
Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 1/102

Revision 1.01

Crypto i Button 
Firmware Reference Manual

October 15, 1996

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 2/102 Dallas Semiconductor Company Confidential

INTRODUCTION 4

FIRMWARE INSIDE THE CRYPTO IBUTTON 5

DEVELOPMENT SUPPORT 5

SOFTWARE DEVELOPMENT AND USAGE MODEL 6

API SPECIFICATION 7

FINDCIBS 8
SELECTCIB 9
SETCOMMONPIN 10
MASTERERASE 12
CREATETRANSACTIONGROUP 14
SETGROUPPIN 16
CREATECIBOBJECT 18
SETCIBOBJECTATTR 21
LOCKCIB 23
LOCKGROUP 25
INVOKESCRIPT 27
READCIBOBJECT 29
WRITECIBOBJECT 31
READGROUPNAME 33
DELETEGROUP 35
GETGROUPID 37
GETCIBCONFIGURATION 39
READREALTIMECLOCK 41
READTRUETIMECLOCK 43
READRANDOMBYTES 45
READFIRMWAREVERSIONID 48
READFREERAM 49
CHANGEGROUPNAME 50
DISABLEKEYSETGENERATION 52
GENERATERSAKEYSET 54
CHECKGROUPCRC 56
GENERATERSAMODANDEXP 59
GETCIBERROR 62

SCRIPT LANGUAGE 63

STRUCTURE OF A SCRIPT SOURCE FILE 64
OBJECT ATTRIBUTES 65
OBJECT TYPES 65

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 3/102

COMPOSITE OBJECTS 67
NOTES 68
SCRIPT OPERATORS 69
EVALUATION OF EXPRESSIONS 70
MODULAR EXPONENTIATION 70
SAMPLE SCRIPTS 71

APPENDIX A: ERROR CODE DEFINITIONS 76

APPENDIX B: DEFINES AND STRUCTURES 82

1) RETPACKET 82
2) PIN 83
3) NAME 83
4) CIBOBJ 84
5) CIBINFO 84

APPENDIX C: SCRIPT COMPILER 86

APPENDIX D: DEVICE COMMUNICATIONS 88

INTRODUCTION 88
EXECUTION OF A FIRMWARE FUNCTION COMMAND 90
OWMS ERROR CODES 94
MESSAGE FRAGMENTATION AND BLOCK FORMATTING 96
BLOCK FRAGMENTATION EXAMPLE 97
HEADER CALCULATION PROGRAM 100

GLOSSARY 102

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 4/102 Dallas Semiconductor Company Confidential

Introduction
The Crypto iButton is a single-chip, physically secure coprocessor with integrated 1024-bit
arithmetic accellerator and continuously running true time clock in a self-contained
stainless steel package. In contrast to other products the Crypto iButton requires just a
single data line plus ground reference for communication and power supply. Its true time
clock and the internal NVSRAM are powered by an internal lithium cell.

The built-in firmware of the Crypto iButton is easy to use for a great variety of high se-
curity applications. The non-volatile memory together with the well designed firmware
functions make the Crypto iButton very cost effective since several independent applica-
tions may share the same physical device. Each service provider reserves its own private
memory section (Transaction Group) inside the device without the risk of overwriting other
service provider’s data.

Privacy is established by using PINs (Personal Identification Numbers). If desired, the
device can be made inaccessible to others by setting the common PIN or be locked
completely. Locking, however, does not even allow the service provider to make any more
changes to the device’s original configuration.

The Crypto iButton is set up by the service provider for an application by creating a
transaction group that contains all data objects required to perform the handling and
processing of data. This group may be locked and protected by a PIN to prevent unau-
thorized access. After this preparation phase the Crypto iButton is used by loading new
data into input objects, invoking a script (an object stored in the transaction group contain-
ing instructions) and, after the computation is done, reading the result from output objects.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 5/102

Firmware Inside The Crypto i Button
The Crypto iButton contains 32K Bytes of pre-programmed ROM containing the device’s
firmware. This firmware is developed and maintained solely by Dallas Semiconductor, not
by the user of the Crypto iButton or service provider. The major portion of this manual is
dedicated to explaining this firmware. Dealing with the firmware makes application devel-
opment for the Crypto iButton more efficient and faster than writing assembly language
code for a microcontroller.

The firmware of the Crypto iButton consists of four layers
a) elementary communication and power management
b) command interpreter to execute single commands
c) script interpreter to apply a series of operations and functions to data stored in the

device
d) library of functions accessible to the script interpreter

The functions of layer a) are invisible to the user. What they accomplish and how they
work is described in detail in Appendix D , Device Communications. The firmware
functions that realize an operating system to execute commands sent by the bus master
(layer b) are explained in the section API Specification (Application Program Interface).
Except for the API functions that logically singulate and address a specific Crypto iButton
and provide error code information to the application software, each of the functions has a
direct firmware equivalent to be used if the application platform is not supported by an
API. The section Script Language defines the elements and syntax of the script
language and discusses examples that represent a variety of typical Crypto iButton
applications.

Development Support
In a typical application the Crypto iButton is temporarily connected to a DS1410E adapter
that interfaces it to the parallel port (LPT) of a computer. Application software running on
the computer calls API functions that, in turn, call operating system functions of the Crypto
iButton’s firmware and invoke scripts that the service provider has implemented when
preparing the Crypto iButton for the application. They also manage the power supply to
the Crypto iButton. This API is currently available from Dallas Semiconductor for IBM-
compatible computers running under WINDOWS 3.1x , WINDOWS 95 and WINDOWS
NT. APIs for other computer types and operating systems are in preparation.

Scripts are very compact sets of instructions to be applied to data already transferred to
the Crypto iButton. To simplify script development and testing, Dallas Semiconductor has
developed a text based script compiler that is available for several different computer
types. Which computers and operating systems are currently supported and how this
compiler is invoked is explained in Appendix C , Script Compiler.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 6/102 Dallas Semiconductor Company Confidential

Software Development And Usage Model
The Crypto iButton’s API is provided as Dynamic Link Library (DLL). This allows the
service provider to develop application software using any high level language that is sup-
ported by a compiler that creates WINDOWS or WINDOWS 95 compatible code. For
currently unsupported target machines the software development is more complex since
one has to deal directly with the firmware functions that realize the operating system of
the Crypto iButton.

After the Crypto iButton’s functionality (usage model) to be implemented in the application
program and the application program itself are defined, the software development goes
through three phases, the preparation phase, setup phase and debug phase.

In the preparation phase , the software developer
• defines all data and script objects needed to perform the data processing inside the

Crypto iButton
• writes and compiles the script(s) using the script compiler
• writes a setup program that allows calling functions of the Crypto iButton’s operating

system
• writes a test version of the application program that writes objects of the transaction

group, invokes script(s), reads objects, displays data and allows interaction for de-
bugging purposes.

In the setup phase , the software developer uses the setup program to
• create a transaction group for this usage model in the Crypto iButton
• set a PIN for the transaction group (recommended)
• create all data and script objects needed to perform the data processing
• set attributes of these objects

In the debug phase , the software developer
• uses the test version of the application program to debug both the script(s) and the

functions calling on the Crypto iButton’s operating system
To modify scripts or objects inside the transaction group, one uses the setup program.

After the scripts are debugged one locks the transaction group and the first device is
ready for use. More devices can now be set up automatically by re-creating the same
transaction group and its objects and writing the same data into the objects. All of this
assumes no key generation.

Now the application program can be optimized and debugged. The use of the Crypto
iButton typically consists of the same sequence of calls, which first write data to input
objects of the transaction group, invoke script(s) and then read the output objects to
obtain the results.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 7/102

API Specification
This section of the Firmware Reference Manual describes all Application Program
Interface (API) and Firmware Function Commands in a standardized way. The API is
highly pointer-oriented whereas the firmware function call basically exchanges bytes with
the Crypto iButton. The information to be provided or received is essentially the same.

The Firmware Function Commands are relevant if there is no API for the desired platform
available. Otherwise the API should be preferred since it frees the developer from the
burden of having to write software for communicating with the Crypto iButton on a hard-
ware level.

When communicating directly with the Crypto iButton on a hardware level, the information
listed in the section Transmit has to be written to the Intermediate Product Register (IPR),
the information listed under Receive is to be read from the IPR. In either case the
information in the IPR is accompanied by an 8-byte block header containing transfer
management data. This block header is generated and written to the I/O buffer by the bus
master when data is transmitted to the Crypto iButton. When receiving the result of the
execution of a firmware command, the Crypto iButton generates the header and makes it
available to the bus master through the I/O buffer so that the data in the IPR can be read
correctly and error-checked by using the block header information.

Details on how the block header is generated and other relevant information on commu-
nicating directly with the firmware are found in Appendix D, Device Communications. For
timing specifications of the electrical communications protocol and hardware command
codes to access the registers and to run the microcontroller inside the device please refer
to the DS1954 Crypto iButton Data Sheet.

Calling Conventions

(few lines to be added)

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 8/102 Dallas Semiconductor Company Confidential

FindCiBs

The FindCiBs function searches all of the peripheral ports with 1-wire bus drivers for
Crypto iButtons.

API Call & Return

LPBYTE DLLEXPORT FindCiBs(
LPWORD lpCiBNum // Pointer to number of CiBs found

);

If the function succeeds, the return value is a pointer to the top of the buffer containing the
ROM IDs of all of the Crypto iButtons found during the search. If the function fails for any
reason, the return value is a NULL pointer.

FIRMWARE Call & Return

This function is realized by the hardware of the Crypto iButton. See Search ROM for
details.

Parameters And Description

Name Description
lpCiBNum (output) pointer to a word that contains the number of Crypto iButtons

found during the search

Firmware Equivalent

Name Length
(n/a) (This function has no firmware equivalent)

Error Codes

Name API Firmware Explanation
ERR_NO_CIBS_FOUND F000H (n/a) No Crypto iButtons were

found during the previous
search.

ERR_ADAPTER_NOT_FOUND F300H (n/a) No 1-wire adapter could be
found on system.

Remarks

The buffer containing the ROM IDs is simply a contiguous list. The GetCiBError function
may be used to retrieve error information.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 9/102

SelectCiB

SelectCiB is called to specify which Crypto iButton will be addressed for following
communications.

API Call & Return

BOOL DLLEXPORT SelectCiB(
LPBYTE lpRomID // Pointer to ROM data

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE.

FIRMWARE Call & Return

This function is realized by the hardware of the Crypto iButton. See Match ROM for
details.

Parameters And Description

Name Description
lpRomID (input) pointer to the ROM data of a Crypto iButton.

Firmware Equivalent

Name Length
(n/a) (This function has no firmware equivalent)

Error Codes

Name API Firmware Explanation
ERR_BAD_CIB_ROM F100H (n/a) The specified ROM was not

found in the previous search.

