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Минимизация показателя для эллиптической кривой
с комплексным умножением над Fp

При построении криптографических алгоритмов на эллиптических кривых над
простыми полями наиболее трудоемкой операцией является умножение точки P на
число d. Если кривая обладает комплексным умножением в кольце OK целых элементов
поля K D= −Q( ) , то умножение можно ускорить за счет представления d = c + eξ, где
ξ ∈  OK. Пусть q — большой простой порядок группы точек на эллиптической кривой,
причем кривая не имеет другой группы порядка q. Предлагаются алгоритмы, вычис-
ляющие разложение d ≡ c + eξ (mod q) для D = 1, D = 3, и обеспечивающий минималь-
ное значение |c|, |e|, не превышающее q1/2 для простого порядка q группы точек эллип-
тической кривой.

1. Эллиптические кривые с комплексным умножением

Эллиптическая кривая E(Fp) над простым полем Fp может быть зада-
на уравнением в форме Вейерштрасса

y2 = x3 + Ax + B, (1)

где 4A3 + 27B2 ≠ 0. Множество пар (x, y), удовлетворяющих уравнению,
совместно с точкой “бесконечность”, образует множество точек кривой.
Точки эллиптической кривой образуют абелеву группу с геометрическим
законом сложения [1], нулем группы является точка “бесконечность”, точ-
ки (x, y) и (x, –y) являются противоположными.

В основу безопасности криптографических протоколов положена за-
дача логарифмирования на эллиптической кривой: для данных точек P, Q
найти показатель l такой, что P = lQ. Для обеспечения высокой крипто-
графической стойкости число точек кривой должно иметь большой про-
стой делитель q. Кроме того, необходимо, чтобы выполнялось неравенство
q ≠ p и чтобы q не было делителем чисел p – 1, p2 – 1, ..., pk – 1 для некото-
рого порогового значения k (обычно бывает достаточно обеспечить k =
20÷30). Тогда сложность логарифмирования на эллиптической кривой
равна ( )O q  операций сложения точек на кривой, а наилучшим алгорит-
мом логарифмирования является алгоритм Полларда [2].

Эллиптическая кривая (1) может рассматриваться над алгебраиче-
ским замыканием поля Fp. Обозначим такую кривую через ( )E pF . Тогда

E(Fp) является нормальной подгруппой в ( )E pF . Группа точек ( )E pF  об-
ладает эндоморфизмами, заключающимися в умножении каждой точки на
произвольное целое число. Эндоморфизмы можно складывать:
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ϕ(P) + ψ(P) = (ϕ + ψ)P
(здесь в левой части равенства используется сложение точек кривой, а в
правой части — формальная операция сложения эндоморфизмов). Кроме
того, эндоморфизмы можно умножать как отображения. Умножение дист-
рибутивно относительно сложения, а также коммутативно. Следовательно,
эндоморфизмы образуют кольцо. В частности, для любой точки P выпол-
няются равенства mP + nP = (m + n)P, m(nP) = (mn)P. Поэтому множество
эндоморфизмов ( )E pF  всегда содержит кольцо, изоморфное Z.

Если множество эндоморфизмов эллиптической кривой ( )E pF  строго
больше Z, то говорят, что кривая обладает комплексным умножением. В ча-
стности, любая кривая ( )E pF  обладает комплексным умножением на эндо-
морфизм Фробениуса. Однако на кривой E(Fp) такое умножение оставляет
все точки неподвижными. Если кольцо OK строго больше Z и обладает од-
нозначным разложением на множители, то существуют эллиптические кри-
вые, обладающие комплексным умножением, отличным от эндоморфизма
Фробениуса. Такое умножение может действовать на кривой E(Fp).

Характеристика поля p может быть разложена на простые множите-
ли в кольце целых элементов OK некоторого квадратичного расширения

( )K D= −Q  поля Q. Вид разложения определяется дискриминантом D.
Среди значений дискриминанта D, обеспечивающих однозначность раз-
ложения в OK, наиболее просто комплексное умножение реализуется для
случая D = 1, D = 3.

