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Логарифмирование через поднятие

Задачи вычисления логарифма в группе точек эллиптической кривой и в муль-
типликативной группе конечного поля положены в основу безопасности многих крип-
тосистем, например, стандартов цифровой подписи РФ и США. Для логарифмирования
на эллиптической кривой, обладающей группой простого порядка r, наилучшим счита-
ется алгоритм Полларда со сложностью ( )O r . Для логарифмирования в конечном

поле Fp наилучшим считается алгоритм решета числового поля со сложностью
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 для c < 2. Предлагается подход к вычислению логарифмов,

основанный на использовании эллиптической кривой над числовым полем, обладаю-
щей достаточно большим рангом. Показано, что задача логарифмирования в конечном
поле и на эллиптической кривой сводится к поднятию точки кривой в числовое поле.

1. Теоретические основы

Эллиптическая кривая
E(K): y2 = x3 + Ax + B, (1)

заданная над числовым полем K D D Dm= Q( , ,..., )1 2 , может быть при-
ведена по модулю p, если Di p∈ F  (вместо различных Di, конечно, можно
использовать одно алгебраической число). Целостное кольцо целых эле-
ментов поля K обладает однозначным разложением на простые идеалы.
Координаты каждой конечной точки кривой E(K) могут быть приведены к
паре дробей с целыми рациональными знаменателями. Редукция кривой
E(K) по модулю p определена и задает отображение

ϕ: E(K) → E(Fp). (2)
Обратно, кривая

E(Fp): y2 ≡ x3 + Ax + B (mod p) (3)

может быть вложена в кривую E(K). Отображение точки Q ∈  E(Fp) в точку
Q ∈  E(K) назовем поднятием точки Q из поля Fp в поле K, при этом срав-
нение (3) превращается равенство (1). Сумме точек E(K) соответствует
сумма точек E(Fp) (обратное утверждение неверно). Поэтому задача вы-
числения векторного индекса на кривой E(K) соответствует задаче вычис-
ления индекса на кривой E(Fp) относительно гомоморфных образов обра-
зующих кривой E(K).

Кривая  (3)  допускает  изоморфизмы   x → xu2,   y → yu3,   A → Au4,
B → Bu6. Таким образом, вместо одиночной кривой (3) можно рассматри-
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вать семейство изоморфных кривых, каждая из которых может быть вло-
жена в соответствующую кривую E(K).

Нас будет интересовать случай бесконечной группы E(K). Отобра-
жение (2) определяется ядром. Пусть #E(Fp) = r — большое простое число.
Если бесконечная группа E(K) циклична с образующей P1, то

Ker(ϕ) = nrP1,

где n ∈  Z, а точке P = kP1 на кривой E(Fp) будет соответствовать множест-
во точек kP1 + nrP1 на кривой E(K).

Предположим, что бесконечная группа E(K) без кручения имеет две
образующих P1 и P2, и на кривой E(Fp) выполняется равенство ϕ(P2) =
= sϕ(P1). Ядро гомоморфизма включает в себя целочисленные линейные
комбинации образующих, кратные r. Кроме того, в ядро входят комбина-
ции образующих, гомоморфный образ которых дает бесконечно удален-
ную точку, например, sP1 – P2, (2s (mod r))P1 – 2P2 и т. п. Тогда

Ker(ϕ) = n1rP1 + n2rP2 + (m⋅s (mod r))P1 – mP2,

где n1, n2 ∈  Z, m ∈  Z/pZ.
Обобщим предыдущее рассуждение на случай k образующих P1, ...,

Pk. Пусть на кривой E(Fp) выполняются равенства ϕ(Pk) = s1ϕ(P1) = s2ϕ(P2) =
= ... = sk–1ϕ(Pk–1). Тогда
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где ni ∈  Z, mi ∈  Z/pZ.