Remarks

All other API functions use the ROM data set by SelectCiB when accessing the 1-wire
bus. Therefore, SelectCiB must be called before any of the functions that communicate
with the Crypto iButton firmware. If the specified ROM data was found during the last
search (see FindCiBs), SelectCiB will return TRUE. Otherwise SelectCiB will return
FALSE.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 10/102 Dallas Semiconductor Company Confidential

SetCommonPIN

The SetCommonPIN function changes the common PIN (personal identification number).

API Call & Return

BOOL DLLEXPORT SetCommonPIN(
LPPIN lpCommonPIN, // Pointer to current common PIN structure
LPPIN lpNewPIN, // Pointer to new common PIN structure
BYTE OptionByte // Common PIN option byte
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 01H, old PIN, new PIN, PIN option byte

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
lpCommonPIN (input) pointer to a structure that contains the current common PIN,

that is used to access system level commands (such as the
master erase command). The PIN supplied must match the
actual common PIN exactly for SetCommonPIN to succeed

lpNewPIN (input) pointer to a structure that contains the PIN that will replace
the old common PIN.

OptionByte (input) 1 byte, see below
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
old PIN 0 to 8 bytes
new PIN 1 to 8 bytes
PIN option byte 1 byte, see table below

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 11/102

Option Byte

Name Value Explanation
PIN_TO_ERASE 00000001b The common PIN is required to execute the

master erase command.
PIN_TO_CREATE 00000010b The common PIN is required to create a

transaction group.
The PIN option byte may be the bitwise-or of any of the above values.

Error Codes

Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match

failed.
ERR_BAD_PIN_LENGTH 0083H 83H The supplied PIN was longer

than 8 bytes.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

Both, the common and group PINs are up to 8 bytes in length and are purely binary
values. Initially, the Crypto iButton has a PIN (Personal Identification Number) of 0 (Null)
and an option byte of 0. Once a PIN has been established, it can only be changed by
providing the old PIN or by a Master Erase. However, if the PIN_TO_ERASE bit is set in
the option byte, the PIN can only be changed through the set common PIN command. If
no PIN has been set the length byte in the PIN structure must be set to 0.

Changing and not publishing the common PIN will prevent other service providers from
executing the following commands:

SetCommonPIN always
LockCiB always
DisableKeySetGeneration always
CreateTransactionGroup only if the PIN_TO_CREATE bit is set
MasterErase only if the PIN_TO_ERASE bit is set

Therefore, when setting the common PIN it is highly recommended to set the
PIN_TO_ERASE bit to 1 and leave the PIN_TO_CREATE bit at 0. This allows the creation
of additional transaction groups but prevents accidental erasure of the Crypto iButton and
further changes of the common PIN.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 12/102 Dallas Semiconductor Company Confidential

MasterErase

The MasterErase function deletes all of the transaction groups and audit trail.

API Call & Return

BOOL DLLEXPORT MasterErase(
LPPIN lpCommonPIN, // Pointer to common PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code, call the GetCiBError function.

FIRMWARE Call & Return

Transmit 02H, Common PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
lpCommonPIN (input) pointer to a structure that contains the current common PIN,

that is used to access system level commands.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Common PIN 1 to 8 bytes

Error Codes

Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match

failed.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 13/102

Remarks

If the LSB (least significant bit) of the PIN option byte is clear (i.e. PIN not required for
Master Erase) then a 0 is transmitted for the Common PIN value. In general this text will
always assume a PIN is required. If no PIN has been established, a 0 should be transmit-
ted as the PIN. This is true for the common PIN and group PINS (see below). If the PIN
was correct the firmware deletes all groups (see below) and all objects within the groups.
The common PIN and common PIN option byte are both reset to zero.

See also the remarks at SetCommonPIN.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 14/102 Dallas Semiconductor Company Confidential

CreateTransactionGroup

The CreateTransactionGroup function allows the service provider to create a new
transaction group within the Crypto iButton provided it has not already been locked.

API Call & Return

BOOL DLLEXPORT CreateTransactionGroup(
LPPIN lpCommonPIN, // Pointer to common PIN structure
LPNAME lpGroupName, // Pointer to new group name structure
LPPIN lpGroupPIN // Pointer to PIN for new group
BYTE GroupAttr // Group attribute byte
LPBYTE lpGroupID // Pointer to group ID byte
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 03H, Common PIN, Group name, Group PIN, Group Attribute byte

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = Group ID if successful, 0 otherwise

Parameters And Description

Name Description
lpCommonPIN (input) pointer to a structure that contains the current common PIN.
lpGroupName (input) pointer to a structure that contains the initial name for the

transaction group to be created. The name must be less than
or equal to 16 bytes in length.

lpGroupPIN (input) pointer to a structure that contains the initial PIN for the
transaction group to be created. The PIN must be less than
or equal to 8 bytes in length.

GroupAttr (input) initial Group Attribute byte, reserved, should be set to 0.
lpGroupID (output) pointer to a byte that contains the firmware assigned ID for

the newly created group
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 15/102

Firmware Equivalent

Name Length
Common PIN 1 to 8 bytes
Group name 1 to 16 bytes
Group PIN 1 to 8 bytes
Group Attribute byte 1 byte

Error Codes

Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match

failed.
ERR_BAD_PIN_LENGTH 0083H 83H The supplied PIN was longer

than 8 bytes.
ERR_BAD_NAME_LENGTH 0085H 85H The supplied group name

was more than 16 bytes long.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough

memory to create a new
transaction group.

ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been
locked.

ERR_OPEN_GROUP 0096H 96H There is an unlocked
transaction group in the
Crypto iButton.

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton
can no longer be found.

Remarks

All transaction groups must be locked before a new group can be created. There must
also be at least 512 bytes of RAM available in the Crypto iButton to create a new
transaction group, even if the new group will occupy less than 512 bytes. A transaction
group can be created without knowing the common PIN if the PIN_TO_CREATE bit of the
Option Byte is 0. See SetCommonPIN for details.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 16/102 Dallas Semiconductor Company Confidential

SetGroupPIN

The SetGroupPIN function changes the PIN of a specific transaction group.

API Call & Return

BOOL DLLEXPORT SetGroupPIN(
BYTE GroupID // Desired transaction group’s ID
LPPIN lpGroupPIN, // Pointer to current group PIN structure
LPPIN lpNewPIN, // Pointer to new group PIN structure
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 04H, Group ID, old GPIN, new GPIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the current PIN for the

transaction group specified by GroupID.
lpNewPIN (input) pointer to a structure that contains the PIN that will replace

the old group PIN.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Group ID 1 byte
old GPIN 0 to 8 bytes
new GPIN 1 to 8 bytes

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 17/102

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_PIN_LENGTH 0083H 83H The new PIN length was

greater than 8 bytes.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

Both, the common and group PINs are up to 8 bytes in length and are purely binary
values. If no PIN has been set, the length byte in the PIN structure must be set to 0. The
Group PIN only restricts access to objects within the group specified by the group ID
transmitted.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 18/102 Dallas Semiconductor Company Confidential

CreateCiBObject

The CreateCiBObject function creates new objects within an open transaction group.

API Call & Return

BOOL DLLEXPORT CreateCiBObject(
BYTE GroupID // ID of open transaction group
LPPIN lpGroupPIN // Pointer to group PIN
LPCIBOBJ lpNewObject // Pointer to object data structure
LPBYTE lpObjectID // Pointer to newly created object ID
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 05H, Group ID, Group PIN, Object type, Object attributes, Object data

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = object ID if successful, 0 otherwise

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
lpNewObject (input) pointer to a structure containing the type, attributes and data

of the object to be created. Refer to CIBOBJ in Appendix B
for the structure definition. Valid object types and attributes
are listed on the next page.

lpObjectID (output) pointer to a byte that contains the firmware assigned ID for
the newly created object

lpRP (output) pointer to a structure which receives the return packet from
the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 19/102

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Object type 1 byte
Object attributes 1 byte
Object data 1 to 128 bytes

Object Type

Name Value Explanation
OUTPUT_OBJ 00H
WORKING_REG_OBJ 01H
ROM_DATA_OBJ 02H
RANDOM_FILL_OBJ 03H
RSA_MODULUS_OBJ 20H RSA modulus
RSA_EXPONENT_OBJ 21H RSA exponent
MONEY_REGISTER_OBJ 22H Money register
COUNTER_OBJ 23H Transaction counter
SCRIPT_OBJ 24H Transaction script
CLOCK_OFFSET_OBJ 25H Clock offset
SALT_OBJ 26H Random SALT
CONFIG_DATA_OBJ 27H Configuration object
INPUT_OBJ 28H Input data object
DESTRUCTOR_OBJ 29H Destructor

Object Attributes

Name Value Explanation
LOCKED_OBJ 00000001b The object is read-only.
PRIVATE_OBJ 00000010b The object is only accessible by transaction

scripts.
DESTRUCTIBLE_OBJ 00000100b The object will become inaccessible to

transaction scripts once a destructor object
becomes active.

CIB_CREATED_OBJ 10000000b The object was created by a Crypto iButton.
The object attribute byte may be the bitwise-or of any of the above values.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 20/102 Dallas Semiconductor Company Confidential

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough mem-

ory to create a new transac-
tion group.

ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been
locked.

ERR_GROUP_LOCKED 0089H 89H The group specified by
GroupID has been locked.

ERR_BAD_OBJECT_TYPE 008AH 8AH The object type specified
either does not exist, or may
not be created.

ERR_BAD_SIZE 008CH 8CH The length of the object data
is not valid.

ERR_BAD_GROUP_ID 008DH 8DH The specified transaction
group does not exist.

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton
can no longer be found.

Remarks

Once a transaction group has been locked, object creation within that group is impossible.
If the CreateCiBObject command is successful the Crypto iButton firmware returns the
Object's ID within the group specified by the Group ID. If the PIN supplied by the host was
incorrect or the group has been locked by the Lock Group command (described below)
the Crypto iButton returns an error code. An object creation will also fail if the object is
invalid for any reason. For example if the object being created is an RSA modulus (object
type 20H) and it is greater than 1024 bits in length. Objects may also be locked, privatized
and made destructible after creation by using the SetCiBObjectAttr command described
below. The CIB_CREATED_OBJ bit may only be set by the firmware during the
execution of one of the key set generation commands described below.

There is no command to change the size of an object once it is created. Therefore, to
change the size of an object, one has to delete the transaction group the object belongs to
and then newly create the transaction group with all of its objects. If the objects are
created exactly in the same sequence as they were before, they will keep their object IDs
and there will be no need to re-compile the scripts.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 21/102

SetCiBObjectAttr

The SetCiBObjectAttr function allows the service provider to lock, privatize or make
destructible a specific object. Locking an object makes it read-only. Privatizing an object
makes it accessible only to transaction scripts. Making an object destructible limits the
length of time that a specific object is accessible to a transaction script.

