<tr>
<td>DSUNPROT_B</td>
<td>10701Kb</td>
<td>50Kb</td>
<td>10751Kb</td>
<td>99%</td>
</tr>
<tr>
<td>DSCCRATCH</td>
<td>55Kb</td>
<td>8Kb</td>
<td>63Kb</td>
<td>87%</td>
</tr>
<tr>
<td>DSSTOR_B</td>
<td>1005Kb</td>
<td>82Kb</td>
<td>1087Kb</td>
<td>92%</td>
</tr>
<tr>
<td>DSSTORPROM_W</td>
<td>3406Kb</td>
<td>113Kb</td>
<td>3519Kb</td>
<td>96%</td>
</tr>
<tr>
<td>DSTEMP_W</td>
<td>55Kb</td>
<td>8Kb</td>
<td>63Kb</td>
<td>87%</td>
</tr>
<tr>
<td>DSPROT_B</td>
<td>6Kb</td>
<td>57Kb</td>
<td>63Kb</td>
<td>9%</td>
</tr>
<tr>
<td>DSPERM_W</td>
<td>2868Kb</td>
<td>11Kb</td>
<td>2879Kb</td>
<td>99%</td>
</tr>
<tr>
<td>DSSOS_W</td>
<td>460Kb</td>
<td>51Kb</td>
<td>511Kb</td>
<td>90%</td>
</tr>
<tr>
<td>DSUNPROT_W</td>
<td>1Kb</td>
<td>62Kb</td>
<td>63Kb</td>
<td>1%</td>
</tr>
<tr>
<td>DSTEMP_M</td>
<td>183Kb</td>
<td>8Kb</td>
<td>191Kb</td>
<td>95%</td>
</tr>
<tr>
<td>DSPROT_M</td>
<td>8Kb</td>
<td>55Kb</td>
<td>63Kb</td>
<td>12%</td>
</tr>
<tr>
<td>DSPERM_M</td>
<td>225Kb</td>
<td>30Kb</td>
<td>255Kb</td>
<td>88%</td>
</tr>
<tr>
<td>DSUNPROT_M</td>
<td>35Kb</td>
<td>28Kb</td>
<td>63Kb</td>
<td>55%</td>
</tr>
<tr>
<td>TOTAL DS</td>
<td>127750Kb</td>
<td>1136Kb</td>
<td>128886Kb</td>
<td>99%</td>
</tr>
</tbody>
</table>

TOTAL BASED ON ALL DS AREAS
TOTAL DS: USED = 127750Kb AVAIL = 11385Kb TOTAL = 139135Kb
%USED = 91%

Info based on inuse PS areas

```
<table>
<thead>
<tr>
<th>Storetype</th>
<th>Used</th>
<th>Free</th>
<th>Total</th>
<th>% Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSPROT_W</td>
<td>5344Kb</td>
<td>95Kb</td>
<td>5439Kb</td>
<td>98%</td>
</tr>
<tr>
<td>PSSRAM_W</td>
<td>445Kb</td>
<td>2Kb</td>
<td>447Kb</td>
<td>99%</td>
</tr>
<tr>
<td>PSFAST_W</td>
<td>27643Kb</td>
<td>516Kb</td>
<td>28159Kb</td>
<td>98%</td>
</tr>
<tr>
<td>FIRMWARE_DLL</td>
<td>4160Kb</td>
<td>0Kb</td>
<td>4160Kb</td>
<td>100%</td>
</tr>
<tr>
<td>TOTAL PS</td>
<td>37593Kb</td>
<td>613Kb</td>
<td>38206Kb</td>
<td>87%</td>
</tr>
</tbody>
</table>

TOTAL BASED ON ALL PS AREAS
TOTAL PS: USED = 37593Kb  AVAIL = 27942Kb  TOTAL = 65535Kb
%USED = 51%

**Note 1:** In the display, AVAIL represents the available memory that has not been allocated to any process. It is also the amount of memory that is currently configured and available to be used. The memory listed under the AVAIL label includes (1) configured memory that does not have a memory type (such as DSTEMP or DSPROT) associated with it, and (2) memory that has a memory type associated with it, but that is still available for allocation (also known as FREE memory).
**Note 2:** If you use the STORE tool and you want to get an accurate view of the existing SHARED memory usage, you should exclude the DSSCRATCH memory type and the FIRMWARE_DLL memory type from the calculation. DSSCRATCH memory and FIRMWARE_DLL memory are included in the totals reported by the STORE tool, but are outside of the SHARED memory schema.

To display the top ten users of DSTEMP_BLOCKING store, use the STORE command as follows:

Command input:

