

DS1270Y/AB 16M Nonvolatile SRAM

FEATURES

- 5 years minimum data retention in the absence of external power
- Data is automatically protected during power loss
- Unlimited write cycles
- Low-power CMOS operation
- Read and write access times as fast as 70 ns
- Lithium energy source is electrically disconnected to retain freshness until power is applied for the first time
- Full ±10% V_{CC} operating range (DS1270Y)
- Optional ±5% V_{CC} operating range (DS1270AB)
- Optional industrial temperature range of −40°C to +85°C, designated IND

PIN ASSIGNMENT

36-PIN ENCAPSULATED PACKAGE 740 MIL EXTENDED

PIN DESCRIPTION

- Address Inputs A0 - A20DQ0 - DQ7 - Data In/Data Out CE Chip Enable WF - Write Enable OE **Output Enable** Power (+5V) V_{CC} GND Ground NC No Connect

DESCRIPTION

The DS1270 16M Nonvolatile SRAMs are 16,777,216–bit, fully static nonvolatile SRAMs organized as 2,097,152 words by 8 bits. Each NV SRAM has a self–contained lithium energy source and control circuitry which constantly monitors $V_{\rm CC}$ for an out–of–tolerance condition. When such a condition occurs, the

lithium energy source is automatically switched on and write protection is unconditionally enabled to prevent data corruption. There is no limit on the number of write cycles which can be executed and no additional support circuitry is required for microprocessor interfacing.

READ MODE

The DS1270 devices execute a read cycle whenever $\overline{\text{WE}}$ (Write Enable) is inactive (high) and $\overline{\text{CE}}$ (Chip Enable) and $\overline{\text{OE}}$ (Output Enable) are active (low). The unique address specified by the 21 address inputs (A $_0$ – A $_20$) defines which of the 2,097,152 bytes of data is accessed. Valid data will be available to the eight data output drivers within t_{ACC} (Access Time) after the last address input signal is stable, providing that $\overline{\text{CE}}$ and $\overline{\text{OE}}$ (Output Enable) access times are also satisfied. If $\overline{\text{OE}}$ and $\overline{\text{CE}}$ access times are not satisfied, then data access must be measured from the later occurring signal ($\overline{\text{CE}}$ or $\overline{\text{OE}}$) and the limiting parameter is either t_{CO} for $\overline{\text{CE}}$ or t_{OE} for $\overline{\text{OE}}$ rather than t_{ACC}.

WRITE MODE

The DS1270 devices execute a write cycle whenever \overline{WE} and \overline{CE} signals are active (low) after address inputs are stable. The later occurring falling edge of \overline{CE} or \overline{WE} will determine the start of the write cycle. The write cycle is terminated by the earlier rising edge of \overline{CE} or \overline{WE} . All address inputs must be kept valid throughout the write cycle. \overline{WE} must return to the high state for a minimum recovery time (t_{WR}) before another cycle can be initiated. The \overline{OE} control signal should be kept inactive (high) during write cycles to avoid bus contention. However, if the output drivers are enabled (\overline{CE} and \overline{OE} active) then \overline{WE} will disable the outputs in t_{ODW} from its falling edge.

DATA RETENTION MODE

The DS1270AB provides full functional capability for V_{CC} greater than 4.75 volts and write protects by 4.5 volts. The DS1270Y provides full functional capability for V_{CC} greater than 4.5 volts and write protects by 4.25 volts. Data is maintained in the absence of V_{CC} without any additional support circuitry. The nonvolatile static RAMs constantly monitor V_{CC} . Should the supply voltage decay, the NV SRAMs automatically write protect themselves, all inputs become don't care, and all outputs become high impedance. As V_{CC} falls below approximately 3.0 volts, a power switching circuit connects the lithium energy source to RAM to retain data. During power-up, when V_{CC} rises above approximately 3.0 volts, the power switching circuit connects external V_{CC} to RAM and disconnects the lithium energy source. Normal RAM operation can resume after V_{CC} exceeds 4.75 volts for the DS1270AB and 4.5 volts for the DS1270Y.

FRESHNESS SEAL

Each DS1270 device is shipped from Dallas Semiconductor with its lithium energy source disconnected, guaranteeing full energy capacity. When V_{CC} is first applied at a level greater than V_{TP} , the lithium energy source is enabled for battery backup operation.