Если D = 1, то в уравнении (1) B = 0, при этом OK = Z[i], где i2 = –1.
Тогда существует отображение τ: (x, y) → (–x, iy). Если рассмотреть эту
кривую над простым полем характеристики p ≡ 1 (mod 4), то в поле Fp су-
ществует квадратный корень из –1, то есть i ∈  Fp. Если число точек кривой
свободно от квадратов, то группа точек циклическая. Пусть q — большой
простой делитель порядка группы и Q — образующая группы порядка q. В
этом случае отображение τ действует на точку как умножение на некото-
рое целое число j. Поскольку τ2(P) = –P, то j2 ≡ –1 (mod q). Ни одна из то-
чек группы порядка q не имеет нулевых координат, следовательно, q ≡ 1
(mod 4) и существует разложение

( )( ) 22 babjabjaq +=−+=ππ= ,

где a, b ∈  Z. Такое разложение может быть выполнено алгоритмом, приве-
денным в [3].

Если D = 3, то уравнение кривой имеет вид y2 =  x3  +  B,  при  этом
OK = Z[ω], где ω — примитивный кубический корень из единицы, удовле-
творяющий уравнению ω2 – ω + 1 = 0. На этой кривой существует отобра-
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жение σ(x,y) = (ωx, -y). При p ≡ 1 (mod 6) имеет место ω ∈  Fp и отображе-
ние определено на кривой E(Fp). Предположим, что число точек на кривой
свободно от квадратов. Тогда группа точек циклична и существует обра-
зующая Q группы порядка q. В этом случае отображение σ действует на
точку как умножение на некоторое целое число v. Поскольку τ3(P) = –P, то

v3 ≡ –1 (mod q) и v2 + v + 1 ≡ 0 (mod q), v = + −1 3
2

. Ни одна из точек груп-

пы порядка q не имеет нулевых координат, следовательно, q ≡ 1 (mod 6) и
существует разложение

222 ))(( bababvabvaq ++=−+=ππ= ,

где a, b ∈  Z. Такое разложение может быть выполнено алгоритмом, приве-
денным в [3]. Для этого сначала следует найти

( )( )q m n m n m n= + − − − = +3 3 32 2 ,

а затем искомое разложение.
Комплексное умножение имеет место и для других значений дис-

криминанта D, например, D ∈  {2, 7, 11, 19, 43, 67, 163}, для которых поле
( )Q −D  имеет число классов 1. Однако формулы комплексного умноже-

ния оказываются более сложными. Так, для D = 2 кривая имеет уравнение
y2 = x(x2 – 4tx + 2t2), где t ≠ 0. Комплексное умножение на −2  задается
изогенией степени 2 [4] и имеет вид

( , ) , ( )x y y
x

y x t
x

→ − −
−









2

2

2 2

22
2

2 2
.

2. Минимизация показателя для кривой y2 ≡≡≡≡ x3 + Ax (mod p), p ≡≡≡≡ 1 (mod 4)

Будем рассматривать показатель d как комплексное число λ = c + ej,
где j2 ≡ –1 (mod q). В группе порядка q показатель можно представлять с
точностью до q. Определим норму комплексного числа λ = (c + ej) ∈  Z[j]
как N(λ) = c2 + e2. Поскольку q = ππ — разложение на простые множите-
ли, то π — простой элемент в Z[j], кольцо классов вычетов A = Z[j]/πZ[j]
является полем, которое изоморфно Z/qZ, и поле A может быть вложено в
кольцо Z[j]. Тогда из λ ∈  Z[j] можно вычесть произвольное число βπ,  где
β ∈  Z[j], при этом вычет по модулю πZ[j] не изменится.

Алгоритм минимизации показателя λ = c + ej предусматривает ми-
нимизацию нормы N(λ). При этом на каждой итерации выбирается наи-
лучшее из двух направлений, вещественное или мнимое, и из текущего
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значения α вычитается кратное π или jπ. Отметим, что знаки коэффициен-
тов c, e в разложении показателя d несущественны, так как (–c)Q = –(cQ).

Для вещественного направления N(λ – nπ) = (c – na)2 + (e – nb)2 =
= N(λ) + n2q – 2n(ac + be). Минимум нормы обеспечивается при

n ac be
q

= +







 , где [z] означает ближайшее целое к числу z. Для мнимого

направления N(λ – njπ) = (c + nb)2 + (e – na)2. Минимум нормы обеспечи-

вается при n ae bc
q

= −







 . Алгоритм останавливается, если в каждом на-

правлении длина шага равна нулю. При этом наибольшее из двух значений
|c|, |e| не превышает максимума из |a|, |b| и меньше, чем q .