```
> store dstemp_blocking owners 10
```

The following is an example MAP response display:

```
Collecting DSTEMP_B owner information... please wait...
Statistics for owners of DSTEMP_B, ordered by total size
Blocks TotalSize Min Max OwnerId Process Module
User 845 #006E39A0 #00000060 #00006020 #017A,#0000 MPBMSUI
1212 #0012D780 #000000E0 #0000F020 #6000,#5002 MTSKERN
1051 #00121A80 #00000040 #00005940 #0180,#0000 MTSKERN
7 #0004C0E0 #00002020 #0000E020 #03D6,#0000 SSCIDEBG
136 #0045100 #00000820 #00000820 #0BDA,#0000 BLKMONUI
34 #0044580 #000000C0 #00004020 #03DA,#0000 XLTRSMUI
3 #0002FA60 #0000FE20 #0000FE20 #04F8,#0000 VMCTCT
9 #0002F200 #00000040 #000080A0 #0746,#0000 DKCACHUI
66 #0002BF60 #000000A0 #00010000 #0107,#0000 XLFIDBUI
173 #00296A0 #00000040 #00003E00 #018D,#0000 SIPDATPI
```

To display information about blocks of memory in a particular address range, use the STORE SCAN command as follows:

Command Input:

```
> store all scan blocks #40000000 #40010000
```

The following is an example MAP response display:
To display information about memory owned by a particular module, use the STORE command as follows:

**Command input:**

`>store psprot_write_blocking scan module stor`

The following is an example MAP response display:

<table>
<thead>
<tr>
<th>Storetype</th>
<th>Ttl</th>
<th>Ttl</th>
<th>Min</th>
<th>Max</th>
<th>Avail</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSSAVE_B</td>
<td>1</td>
<td>#000000F20</td>
<td>#000000F20</td>
<td>#000000F20</td>
<td>0</td>
</tr>
</tbody>
</table>

`store dsperm scan module willtrap`

<table>
<thead>
<tr>
<th>Storetype</th>
<th>Ttl</th>
<th>Ttl</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSPERM_B</td>
<td>1</td>
<td>#000000C0</td>
<td>#000000C0</td>
<td>#000000C0</td>
</tr>
</tbody>
</table>

Totals: 1 #000000C0
Diagnosing a MemLim alarm

When a MemLim alarm (major or minor) appears on the shared-memory level of the maintenance map, or when a MemLim log appears in the XAC log stream, the following actions may be taken to determine the cause of the alarm.

The first step is to use the XSMEMLIM command. The output of this command directly shows whether the alarm is due to a shortage of available program store or a shortage of available data store.

If there is a shortage of program store indicated by XSMEMLIM then it may be that the maximum physical limit of 224 megabytes of program store is near to being reached. Or it may be that there is no spare memory and the remaining available memory to SOS is less than the MemLim threshold.

If the XSMEMLIM tool shows that the alarm is due to a shortage of data store, then it may be that the spare memory has been all used up and the remaining available data store is less than a MemLim threshold.

The STORE command can be used to determine how store is being used and if there is an errant process or module that is allocating too much memory.

Relationship between N+1 redundancy and triplex memory

N+1 redundancy and triplex memory are related. Triplex memory is part of the arrangement by which the system maintains N+1 redundancy for shared-memory cards. We will explain this further in the following sections, but first we must cover some background information.
Background: N+1 redundancy for shared-memory circuit packs

In most shared-memory configurations, the system maintains N+1 redundancy for shared-memory circuit packs. Such configurations are referred to as “n+1” shared-memory configurations. (For a list of the “n+1” shared-memory configurations, see Table 8-2 in this chapter.)

N+1 redundancy for shared-memory circuit packs does not mean that we have a group of active circuit packs, with a single additional inactive circuit pack that stands ready to take over if one of the active units fails. Instead, all the shared-memory circuit packs are active. They are said to work in “load-sharing” mode. N+1 redundancy exists because the system maintains one circuit packs’s worth of memory as backup memory, to be used in case one of the circuit packs should fail. The backup memory is composed of 32-megabyte blocks scattered across all the shared-memory circuit packs. (It is outside the scope of this discussion to explain how the system chooses which 32-megabyte blocks on which circuit packs will be the backup memory.)

Background: memory allocation

The system allocates memory in blocks of 32 megabytes. Each NTLX14CA shared-memory circuit pack has 12 such blocks. When the system allocates a 32-megabyte block of memory, it always allocates a second 32-megabyte block on another shared-memory circuit pack. The second block will contain a duplicate copy of the data. This means that all the data stored on all the shared-memory circuit packs is backed up. This is referred to as duplex memory.

