
А. Г. Ростовцев

Алгоритм Полларда невозможно улучшить
за счет увеличения объема памяти

1. Введение

Многие задачи криптоанализа, например, логарифмирование в груп-
пе вычислимого порядка или поиск коллизий хэш-функции, сводятся к за-
даче о встрече на графе случайного отображения, которая решается алго-
ритмом Полларда [1]. Этот алгоритм использует сжимающие свойства
случайного отображения, граф которого представляет собой направлен-
ный лес, а корни деревьев связаны в циклы. Алгоритм Полларда для лога-
рифмирования в группе порядка r имеет сложность O r() , требуемый
объем памяти равен O(log r); этот алгоритм не поддается эффективному
распараллеливанию.

Другой популярный метод логарифмирования и поиска коллизий —
алгоритм встречи посередине [2] — имеет сложность O r r(log) , требует
такого же объема памяти, но при этом может быть распараллелен. При па-
раллельной работе n процессоров, где n r<< , время работы алгоритма
уменьшается в n раз. Этот алгоритм не использует сжимающие свойства
случайного отображения.

Промежуточным вариантом между алгоритмами Полларда и встречи
посередине является алгоритм встречи на случайном дереве. В этом случае
для случайных стартовых вершин делается несколько шагов по графу слу-
чайного отображения, конечные вершины запоминаются и среди них
ищутся равные. Если число шагов равно O(log r), то сложность алгоритма
не может превышать O r r(log) [3]. В работе [4] рассматривается распа-
раллеливание алгоритма о встрече, однако сжимающие свойства случай-
ного отображения не учтены. Теоретическая оценка сложности алгоритма
о встрече из литературы неизвестна.

2. Строение случайного дерева

Приведем основные свойства графа случайного отображения. Из-
вестно [5], что если число вершин велико, то почти все графы имеют оди-
наковые статистические свойства. Почти все вершины лежат на одном де-
реве. Высота дерева и длина цикла равны O r() . При обращении стрелок
случайное дерево описывается критическим ветвящимся процессом [5].
Каждая вершина может быть представлена как частица, которая живет од-
но поколение и дает число потомков распределенное по закону Пуассона с
параметром λ = –1.

2

Определим глубину вершины дерева как максимальное расстояние
от нее до какого-либо из листьев. Доля вершин с глубиной 0 равна exp(–1),
доля вершин с глубиной не более 1 равна exp(–1 + exp(–1)), ..., доля вер-
шин с глубиной d равна

!!!!!! "!!!!!! #$
раз d

)...))1exp(...1exp(1exp(−++−+− . При больших

глубинах доля вершин с глубиной более d, асимптотически равна 2
d

, доля

вершин с глубиной ровно d асимптотически равна 2
2d

 (в действительности

эта величина всегда меньше чем 2
2d

).

Рис. 1. Строение случайного дерева

d+2

d+1

d

rd+2

rd+1

rd

Сплошные стрелки указывают на переход
на очередную глубину, пунктирные
стрелки — на произвольную глубину,
превышающую начальную.

Обозначим через P(d) вероятность того, что случайная вершина име-
ет глубину более d; Q(d) = 1 – P(d); p(d) — вероятность того, что вершина
имеет глубину d; pk(d) вероятность попасть на глубину d после k шагов при
старте от листа, p1(d2|d1) — вероятность попасть после одного шага с глу-
бины d1 на глубину d2. При этом выполняется равенство
Q d e Q d() ()+ = − +1 1 .

Каждая из rd вершин c глубиной d > 0 связана с вершиной с глуби-
ной d – 1 (и, возможно, с другими вершинами с глубиной не более d – 1),
как показано на рисунке. Доля вершин, которые переходят не на очеред-

ную глубину, а имеют пропуски, равна p i p i Q
ei

() () ()− − ≈ =∑ 1 0 1 .

3

3. Алгоритм встречи на случайном дереве

Для встречи на случайном дереве будем делать k шагов, конечные
вершины сортировать и искать среди них равные. После k шагов встреча
возможна только на глубинах не менее k. Пусть k = O(log r) и предполо-
жим, что встреча равновероятна в любой вершине с глубиной не менее k.