Каноническая высота точки P ∈  E(Q) определяется [1] как предел

!( ) lim ( )h P h mP
mm

=
→∞ 2 , (4)

где h(R) — длина координаты x точки R в битах, !( )h P ∈ R . В соответствии
с (4) длина координат точек mR растет пропорционально квадрату от m
или пропорционально экспоненте от квадрата длины m. Имеет место ра-

венство !( ) ( ) ( )h P h P O= +
2

1 . Аналогично определяется и каноническая вы-

сота на эллиптической кривой E(K) над конечным расширением K поля Q.
При этом имеют место равенства

!( ) !( ) !( ) !( )h P Q h P Q h P h Q+ + − = +2 2

!( ) !( )h mP m h P= 2 . (5)
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Равенство (5) устанавливает связь задачи логарифмирования на эллипти-
ческой кривой и задачи логарифмирования в конечно порожденной под-
группе группы R* ненулевых вещественных чисел.

Каждая точка бесконечного порядка эллиптической кривой E(K) од-
нозначно определяется канонической высотой. Если P — точка кручения,
то !( )h P = 0 . По теореме Морделла — Вейля ранг кривой E(K) конечен.
Индекс ind(R) каждой точки R ∈  E(K) может быть представлен как вектор,
число координат которого равно рангу кривой. Если P1, ..., Pk — образую-

щие групп E(K) бесконечных порядков и ∑
=

=
k

i
ii PnR

1
, òî индексы точек Pi

образуют базис k-мерного Z-модуля. Поэтому индексы точек бесконечного
порядка кривой E(K) образуют целочисленную решетку.

Например, эллиптическая кривая E: y2 = x3 + 17 имеет над Q ранг 2.
Образующие групп бесконечного порядка равны P1 = (2, 5) и P2 = (–2, 3),
индекс точки бесконечного порядка является двумерным вектором. Точки

R1
1466
169

56857
2197

= −



,  и R2

94
25
1047
125

= 
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
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равны R1 = 3P1 – 2P2, R2 = 2P1 – 3P2, их индексы равны ind(R1) = (3, –2),
ind(R2) = (2, –3). При переходе к расширению K = −Q( )3  кольцо целых

имеет вид Z[ρ], ρ = + −1 3
2

, кривая обладает комплексным умножением на

число ρ, задаваемое парой функций (x, y) → (ρ2x, –y). Поскольку число ρ не
является рациональным, то к паре образующих присоединяются (по край-
ней мере) еще две точки (–2ρ2, 3) и (2ρ2, 5). Используя сравнения по моду-
лям различных простых чисел p ≡ ± 1 (mod 6), можно показать, что точки
(2, 5), (–2, 3), (–2ρ2, 3) и (2ρ2, 5) кривой E(K) линейно независимы над Z.

По определению канонической высоты выполняется равенство
!( ) !( )h P h P= − . Поэтому если P и Q — образующие групп бесконечного по-
рядка, то

!( ) !( ) !( ) !( )h P Q h P Q h P h Q+ = − = + .

Следовательно, канонические высоты точек бесконечного порядка
эллиптической кривой E(K) образуют решетку, базис которой состоит из
канонических высот образующих групп бесконечного порядка.

Пусть H = (hij) — квадратная матрица размера k × k (k — ранг кривой
E(K)), где

h
h P P h P h P

ij
i j i j=

+ − −!( ) !( ) !( )
2
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и P1, ..., Pk — образующие циклических групп бесконечных порядков. То-
гда имеет место равенство

!( ... )h n P n P n P Hk k
T

1 1 2 2+ + + =n n , (6)

где n = (n1, ..., nk) — векторный индекс точки P = n1P1 + ... + nkPk. Выраже-
ние (6) устанавливает связь между канонической высотой произвольной
точки кривой E(K), и ее индексом.

2. Использование поля характеристики 0

Задача поднятия точки требует указания всех двоичных разрядов ко-
ординат точки E(K). В соответствии с (4) длина координат точки пропор-
циональна квадрату показателя (или экспоненте от квадрата длины пока-
зателя). Отсюда следует, что для k = 1 задача поднятия является сложной
хотя бы потому, что перечисление всех разрядов координат требует экс-
поненциального времени (даже без учета сложности собственно вычисле-
ний). Однако, если ранг k кривой E(K) достаточно велик, то на ней суще-
ствует значительное количество точек с малой высотой. Ранг эллиптиче-
ской кривой с комплексным умножением может быть вычислен как крат-
ность нуля функции LE/K(s), где s = 1 в предположении, что верна гипотеза
Берча и Свиннертона-Дайера [1].

