CABLE TESTING - GENERAL RESISTANCE OF CABLE CONDUCTORS

Contenta

Page

1. General ... 1
2. Resistance Table 1
3. Conversion Table Equivalent Length 1

1. GENERAL

1.01 This section replaces Issue 1 . It contains tables giving ${ }^{7} 7$ the resistance of cable conductors. The seetion has been reissued to cover changes in the tables.

2. RESISTANCE TABLE

2.01 The resistance of the various gauges of conductors found in telephone cables at $68^{\circ} \mathrm{F}$. is given in the following table:

Gauge		$\begin{gathered} \text { Actual } \\ \text { Feet- } \\ \text { Por-Ohmm } \end{gathered}$	Approx. Feet-Per-Ohm	Actual Ohms Per 1000 Feet	Approx. Ohms Per 1000 Feet
Copper	Aluminum				
10		986.92	1000	1.032	1
13		493.46	500	2.026	2
16		251.43	250	3.977	4
	17	121.35	121	8.24	8
18		156.6	157	6.386	6
19		12424	125	8.049	8
	20	59.54	60	16.76	16
22		61.75	62	16.19	16
	22	37.08	37	26.7	27
24		38.54	39	25.94	26
26		24.00	24	41.67	42
28		15.08	15	66.31	66

2.02 For temperatures above $68^{\circ} \mathrm{F}$, the conductor feet-perohm will be less than that indicated in the tables and for temperatures below $68^{\circ} \mathrm{F}$. the feet-per-ohm will be higher. To determine the feet-per-ohm of a wire at any temperature above or below $68^{\circ} \mathrm{F}$., the following equations may be used. It has been found that the maximum range in the temperature of underground cables is about 40° to $50^{\circ} \mathrm{F}$. The temperature of aerial cable and open wire on the other hand follow closely the temperature of the atmosphere except where the cable or wire is exposed to the sun. In the latter case cable and wire temperatures over $120^{\circ} \mathrm{F}$. have been recorded. .

For temperatures above $68^{\circ} \mathrm{F}$.

$$
F_{t}=F_{t}[1-.00218(t-68)]
$$

For temperatures below $68^{\circ} \mathrm{F}$.

$$
\mathrm{F}_{\mathrm{t}}=\mathrm{F}_{\mathrm{a}}[1+.00218(68-\mathrm{t})]
$$

Where

$\mathrm{Fe}_{\mathrm{e}}=$ feet-per-ohm at temperature t , Fahrenheit.
$\mathrm{F}_{4}=$ feet-per-ohm at $68^{\circ} \mathrm{F}$.

3. CONVERSION TABLE EQUIVALENT LENGTH

3.01 The actual length of a conductor of a given gauge can be converted into the equivalent length of another gauge by multiplying the length of the line by a conversion factor based on the resistances of the two wires.
3.02 The following table gives the conversion factors for the various cable conductors. The equivalent length can be obtained by multiplying the length of the wire by the appropriate conversion factor given in the columns headed "Factor for Desired Equivalent Gauge."

CABLE TESTING - GENERAL RESISTANCE OF CABLE CONDUCTORS

Contenta

Page

1. General ... 1
2. Resistance Table 1
3. Conversion Table Equivalent Length 1

1. GENERAL

1.01 This section replaces Issue 1 . It contains tables giving ${ }^{7} 7$ the resistance of cable conductors. The seetion has been reissued to cover changes in the tables.

2. RESISTANCE TABLE

2.01 The resistance of the various gauges of conductors found in telephone cables at $68^{\circ} \mathrm{F}$. is given in the following table:

Gauge		$\begin{gathered} \text { Actual } \\ \text { Feet- } \\ \text { Por-Ohmm } \end{gathered}$	Approx. Feet-Per-Ohm	Actual Ohms Per 1000 Feet	Approx. Ohms Per 1000 Feet
Copper	Aluminum				
10		986.92	1000	1.032	1
13		493.46	500	2.026	2
16		251.43	250	3.977	4
	17	121.35	121	8.24	8
18		156.6	157	6.386	6
19		12424	125	8.049	8
	20	59.54	60	16.76	16
22		61.75	62	16.19	16
	22	37.08	37	26.7	27
24		38.54	39	25.94	26
26		24.00	24	41.67	42
28		15.08	15	66.31	66

2.02 For temperatures above $68^{\circ} \mathrm{F}$, the conductor feet-perohm will be less than that indicated in the tables and for temperatures below $68^{\circ} \mathrm{F}$. the feet-per-ohm will be higher. To determine the feet-per-ohm of a wire at any temperature above or below $68^{\circ} \mathrm{F}$., the following equations may be used. It has been found that the maximum range in the temperature of underground cables is about 40° to $50^{\circ} \mathrm{F}$. The temperature of aerial cable and open wire on the other hand follow closely the temperature of the atmosphere except where the cable or wire is exposed to the sun. In the latter case cable and wire temperatures over $120^{\circ} \mathrm{F}$. have been recorded. .

For temperatures above $68^{\circ} \mathrm{F}$.

$$
F_{t}=F_{t}[1-.00218(t-68)]
$$

For temperatures below $68^{\circ} \mathrm{F}$.

$$
\mathrm{F}_{\mathrm{t}}=\mathrm{F}_{\mathrm{a}}[1+.00218(68-\mathrm{t})]
$$

Where

$\mathrm{Fe}_{\mathrm{e}}=$ feet-per-ohm at temperature t , Fahrenheit.
$\mathrm{F}_{4}=$ feet-per-ohm at $68^{\circ} \mathrm{F}$.

3. CONVERSION TABLE EQUIVALENT LENGTH

3.01 The actual length of a conductor of a given gauge can be converted into the equivalent length of another gauge by multiplying the length of the line by a conversion factor based on the resistances of the two wires.
3.02 The following table gives the conversion factors for the various cable conductors. The equivalent length can be obtained by multiplying the length of the wire by the appropriate conversion factor given in the columns headed "Factor for Desired Equivalent Gauge."