API Call & Return

BOOL DLLEXPORT SetCiBObjectAttr(
BYTE GroupID // ID of open transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of object to lock
BYTE Attr // Attributes to be set
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit data

Transmit 06H, Group ID, Group PIN, Object ID (Lock Object)
07H, Group ID, Group PIN, Object ID (Privatize Object)
08H, Group ID, Group PIN, Object ID (Make Object Destructible)

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
ObjectID (input) 1 byte value that uniquely identifies the object within the

transaction group specified by GroupID.
Attr (input) 1 byte value that specifies the new attributes for the object

specified by Object ID. For valid attributes see next page.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 22/102 Dallas Semiconductor Company Confidential

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Object ID 1 byte

Object Attributes

Name Value Explanation
LOCKED_OBJ 00000001b The object is read-only.
PRIVATE_OBJ 00000010b The object is only accessible by transaction

scripts.
DESTRUCTIBLE_OBJ 00000100b The object will become inaccessible to

transaction scripts once a destructor object
becomes active.

The object attribute byte may be the bitwise-or of any of the above values.

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been

locked.
ERR_GROUP_LOCKED 0089H 89H The group specified by

GroupID has been locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_BAD_OBJECT_ID 008EH 8EH The specified object does not

exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

If the Group ID, Group PIN and Object ID are valid, the appropriate object attribute will be
set. Setting any object attribute bit is an irreversible operation.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 23/102

LockCiB

The LockCiB function automatically locks an open transaction group if one exists and
disables group creation capability.

API Call & Return

BOOL DLLEXPORT LockCiB(
BYTE GroupID // ID of open transaction group
LPPIN lpCommonPIN // Pointer to common PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 09H, Group ID, Common PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpCommonPIN (input) pointer to a structure that contains the common PIN for the

Crypto iButton.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Group ID 1 byte, contents is 00H
Common PIN 1 to 8 bytes

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 24/102 Dallas Semiconductor Company Confidential

Error Codes

Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match

failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been

locked.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

If the host supplied Common PIN is correct and the Crypto iButton has not previously
been locked, the command will succeed. When the Crypto iButton is locked it will neither
accept any new groups or objects nor allow transaction groups to be deleted. This implies
that all groups are automatically locked.

See also the remarks at SetCommonPIN.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 25/102

LockGroup

The LockGroup function locks a transaction group. Once a transaction group has been
locked, no more objects can be created within that group.

API Call & Return

BOOL DLLEXPORT LockGroup(
BYTE GroupID // ID of open transaction group
LPPIN lpGroupPIN // Pointer to group PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 0AH, Group ID, Group PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
lpRP (output) pointer to a structure that receives the return packet from the

Crypto iButton.

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 26/102 Dallas Semiconductor Company Confidential

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been

locked.
ERR_GROUP_LOCKED 0089H 89H The group specified by

GroupID has already been
locked.

ERR_BAD_GROUP_ID 008DH 8DH The specified transaction
group does not exist.

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton
can no longer be found.

Remarks

If the group PIN provided is correct, the Crypto iButton firmware will not allow further
object creation within the specified group. Locked groups may be deleted if the Crypto
iButton has not been locked. Since groups are completely self-contained entities they
may be deleted by executing the Delete Group command (described below).

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 27/102

InvokeScript

The InvokeScript function executes a transaction script within a specific group in the
Crypto iButton.

API Call & Return

BOOL DLLEXPORT InvokeScript(
BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of script object
WORD RunMS // Number of milliseconds to allow the script

// to complete
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 0BH, Group ID, Group PIN, Object ID

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = estimated completion time

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
ObjectID (input) 1 byte value that uniquely identifies the object within the

transaction group specified by GroupID. ObjectID must be a
handle to a script object.

RunMS (input) 16-bit value that specifies the length of time (in milliseconds)
required for the script to complete.

lpRP (output) pointer to a structure that receives the return packet from the
Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 28/102 Dallas Semiconductor Company Confidential

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Object ID 1 byte

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_BAD_OBJECT_ID 008EH 8EH The specified object does not

exist.
ERR_NOT_SCRIPT_ID 0095H 95H The specified object was not

a transaction script.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

The invoke script command may take several seconds to complete. It blocks communi-
cation to any 1-wire device on the 1-wire bus. If an error code was returned in the CSB,
the time estimate will be 0.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 29/102

ReadCiBObject

The ReadCiBObject function reads an object’s attributes, type, length, and data.

API Call & Return

BOOL DLLEXPORT ReadCiBObject(
BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of object to read
LPCIBOBJ lpObject // Pointer to object data structure
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 0CH, Group ID, Group PIN, Object ID

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = object length if successful, 0 otherwise
Output Data = object data if successful, 0 otherwise

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
ObjectID (input) 1 byte value that uniquely identifies the object within the

transaction group specified by GroupID.
lpObject (output) pointer to the object structure that will receive the object’s

data.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 30/102 Dallas Semiconductor Company Confidential

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Object ID 1 byte

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_BAD_OBJECT_ID 008EH 8EH The specified object did not

exist within the group.
ERR_OBJECT_PRIVATE 0091H 91H The object is private and may

not be read.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

Only open or locked objects may be read. If the Group ID, Group PIN and Object ID were
correct, the Crypto iButton checks the attribute byte of the specified object. If the object
has not been privatized, the Crypto iButton will transmit the object data.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 31/102

WriteCiBObject

The WriteCiBObject function writes new data into an open object.

API Call & Return

BOOL DLLEXPORT WriteCiBObject(
BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of object to write
LPCIBOBJ lpObject // Pointer to object data structure
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 0DH, Group ID, Group PIN, Object ID, Object Size, Object Data

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
ObjectID (input) 1 byte value that uniquely identifies the object within the

transaction group specified by GroupID.
lpObject (input) pointer to the object structure that contains the data to write to

the object.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 32/102 Dallas Semiconductor Company Confidential

Firmware Equivalent

Name Length
Group ID, 1 byte
Group PIN 1 to 8 bytes
Object ID 1 byte
Object Size 1 byte
Object Data 1 to 128 bytes

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_SIZE 008CH 8CH The object data length speci-

fied was illegal.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_BAD_OBJECT_ID 008EH 8EH The specified object did not

exist within the group.
ERR_OBJECT_LOCKED 0090H 90H The object is locked and is

read-only.
ERR_OBJECT_PRIVATE 0091H 91H The object is private and is

read-only.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

Only open objects may be written. If the Group ID, Group PIN and Object ID are correct,
the Crypto iButton checks the attribute byte of the specified object. If the object has not
been locked or privatized, the Crypto iButton will clear the objects previous size and data
and replace it with the new object data. Note that the object type and attribute byte
are not affected .

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 33/102

ReadGroupName

The ReadGroupName function reads a transaction group’s name by specifying it's ID.

API Call & Return

BOOL DLLEXPORT ReadGroupName(
BYTE GroupID // ID of open transaction group
LPNAME lpGroupName // Pointer to transaction group name
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 0EH, Group ID

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = length of group name, 0 otherwise
Output Data = group name, 0 otherwise

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupName (output) pointer to a buffer that contains the name of the transaction

group specified by GroupID. Refer to RETPACKET in Ap-
pendix B for the structure definition to obtain the length of the
group name. A group name may be up to 16 bytes long.

lpRP (output) pointer to a structure which receives the return packet from
the Crypto iButton.

Firmware Equivalent

Name Length
Group ID 1 byte

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 34/102 Dallas Semiconductor Company Confidential

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

All byte values are legal in a group name. Transaction group IDs are numbered sequen-
tially starting from 1. Using the ReadGroupName function one can determine the trans-
action group of interest without first knowing the group ID.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 35/102

DeleteGroup

The DeleteGroup function deletes a locked transaction group.

API Call & Return

BOOL DLLEXPORT DeleteGroup(
BYTE GroupID // ID of open transaction group
LPPIN lpGroupPIN // Pointer to group PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 0FH, Group ID, Group PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 36/102 Dallas Semiconductor Company Confidential

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been

locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

If the group PIN and group ID are correct the Crypto iButton will delete the specified
group. Deleting a group causes the automatic destruction of all objects within the group.
If the Crypto iButton has been locked the Delete Group command will fail.

If the Crypto iButton has been locked, the MasterErase function must be called to remove
the group. Note however, that a successful call to the MasterErase function deletes all of
the transaction groups within the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 37/102

GetGroupID

If one knows the name of the transaction group of interest, the GetGroupID function
allows to retrieve the group’s ID.

API Call & Return

BOOL DLLEXPORT GetGroupID(
BYTE GroupID // ID of open transaction group
LPNAME lpGroupName // Pointer to group name structure
LPBYTE lpGroupID // Pointer to group ID byte
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 10H, Group name

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = Group ID if successful, 0 otherwise

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupName (input) pointer to a structure containing the name of the desired

transaction group.
lpGroupID (output) pointer to a byte that contains the group ID that belongs to the

name pointed to by lpGroupName.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Group name 1 to 16 bytes

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 38/102 Dallas Semiconductor Company Confidential

Error Codes

Name API Firmware Explanation
ERR_BAD_NAME_LENGTH 0085H 85H The name length specified

was greater than 16 bytes.
ERR_GROUP_NOT_FOUND 0098H 98H A matching group name was

not found.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

This function provides a quick method for determining if the desired transaction group
exists within a Crypto iButton. No PIN is required.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 39/102

GetCiBConfiguration

The GetCiBConfiguration function is called to retrieve important Crypto iButton configu-
ration information

API Call & Return

BOOL DLLEXPORT GetCiBConfiguration(
LPCIBINFO lpConfig // Pointer to configuration data
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 11H

Receive CSB = 0
Output length = 2
Output Data = Crypto iButton configuration structure

Parameters And Description

Name Description
lpConfig (output) pointer to a structure that contains the Crypto iButton’s con-

figuration information. Refer to CIBINFO in Appendix B for the
structure definition.

lpRP (output) pointer to a structure which receives the return packet from
the Crypto iButton.

Firmware Equivalent

Name Length
(n/a) (the function call requires no parameters)

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 40/102 Dallas Semiconductor Company Confidential

Configuration Structure

Name Sequence Explanation
GroupNum byte 1 number of transaction groups currently

within the Crypto iButton.
CiBFlags byte 2 Flag byte (see below)

Flag Byte

Name Value Explanation
CIB_LOCKED 00000001b The Crypto iButton has been locked.
PIN_TO_CREATE 00000010b The Crypto iButton requires the common

PIN to allow transaction group creation.

The flag byte is the bitwise-or of any of the above values

Error Codes

Name API Firmware Explanation
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

This function provides a quick method for determining the number of transaction groups
within the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 41/102

ReadRealTimeClock

The ReadRealTimeClock function reads the contents of the Real Time Clock in the Crypto
iButton.

API Call & Return

BOOL DLLEXPORT ReadRealTimeClock(
LPDWORD lpRTCSeconds // 4 most significant bytes of the RTC
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 15H

Receive CSB = 0
Output length = 4
Output Data = 4 most significant bytes of the RTC

Parameters And Description

Name Description
lpRTCSeconds
(output)

pointer to a 4 byte unsigned number that receives the 4 most
significant bytes of the RTC.

lpRP (output) pointer to a structure which receives the return packet from
the Crypto iButton.