ABSOLUTE MAXIMUM RATINGS* Voltage on Any Pin Relative to Ground Operating Temperature Storage Temperature Soldering Temperature

-0.3V to +7.0V 0°C to 70°C; -40°C to +85°C for IND parts -40°C to +70°C; -40°C to +85°C for IND parts 260°C for 10 seconds

RECOMMENDED DC OPERATING CONDITIONS

(t_A: See Note 10)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
DS1270AB Power Supply Voltage	V _{CC}	4.75	5.0	5.25	V	
DS1270Y Power Supply Voltage	V _{CC}	4.5	5.0	5.5	V	
Logic 1 Input Voltage	V _{IH}	2.2		V _{CC}	V	
Logic 0 Input Voltage	V _{IL}	0		+0.8	V	

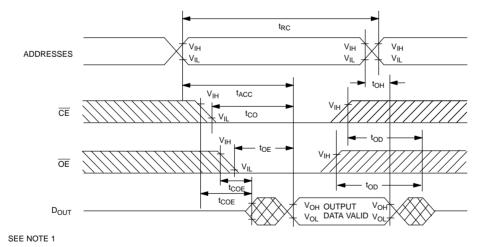
DC ELECTRICAL CHARACTERISTICS

 $\label{eq:continuous} $$(V_{CC}=5V\pm5\%$ for DS1270AB)$ (t_A: See Note 10) (V_{CC}=5V\pm10\%$ for DS1270Y)$

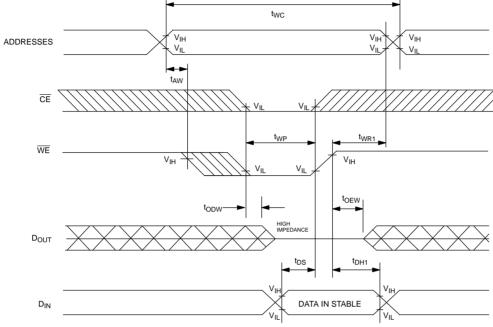
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage Current	I _{IL}	-4.0		+4.0	μΑ	
I/O Leakage Current	I _{IO}	-4.0		+4.0	μΑ	
Output Current @ 2.4V	I _{OH}	-1.0			mA	
Output Current @ 0.4V	I _{OL}	2.0			mA	
Standby Current CE=2.2V	I _{CCS1}		1.0	1.5	mA	
Standby Current CE=V _{CC} -0.5V	I _{CCS2}		100	150	μΑ	
Operating Current	I _{CCO1}			85	mA	
Write Protection Voltage (DS1270AB)	V _{TP}	4.50	4.62	4.75	V	
Write Protection Voltage (DS1270Y)	V _{TP}	4.25	4.37	4.5	V	

CAPACITANCE $(t_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C _{IN}		20	40	pF	
Output Capacitance	C _{I/O}		20	40	pF	

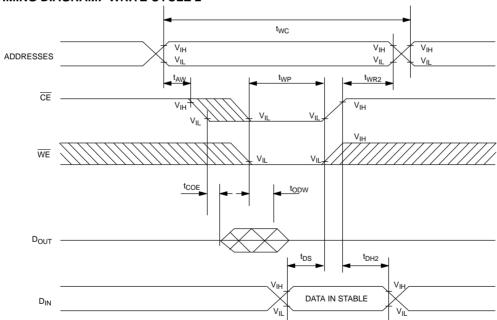

^{*} This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

AC ELECTRICAL CHARACTERISTICS

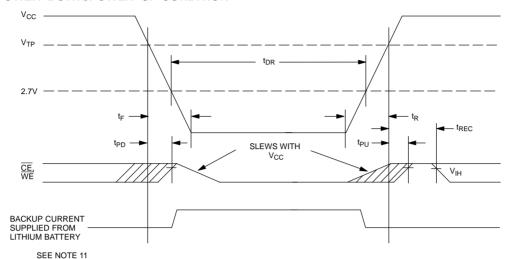

 $(V_{CC} = 5V \pm 5\% \text{ for DS1270AB}) \\ (t_A: See Note 10) \ (V_{CC} = 5V \pm 10\% \text{ for DS1270Y}) \\$

AC ELECTRICAL CHARACTERISTICS		(IA. See Mole 10) (VCC=3V±10 % 101 D312)					
		DS1270AB-70 DS1270Y-70		DS1270AB-100 DS1270Y-100			
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Read Cycle Time	t _{RC}	70		100		ns	
Access Time	t _{ACC}		70		100	ns	
OE to Output Valid	t _{OE}		35		50	ns	
CE to Output Valid	t _{CO}		70		100	ns	
OE or CE to Output Active	t _{COE}	5		5		ns	5
Output High–Z from Deselection	t _{OD}		25		35	ns	5
Output Hold from Address Change	t _{OH}	5		5		ns	
Write Cycle Time	t _{WC}	70		100		ns	
Write Pulse Width	t _{WP}	55		75		ns	3
Address Setup Time	t _{AW}	0		0		ns	
Write Recovery Time	t _{WR1}	5 15		5 15		ns	12 13
Output High–Z from WE	t _{ODW}		25		35	ns	5
Output Active from WE	t _{OEW}	5		5		ns	5
Data Setup Time	t _{DS}	30		40		ns	4
Data Hold Time	t _{DH1}	0 10		0 10		ns ns	12 13

