JOINT USE POLES CLEARANCE AND SEPARATIONS

1. GENERAL

1.02 For safety reasons, the methods and tools to be employed in determining or measuring separations should not expose the workman to foreign potentials.

1.02 If 0-750 volt supply circuits are in place, wear rubber gloves and use a standard measuring rule or approved equivalent free from metallic strips or edging. Measure from non-metallic parts of the supply structure such as a wood crossarm, or measure along the surface of the wood pole, and make adjustments for the difference in elevation or position of the foreign wires, metallic parts of the structure, etc.

1.03 If supply circuits of more than 750 volts are in place, separations from such circuits should be estimated or the proper location of telephone attachments relative to such circuits should be obtained from your Supervisor. Gains or bolt holes below existing supply attachments may be used as reference points in which case the measuring rule can be used.

1.04 Refer to Table A for the tools that may be used to measure separations and clearances in the span.

1.05 The clearances and separations specified are those which should exist at 60°F. with no wind. The clearances and separations for wires and cables placed at temperatures other than 60°F. should be adjusted for temperature differences. For information regarding effects of temperature changes on sags refer to the sections of the Practices covering sags of wire, cable, etc., and make proper allowance for changes in sags and clearances due to temperature changes.

1.06 If conditions are found which appear to require the rearrangement of plant for clearance or separation reasons notify your Supervisor so that the case can be handled in accordance with established local procedures.

1.07 These sections shall be supplemented by locally prepared instructions covering any changes required to meet—

(a) The lawful requirements of state, municipal, or other authorities, and

(b) specific local conditions not covered herein.

1.08 Attachments to joint use poles shall be located at the proper level so that telephone wires, cables, etc., will have (a) the clearances required above ground, streets, tracks, etc., and (b) the separations from supply wires, cables, etc., required in the span and at the pole, as shown in the tables and illustrations.

1.09 The separations required in the span at the pole are based on the assumption that telephone attachments are placed below supply attachments, except that street light span wires, vertical runs, and lamp brackets may be located above or below telephone attachments. Where trolley construction is involved, it is usually located below the telephone attachments.

2. VERTICAL RUNS

2.01 Vertical Runs Installed on the Pole Surface: The clearance and separation requirements applying to telephone and supply vertical runs installed on the pole surface are as follows:

(a) Where both power and telephone vertical runs are located on the same pole, they shall be at least 2 inches apart and preferably on opposite sides of the pole.

(b) Vertical runs shall be at least 3 inches from pole steps, and shall be so arranged as not to interfere with the safe use of pole steps.

(c) Vertical runs shall be separated from span or guy wires, cable suspension strands, vertical runs, or other metal parts of the
TABLE A

RECOMMENDED MEASURING TOOLS

<table>
<thead>
<tr>
<th>TOOLS (BY GROUPS)</th>
<th>TELEPHONE LINE WIRES, CABLES, GUYS, AND DROP WIRES</th>
<th>SUPPLY CABLES, MULTI-GROUNDED NEUTRAL WIRES, GUYS, AND 0.750 VOLT SUPPLY WIRES</th>
<th>ALL OTHER SUPPLY WIRES</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1</td>
<td>Clearance measuring lines, non-metallic linen tapes, ropes, etc.</td>
<td>Yes</td>
<td>Must not be used</td>
<td>Tools must be dry and free of metallic strands or threads</td>
</tr>
<tr>
<td>GROUP 2</td>
<td>Tree pruner handles, pike poles, rods of wood, bamboo, etc.</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>GROUP 3</td>
<td>B Clearance Rod</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GROUP 4</td>
<td>Transits, sextants, range finders, hand levels, tele-heights, hitometers, etc.</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Note: For drive hooks, drive screws, pole steps, etc., this minimum separation can be met in most cases by locating such metal parts at least 2 inches above or below the attachment level of the staples or other devices by which the vertical run or its covering is attached to the pole.

(d) With the following exceptions, all vertical runs of cables, conductors, and grounding wires shall be protected up to a point 8 feet above ground by a covering which gives suitable mechanical protection. For grounding conductors from supply lightning arrestors, this covering shall consist of wood molding or other insulating material giving equivalent protection.

Exceptions—This covering may be omitted from:
- Armored cables or cables installed in grounded metal conduit.
- Grounding conductors in rural areas where such conductors have a weather-resistant covering.
- Grounding conductors metallically connected to a conductor which forms part of an effective grounding system.
- Wires which are used solely to protect poles from lightning.

(e) Vertical runs of telephone drop wires, ground wires, and cables that pass trolley feeders shall be provided with an insulating covering such as wood molding or fiber conduit from a point 40 inches above the highest trolley feeders to a point 6 feet below the lowest trolley feeders, but need not extend below the top of any mechanical protection which may be provided within 8 feet of the ground.

(f) Vertical runs of supply cables or conductors, ground wires, and trolley feeders that pass telephone space and are installed on the surface of the pole (and any metal pipe or conduit in which such cables or conductors are enclosed) shall be provided with an insulating covering such as wood molding or fiber conduit, from a point 40 inches above the highest telephone
If supply conductors of over 750 volts other than street light leads are run as in (a) report the matter to your Supervisor. Supply conductors of over 750 volts which are not street lighting leads should be run on the surface of the pole in conduit or metal sheath cable protected by molding or other covering.

(c) Lamp leads that pass into or through the telephone space and are run from a supply crossarm directly to a street lamp or lamp bracket shall consist of paired wire or multiple conductor cable securely attached at both ends to suitable brackets and insulators. The leads shall be held taut at least 40 inches from the surface of the pole, at least 12 inches beyond the end of a telephone crossarm, and at least 6 inches from telephone drop wires.

3. **CLIMBING SPACE**

3.01 The required climbing space shall be provided and maintained on every jointly used pole so that workmen can go up or down the pole, and can perform work operations aloft with reasonable safety and convenience.

3.02 Climbing space is defined as the vertical space reserved along the side of a pole to permit access to equipment and conductors located on the pole structure. It consists of a horizontal area 30 inches square, extending vertically not less than 40 inches above and below the cables, conductors, crossarms, or other attachments (Fig. 2).

3.03 Climbing space is required only on one side or corner of the pole. Portions of the pole when included in one side or corner of the climbing space, and vertical runs incased in conduit (or other protective covering) and securely attached to the surface of the pole are not considered to obstruct the climbing space.

3.04 If the only supply conductors at a level above telephone cables, conductors, etc., are secondaries (0-750 volts between conductors) supplying airport or airway marker lights, or crossing over the telephone line and attached to the pole top or to a pole top extension fixture, the width of the climbing space measured across the line may be reduced to 16 inches (Fig. 3).
3.05 When drop wire attachments are made directly to a joint use pole, distribute from the face or back of the pole (Fig. 4).

3.06 Where climbing space cannot otherwise be obtained on either the field or street side of the pole, place a guard arm and distribute from it, or place span clamps on the suspension strand (Fig. 5).

3.07 The full width of climbing space shall be provided past longitudinal runs of cables, drop wires, etc., and shall be measured from the longitudinal run concerned. Where telephone cable is less than 40 inches from telephone wires on jointly used poles, respace pins to provide the 30-inch climbing space (Fig. 6).
Fig. 5—Use of Guard Arm or Span Clamp to Maintain Climbing Space

Fig. 4—Climbing Space When Drops are Attached Directly to Pole

Fig. 3—Secondary Feeder Crossing Over Telephone Lines