Firmware Equivalent

Name Length
(n/a) (the function call requires no parameters)

Error Codes

Name API Firmware Explanation
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 42/102 Dallas Semiconductor Company Confidential

Remarks

This command is normally used by a service provider to compute a clock offset during
transaction group creation. The value returned is the total number of seconds that have
elapsed since the battery was attached at the factory. Only the 4 most significant bytes of
the RTC are read by this command. The sub-second bytes are not returned. The value is
not adjusted with a clock offset.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 43/102

ReadTrueTimeClock

The ReadTrueTimeClock function reads the value of the Real Time Clock added to a
clock offset (specified by ObjectID).

API Call & Return

BOOL DLLEXPORT ReadTrueTimeClock(
BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of clock offset object
LPDWORD lpSeconds // RTC bytes + offset
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 16H, Group ID, Group PIN, ID of offset object

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 4 if successful, 0 otherwise
Output Data = Real time clock + clock offset ID

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
ObjectID (input) 1 byte value that uniquely identifies the object within the

transaction group specified by GroupID. ObjectID must be a
handle to a clock offset object.

lpSeconds (output) pointer to a 4 byte unsigned number that receives the 4 most
significant bytes of the RTC added to the 4 bytes of the clock
offset. The addition is performed modulo 232.

lpRP (output) pointer to a structure which receives the return packet from
the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 44/102 Dallas Semiconductor Company Confidential

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
ID of offset object 1 byte

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_BAD_OBJECT_ID 008EH 8EH The specified object does not

exist.
ERR_BAD_OBJECT_TYPE 008AH 8AH The specified Object ID is not

a clock offset.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

This command succeeds if the group ID and group PIN are valid, and the object ID is the
ID of a clock offset. The clock offset object’s value is computed (by the service provider)
as the difference between the 4 most significant byte of the RTC, and some meaningful
time (such as the number of seconds since 12:00 AM January 1, 1970). The Crypto
iButton adds the clock offset to the current value of the 4 most significant bytes of the
RTC and returns that value in the output data field.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 45/102

ReadRandomBytes

The ReadRandomBytes function gives convenient access to a source of high quality
random numbers.

API Call & Return

BOOL DLLEXPORT ReadRandomBytes(
BYTE nBytes // Desired number of random bytes
LPBYTE lpRandomBuff // Pointer to buffer for random bytes
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 17H, Length (L)

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = L if successful, 0 otherwise
Output Data = L bytes of random data if successful

Parameters And Description

Name Description
nBytes (input) number of random bytes requested
lpRandomBuff (output) pointer to the buffer that will receive the random bytes from

the Crypto iButton.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Length (L) 1 byte unsigned binary number in the range of 1 to 128

Error Codes

Name API Firmware Explanation
ERR_BAD_SIZE 008CH 8CH The number of bytes

requested was too large.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 46/102 Dallas Semiconductor Company Confidential

Remarks

ReadRandomBytes can return as many as 128 bytes of random data. This command
provides a good source of cryptograhpically useful random numbers.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 47/102

ReadFirmwareVersionID

The ReadFirmwareVersionID function returns the firmware version ID string.

API Call & Return

BOOL DLLEXPORT ReadFirmwareVersionID(
LPNAME lpFirmwareID // Pointer to firmware ID string
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 18H

Receive CSB = 0
Output length = Length of firmware version ID string
Output Data = Firmware version ID string

Parameters And Description

Name Description
lpFirmwareID (output) pointer to a structure that receives the firmware version ID

string.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
(n/a) (the function call requires no parameters)

Error Codes

Name API Firmware Explanation
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

If a good communication link exists between the host and the Crypto iButton, this function
should never fail. This command returns the firmware version ID as a Pascal type string
(length + data).

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 48/102 Dallas Semiconductor Company Confidential

ReadFreeRAM

The ReadFreeRAM function returns the amount of RAM still available in the Crypto
iButton for transaction groups.

API Call & Return

BOOL DLLEXPORT ReadFreeRAM(
LPWORD lpFreeRam // Pointer to free RAM word
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 19H

Receive CSB = 0
Output length = 2
Output Data = 2 byte value containing the amount of free RAM

Parameters And Description

Name Description
lpFreeRAM (output) pointer to an unsigned short integer that will receive the

number of free bytes of RAM.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
(n/a) (the function call requires no parameters)

Error Codes

Name API Firmware Explanation
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

If the Crypto iButton is locked this function will return 0 bytes free since all memory is
used for either transaction groups or audit trail.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 49/102

ChangeGroupName

The ChangeGroupName function changes the name of the transaction group (or the
name of the Crypto iButton) provided one knows the group PIN.

API Call & Return

BOOL DLLEXPORT ChangeGroupName(
BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
LPNAME lpGroupName // Pointer to new group name
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 1AH, Group ID, Group PIN, New Group name

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
lpGroupName (input) pointer a structure that contains the new name for the

transaction group.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
New Group name 1 to 16 bytes

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 50/102 Dallas Semiconductor Company Confidential

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_NAME_LENGTH 0085H 85H The length of the new name

was greater than 16 bytes.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

If the group ID specified exists in the Crypto iButton and the PIN supplied is correct, the
transaction group name is replaced by the new group name supplied by the host. To
change the name of the Crypto iButton, set GroupID to 0 and set lpGroupPIN to the
common PIN. This will replace the Crypto iButton’s name by the new name supplied by
the host.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 51/102

DisableKeySetGeneration

The DisableKeySetGeneration function is used to free RAM normally reserved for
generating RSA key sets.

API Call & Return

BOOL DLLEXPORT DisableKeySetGeneration(
LPPIN lpCommonPIN // Pointer to the common PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 1BH, Group ID, Common PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
lpCommonPIN (input) pointer to a structure that contains the Crypto iButton’s

common PIN.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Group ID 1 byte, value = 0
Common PIN 1 to 8 bytes

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 52/102 Dallas Semiconductor Company Confidential

Error Codes

Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match

failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been

locked.
ERR_NO_KEY_GENERATION 0099H 99H Key set generation has

already been disabled.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton

can no longer be found.

Remarks

This command enables the service provider to free memory normally required by key set
generation commands for use by transaction groups. Disabling key set generation is an
irreversible operation. If the common PIN transmitted by the host is valid further RSA key
set generation will be impossible. Note that locking the Crypto iButton automatically
disables key set generation.

See also the remarks at SetCommonPIN.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 53/102

GenerateRSAKeySet

The GenerateRSAKeySet function instructs the Crypto iButton to generate a new RSA
key set on behalf of a specific transaction group.

API Call & Return

BOOL DLLEXPORT GenerateRSAKeySet(
BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ModulusSize // Number of bytes in modulus
LPBYTE lpModulusID // Pointer to modulus ID
LPBYTE lpPublicExpID // Pointer to public exponent ID
LPBYTE lpPrivateExpID // Pointer to private exponent ID
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 1CH, Group ID, Group PIN, Modulus size in bytes

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 3 if successful, 0 otherwise
Output Data = Modulus ID, public exponent ID, private exponent ID

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
ModulusSize (input) number of bytes in the modulus to be generated
lpModulusID (output) pointer to a byte that contains the object ID assigned to the

newly created modulus
lpPublicExpID (output) pointer to a byte that contains the object ID assigned to the

newly created public exponent.
lpPrivateExpID
(output)

pointer to a byte that contains the object ID assigned to the
newly created private exponent.

lpRP (output) pointer to a structure which receives the return packet from
the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 54/102 Dallas Semiconductor Company Confidential

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Modulus size in bytes 1 byte unsigned binary number in the range of 4 to 128

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough free

RAM to store all of the new
objects.

ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been
locked.

ERR_GROUP_LOCKED 0089H 89H The specified transaction
group has been locked.

ERR_BAD_GROUP_ID 008DH 8DH The specified transaction
group does not exist.

ERR_NO_KEY_GENERATION 0099H 99H Key generation has been
disabled.

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton
can no longer be found.

Remarks

If the group ID specified exists in the Crypto iButton , the PIN supplied is correct and key
generation capability is enabled, the firmware will generate an entire RSA key set. The
modulus and one of the exponents will immediately be locked by the firmware. The other
exponent will be privatized. If successful this command will return the object ID’s of the
modulus, public exponent and private exponent respectively. All objects created by
Crypto iButton key generation commands have the CIB_CREATE bit set in the attribute
byte to make them distinguishable from objects created by the service provider.

All of the key set generation commands that create a modulus object immediately destroy
the prime factors P and Q used to generate the modulus N (where N = P * Q). However
Φ(N) = (P - 1) * (Q - 1) is saved until the transaction group is locked. This gives the
service provider the ability to generate additional RSA exponent pairs using the same
modulus. Even though the Crypto iButton remembers ΦΦ for each modulus created
on behalf of an open group, ΦΦ may never be read.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 55/102

CheckGroupCRC

The CheckGroupCRC function verifies the integrity of a transaction group.

API Call & Return

BOOL DLLEXPORT CheckGroupCRC(
BYTE GroupID // ID of transaction group
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 1DH, Group ID

Receive CSB = 0 if CRC was good, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpRP (output) pointer to a structure which receives the return packet from

the Crypto iButton.

Firmware Equivalent

Name Length
Group ID 1 byte

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction

group does not exist.
ERR_BAD_GROUP_CRC 0097H 97H The saved group CRC did

not match the CRC just
computed by firmware.

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton
can no longer be found.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 56/102 Dallas Semiconductor Company Confidential

Remarks

The Crypto iButton firmware maintains a CRC16 value for each transaction group. The
integrity of each group may be checked at any time.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 57/102

GenerateRSAModAndExp

The GenerateRSAModAndExp gives the service provider the ability to specify his own
public exponent and have the Crypto iButton generate a modulus and private exponent.

API Call & Return

BOOL DLLEXPORT GenerateRSAModAndExp(
BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ModulusSize // Number of bytes in modulus
BYTE ExponentID // ID of public exponent
LPBYTE lpPrivateExpID // Pointer to private exponent ID
LPBYTE lpModulusID // Pointer to modulus ID
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the
return value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return

Transmit 1FH Group ID, Group PIN, Modulus size in bytes, Exponent ID

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 2 if successful, 0 otherwise
Output Data = Modulus ID, Private Exponent ID

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group

within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction

group specified by GroupID.
ModulusSize (input) number of bytes in the modulus to be generated
ExponentID (input) 1 byte value that uniquely identifies an RSA public exponent

created by the service provider
lpPrivateExpID
(output)

pointer to a byte that contains the object ID assigned to the
newly created private exponent.

lpModulusID (output) pointer to a byte that contains the object ID assigned to the
newly created modulus

lpRP (output) pointer to a structure which receives the return packet from
the Crypto iButton.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 58/102 Dallas Semiconductor Company Confidential

Firmware Equivalent

Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Modulus size in bytes 1 byte unsigned binary number in the range of 4 to 128
Exponent ID 1 byte

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough free

RAM to store all of the new
objects.

ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been
locked.

ERR_GROUP_LOCKED 0089H 89H The specified transaction
group has been locked.

ERR_BAD_GROUP_ID 008DH 8DH The specified transaction
group does not exist.