TIMING DIAGRAM: READ CYCLE



TIMING DIAGRAM: WRITE CYCLE 1


SEE NOTES 2, 3, 4, 6, 7, 8, and 12

TIMING DIAGRAM: WRITE CYCLE 2

SEE NOTES 2, 3, 4, 6, 7, 8, and 13

POWER-DOWN/POWER-UP CONDITION

POWER-DOWN/POWER-UP TIMING

(t_A: See Note 10)

tal one of the second s							
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES	
V _{CC} Fail Detect to $\overline{\text{CE}}$ and $\overline{\text{WE}}$ Inactive	t _{PD}			1.5	μs	11	
V _{CC} Slew from V _{TP} to 0V	t _F	150			μs		
V _{CC} Slew from 0V to V _{TP}	t _R	150			μs		
V _{CC} Valid to $\overline{\text{CE}}$ and $\overline{\text{WE}}$ Inactive	t _{PU}			2	ms		
V _{CC} Valid to End of Write Protection	t _{REC}			125	ms		

 $(t_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Expected Data Retention Time	t _{DR}	5			years	9

WARNING

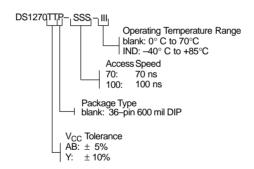
Under no circumstances are negative undershoots, of any amplitude, allowed when device is in battery backup mode.

NOTES:

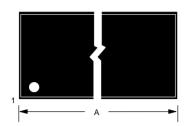
- 1. $\overline{\text{WE}}$ is high throughout read cycle.
- 2. $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high impedance state.
- 3. t_{WP} is specified as the logical AND of $\overline{\text{CE}}$ or $\overline{\text{WE}}$. t_{WP} is measured from the latter of $\overline{\text{CE}}$ or $\overline{\text{WE}}$ going low to the earlier of $\overline{\text{CE}}$ or $\overline{\text{WE}}$ going high.
- 4. t_{DS} is measured from the earlier of \overline{CE} or \overline{WE} going high.
- 5. These parameters are sampled with a 5 pF load and are not 100% tested.

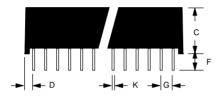
- 6. If the $\overline{\text{CE}}$ low transition occurs simultaneously with or later than the $\overline{\text{WE}}$ low transition, the output buffers remain in a high impedance state during this period.
- 7. If the $\overline{\text{CE}}$ high transition occurs prior to or simultaneously with the $\overline{\text{WE}}$ high transition, the output buffers remain in a high impedance state during this period.
- 8. If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition, the output buffers remain in a high impedance state during this period.
- Each DS1270 has a built-in switch that disconnects the lithium source until V_{CC} is first applied by the user. The
 expected t_{DR} is defined as accumulative time in the absence of V_{CC} starting from the time power is first applied
 by the user.
- 10. All AC and DC electrical characteristics are valid over the full operating temperature range. For commercial products, this range is 0°C to 70°C. For industrial products (IND), this range is -40°C to +85°C.
- 11. In a power-down condition the voltage on any pin may not exceed the voltage on V_{CC}.
- 12. t_{WR1}, t_{DH1} are measured from WE going high.
- 13. t_{WR2} , t_{DH2} are measured from \overline{CE} going high.

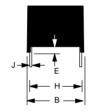
DC TEST CONDITIONS


Outputs Open
All voltages are referenced to ground

AC TEST CONDITIONS


Output Load: 100 pF + 1TTL Gate
Input Pulse Levels: 0V to 3.0V
Timing Measurement Reference Levels
Input: 1.5V
Output: 1.5V


Input pulse Rise and Fall Times: 5 ns


ORDERING INFORMATION

DS1270Y/AB NONVOLATILE SRAM 36-PIN 740 MIL EXTENDED MODULE, LONG

PKG	36-	PIN
DIM	MIN	MAX
A IN.	2.080	2.100
MM	52.83	53.34
B IN.	0.720	0.740
MM	18.29	18.80
C IN.	0.395	0.405
MM	10.03	10.29
D IN.	0.180	0.210
MM	4.57	5.33
E IN.	0.015	0.025
MM	0.38	0.63
F IN.	0.120	0.150
MM	3.05	4.06
G IN.	0.090	0.110
MM	2.29	2.79
H IN.	0.590	0.630
MM	14.99	16.00
J IN.	0.008	0.012
MM	0.20	0.30
K IN.	0.015	0.021
MM	0.38	0.53