In 12 instances, the system allocates a third 32-megabyte block of memory to contain a third copy of data, that is, a second backup copy. In such cases, the system maintains the data in triplicate. The memory block containing the third copy is referred to as triplex memory.

In a system that uses an “n+1” shared-memory configuration, there are 12 32-megabyte blocks that are triplex memory. The 12 triplex memory blocks are equivalent to the capacity of one shared-memory circuit pack. This is true for every system that uses any one of the “n+1” shared-memory configurations. (It is outside the scope of this discussion to explain how the system chooses the 12 memory blocks that it will maintain in triplicate, and the 12 memory blocks that will hold third copies of data.)
Figure 8-2 shows a representation of the shared-memory circuit packs in a system that has five such circuit packs, and uses the “4+1” shared-memory configuration. In the figure we have shown how the memory is backed up. Two of the circuit packs back each other up. The remaining three circuit packs back each other up.

**Figure 8-2 How memory is backed up in a “4+1” configuration**

![Diagram showing how memory is backed up in a “4+1” configuration](image)

*Note:* We have used a “4+1” system as the example because it is the easiest one to explain. (It is outside the scope of this discussion to explain how the system distributes multiple copies of data in each shared-memory configuration.)

**How N+1 sparing uses triplex memory**

Allocating triplex memory (12 memory blocks, each 32 megabytes in size, that will contain third copies of data) is the system’s method of setting aside enough memory to support N+1 redundancy.

The following example explains the relationship between N+1 redundancy and triplex memory.
Again referring to an example system that has five shared-memory circuit packs, and uses the “4+1” shared-memory configuration, Figure 8-3 shows what happens if one of the shared-memory circuit packs fails.

In Figure 8-3, the shared-memory circuit pack in slot 8, front, has failed. The failure does not deprive the system of any of its data, because all the data on the failed circuit is duplicated on the circuit pack in slot 7, front.

However, the system wants to have a backup copy of the data that is on the shared memory circuit pack in slot 7, front. It must write a new copy of that data. To write the new copy, it overwrites the triplex memory. Specifically, it uses the shared-memory circuit pack in slot 10, front.

**Figure 8-3  Failure scenario in a system with “4+1” configuration**

<table>
<thead>
<tr>
<th>SM circuit pack in slot 7, front</th>
<th>SM circuit pack in slot 8, front - FAILED</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Diagram showing shared-memory circuit packs]</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The system’s choice of the shared-memory circuit pack in slot 10, front, as the location of the new backup for the data in the shared-memory circuit pack in slot 7, front, is for illustrative purposes only. (It is outside the scope of this discussion to explain how the system decides which of the triplicated memory should be overwritten in such a failure scenario.)
Optionality related to triplex memory

The question arises, “Can I choose to turn triplex memory on or off?” The answer depends on the shared-memory configuration of your system.

If your system has an “n+1” shared-memory configuration, there is no optionality related to triplex memory. Triplex memory is part of the N+1 redundancy in the system. It cannot be de-activated.

There is only one case in which there is optionality related to triplex memory. If your system has the “10” shared-memory configuration, which means that the system operates without triplex memory (and without N+1 redundancy for shared-memory circuit packs), the option exists to activate triplex memory, thus converting the system to the “9+1” shared-memory configuration. This is done by way of a patch. For more information, contact Nortel Networks.

Note: The “10” shared-memory configuration is used only with certain products. In a “10” shared-memory configuration, there is more addressable memory than in a “9+1” configuration: 1920 megabytes as opposed to 1728 megabytes. For a “10” shared-memory configuration, the “N+1” shared-memory redundancy is de-activated by the inclusion of certain software in the software load. The decision to use the “10” shared-memory configuration is a product-specific decision. This document does not try to explain such product-specific decisions. The decision to apply a patch to convert a system from the “10” shared-memory configuration to the “9+1” shared-memory configuration may have adverse ramifications for the operation of the system. Such ramifications are product-specific, so a discussion of such ramifications is beyond the scope of this document. For advice on this matter, contact Nortel Networks.