ERR_NO_KEY_GENERATION 0099H 99H Key generation has been
disabled.

ERR_BAD_MODULUS_ID 009AH 9AH The specified modulus does
not exist.

ERR_BAD_EXPONENT_ID 009BH 9BH The specified exponent does
not exist.

ERR_NOT_CIB_CREATED 009CH 9CH The modulus specified was
not created by a Crypto
iButton.

ERR_EXP_NOT_REL_PRIME 009DH 9DH The specified public
exponent was not relatively
prime to the Φ of the modulus
generated by the Crypto
iButton.

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton
can no longer be found.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 59/102

Remarks

If the group ID specified exists in the Crypto iButton , the PIN supplied is correct and key
generation capability is enabled, the firmware will generate a new RSA modulus N and a
new exponent D such that E * D Mod Φ(N) = 1. E is the RSA exponent whose ID was
passed in the transmit data packet and Φ(N) = Φ(P * Q) = (P - 1) * (Q - 1). The modulus
object N will be locked and the exponent D will be privatized by the firmware. This allows
the service provider to choose a public exponent E without ever knowing the private
exponent D. The prime factors P and Q used to generate the modulus N are destroyed
and Φ is saved until the transaction group is locked

The firmware first generates the modulus N (N = P * Q). It then calculates Φ(N) = (P - 1) *
(Q - 1). If the public exponent is not relatively prime to Φ(N), the firmware destroys P, Q,
N and Φ. This causes the command interpreter to return the error code
ERR_EXP_NOT_REL_PRIME. However, the command may be retried since a new Φ(N)
will be generated.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 60/102 Dallas Semiconductor Company Confidential

GetCiBError

The GetCiBError function returns the last error that occurred while communicating with
the Crypto iButton.

API Call & Return

WORD DLLEXPORT GetCiBError(VOID);

This function never fails.

FIRMWARE Call & Return

This is an API function only. The firmware returns error codes in the Command Status
Byte (CSB).

Parameters And Description

Name Description
(n/a) (this function requires no parameters)

Firmware Equivalent

Name Length
(n/a) (This function has no firmware equivalent)

Error Codes

Name API Firmware Explanation
(n/a) (n/a) (n/a) (This function always returns

valid data.)

Remarks

The low byte of the return value is used for command interpreter and script interpreter
errors. The high byte is used for low level communication errors and data formatting
errors. A listing of possible error codes is provided in Appendix A.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 61/102

Script Language
The firmware functions described in the previous section of this manual provide the
handles to creating objects, setting attributes and PINs and many other essential
operations. The most important of these firmware functions is the one that activates the
script interpreter, the highest layer of the Crypto iButton’s firmware.

As a computer makes use of registers, data memory, I/O channels, peripherals and
program memory, the script interpreter does the same with the objects of a transaction
group. Currently, there are 14 different object types, each for a specific purpose (see
CreateCiBObject description). The object that equivalents the program memory of a
common computer is called script. Such scripts store very compact program code that is
step by step interpreted and executed by the script interpreter whenever the InvokeScript
command is called.

The script interpreter has its own set of commands that have no similarity with the
firmware commands described in the API Specification. The common link between API
and scripts are objects that can be accessed from outside (ReadCiBObject,
WriteCiBObject) or only from inside (i. e. by the script interpreter), depending on the type
of object and its attributes. Referencing objects by their identifiers (IDs) and processing
their content by using mathematical and/or logical operators is what makes the script
language. The Crypto iButton’s script language, therefore, has a lot of similarity with other
well known programming languages.

This chapter outlines the structure of the script language, gives hints on the use of object
attributes, explains object types, script operators and finally shows sample scripts. After a
script is written as ASCII source file, it is compiled into executable code by the Script
Compiler, as explained in Appendix C. Before a compiled script can be executed, its code
has to be copied to a script object of a transaction group.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 62/102 Dallas Semiconductor Company Confidential

Structure of a Script Source File

Transaction Group Header TransactionGroup (‘group name’);
Object Begin
Declaration Attribute 1 Open:
Section list of object names: object type α;

list of object names: object type β;
list of object names: object type ω;

Attribute 2 Locked:
list of object names: object type α;
list of object names: object type β;
list of object names: object type ω;

Attribute 3 Private:
list of object names: object type α;
list of object names: object type β;
list of object names: object type ω;

End
Script Header 1 Script <name 1>;
Definition Begin
Section Definition Statement a;

Statement b;
Statement c;

End
Header 2 Script <name 2>;

Begin
Definition Statement d;

Statement e;
Statement f;

End
Header n Script <name n>;

Begin
Definition Statement x;

Statement y;
Statement z;

End

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 63/102

Object Attributes
There are four types of object attributes: Open , Locked , Private and Destructible . The
type of an object determines how an object is protected from unauthorized use and
modification.

If no other attribute such as Locked or Private is applied, an object is always Open . An
open object is readable and writable for anybody knowing the group’s PIN as well as for
scripts that belong to the same transaction group as the object.

Setting the attribute Locked protects an object from changes but still allows read access
to anybody knowing the group’s PIN and by scripts that belong to the same transaction
group as the object.

Setting the attribute Private prohibits any external access to the object but still allows
read/write access by scripts that belong to the same transaction group as the object. If an
object is Private and Locked then even a script only has read access to the object.

Open, Locked or private objects may also carry the attribute Destructible . This attribute
links an object to a destructor object that always stores an expiration date. After the
destructor object of the transaction group becomes active all destructible objects within
that group will become unusable by scripts. Open or locked objects, however, still remain
accessible even if they are no longer usable by scripts.

Object Types
OutputData 1 to 128 bytes locked
The output data object is used by transaction scripts as an output buffer. Two of these
objects are automatically created when the transaction group is created. They are shared
by all transaction groups and are cleared automatically whenever a new transaction group
is accessed. Each output data object can be as large as 128 bytes in length and inherits
PIN protection from its group. There may not be any additional Output Data objects in a
transaction group.

WorkingRegister 1 to 128 bytes private
This object is used by the script interpreter as working space and may be used in a
transaction script. This object is automatically created when the transaction group is
created. It is a private object and cannot be read using the read object command. There
may only be one Working Register object in a transaction group.

ROMData 8 bytes locked
This object is automatically created when the transaction group is created. It is a locked
object and cannot be altered using the write object command. This object is 8 bytes in
length and its contents are identical to the 8 by ROM Data of the Crypto iButton. There
may only be one ROM Data object in a transaction group.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 64/102 Dallas Semiconductor Company Confidential

RandomFill 1 to 128 bytes private
When the script interpreter encounters this type of object it automatically pads the current
message so that its length is 1 bit smaller than the length of the proceeding modulus. This
object is automatically created when the transaction group is created. It is a private object
and may not be read using the read object command. There may only be one Random Fill
object in a transaction group.

Modulus 4 to 128 bytes locked
A modulus object is a large integer of at most 128 bytes in length. It must be used by
scripts which perform modular exponentiations.

Exponent 1 to 128 bytes locked or private
An exponent object is (typically) a large integer of at most 128 bytes in length. It is used
as the exponent value in modular exponentiations.

Money 1 to 128 bytes locked
The money object may be used to represent money or some other form of credit. Once
this object has been created it must be locked to prevent a user from tampering with its
value. Once locked the value of this object can be altered only by invoking a transaction
script. A typical transaction group which performs monetary transactions might have one
script for withdrawals from the money register and one for deposits to the money register.

Counter 1 to 128 bytes locked
The counter object is usually initialized to zero when it is created. Every time a
transaction script which references this object is invoked, the transaction counter
increments by 1. Once a transaction counter has been locked it is read only and provides
an irreversible counter.

Script 4 to 128 bytes locked
A script is a series of instructions to be carried out by the Crypto iButton. When invoked
the Crypto iButton firmware interprets the instructions in the script and typically places the
results in the output data object (see above). The actual script is simply a list of objects
and valid script operators. Scripts may be as long as 128 bytes.

ClockOffset 4 bytes locked
This object is a 4 byte number which contains the difference between the reading of the
Crypto iButton's real-time clock and some convenient time (e.g. 12:00AM, January 1,
1970). The true time can then be obtained from the Crypto iButton by adding the value of
the clock offset to the real-time clock.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 65/102

SALT 1 to 128 bytes locked
A SALT (random challenge) object is simply a large random number. When a SALT object
is encountered (by the script interpreter) on the righthand side of an assignment operator
its value is replaced by a new random number.

ConfigurationData 1 to 128 bytes locked
This is a user defined structure with a maximum length of 128 bytes. This object is
typically used to store configuration information specific to its transaction group. For
example, the configuration data object may be used to specify the format of the money
register object (i.e. the type of currency it represents). This object has no pre-defined
structure and is treated as an input data object by a transaction script.

InputData 1 to 128 bytes open
An input data object is simply an input buffer with a maximum length of 128 bytes. The
host uses input data objects to store data to be processed by transaction scripts.

Destructor 4 bytes locked
A destructor object is 4 bytes in length and is initialized to some value greater than the
Crypto iButton’s real time clock. When the script interpreter is called it checks the group to
see if it contains a destructor. If it does, it checks the script itself, and all objects
referenced in the script to see if they are destructible. If any of the objects are destructible
the script interpreter compares the value of the destructor with the value of the real time
clock. If the value in the clock is greater than the destructor’s value, the script interpreter
terminates the script with the ERR_DESTRUCTED_OBJECT error code. There may only
be one destructor object in a transaction group.

Composite Objects
Composite objects are used to bundle several pieces of information into a single packet.
This packet then can be signed as a single object and transmitted. The receiver verifies
the signature and can access every single member of the composite object for further
processing. This process is more efficient since it reduces the number of objects to be
dealt with significantly. InputData, ConfigurationData, OutputData and WorkingRegister
objects may be used as composite objects. Objects of any type may be used as members
of composite objects. The members of a composite object inherit the attributes of the
composite object, but keep their original type.

The following statements explain how composite objects are created and used by scripts.

• At the time the composite object is created one needs to know the maximum length
required to store all of its future members.

• The storage space required for each member is the number of data byte of the
member plus 2. Example: If a composite object is supposed to accommodate two

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 66/102 Dallas Semiconductor Company Confidential

members, one of maximum 12 bytes of data and one of maximum 8 bytes of data, then
the length of the composite object needs to be 12 + 2 + 8 + 2 = 24 bytes.

• A to-be composite object become composite by concatenating its members (&) and
then using the “<-” operator to move the result to the object.

• Members of a composite object are referenced as follows:
<composite object name>.<member object type>[occurrence of this object type in
composite object]
Example: Input.Money[1] is the first money object in the composite object Input .

Notes
• The attribute specification “Open” may be omitted if the open objects are declared in

the beginning of the Object Declaration Section.
• The attribute Destructible is applied to a list of object names by appending the word

“Destructible;” to the declaration line. Examples:
MyObject: object type µ; Destructible;
Compute: Script; Destructible;

• If the attribute “Destructible” is applied to a script object, the attribute needs to be
specified in the script header as well. Example:
Script Compute; Destructible;

• The readability of Script Source Files may be improved by adding comments, spaces
and round brackets (). Spaces between names and operators, round brackets as well
as any text inside braces { } are ignored by the script compiler.