Число вершин, в которых возможна встреча, равно O r
rlog







. В соответст-

вии с парадоксом дней рождения, получаем сложность этапа создания ба-

зы данных O r
rlog







 , а с учетом сортировки базы данных сложность ал-

горитма составит O r r(log) . На самом деле предположение неверно и
встреча не равновероятна в любой вершине. Это обстоятельство дополни-
тельно повышает вероятности встречи и снижает сложность алгоритма.

Запрет перехода вершины с глубиной d1 на ту же или меньшую глу-
бину можно учесть с помощью условной вероятности. Для этого достаточ-
но положить, что вершина может переходить на любую глубину d2, пре-
вышающую заданную глубину d1, т.е. вероятности задаются дробью
p d
P d

()
()

2

1
. С учетом того, что каждая вершина глубины d1 + 1 соединена с

вершиной глубины d1, получаем следующую формулу для вероятности пе-
рехода за один шаг:










+≥
+−

+=
+

=
.1,

)(
))1()()((

1,
)(

)1(

)|(
12

1

112

12
1

1

121
dd

dP
dpdpdp

dd
dp

dp

ddp
 если

 если
(1)

Вероятность перехода на очередную глубину с учетом частично перекры-
вающихся условий (1) можно записать следующим образом:

p d d p d
p d

P d1 1 1 1
1

11 1 1(|) ()
()

()+ = + +






 .

Заменяя p d
d

()1
1
2

2≈ и P d
d

()1
1

2
1

≈
+

, получим p d d Q d1 1 11 1 1(|) ()+ ≈ − + .

С учетом того, что p d p d
P d d

d() ()
()

1 1

1 1

11 2
2

1− + ≈ = , можно записать (1) в виде





+>
+=+

=
.1),(
1),1(

)|(
122

121
121 dddp

dddQ
ddp

 если
 если

(2)

4

Из (2) следует, что в случае больших глубин вероятность пропуска
очередной глубины при одиночном шаге падает пропорционально квадра-
ту глубины, а вероятность попасть на глубину d2 в результате такого про-
пуска приблизительно равна безусловной вероятности попасть на глубину
d2, т.е. не зависит от d1. Процесс спуска по случайному дереву является
марковским с матрицей L = (pij) переходных вероятностей p1(i|j) = pji:

L

Q p p
Q p

Q=
















0 1 2 3
0 0 2 3
0 0 0 3

() () ()
() ()

()

%
%
%

% % % % %

.

Обозначим pk(d2|d1) вероятность перехода с глубины d1 на глубину d2 за k
шагов. Матрица переходных вероятностей за k шагов равна Lk [6]. Обозна-
чим pk(d) суммарную вероятность перехода на глубину d за k шагов:

p d p i p d ik k
i

d
() () (|)=

=
∑

0
.

Пусть M << r — объем выборки, при котором встреча после k шагов
происходит с большой вероятностью, например 1/e. Вероятность встречи
зависит от глубины. Встреча не произойдет, если ни на одной глубине в
выборке не окажется двух одинаковых вершин. Если на глубину d попадут
Md вершин, то вероятность того, что среди них не будет двух одинаковых,

равна exp −








M

r
d

d

2

2
. Если на глубины di попадут Mdi

 вершин, то встреча

произойдет с вероятностью

P
M
r

M
r

d

dd

d

dd

i

ii

i

ii

= − −










 ≈∏ ∑1

2 2

2 2

exp . (3)

Поскольку M Mp dd k ii
= () , r rp dd ii

= () , вероятность (3) можно записать в
виде

P M
r

p d
p d
k i

idi

≈ ∑
2 2

2
()

()
. (4)

Таким образом, задача нахождения оптимального числа шагов k сво-
дится к минимизации суммы Mk + M⋅log2M, при условии, что выражение
(4) дает 1. Отметим, что минимизация Mk невозможна, так как она требует

поиска максимума монотонно убывающей суммы 12
2

k
p d
p d
k i

idi

()
()∑ . Оптимум

5

для числа шагов примерно равен k ≈ log2M ≈ 0,5 log2r. Отсюда оптималь-
ное значение

M r
p d
p d
k i

idi

≈

∑

2
2 ()
()

. (5)

Вероятность pk(d) будем искать как сумму вероятностей путей длины

k на глубину d, число таких путей равно d
k





 . Вероятность каждого пути

равна произведению вероятностей соответствующих шагов.

