FEATURES
• Automatically restarts a microprocessor after power failure
• Maintains reset for 150 ms after V_{CC} returns to an in–tolerance condition
• Reduces need for discrete components
• Precision temperature–compensated voltage reference and voltage sensor
• Low–cost TO–92 or space saving SOT–23 packages available
• Efficient open–drain output with internal 5.5KΩ pull–up resistor
• Operating temperature $–40^\circ$C to $+85^\circ$C

PIN ASSIGNMENT

PIN DESCRIPTIONS
TO–92
1 RST Active Low Reset Output
2 V_{CC} Power Supply
3 GND Ground

SOT–23
1 RST Active Low Reset Output
2 V_{CC} Power Supply
3 GND Ground

DESCRIPTION
The DS1811 EconoReset uses a precision temperature reference and comparator circuit to monitor the status of the power supply (V_{CC}). When an out–of–tolerance condition is detected, an internal power–fail signal is generated which forces reset to the active state. When V_{CC} returns to an in–tolerance condition, the reset signal is kept in the active state for approximately 150 ms to allow the power supply and processor to stabilize.
OPERATION – POWER MONITOR
The DS1811 provides the functions of detecting out-of-tolerance power supply conditions and warning a processor-based system of impending power failure. When V_{CC} is detected as out-of-tolerance, the RST signal is asserted. On power-up, RST is kept active for approximately 150 ms after the power supply has reached the selected tolerance. This allows the power supply and microprocessor to stabilize before RST is released.

BLOCK DIAGRAM (OPEN-DRAIN OUTPUT) Figure 1

APPLICATION EXAMPLE Figure 2
TIMING DIAGRAM: POWER UP Figure 3

TIMING DIAGRAM: POWER DOWN Figure 4
ABSOLUTE MAXIMUM RATINGS*

- Voltage on V\textsubscript{CC} Pin Relative to Ground: –0.5V to +7.0V
- Voltage on RST Relative to Ground: –0.5V to V\textsubscript{CC} +0.5V
- Operating Temperature: –40°C to +85°C
- Storage Temperature: –55°C to +125°C
- Soldering Temperature: 260°C for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS (–40°C to +85°C)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V\textsubscript{CC}</td>
<td>0.0</td>
<td>5.5</td>
<td></td>
<td>V</td>
<td>1</td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS (–40°C to +85°C; V\textsubscript{CC} = 1.2V to 5.5V)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current @ 0.4 volts</td>
<td>I\textsubscript{OL}</td>
<td>10</td>
<td>30</td>
<td>40</td>
<td>mA</td>
<td>2, 3</td>
</tr>
<tr>
<td>Operating Current V\textsubscript{CC} < 5.5 volts</td>
<td>I\textsubscript{CC}</td>
<td>30</td>
<td>40</td>
<td></td>
<td>µA</td>
<td>4</td>
</tr>
<tr>
<td>V\textsubscript{CC} Trip Point (DS1811–5)</td>
<td>V\textsubscript{CCTP}</td>
<td>4.50</td>
<td>4.62</td>
<td>4.75</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>V\textsubscript{CC} Trip Point (DS1811–10)</td>
<td>V\textsubscript{CCTP}</td>
<td>4.25</td>
<td>4.35</td>
<td>4.49</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>V\textsubscript{CC} Trip Point (DS1811–15)</td>
<td>V\textsubscript{CCTP}</td>
<td>4.00</td>
<td>4.13</td>
<td>4.24</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>Internal Pull–Up Resistor</td>
<td>R\textsubscript{P}</td>
<td>3.5</td>
<td>5.5</td>
<td>7.5</td>
<td>KΩ</td>
<td></td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C\textsubscript{OUT}</td>
<td>10</td>
<td></td>
<td></td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS (–40°C to +85°C; V\textsubscript{CC} = 1.2V to 5.5V)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET Active Time</td>
<td>t\textsubscript{RST}</td>
<td>100</td>
<td>150</td>
<td>300</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{CC} Detect to RST</td>
<td>t\textsubscript{RPD}</td>
<td>2</td>
<td>5</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{CC} Slew Rate (V\textsubscript{CCTP} (MAX) to V\textsubscript{CCTP} (MIN))</td>
<td>t\textsubscript{F}</td>
<td>300</td>
<td></td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{CC} Slew Rate (V\textsubscript{CCTP} (MIN) to V\textsubscript{CCTP} (MAX))</td>
<td>t\textsubscript{R}</td>
<td>0</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{CC} Detect to RST</td>
<td>t\textsubscript{RPU}</td>
<td>100</td>
<td>150</td>
<td>300</td>
<td>ms</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTES:

1. All voltages are referenced to ground.
2. Measured with V\textsubscript{CC} \geq 2.7 volts.
3. A 1KΩ external resistor may be required in some applications for proper operation of the microprocessor reset control circuit.
5. t\textsubscript{R} = 5 µs.
PART MARKING CODES

"A", "B", & "C" represent the device type.

A: DS1810
B: DS1811
C: DS1812
D: DS1813
E: DS1815
F: DS1816
G: DS1817
H: DS1818

"D" represents the device tolerance.

A: 5%
B: 10%
C: 15%
D: 20%