

3.3 Volt MicroMonitor Chip

FEATURES

- Halts and restarts an out-of-control microprocessor
- Holds microprocessor in check during power transients
- Automatically restarts microprocessor after power failure
- Monitors pushbutton for external override
- Accurate 10% or 20% microprocessor power monitoring
- Eliminates need for discrete components
- 20% tolerance for use with 3.0 volt systems
- Pin compatible with the DS1232
- Low cost 8-pin DIP and 8-pin SOIC packages available
- Industrial temperature range of -40°C to +85°C

PIN ASSIGNMENT

PIN DESCRIPTION

PBRST – Pushbutton Reset Input

TD - Time Delay Set

TOL – Selects 10% or 20% V_{CC} Detect

GND - Ground

RST - Active High Reset Output - Active Low Reset Output

ST − Strobe Input V_{CC} − Power Supply

DESCRIPTION

The DS1832 3.3 Volt MicroMonitor monitors three vital conditions for a microprocessor: power supply, software execution, and external override. First, a precision temperature—compensated reference and comparator circuit monitors the status of $V_{CC}.$ When an out—of—tolerance condition occurs, an internal power fail signal is generated which forces the resets to an active state. When V_{CC} returns to an in—tolerance condition, the reset signals are kept in the active state for a minimum of 250 ms to allow the power supply and processor to stabilize.

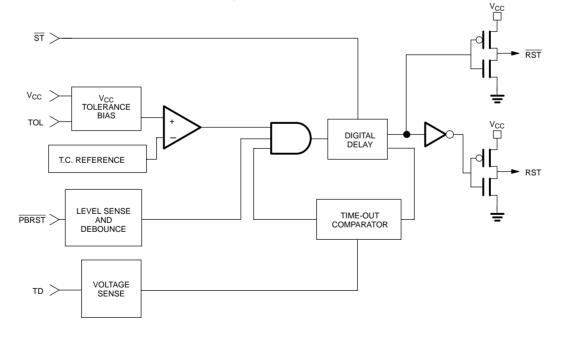
The second function the DS1832 performs is pushbutton reset control. The DS1832 debounces the pushbutton input and guarantees an active reset pulse width of 250 ms minimum. The third function is a watchdog timer. The DS1832 has an internal timer that forces the reset signals to the active state if the strobe input is not driven low prior to time—out. The watchdog timer function can be set to operate on time—out settings of approximately 150 ms, 600 ms, or 1.2 seconds.

OPERATION - POWER MONITOR

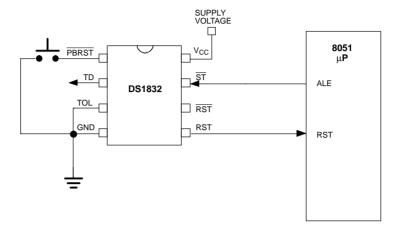
The DS1832 detects out–of–tolerance power supply conditions and warns a processor–based system of impending power failure. When V_{CC} falls below a preset level as defined by TOL, the V_{CC} comparator outputs the signals RST and $\overline{RST}.$ When TOL is connected to ground, the RST and \overline{RST} signals become active as V_{CC} falls below 2.98 volts. When TOL is connected to V_{CC} , the RST and \overline{RST} signals become active as V_{CC} falls below 2.64 volts. The RST and \overline{RST} are excellent control signals for a microprocessor, as processing is stopped at the last possible moments of valid $V_{CC}.$ On power–up, RST and \overline{RST} are kept active for a minimum of 250 ms to allow the power supply and processor to stabilize.

OPERATION - PUSHBUTTON RESET

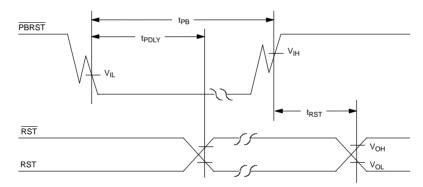
The DS1832 provides an input pin for direct connection to a pushbutton reset (see Figure 2). The pushbutton reset input requires an active low signal. Internally, this input is debounced and timed such that RST and \overline{RST} signals of at least 250 ms minimum are generated. The 250 ms delay commences as the pushbutton reset input is released from the low level.