Оценим оптимальное значение M снизу, положив p d
di

i
() = 2

2 и по-

ложив Q(di) = 1. Путь длины k имеет не более k пропусков очередной глу-
бины. Для вероятности πj(d) пути с j пропусками на глубину d имеет место
неравенство πj(d) < p(d – j)σj(p(0), ..., p(d – 1)), где σj — j-я симметриче-
ская функция. Положим

p d p d k p p dk j
j

k
* () () (()... ())= −

=
∑σ 0

0
. (6)

Тогда pk(d) < pk
*(d).

Значения функции σj стремятся к нулю с ростом j. Кроме того, зна-
чение функции σj сходится с ростом d. Например, для точных значений
вероятностей получается σ1(64) = 0,603, σ1(256) = 0,624, σ1(1024) = 0,630,
σ2(64) = 0,16, σ2(256) = 0,172, σ2(1024) = 0,176, σ3(64) = 0,025, σ3(256) = 0,028,
σ3(1024) = 0,029. Сумму симметрических функций в (6) можно оценить
сверху числом 2.

Подставим (6) в сумму в правой части (4) с учетом того, что pk(di) = 0

при i < k и p d P k
d k

O r
() ()

()
=

=
∑ . Получим:

p d
p d

p d k
p d P k

k i

id k

O r
i

id k

O r

i i

2 24 4()
()

()
() ()

() ()

= =
∑ ∑< − ≈ .

Отсюда при k r= log
2

 получаем M r
r

>
log

, т.е. сложность алгоритма

встречи на случайном дереве равна O r r(log) и всегда превышает слож-
ность алгоритма Полларда.

6

Аналогичными рассуждениями можно показать, что при запомина-
нии не конечных вершин после k шагов, а всех k вершин, встречающихся
при спуске, алгоритм Полларда улучшить также невозможно.

4. Результаты эксперимента

Для проверки правильности полученных теоретически выводов был
проведен эксперимент. В качестве случайного отображения использова-
лась функция xi+1

 = f(xi) + xi, где xi — блок данных длиной 48 бит, f(xi) —
операция, аналогичная зашифрованию блока в режиме простой замены на
16 циклах по ГОСТ 28147–89, “+” — операция покоординатного сложения
двоичных векторов.

Для случайного начального значения x0 делалось k последовательных
отображений указанного вида. Полученная база данных сортировалась и в
ней искались равные элементы. Число шагов k изменялось в диапазоне от 1
до 1000. Сложность алгоритма вычислялась по формуле S = Mk + M log2M,
где M — объем базы данных, при котором происходила встреча.

Экспериментально получено, что оптимальное число шагов лежит в
диапазоне 8÷32. С ростом числа шагов свыше 256 сложность алгоритма
резко возрастает, практически рост сложности пропорционален числу ша-
гов. Сложность алгоритма встречи на случайном дереве всегда превышает
сложность алгоритма Полларда.

Кроме того, был проведен эксперимент, при котором запоминались
не конечные вершины после k шагов, а все k промежуточных вершин и
среди них искались равные. Сложность вычислялась по формуле

S = Mk + Mk log2(Mk).
Экспериментально подтверждено, что эта модификация алгоритма

менее эффективна, чем алгоритм с запоминанием конечных вершин после
k шагов.

Литература

1. Pollard J. Monte Carlo methods for index computatiom (mod p) // Math. Comp., v. 32,
1978, pp. 918–924.

2. Menezes A., van Oorchot P., Vanstone S. A handbook of applied cryptograhy. — CRC
Press, 1996.

3. Ростовцев А. Г., Маховенко Е. Б. Введение в криптографию с открытым ключом. —
Мир и Семья, Интерлайн, С.-Петербург, 2000.

4. van Oorchot P., Wiener M. Parallel collision search with cryptanalitic applications //
Journal of Cryptology, v. 12, 1999, pp. 1–28.

5. Колчин В. Ф. Случайные отображения. — М.: Наука, 1984.
6. Феллер В. Введение в теорию вероятностей и ее приложения. — М.: Мир, 1984.