• Unless explicitely stated differently in the description of object types, there may be
several objects of the same type in a transaction group.

• The script language does not directly support branching. To implement branching, one
has to use several scripts, one for each branch. Depending on the error code a script
returns, the application software invokes the appropriate script to handle the case.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 67/102

Script Operators
Symbol Description Code Comment

+ Addition 80h unsigned binary addition of objects of the same
length; multiple additions within a statement are
permitted

- Subtraction 81h unsigned binary subtraction of objects of the
same length; multiple subtractions within a
statement are permitted

& Concatenation 82h concatenation of multiple objects of any length;
typically used in constructing a composite object

:= Assignment 83h assigns the result of an expression to the object
at the left side of this operator

= Comparison 84h compares the type, length and data of the
objects on either side of the comparison
operator; if the comparison fails the script
interpreter terminates the script with the
ERR_BAD_COMPARE error message.

<- Assignment as
composite

85h assigns the result of an expression as a member
of the composite at the left side of this operator

^ Exponentiation 86h exponentiates the object at the left side of this
operator to the power of the object at the right
side using integer arithmetic of positive numbers

Mod Modulus
truncation

87h truncates the result of a numerical operation to
the modulus of the object at the right side of the
operator

Xor Exclusive-OR
operation

88h binary XOR of objects of the same length;
multiple XOR operations within a statement are
permitted

* Multiplication 89h unsigned multiplication of objects; multiple
multiplications within a statement are permitted

. Indicator of a
composite
object

8Ah indicates a composite object

[n] Cornered
Brackets

(no
code)

selects member n of a composite object as an
object to be used within a operation or to receive
the result of a computation; n is a integer number
≥ 1

; End of
statement

8Bh marks the end of any statement of a script

f Call function 8Ch generates a call to a particular function in the
ROM function library

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 68/102 Dallas Semiconductor Company Confidential

Evaluation Of Expressions
The script interpreter evaluates expressions from the left to the right. Round brackets
within an expression or arithmetic priority rules are ignored. Complex operations,
therefore, need to be re-written in a sequence that is evaluated in the intended way. The
working register object can be used for temporary storage of intermediate results.

Modular Exponentiation
In contrast to a conventional exponentiation that may produce a very long number as a
result, the result of a modular exponentiation never exceeds the value of the modulus. A
modular exponentiation has some similarity to a conventional exponentiation. The
modular exponentiation, however, integer-divides each partial product by the modulus and
then uses the remainder for the next multiplication. Examples:
23 Mod 5 = remainder [remainder(2 * 2 / 5) *2 / 5]

= remainder [4 * 2 / 5]
= 3

23 = 8

35 Mod 7 = ((((3 * 3 / 7) * 3 / 7) * 3 / 7) * 3 / 7)
= (((2 * 3 / 7) * 3 / 7) * 3 / 7)
= ((6 * 3 / 7) * 3 / 7)
= (4 * 3 / 7)
= 5

35 = 243

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 69/102

Sample Scripts
Example 1: Decryption of a Symmetric Key
The script receives the encrypted key through an InputData object and returns the result
through an OutputData object. The decryption exponent and modulus are stored in the
transaction group 'Secure E-Mail'.

Script Source File
TransactionGroup('Secure E-Mail');
{
 Usage Models Document - II.A.2 -
}
Begin
 Open:
 EncryptedKey: InputData;
 Locked:
 SecureEMail: Script;
 DecryptedKey: OutputData;
 N: Modulus;
 Private:
 D: Exponent;
End

Script SecureEMail;
{
 Decrypt symmetric IDEA key, stored in the InputData object
 "EncryptedKey", using the Private Exponent object "D" and
 place it in the OutputData object "DecryptedKey".
}
Begin
 DecryptedKey := EncryptedKey ^ D Mod N;
End

Symbol File
EncryptedKey=01
N=02
D=03
DecryptedKey=A0

The object IDs are assigned by the Crypto iButton at the time the objects are created
inside the Transaction group. The symbol file is required by the script compiler to link the
symbolic object names to their respective object IDs.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 70/102 Dallas Semiconductor Company Confidential

Example 2: Digital Notary

Script Source File
TransactionGroup('Digital Notary');
{
 Usage Models Document - II.B.2 -
}
Begin
 Open:
 MessageDigest: InputData;
 Locked:
 DigitalNotary: Script;
 Certificate: OutputData;
 Modulus: Modulus;
 TransactionCounter: Counter;
 TimeStamp: ClockOffset;
 RegistrationNumber: ROMData;
 Fill: RandomFill;
 Private:
 PrivateExponent: Exponent;
End

Script DigitalNotary;
{
 Concatenate the InputData object "MessageDigest" with the
 Counter object "TransactionCounter", ClockOffset object
 "TimeStamp", ROMData object "RegistrationNumber", and the
 RandomFill object "Fill". Then encrypt the composite object
 with the Exponent object "PrivateExponent" and the Modulus
 object "Modulus". Finally return the encrypted, composite
 object in the OutputData object "Certificate".
}
Begin
 Certificate <- (MessageDigest & TransactionCounter & TimeStamp
 & RegistrationNumber & Fill) ^
 PrivateExponent Mod Modulus;
End

Symbol File
MessageDigest=01
Modulus=02
TransactionCounter=03
TimeStamp=04
Exponent=05
Certificate=A0
RegistrationNumber=A3
Fill=A4

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 71/102

Example 3: Electronic Purse

Script Source File
TransactionGroup('Payer Transfer');
{
 Usage Models Document - II.E.2 -
}
Begin
 Open:
 Input: InputData;
 Locked:
 MakePayment: Script;
 Output: OutputData;
 Balance: Money;
 N: Modulus;
 Private:
 PrivateExponent: Exponent;
End

Script MakePayment;
{
 Decrement the Money object "Balance" by the amount in the
 InputData field "Input.Money[1]". Then encrypt the InputData
 object "Input" with the Service Provider's private key and
 place into the OutputData object "Output".
}
Begin
 Balance := Balance - Input.Money[1];
 Output := Input ^ PrivateExponent Mod N;
End

Symbol File
Input=01
Balance=02
N=03
PrivateExponent=04
Output=A0

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 72/102 Dallas Semiconductor Company Confidential

Example 4: Electronic Payment

Script Source File
TransactionGroup('Payee Transfer');
{
 Usage Models Document - II.E.3 -
}
Begin
 Open:
 Input: InputData;
 Locked:
 Output: OutputData;
 PublicExponent: Exponent;
 N: Modulus;
 Balance: Money;
 RandomSalt: Salt;
 AcceptPayment: Script;
 Private:
 Temp: WorkingRegister;
End

Script AcceptPayment;
{
 Decrypt the composite object "Input" with the Service Provider's
 public key. If the Salt field "Temp.Salt[1]" equals the Salt
 object "Random Salt" then continue (otherwise abort the script).
 Increment the Money object "Balance" by the amount in the Money
 field "Temp.Money[1]".
}
Begin
 Temp := Input ^ PublicExponent Mod N;
 Temp.Salt[1] = RandomSalt; { return error code if no match }
 RandomSalt:=RandomSalt;
 Balance := Balance + Temp.Money[1];
End

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 73/102

Symbol File
Input=01
PublicExponent=02
N=03
Balance=04
RandomSalt=05
Output=A0
Temp=A2

Example 5: Simulate Transaction Touch Memory

Script Source File
TransactionGroup('Simulate TTM');
Begin
 Open:
 MyInput: InputData;
 Locked:
 SimulateTTM: Script; Destructible;
 MyConfiguration: Configuration;
 Serialize: Counter;
End

Script SimulateTTM; Destructible;
{
 Simulate a Transaction iButton using a Crypto iButton
}
Begin
 MyConfiguration <- MyInput & Serialize;
End

Symbol File
MyInput=01
MyConfiguration=02
Serialize=03

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 74/102 Dallas Semiconductor Company Confidential

Appendix A: Error Code Definitions

Error Name
Error Code
Error Source

Description

ERR_BAD_COMMON_PIN
81H
Command Interpreter

This error code will be returned when a
command requires a common PIN and the
PIN supplied does not match the Crypto
iButton's common PIN. Initially the common
PIN is set to 0.

ERR_BAD_GROUP_PIN
82H
Command Interpreter

Transaction groups may have their own PIN.
If this PIN has been set (by a set group PIN
command) it must be supplied to access any
of the objects within the group. If the Group
PIN supplied does not match the actual group
PIN, the Crypto iButton will return this error
code.

ERR_BAD_PIN_LENGTH
83H
Command Interpreter

There are 2 commands that can change PIN
values. The set group PIN and the set com-
mon PIN commands. Both of these require
the new PIN as well as the old PIN. This
error code will be returned if the old PIN
supplied was correct, but the new PIN was
greater than 8 characters in length.

ERR_BAD_NAME_LENGTH
85H
Command Interpreter

A transaction group name may not exceed 16
characters in length. If the name supplied is
longer than 16 characters, this error code is
returned.

ERR_INSUFFICIENT_RAM
86H
Command Interpreter

The create transaction group and create ob-
ject commands return this error code when
there is not enough heap available in the
Crypto iButton.

ERR_CIB_LOCKED
87H
Command Interpreter

When the Crypto iButton has been locked, no
groups or objects can be created or de-
stroyed. Any attempts to create or delete
objects will generate this error code.

ERR_CIB_NOT_LOCKED
88H
Command Interpreter

If the Crypto iButton has not been locked
there is no audit trail. If one of the audit trail
commands is executed this error code will be
returned.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 75/102

ERR_GROUP_LOCKED
89H
Command Interpreter

Once a transaction group has been locked
object creation within that group is not pos-
sible. Also the objects' attributes and types
are frozen. Any attempt to create objects or
modify their attribute or type bytes will gener-
ate this error code.

ERR_BAD_OBJECT_TYPE
8AH
Command Interpreter

When the host sends a create object com-
mand to the Crypto iButton, one of the pa-
rameters it supplies is an object type (see
command section). If the object type is not
recognized by the firmware it will return this
error code.

ERR_BAD_OBJECT_ATTR
8BH
Command Interpreter

When the host sends a create object com-
mand to the Crypto iButton, one of the pa-
rameters it supplies is an object attribute byte
(see command section). If the object attribute
byte is not recognized by the firmware this
error code will be returned.

ERR_BAD_SIZE
8CH
Command Interpreter

This error code is normally generated when
creating or writing an object. It will only occur
when the object data supplied by the host has
an invalid length.

ERR_BAD_GROUP_ID
8DH
Command Interpreter

All commands that operate at the transaction
group level require the group ID to be sup-
plied in the command packet. If the group ID
specified does not exist in the Crypto iButton
it will generate this error code.

