FEATURES

- Automatically restarts a microprocessor after power failure
- Maintains reset for 150 ms after V_{CC} returns to an in-tolerance condition
- Reduces need for discrete components
- Precision temperature-compensated voltage reference and voltage sensor
- Accurate 5%, 10% or 20% power monitoring
- Low-cost TO–92 or space saving surface-mount SOT–23 packages available
- Push–Pull output for low current operation
- Operating temperature $-40^\circ C$ to $+85^\circ C$

PIN ASSIGNMENT

TO–92
1 RST Active Low Reset Output
2 V_{CC} Power Supply
3 GND Ground

SOT–23
1 RST Active Low Reset Output
2 V_{CC} Power Supply
3 GND Ground

DESCRIPTION

The DS1815 EconoReset uses a precision temperature reference and comparator circuit to monitor the status of the power supply (V_{CC}). When an out-of-tolerance condition is detected, an internal power fail signal is generated which forces reset to the active state. When V_{CC} returns to an in–tolerance condition, the reset signal is kept in the active state for approximately 150 ms to allow the power supply and processor to stabilize.
OPERATION – POWER MONITOR

The DS1815 provides the functions of detecting out-of-tolerance power supply conditions and warning a processor-based system of impending power failure. When V_{CC} is detected as out of tolerance, the RST signal is asserted. On power-up, RST is kept active for approximately 150 ms after the power supply has reached the selected tolerance. This allows the power supply and microprocessor to stabilize before RST is released.

BLOCK DIAGRAM (CMOS OUTPUT) Figure 1

APPLICATION EXAMPLE Figure 2

APPLICATION DIAGRAM: RST VALID TO 0 VOLTS V_{CC} ON THE DS1815 Figure 3
TIMING DIAGRAM: POWER UP Figure 4

TIMING DIAGRAM: POWER DOWN Figure 5
ABSOLUTE MAXIMUM RATINGS*
Voltage on \(V_{CC} \) Pin Relative to Ground –0.5V to +7.0V
Voltage on RST Relative to Ground –0.5V to \(5V_{CC} + 0.5V \)
Operating Temperature –40°C to +85°C
Storage Temperature –55°C to +125°C
Soldering Temperature 260°C for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>(V_{CC})</td>
<td>0.0</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage @ –500 (\mu A)</td>
<td>(V_{OH})</td>
<td>(V_{CC}-0.5V)</td>
<td>(V_{CC}-0.1V)</td>
<td>V</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Output Current @ 2.4V</td>
<td>(I_{OH})</td>
<td>350</td>
<td>(\mu A)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current @ 0.4V</td>
<td>(I_{OL})</td>
<td>+10</td>
<td>(mA)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Current (V_{CC} <5.5)</td>
<td>(I_{CC})</td>
<td>28</td>
<td>35</td>
<td>(\mu A)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(V_{CC}) Trip Point (DS1815–5)</td>
<td>(V_{CCTP})</td>
<td>2.98</td>
<td>3.06</td>
<td>3.15</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>(V_{CC}) Trip Point (DS1815–10)</td>
<td>(V_{CCTP})</td>
<td>2.80</td>
<td>2.88</td>
<td>2.97</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>(V_{CC}) Trip Point (DS1815–20)</td>
<td>(V_{CCTP})</td>
<td>2.47</td>
<td>2.55</td>
<td>2.64</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>(C_{OUT})</td>
<td>10</td>
<td>(pF)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET Active Time</td>
<td>(t_{RST})</td>
<td>100</td>
<td>150</td>
<td>250</td>
<td>ms</td>
<td>4</td>
</tr>
<tr>
<td>(V_{CC}) Detect to RST</td>
<td>(t_{RPD})</td>
<td>2</td>
<td>5</td>
<td>(\mu s)</td>
<td>4, 5</td>
<td></td>
</tr>
<tr>
<td>(V_{CC}) Slew Rate (MAX)</td>
<td>(t_{f})</td>
<td>300</td>
<td>(\mu s)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CC}) Slew Rate (MIN)</td>
<td>(t_{f})</td>
<td>0</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CC}) Detect to RST</td>
<td>(t_{RPU})</td>
<td>100</td>
<td>150</td>
<td>250</td>
<td>ms</td>
<td>4, 5</td>
</tr>
</tbody>
</table>

NOTES:
1. All voltages are referenced to ground.
2. Measured with \(V_{CC} \geq 2.7V \).
4. Measured with \(2.7V \leq V_{CC} \leq 3.3V \).
5. \(t_{f} = 5 \mu s \).
6. The \(t_{f} \) value is for reference in defining values for \(t_{RPD} \) and should not be considered a requirement for proper operation or use of the device.
PART MARKING CODES

"A", "B", & "C" represent the device type.

810 DS1810
811 DS1811
812 DS1812
813 DS1813
815 DS1815
816 DS1816
817 DS1817
818 DS1818

"D" represents the device tolerance.

A 5%
B 10%
C 15%
D 20%