Определим вес w = w(P) точки P ∈  E(K) на точечной решетке как
сумму абсолютных значений координат векторного индекса. Если ind(P) =
= (n1, ..., nk), то w(P) = |n1| + ... + |nk|. Число точек Nw с весом ровно w в со-
ответствии с известным результатом из комбинаторики равно

N k k k w
w

k w
ww = + + − = + −





( )...( )
!

1 1 1 . (7)

Если k = O(w), то число точек с весом не более w можно оценить числом
точек с весом w.

Оценим сложность нахождения индекса точки P ∈  E(K),

P n Pi i
i

k
=

=
∑
1

,если ранг кривой E(K) равен k и вес точки P не превышает w.

Из (6) следует, что !( ) ( )h P O kw= 2 . Для нахождения индекса точки P ∈  E(K)
нужно к точке P прибавлять точки ±Pi до тех пор, пока не будет получена
нулевая каноническая высота. После каждого сложения высота должна
уменьшаться. Число сложений точек в ходе вычисления индекса точки P
равно O(kw). Наиболее трудоемкой арифметической операцией при сло-
жении точек является умножение. Сложность умножения целых чисел ме-
тодом Шенхаге — Штрассена равна O(kw2log(kw2)). Пусть поле K является
конечным расширением поля Q, полученное присоединением квадратных
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корней из небольших по абсолютной величине чисел D1, ..., Dm, причем все
Di являются квадратичными вычетами по модулю p. Координаты точки
представляют собой многочлены от 2m переменных. Сложность умноже-
ния координат равна O(2mkw2log(kw2)).  Такую же оценку имеет и слож-
ность сложения точек.  Поэтому  сложность  нахождения  индекса  точки
P ∈  E(K) равна

S =O(2mk2w3log(kw2)).
Пусть поле K является конечным расширением поля Q, полученное

присоединением квадратных корней из небольших по абсолютной вели-
чине чисел D1, ..., Dm, причем все Di являются квадратичными вычетами по
модулю p. Предположим по аналогии с теоремой Мазура [1] для E(Q), что
группа кручения эллиптической кривой E(K) может иметь только гаранти-
рованно малый порядок, меньший чем r. Тогда в силу гомоморфизма (2)
группа кручения TorsE(K) состоит из бесконечно удаленной точки, то есть
все аффинные точки E(K) имеют бесконечный порядок1. Поэтому жела-
тельно использовать поле K, задаваемое многочленом небольшой степени.

Общий план решения показательного уравнения P = lQ на кривой
E(Fp) может иметь следующий вид.
1. Поднять не менее k аффинных точек Ri = aiP + biQ для некоторых ai, bi,
из поля Fp в поле K, определив при этом вид поля K. Не все ai и не все bi
должны быть нулевыми. Найти образующие P1, ..., Pk бесконечных цик-
лических групп E(K).

2. Найти индексы точек Ri в группе E(K) минимизацией канонической вы-
соты.

3. Привести каждую из точек Ri и образующие E(K) по модулю p.
4. Методом гауссова исключения выразить логарифм точки P через лога-
рифм точки Q.
Поднятие на шаге 1 должно обеспечивать минимальный вес точки.

Если мощность множества точек веса не более w близка к r, то с вероятно-
стью, близкой к 1, каждую точку кривой E(Fp) можно поднять так, что ее
вес не будет превышать w.

Найдем вначале сложность шагов 2–4. Заменим в (7) факториалы по
формуле Стирлинга и приравняем  log Nw  и  log r  в  предположении,  что
k ≈ w. Получим

log r = log Nw = (k + w) log(k + w) – k log k – w log w ≈ 2k log 2.