ERR_BAD_OBJECT_ID
8EH
Command Interpreter

All commands that operate at the object level
require the object ID to be supplied in the
command packet. If the object ID specified
does not exist within the specific transaction
group (also specified in the command packet)
the Crypto iButton will generate this error
code.

ERR_INSUFFICIENT_FUNDS
8FH
Command Interpreter

If a script object that executes financial
transactions is invoked and the value of the
money register is less than the withdrawal
amount requested this error code will be re-
turned.

ERR_OBJECT_LOCKED
90H
Command Interpreter

Locked objects are read only. If a write object
command is attempted and it specifies the
object ID of a locked object the Crypto iButton
will return this error code.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 76/102 Dallas Semiconductor Company Confidential

ERR_OBJECT_PRIVATE
91H
Command Interpreter

Private objects are not directly readable and
may not be modified by the write object
command. If a read object command or a
write object command is attempted, and it
specifies the object ID of a private object, the
Crypto iButton will return this error code.

ERR_MAX_GROUPS
93H
Command Interpreter

Only 63 (= MAX_GROUPS) transaction
groups may be created. If a service provider
attempts to create more transaction groups
than MAX_GROUPS, the firmware will return
this error code.

ERR_MAX_OBJECTS
94H
Command Interpreter

Each transaction group may have as many
as 112 (= MAX_OBJECTS) objects. Any
attempt by a service provider to create more
will result in this error code being returned.

ERR_NOT_SCRIPT_ID
95H
Command Interpreter

If the object ID passed to the script interpreter
for the invoke script command is not the ID of
a script object, this error code will be
returned.

ERR_OPEN_GROUP
96H
Command Interpreter

If a service provider attempts to create a new
transaction group while an existing group is
unlocked, the command interpreter will return
this error code.

ERR_BAD_GROUP_CRC
97H
Command Interpreter

This error code is only returned by the check
group crc command if the crc check fails.

ERR_GROUP_NOT_FOUND
98H
Command Interpreter

This error code is generated by the get group
id command if the name supplied does not
match the name of any of the transaction
groups in the Crypto iButton.

ERR_NO_KEY_GENERATION
99H
Command Interpreter

If any of the key set generation commands
are called after the Crypto iButton has been
locked or the disable key set generation
command has been called, the command
interpreter will return this error code.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 77/102

ERR_BAD_MODULUS_ID
9AH
Command Interpreter

The generate RSA exponent pair and gener-
ate RSA exponent commands both require a
modulus ID. If the object ID specified is not a
modulus ID, the command interpreter will
return this error code.

ERR_BAD_EXPONENT_ID
9BH
Command Interpreter

The generate RSA exponent command re-
quires the caller to supply the object ID of the
public exponent. If the ID supplied is not the
ID of an RSA exponent, the command inter-
preter will return this error code.

ERR_NOT_CIB_CREATED
9CH
Command Interpreter

The modulus ID supplied to the generate
RSA exponent pair and generate RSA expo-
nent commands must be the ID of a modulus
that was created by the Crypto iButton. If it is
not, the command interpreter will return this
error code.

ERR_EXP_NOT_REL_PRIME
9DH
Command Interpreter

This error code is only be generated by the
generate RSA modulus and exponent com-
mand. The Crypto iButton first generates a
modulus and computes the Φ of the modulus.
It then tests the exponent to make sure it is
relatively prime to Φ. If Φ is not relatively
prime to the public exponent, the firmware
returns this error code.

ERR_OPERATOR_NOT_EXPECTED
C0H
Script Interpreter

This error code is generated when a valid
script operator has been used in an unex-
pected way. An example of this would be if
any operator other that the addition or sub-
traction operators are used with money regis-
ter objects.

ERR_EOS_EXPECTED
C1H
Script Interpreter

This error code is generated if the end of
statement operator (;) was expected but not
found.

ERR_BAD_ID
C2H
Script Interpreter

If the transaction script references an object
that does not exist within its group the script
interpreter generates this error code.

ERR_NOT_COMPOSITE
C3H
Script Interpreter

If the composite object member operator (.) is
used in a statement and the object cannot be
composite, the script interpreter generates
this error code.

ERR_UNEXPECTED_END
C4H
Script Interpreter

If the transaction script ends unexpectedly,
the script interpreter generates this error
code.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 78/102 Dallas Semiconductor Company Confidential

ERR_NOT_AN_OPERATOR
C5H
Script Interpreter

This error code is returned if the script inter-
preter was expecting an operator and did not
find one.

ERR_BAD_TYPE
C6H
Script Interpreter

The first byte after the composite object
member operator must be an object type
specification byte. If this is not a valid object
type byte, the script interpreter will return this
error code.

ERR_MEMBER_NOT_FOUND
C7H
Script Interpreter

If the script interpreter could not find the a
member of a composite object it will generate
this error code.

ERR_BAD_COMPARE
C8H

If the left and right values of a compare
statement are not identical the script inter-
preter generates this error code.

ERR_BAD_ADDITION
C9H
Script Interpreter

If an overflow occurs while adding one object
to another, the script interpreter will return
this error code.

ERR_BAD_SUBTRACTION
CAH
Script Interpreter

If an underflow occurs while subtracting one
object from other, the script interpreter will
return this error code.

ERR_SIZE
CBH
Script Interpreter

The script interpreter usually generates this
error code when a script instructs the inter-
preter to move a large object into a smaller
object. To copy one object into the other, the
target object must be greater than or equal to
the source object in size.

ERR_NOT_MONEY
CCH
Script Interpreter

The script interpreter generates this error
code when it expected a money object and
some other object type was specified. Any
time the subtraction object is used, money
objects must be used as the operands.

ERR_NOT_RSA_EXPONENT
CDH
Script Interpreter

Any time the script interpreter finds the ex-
ponentiation operator it expects the next byte
in the script to be the ID of an RSA exponent
object. If it is not, the script interpreter will
return this error code.

ERR_NOT_RSA_MODULUS
CEH
Script Interpreter

After the script interpreter finds the modulus
operator it expects the next byte in the trans-
action script to be the ID of an RSA modulus
object. If it is not, the script interpreter will
return this error code.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 79/102

ERR_MOD_OP_EXPECTED
CFH
Script Interpreter

When the script interpreter finds an expo-
nentiation operator it checks the next byte of
the script to make sure it is the ID of an RSA
exponent object. If it is, it expects the next
byte to be a modulus operator. If it is not, the
script interpreter returns this error code.

ERR_DESTRUCTED_OBJECT
D0H
Script Interpreter

Before the script interpreter begins executing
the instructions within the script, it checks all
of the object referenced by the script to make
sure they have not become inactive. For an
object to have become inactive, it must be a
destructible object (see SetCiBObjectAttr).
The group must also contain a destructor
object whose contents are less than the value
of the 4 most significant bytes of the real time
clock.

ERR_NO_CIBS_FOUND
F000H
Access System DLL

This error occurs when the FindCiBs func-
tion is unable to find any Crypto iButtons
during its search.

ERR_BAD_CIB_ROM
F100H
Access System DLL

This error occurs when the ROM data speci-
fied in a call to SelectCiB was not found in
the last search performed by FindCiBs .

ERR_CIB_NOT_FOUND
F200H
Access System DLL

The currently selected Crypto iButton can no
longer be found.

ERR_ADAPTER_NOT_FOUND
F300H
Access System DLL

During the last search by FindCiBs, no 1-wire
adapters were found.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 80/102 Dallas Semiconductor Company Confidential

Appendix B: Defines And Structures

DEFINES

#define MAX_PIN_LEN 8 // Maximum PIN length
#define MAX_NAME_LEN 16 // Maximum group name length
#define MAX_PACKET_LEN 128 // Maximum data packet length
#define MAX_OBJ_LEN 128 // Maximum length of object data

STRUCTURES

1) RETPACKET

The RETPACKET structure defines the information returned by the Crypto iButton’s
command interpreter.

typedef struct _RETPACKET
{

BYTE CSB;
BYTE DataLen;
BYTE CmdData[MAX_PACKET_LEN];

}
RETPACKET, *PRETPACKET, NEAR *NPRETPACKET, FAR *LPRETPACKET;

Members And Description

Name Description
CSB CSB (command status byte) is set to 0 upon successful

completion of any command. If a command fails CSB is set
to the appropriate error code (see appendix A).

DataLen DataLen specifies the number of bytes returned in the
CmdData array.

CmdData CmdData is an array of bytes that contains all of the data
returned by the command interpreter. All of the API functions
return this same data in a command specific structure.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 81/102

2) PIN

PIN defines the structure of the Crypto iButton’s common and group PINS.

typedef struct _PIN
{

BYTE Len;
BYTE PINData[MAX_PIN_LEN];

}
PIN, *PPIN, NEAR *NPPIN, FAR *LPPIN;

Members And Description

Name Description
Len Len specifies the PIN length in bytes.
PINData PINData is an array of bytes that specifies a group or

common PIN.

3) NAME

NAME defines the structure of transaction group names.

typedef struct _NAME
{

BYTE Len;
BYTE NameData[MAX_NAME_LEN];

}
NAME, *PNAME, NEAR *NPNAME, FAR *LPNAME;

Members And Description

Name Description
Len Len specifies the length of a group name in bytes.
NameData NameData is an array of bytes that specifies a transaction

group name

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 82/102 Dallas Semiconductor Company Confidential

4) CIBOBJ

CIBOBJ defines the generic structure of any Crypto iButton object.

typedef struct _CIBOBJ
{

BYTE Attr;
BYTE Type;
BYTE Len;
BYTE ObjData[MAX_OBJ_LEN]

}
CIBOBJ, *PCIBOBJ, NEAR *NPCIBOBJ, FAR *LPCIBOBJ;

Members And Description

Name Description
Attr Attr specifies the attributes of an object. For details on the

attributes, please refer to CreateCiBObject in the main
section of this document.

Type Type is the object type specification byte. For details on
types, please refer to CreateCiBObject in the main section of
this document.

Len Len specifies the length of the object data in bytes.
ObjData ObjData is an array of bytes that contain the actual object

data.

5) CIBINFO

CIBINFO defines the structure of the data returned by a call to the GetCiBConfiguration
command.

typedef struct _CIBINFO
{

BYTE GroupNum;
BYTE CiBFlags;

}
CIBINFO, *PCIBINFO, NEAR *NPCIBINFO, FAR *LPCIBINFO;

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 83/102

Members And Description

Name Description
GroupNum GroupNum specifies the number of transaction groups

currently within the Crypto iButton.
CiBFlags CiBFlags is a flag byte. For details on flags, please refer to

GetCiBConfiguration in the main section of this document.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 84/102 Dallas Semiconductor Company Confidential

Appendix C: Script Compiler
The compiler to error-check and compile scripts into interpretable code is available for
WINDOWS 95 and SUN Solaris. In both cases the program is run from the command line,
either direct (Solaris) or through the DOS Window (WINDOWS 95). The program requires
one command line parameter that specifies the name of the source file. Any extension is
allowed. In addition to the source file the compiler needs the symbol file that connects
symbolic names to object IDs. The name of the symbol file has to be the same as for the
source file. The extension of the symbol file is SYM. The compiler output file has the same
name as the source file and the extension OUT. Example: The command
scompile payeexfr.src
requires the file payeexfr.sym to be stored in the same directory as the source file.
The output file payeexfr.out will be generated in the same directory as the source file.
It may look like this:

Compiling PayeeTransfer ...