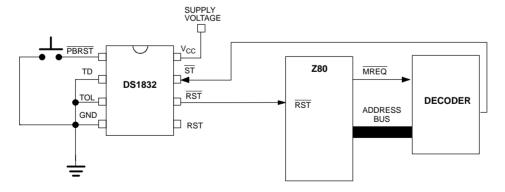

OPERATION - WATCHDOG TIMER

The watchdog timer function forces RST and \overline{RST} signals active when the \overline{ST} input is not clocked within the

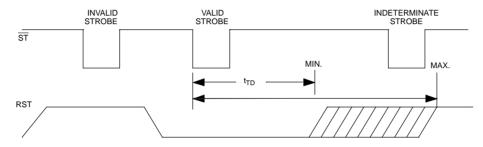

predetermined time period. The timeout period is determined by the condition of the TD pin. if TD is connected to ground the minimum watchdog timeout would be 62.5 ms, TD floating would yield a minimum timeout of 250 ms, and TD connected to V_{CC} would provide a timeout of 500 ms minimum. Timeout of the watchdog starts when RST and RST become inactive. If a high-to-low transition occurs on the ST input pin prior to time-out, the watchdog timer is reset and begins to time-out again. If the watchdog timer is allowed to time-out, then the RST and RST signals are driven active for a minimum of 250 ms. The ST input can be derived from many microprocessor outputs. The most typical signals used are the microprocessor address signals, data signals or control signals. When the microprocessor functions normally, these signals would, as a matter of routine, cause the watchdog to be reset prior to time-out. To quarantee that the watchdog timer does not time-out, a high-to-low transition must occur at or less than the minimum times shown in Table 1. A typical circuit example is shown in Figure 4.

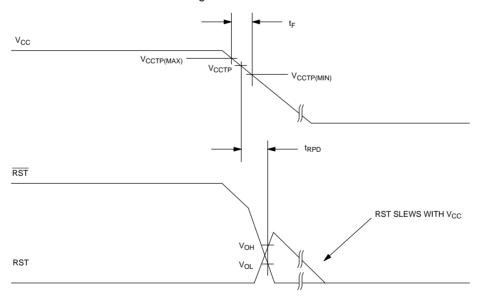
The DS1832 watchdog function cannot be disabled. The watchdog strobe input must be strobed to avoid a watchdog timeout and reset.


MICROMONITOR BLOCK DIAGRAM Figure 1

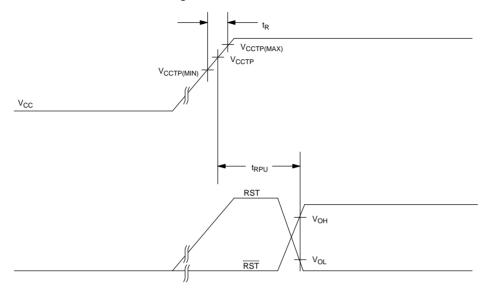

PUSHBUTTON RESET Figure 2

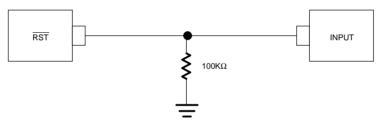
TIMING DIAGRAM: PUSHBUTTON RESET Figure 3


WATCHDOG TIMER Figure 4


WATCHDOG TIME-OUTS Table 1

	TIME-OUT				
TD	MIN	TYP	MAX		
GND	62.5 ms	150 ms	250 ms		
Float	250 ms	600 ms	1000 ms		
V _{CC}	500 ms	1200 ms	2000 ms		