                                          
1 Теоретически можно было бы в качестве поля K использовать простое трансцен-

дентное расширение Fp(t) поля Fp, что облегчило бы поднятие точки. Однако в этом
случае группа кручения оказалась бы очень богатой, так как она содержала бы все ко-
нечные группы E(Fq) для q ∈  {p2, p3, …}. Поэтому указанный ниже метод логарифми-
рования оказывается непрактичным.
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Тогда

k r= log2
2

.

Для нахождения логарифма l нужно найти O(k) индексов точек Ri, слож-
ность этой операции (шаг 2) равна

O(2mk3w3log(kw2)) = O(2m(log r)6 log log r).
Сложность шага 3 оценивается многочленом степени не более 6 от log r,
сложность шага 4 оценивается многочленом степени 3 от log r. Итоговая
сложность вычисления логарифма на кривой E(Fp) равна

S = O(2m(log r)6 log log r) + O(log r)⋅(S1 + S2)
где S1 — сложность поднятия точки из поля Fp в поле K так, чтобы вес
поднятой точки был минимален, S2 — сложность нахождения образующих
Pi. Если наибольшая из сложностей S1 и S2 полиномиальна (субэкспонен-
циальна, экспоненциальна), то и задача логарифмирования может быть
решена указанным методом с полиномиальной (соответственно субэкспо-
ненциальной, экспоненциальной) сложностью. Существование эллиптиче-
ских кривых над Q неограниченно большого ранга, вытекает из гипотезы
Таниямы [1].

Таким образом, задача дискретного логарифмирования на эллипти-
ческой кривой E(Fp) полиномиально сводится к поднятию точки кривой из
поля Fp в числовое поле K и к нахождению множества образующих кривой
E(K). Поднятие выполняется наиболее просто, если вес поднятой точки
будет минимален.

Метод поднятия точки из Fp в K неочевиден. Если определить вес w
точки на решетке ранга k образующих бесконечного порядка кривой E(Q)
как наибольшее из абсолютных значений координат, то количество точек с
весом не более w, равно числу точек k-мерного параллелепипеда с центром
в нуле и длиной стороны 2w и составляет k2w. В этом случае можно оста-
ваться в рамках поля Q. Если задача поднятия точки в поле Q имеет поли-
номиальную или субэкспоненциальную сложность, то снижение асимпто-
тической сложности задачи логарифмирования по сравнению с алгорит-
мом Полларда происходит при ранге не менее 3. Таких кривых достаточно
много [2].

Аналогичный подход может быть использован и для логарифмиро-
вания в мультипликативной группе простого поля. Для решения показа-
тельного уравнения au ≡ b (mod p) выполняется следующая последователь-
ность действий.
1. Выбирается эллиптическая кривая E(K) вида y2 = x3 + Cx2 + kp, Ck ≠ 0,
которая в результате редукции по модулю p дает особую кубику.
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2. С помощью вычислимого в обе стороны изоморфизма особой кубики и
группы Fp

* находятся точки кубики, соответствующие элементам a и b.
3. Находится ранг кривой E(K) и ее образующие.
4. Далее задача решается так же, как и для эллиптической кривой.

Ранг эллиптической кривой E(Q) мал и обычно не превышает 14 [2].
Для логарифмирования указанным способом нужно иметь больший ранг.
Например, если длина порядка группы r равна 200 бит, то оптимальное
значение ранга и веса составляют около 100. Для этого можно использо-
вать последовательные квадратичные расширения поля Q, полученные
присоединениями квадратных корней и малых Di, являющихся квадратич-
ными вычетами по модулю p, или использовать кривую E(Q) достаточно
большого ранга. Если кривая обладает комплексным умножением, то при-
соединение к полю Q квадратичного целого, определяющего комплексное
умножение, приводит по крайней мере к удвоению ранга.

Таким образом, задача логарифмирования на эллиптической кривой
над простым полем и в мультипликативной группе простого поля может
быть сведена к выбору эллиптической кривой большого ранга над число-
вым полем и к поднятию точки кривой из конечного поля в числовое поле.
Анализ техники решения диофантовых уравнений [3], в частности, урав-
нений Пелля, подтверждает перспективность указанного подхода для ре-
шения задач логарифмирования.
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