1. Исходное состояние: даны a, b, j. Положить c = d, e = 0.
2. Метод.

2.1.Для λ = c + ej выбрать оптимальный шаг в вещественном направ-

лении, вычислив n ac be
q1 = +







   и  N1 = (c – na)2 + (e – nb)2.  Для

λ = c + ej выбрать оптимальный шаг в мнимом направлении, вы-

числив n ae bc
qj = −







  и Nj = (c + nb)2 + (e – na)2.

2.2.Если n1 ≠ 0 или nj ≠ 0, то выбрать направление, обеспечивающее
наименьшее   значение   нормы.   Если   N1  <  Nj,   то   положить
c = c – n1a, e = e – n1b, иначе положить c = с + njb, e = e – nja. Воз-
врат на шаг 2.1.

2.3.Если n1 = nj = 0, то стоп.
3. Выход: λ = c + ej.

Практически достаточно выбрать оптимальное направление только
на первом шаге. На втором и последующих шагах направления чередуют-
ся: например, если на первом шаге оптимальное направление веществен-
ное, то на втором — мнимое, на третьем — вещественное и т. д.

Пример минимизации показателя. q = 269, a = 13, b = 10, j =187.
Раскладываемое число: d = 149.
Начальные значения: c = 149, e = 0.
Первая итерация. λ = 149 + 0⋅j. Выбираем направление и длину шага

n. Для вещественного направления получаем n = 7,
λ – nπ = 58 – 70j, N(λ – nπ) = 8264. Для мнимого
направления получаем n  = –6, λ – njπ = 89 + 78j,
(λ – njπ) = 14005.
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Оптимальным является вещественное направление.
Вторая итерация. λ = 58 – 70j. Выбираем оптимальную длину шага

n   в   мнимом   направлении.   Получаем   n  =  –6,
λ – njπ = –2 + 8j, N(λ – njπ) = 68.

Третья итерация. λ = –2 + 8j. Выбираем оптимальную длину шага в
вещественном направлении: n = 0 для веществен-
ного и для мнимого направления. Стоп.

Разложение: λ = –2 + 8j = –2 + 8 ⋅ 187 ≡ 149 (mod 269).
Выход: c = –2, e = 8.

3. Минимизация показателя для кривой y2 ≡≡≡≡ x3 + B (mod p), p ≡≡≡≡ 1 (mod 6)

Будем показатель d рассматривать как квадратичное целое число

λ = c + ev, где )(mod
2

31 qv −+≡ . В группе порядка q показатель λ можно

представлять с точностью до q.  Определим  норму  комплексного  числа
λ = (c + ev) ∈  Z[v] как N(λ) = c2 + ce + e2. Поскольку ππ=q  — разложение
на простые множители, то π — простой элемент Z[v], и кольцо классов выче-
тов A = Z[v]/πZ[v] является полем, которое изоморфно Z/qZ, и поле A может
быть вложено в кольцо Z[v]. Тогда из λ ∈  Z[v] можно вычесть произвольное
число βπ, где β ∈  Z[v], при этом вычет по модулю πZ[v] не изменится.

Алгоритм минимизации показателя λ=c+ev предусматривает мини-
мизацию нормы N(λ). При этом на каждом шаге выбирается наилучшее
направление. Существует три возможных направления: 1, v, v2, из них
только два линейно независимых в силу равенства v2 + v + 1 = 0.. Миними-
зацию можно проводить по любым двум из этих трех направлений.

Для вещественного направления

N(λ – nπ) = (c – na)2 + (c – na)(e – nb) + (e – nb)2 =
= N(λ) + n2q – n(2ac + 2be +  ae + bc).

Минимум нормы обеспечивается при 






 +++=
q

bcaebeacn
2

22 , где [z] оз-

начает ближайшее целое к числу z.
Для направления v:

N(λ – nvπ) = (c + nb)2 + (c + nb)(e – na – nb) + (e – na – nb)2 =
= N(α) + n2q – n(2ae + ac + be – bc).

