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Арифметика эллиптических кривых над простыми
полями без удвоения точек

Эллиптические кривые над конечными полями являются наи-
более перспективной структурой для построения криптографиче-
ских алгоритмов. Длительность выполнения криптографического
примитива определяется длительностью умножения точки на число.
Традиционно эта процедура выполняется путем сложений и удвое-
ний точек. Для умножения точки P на число k последнее представ-

ляется в двоичном виде: k ki
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, цепочки из нескольких стоя-

щих подряд единиц заменяются в соответствии с формулой 1 + 2 +
+ 22 + ... + 2m = –1 + 2m+1, вычисляются точки 2iP и складываются с
учетом коэффициентов ki. При этом число удвоений примерно в три
раза превосходит число сложений, и вклад длительности удвоений в
длительность умножения точки на число является определяющим.

Использование комплексного умножения, например, для кри-
вых со значениями j-инварианта 0 или 1728, позволяет вдвое сокра-
тить число удвоений [1] и за счет этого примерно в 1,5 раза увели-
чить скорость выполнения криптографических примитивов по срав-
нению с кривыми общего вида.

Эллиптические кривые над полем характеристики 2, имеющие
коэффициенты из поля F2, позволяют заменить операцию удвоения
операцией комплексного умножения на собственное значение эндо-
морфизма Фробениуса: (x, y) → (x2, y2). Однако арифметика поля
характеристики 2 неудобна для программной реализации (операцию
умножения многочленов нужно задавать с использованием много-
численных сложений и сдвигов). Кроме того, число кривых с хоро-
шими криптографическими свойствами очень невелико и стойкость
криптоалгоритмов на таких кривых несколько ниже, чем на кривых
над простыми полями близкого размера. Эти обстоятельства огра-
ничивают возможное применение таких кривых.

Существует многочисленный класс эллиптических кривых над
конечными полями, обладающий комплексным умножением, в ко-
тором можно отказаться от удвоения точек, заменив его другой бо-
лее простой операцией. Это эллиптические кривые с комплексным
умножением, для которых порядок подгруппы, образованной опе-
рацией комплексного умножения, не фиксирован [2]. Наиболее про-
стой вид комплексное умножение имеет для кривой вида
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y2 = x3 – 4tx2 + 2t2x (mod p),   (1)
здесь переход к скрученной кривой задается умножением коэффи-
циента t на квадратичный невычет. Обычно можно положить t = ± 1.
Число точек на этой кривой равно p + 1 ± 2a, где p = a2 + 2b2.  Ум-
ножение на мнимое число ϕ = −2  задается рациональным отобра-
жением:
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В случае проективной кривой Y2Z = X3 – 4tX2Z + 2t2XZ2 форму-
лы комплексного умножения примут вид:

ϕ(X1, Y1, Z1) = ),,(),,(2 222111 ZYXZYX =− ,
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Умножение точки на число ϕ требует выполнения 7 умножений в
поле Fp, тогда как удвоение точки требует выполнения 12 таких ум-
ножений.

Пусть r — большой простой порядок группы точек кривой (1).
Для того чтобы исключить операцию удвоения, показатель d нужно
представить как многочлен степени не более log2r от переменной ϕ
с коэффициентами из множества (0, 1, –1). Покажем как это можно
сделать.

Сначала найдем представление порядка группы как многочле-
на указанного вида. Поскольку в кольце классов вычетов Z/rZ опре-
делено умножение на ϕ, существует разложение числа r на простые
множители в кольце Z[ϕ]:

r c d c d c d= + = + − − − =2 22 2 2( )( ) ρρ     (2)

и существует вычислимый гомоморфизм из Z[ϕ] в Z/rZ путем под-
становки ϕ вместо числа −2 . Это разложение может быть вычис-
лено с кубической сложностью от log2r, длина каждого из чисел c, d
менее 0,5log2r, а их суммарная длина — менее log2r. При гомомор-
физме один из комплексных сомножителей в (2) дает 0 (mod r).
Предположим, что это ρ. Выстроим поочередно двоичные коэффи-
циенты при c, d в цепочку справа налево:

..., d3, c3, –d2, –c2, –d1, –c1, d0, c0,
получим искомое представление длины не более log2r бит.
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Имеет место следующее утверждение.

Теорема. Любой показатель k такой, что 0 < k < r, можно
представить как многочлен от ϕ такой, что степень многочлена не
более log2r, а коэффициенты равны 0, 1 или –1.

Доказательство. Значение k (mod r) не изменится, если к не-
му прибавить число nρ или mϕρ для произвольных целых m, n. Для
комплексных чисел k = k0 + k1ϕ и начального значения k0 = k, k1 = 0,
находим вычет по модулю решетки с базисом (c, dϕ) такой, что
норма k0

2 + 2k12 комплексного числа k минимальна. Для этого на ка-
ждом шаге находим такие m, n,  для  которых  норма  числа  k – nρ,
k – mϕρ минимальна. Число шагов алгоритма в среднем равно 2. Ал-
горитм останавливается, когда число k0 + k1ϕ попадает внутрь па-
раллелограмма с r точками,  концентрично  вписанного   в  эллипс
u2 + 2v2 = r. Очевидно, что при этом суммарная длина коэффициен-
тов k0, k1 не превышает log2r. Теорема доказана. !

Следствие. При замене операции удвоения в процедуре умно-
жения точки на число операцией комплексного умножения суммар-
ное число комплексных умножений не превышает число удвоений.

Построение некоторых криптографических алгоритмов (циф-
ровой подписи на основе протокола Эль-Гамаля, бесключевого
шифрования Месси — Омуры и др.) требует выполнения операции
обращения по модулю порядка группы.

Для чисел, представленных по основанию ϕ как многочленов
над F2 от ϕ, существует ϕ-арный аналог бинарного алгоритма Евк-
лида. При нахождении наибольшего общего делителя многочленов
A и B, представленных как многочлены над F2 от ϕ, если хоть один
из них имеет нулевой младший коэффициент, то происходит деле-
ние этого многочлена на ϕ (сдвиг вектора коэффициентов), в про-
тивном случае из большего многочлена вычитается меньший. Для
того чтобы сохранить коэффициенты из F2, полученная разность
рассматривается как комплексное число, которое переводится в па-
ру двоичных чисел, а затем — в ϕ-адическое число. Далее процеду-
ра рекурсивно повторяется.

Расширенный ϕ-арный аналог бинарного алгоритма Евклида
также аналогичен расширенному бинарному алгоритму Евклида.

Таким образом, операцию умножения точки на число для эл-
липтической кривой (1) можно реализовать без удвоения точек, то
есть так же, как и для кривых над полем характеристики 2 с ком-
плексным умножением на собственное значение эндоморфизма
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Фробениуса. Кроме того, операцию модульного обращения можно
выполнять, не выходя за рамки ϕ-адического представления. Это
позволяет примерно в 1,5 раза повысить скорость программно реа-
лизованных криптографических алгоритмов по сравнению с кривы-
ми без комплексного умножения. В отличие от кривых со значения-
ми j = 0, 1728, также обладающих комплексным умножением, и
кривых над расширенными полями с умножением на собственное
значение эндоморфизма Фробениуса, орбита циклической группы,
образованной автоморфизмом ϕ в кольце эндоморфизмов кривой
(1), не является перечислимым множеством. Поэтому наличие ком-
плексного умножения не снижает сложность вычисления логарифма
в группе точек кривой (1), в отличие указанных выше кривых.
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