TIMING DIAGRAM: STROBE INPUT Figure 5


TIMING DIAGRAM: POWER DOWN Figure 6

TIMING DIAGRAM: POWER UP Figure 7

RST VALID TO 0 VOLTS V_{CC} Figure 8

OUTPUT VALID CONDITIONS

The \overline{RST} output uses a push–pull output which can maintain a valid output down to 0.8 volts V_{CC} . To sink current below 0.8 volts a resistor can be connected from \overline{RST} to Ground (see Figure 8). This arrangement will

maintain a valid value on \overline{RST} during both power up and power down but will draw current when \overline{RST} is in the high state. A value of about 100K Ω should be adequate in most situations. The output with a resistor pull–down can maintain a valid reset down to V_{CC} equal to 0 volts.

ABSOLUTE MAXIMUM RATINGS*

Voltage on any Pin Relative to Ground

Voltage on I/O Relative to Ground

Operating Temperature

Storage Temperature

Soldering Temperature

Operating Temperature

-55°C to +125°C

260°C for 10 seconds

RECOMMENDED DC OPERATING CONDITIONS

(-40°C to +85°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	V _{CC}	1.0		5.5	V	1
ST and PBRST Input High Level	V _{IH}	2.0		V _{CC} +0.3	V	1, 3
		V _{CC} -0.4				1, 4
ST and PBRST Input Low Level	V _{IL}	-0.3		0.5	V	1

DC ELECTRICAL CHARACTERISTICS

 $(-40^{\circ}\text{C to } +85^{\circ}\text{C}; \text{V}_{\text{CC}}=1.2\text{V to } 5.5\text{V})$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
V _{CC} Trip Point (TOL = GND)	V _{CCTP}	2.80	2.88	2.97	V	1
V _{CC} Trip Point (TOL = V _{CC})	V _{CCTP}	2.47	2.55	2.64	V	1
Input Leakage	I _{IL}	-1.0		+1.0	μΑ	2
Output Current @ 2.4V	I _{OH}		350		μΑ	3
Output Current @ 0.4V	I _{OL}	10			mA	3
Output Voltage @ -500 uA	V _{OH}	V _{CC} -0.3V	V _{CC} -0.1V		V	4
Operating Current	I _{CC}			35	μΑ	5

CAPACITANCE $(t_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C _{IN}			5	pF	
Output Capacitance	C _{OUT}			7	pF	

^{*} This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

AC ELECTRICAL CHARACTERISTICS

 $(-40^{\circ}\text{C to } +85^{\circ}\text{C}; \text{V}_{\text{CC}} = 1.2\text{V to } 5.5\text{V})$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
PBRST = V _{IL}	t _{PB}	20			ms	
RESET Active Time	t _{RST}	250	610	1000	ms	
ST Pulse Width	t _{ST}	20			ns	6, 7
V _{CC} Detect to RST and RST	t _{RPD}		5	8	μs	8
V _{CC} Slew Rate	t _F	20			μs	
V _{CC} Detect to RST and RST	t _{RPU}	250	610	1000	ms	9
V _{CC} Slew Rate	t _R	0			ns	
PBRST Stable Low to RST and RST	t _{DLY}			20	ms	

NOTES:

- 1. All voltages referenced to ground.
- 2. $\overline{\text{PBRST}}$ is internally pulled up to V_{CC} with an internal impedance of $40 \text{K}\Omega$ typical.
- 3. Measured with $V_{CC} \ge 2.7V$.
- 4. Measured with V_{CC} < 2.7V.
- 5. Measured with outputs open, $V_{CC} \le 3.6$ volts, and all inputs at V_{CC} or Ground.
- 6. Must not exceed t_{TD} minimum.
- 7. The Watchdog cannot be disabled it must be strobed to avoid resets.
- 8. Noise Immunity Pulses < 2 μs at $V_{\mbox{\scriptsize CCTP}}$ minimum will not cause a reset.
- 9. $t_R = 5 \mu s$.