Минимум нормы обеспечивается при 






 −++=
q

bcbeacaen
2

2 .
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Для направления v2:

N(λ – nv2π) = (c + na + nb)2 + (c + na + nb)(e – na) + (e – na)2 =
= N(α) + n2q – n(–ac – 2bc + ae – be).

Минимум нормы обеспечивается при 






 −+−−=
q

beaebcacn
2

2 .

Если выбираются направления 1 и v, 1 и v2, v и v2, то показатель име-
ет представление соответственно d = c + ev, d = c + ev2, d = cv + ev2. Алго-
ритм останавливается, если в обоих направлениях оптимальная длина ша-
га — нулевая. При этом наибольшее из значений |c|, |e| не превышает q3 .

Для направлений 1 и v алгоритм имеет вид:

1. Исходное состояние: даны a, b, v. Положить c = d, e = 0.
2. Метод.

2.1.Для λ = c + ev выбрать оптимальный шаг в направлении 1, вы-

числив: 






 +++=
q

bcaebeacn
2

22
1 ,  λ – n1π = (c – na) + (e – nb)v,

и нормуN(λ – nπ) = (c – na)2 + (c – na)(e – nb) + (e – nb)2.
Выбрать оптимальный шаг в направлении v, вычислив








 −++=
q

bcbeacaenv 2
2 ,  λ – nvvπ = (c + nb) + (e – na – nb)v, и

норму N(λ – nvπ) = (c + nb)2 + (c + nb)(e – na – nb) + (e – na – nb)2.
2.2.Если n1 ≠ 0 или nv ≠ 0, то выбрать направление, обеспечивающее
наименьшее   значение   нормы.    Если  N1  <  Nv,   то   положить
c = c – n1a, e = e – n1b, иначе положить c = с + nvb, e = e – nva – nvb.
Возврат на п 2.1.

2.3.Если n1 = nv = 0, то стоп.
3. Выход: λ = c + ev.

Практически достаточно выбрать оптимальное направление только
на первом шаге. На втором и последующих шагах направления чередуют-
ся: например, если на первом шаге оптимальное направление 1, то на вто-
ром – v, на третьем – 1 и т. д.

Пример минимизации показателя. q = 331, a = 11, b = 10, v = 32.
Раскладываемое число: d = 250.
Начальные значения: c = 250, e = 0.
Первая итерация. λ = 250 + 0⋅v. Выбираем направление и длину ша-

га n. Для направления 1: n = 12, λ – nπ = 118 – 120v,
N(λ – nπ)  =  14164.  Для  направления  v:  n  =  0,
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λ – nvπ = 250 + 0⋅v, N(λ – nvπ) = 62500.
Лучшее направление — 1.

Вторая итерация. λ = 118 – 120v. Для направления v получаем
n = –6, λ – nvπ = 58 + 6v, N(λ – nvπ) = 3748.

Третья итерация. λ = 58 + 6v.  Для  направления 1 получаем:  n = 3,
λ – nπ = 25 – 24v, N(λ – nπ) = 601.

Четвертая итерация. λ = 25 – 24v. Для направления v получаем
n = –1, λ – nvπ = 15 – 3v, N(λ – nvπ) = 189.

Пятая итерация. λ = 15 – 3v.   Для  направления  1  получаем  n = 1,
λ – nπ = 4 – 13v, N(λ – nπ) = 133.

Шестая итерация. λ = 4 – 13v. Для направления v получаем n = –1,
λ – nvπ = –6 + 8v, N(λ – nvπ) = 52.

Седьмая итерация. λ = –6 + 8v.  Для  направления 1 получаем n = 0,
λ – απ = –6 + 8v, N(λ – nvπ) = 52.
Стоп.

Итоговое разложение: λ = –6 + 8v = –6 + 8 ⋅ 32 ≡ 250 (mod 331).
Выход: c = –6, e = 8.

Предложенный способ минимизации показателя d можно использо-
вать и для других типов кривых с комплексным умножением, например,
для кривых с D ∈  {2, 7, 11, 19, 43, 67, 163} и для кривых над конечным
расширенным полем с комплексным умножением на собственное значение
эндоморфизма Фробениуса.
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