Transaction Group 'Payee Transfer'

Symbols:
========
 Temp: WorkingRegister ,Private
 AcceptPayment: Script ,Locked
 GenerateSalt: Script ,Locked
 RandomSalt: Salt ,Locked
 Balance: Money ,Locked
 N: Modulus ,Locked
 PublicExponent: Exponent ,Locked
 Output: OutputData ,Locked
 Input: InputData ,Open

Output Buffer:
04 A0 83 05 8B 18 A2 83 01 86 02 87 03 8B A2 8A
26 01 84 05 8B 04 83 04 80 A2 8A 22 01 8B 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The source code of this script and the contents of the associated symbol file are found in
the chapter “Sript Language” of this document. Currently the symbol file has to be edited
manually. The object IDs are assigned by the Crypto iButton at the time the objects are
created. The first object created in a transaction group automatically gets the ID 1, the
next one 2, etc. However, there is a group of five “Auto Objects” that can always be
accessed without explicitely creating them. Their names and IDs are shown in the table
on the following page. The codes that represent the script operators are included in the
table of Script Operators in the chapter “Sript Language”.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 85/102

Auto Objects and their Object IDs

Object Name Object Type Object ID (hex)
OutputData1 OutputData A0
OutputData2 OutputData A1
WorkingRegister WorkingRegister A2
ROMData ROMData A3
RandomFill RandomFill A4

With the exception of the ROMData Object which is always 8 bytes long, the Auto Objects
automatically adjust their length from 1 to 128 bytes depending on what size is actually
needed. The other objects get their length at the time of their creation (see
CreateCiBObject in the API chapter of this document).

The compiled script code is listed in the OUT-file after the line “Output Buffer:”. It starts
with a length byte followed by as many bytes of binary script code as the length byte
indicates. If a transaction group contains more than one script, the compiled code
segments are appended one after another, each starting with a length byte. A length byte
of 00 indicates the end of the compiled code.

A graphic user interface that creates transaction groups and objects, maintains the
symbol file, runs the script compiler and copies compiled scripts into their respective
objects is in preparation.

Until this user interface is available, one gets the size of the script objects by compiling
the scripts first and then creating the script objects inside a transaction group. The binary
code of each script is now manually copied from the script compiler’s output file to the
data buffer of the setup program that actually calls the firmware function to write to the
script object. If the script objects are not locked or privatized during the debug phase, they
can easily be modified without having to delete and re-create the transaction group.

To change the size af an object, the whole transaction group needs to be deleted and
newly created with all of its objects. If the objects are created in the same sequence as
before they will keep their previous object IDs and it will not be necessary to recompile the
scripts.

Script Compiler Error Codes
A table with error codes, explanations and corrective actions will be added later.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 86/102 Dallas Semiconductor Company Confidential

Appendix D: Device Communications

Introduction
The Crypto iButton operates in an environment where communication and power supply
share the same conducting path, and where the available amount of power is limited. To
make operation under these conditions possible, the device separates communication
from execution, performing each at different times. Every firmware function starts with the
bus master (host) communicating with the I/O buffer and Intermediate Product Register
(IPR) to set up an operation, then issuing a RUN command and then providing power on
the line for some fixed amount of time while the command is carried out.

Some commands may be processed quickly while others may take several seconds to
complete. An internal timer controlled by the OWUS register causes an alarm so that the
device may terminate work-in-progress and be prepared for the loss of power as the bus
master comes back on line to check status. The bus master and the device must agree on
the run time period prior to beginning an execution cycle. If the bus master removes
power and attempts to communicate while the microcontroller in running, a power failure
will occur and the work in progress will be interrupted.

The communication protocol of the Crypto iButton provides several types of commands
and signaling for managing this interaction. These include commands to read the status of
the Crypto iButton and to send status information back to the device, and also two
different RUN command, one called Start Program , the other called Continue Program .

When the bus master wishes to execute a firmware function, it must adhere to appropriate
protocols at various levels, as shown below.

Crypto

Command Protocol

Block Communications Protocol

Extended 1-Wire Protocol

Command Response

Buttoni

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 87/102

The Command Protocol defines the type of operation to be performed by the device and
with this the result of the operation. What information is to be transmitted on byte level and
the expected format of the result are explained for each operation in the section API
Specification under the headline FIRMWARE Call & Return .

The Block Communications Protocol delivers the Command Messages or Responses
reliably and handles fragmentation of the message or response when necessary. This
protocol includes the interaction with the device that is necessary to execute the operation
to completion. The Block Communications Protocol logically writes to and reads from the
I/O buffer and Intermediate Product Register (IPR). The I/O buffer is used to
receive/transmit the header information that applies to and safeguards the command and
result data that is exchanged through the IPR. Details on this header are discussed later
in this section .

The Extended 1-Wire Protocol is the standard Dallas 1-Wire Multidrop Serial
Communications Protocol with extensions to support the power transfer. This protocol
directly interacts with the hardware of the Crypto iButton. It synchronizes bus master and
Crypto iButton on the Crypto iButton’s hardware command level and physically
communicates with the I/O buffer and IPR on bit and byte level. This protocol is described
in the DS1954 Crypto i Button Data Sheet .

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 88/102 Dallas Semiconductor Company Confidential

Execution Of A Firmware Function Command

General Firmware Function Command Flow Chart Figure 1

Execute a Firmware Function Command (simplified)

Access device (Reset/Presence Sequence, Match ROM)

Write data block header to I/O Buffer (Write I/O Buffer)

Access device

Write data block data to IPR (Write IPR)

Access device

Write run time value to OWUS (Write Status)

Access device

Run Micro (Start Program)

Power on

Wait for as long as the run time value specifies

Power off

Access device

Get device status (Read Status)

Command completed ? (OWMS bit 5 = 0)
no yes

Access device

Write new run time value to OWUS (Write Status)

Access device

Run Micro (Continue Program)

Continue this loop until command is completed

Access device

Read data block header from I/O Buffer (Read I/O Buffer)

Access device

Read data block data from IPR (Read IPR)

1-Wire Reset (Reset/Presence Sequence)

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 89/102

Simplifications:
• All input data required to execute the firmware function command fits into one data

block. For multiple input data blocks see Figure 2.
• All output data generated by the firmware function command fits into one data block.

For multiple output data blocks see Figure 3.
• The device is assumed to be ready to receive a new firmware function command. To

verify the device status and complete an interrupted command see Figure 4.
• Data written to the device is not read back for verification. For verification see note

following Figure 4.
• No error handling is done. Error codes, their occurance, meaning and corrective

actions are discussed later in this appendix.

In case N data blocks have to be transmitted rather than 1 the first four statements of
Figure 1 are replaced by the flow chart in Figure 2.

Flow Chart For Multiple Data Blocks To Be Transmitted Figure 2

For data blocks 1 to N-1

Access device (Reset/Presence Sequence, Match ROM)

Write data block header to I/O Buffer (Write I/O Buffer)

Access device

Write data block data to IPR (Write IPR)

Access device

Write minimum run time value to OWUS (Write Status)

Access device

Run Micro (Start Program)

Power on

Wait for as long as the run time value specifies

Power off

Access device

Write last data segm. header to I/O Buffer (Write I/O Buffer)

Access device

Write last data block data to IPR (Write IPR)

(continued as shown in Figure 1)

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 90/102 Dallas Semiconductor Company Confidential

In case the output data generated by a firmware function command extends over several
data blocks the end section of Figure 1 is replaced by the flow chart in Figure 3.

Flow Chart For Multiple Data Blocks To Be Received Figure 3

(from Figure 1)

Continue this loop until command is completed

Access device (Reset/Presence Sequence, Match ROM)

Read data block header from I/O Buffer (Read I/O Buffer)

Access device

Read data block data from IPR (Read IPR)

Last block ? (MS Bit of Block Nr. = 1)
no yes

Access device

Write minimum run time value to OWUS (Write Status)

Access device

Run Micro (Continue Program)

Power on

Wait for as long as the run time value specifies

Power off

Continue this loop until all blocks are received

1-Wire Reset (Reset/Presence Sequence)

In any case it is recommended to verify that the Crypto iButton is ready to receive a new
command before one tries to execute another firmware function. The flow chart in Figure
4 shows the necessary steps.

After this check any previously interrupted command will definitely be completed and one
can continue with the flow chart of Figure 1. Any output data that could have been
generated by the interrupted command will be discarded automatically by the firmware in
order to maintain privacy.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 91/102

Check If The Device Is Ready For A New Command Figure 4

Check for readiness / complete interrupted command

Access device (Reset/Presence Sequence, Match ROM)

Get device status (Read Status)

yes
Accellerator running ? (CPST ≠ 0)

no

Cmd. compl. ? (OWMS Bit 5 = 0)
no yes

Access device

Write run time value to OWUS (Write Status)

Access device

Run Micro (Continue Program)

Power on

Wait for as long as the run time value specifies *

Power off

Continue this loop until command is completed

* If the arithmetic accellarator is running the run time value cannot be specified.
Therefore the waiting time has to be 3812.5 ms to be on the safe side.

Data Verification
Verification of data written to the I/O buffer is solely based on the CRC16 that the Crypto
iButton responds with after as many bytes as indicated by the length byte have been
transmitted. Data written to the IPR may be read back for verification. However, it requires
less time and program code and it is safe to rely on the CRC16 that the Crypto iButton
responds with after the data has been written to the IPR. More details on reading and
writing the I/O buffer and the IPR are found in the Crypto iButton data sheet.

OWUS Run Time Specification
If power is available, the microcontroller inside the Crypto iButton will run as long as the
code written to the OWUS register specifies. Only the lower 4 bits of the OWUS content
are relevant. The formula is: Run_Time = number * 250 ms + 62.5 ms. For the majority of
firmware functions the minimum value of 62.5 ms is by far enough. For the number-
crunching functions such as generation of key sets or modulus and exponent and de- or
encryption the run time can be a few seconds or longer. Even with the maximum run time
value of 3812.5 ms several cycles may be necessary.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 92/102 Dallas Semiconductor Company Confidential

OWMS Error Codes
The portion of the firmware that takes care of the correct data transfer to and from the
Crypto iButton has its own set of error codes. These codes are available to the bus
master through the lower 6 bits of the OWMS register that is read with the Read Status
command. They must not be confused with the error codes that are generated by the
command interpreter or script interpreter (see Appendix A). Those error codes are read
by the bus master from the IPR as the result of the execution of a firmware function
command.

0 CE_Reset System is reset
Occurrence: if the Crypto iButton is ready for a new command
Corrective action: none

1 CE_MsgInComp Message incomplete
Occurrence: if one or more blocks of a multi-block command have been transmitted
Corrective action: send the remaining blocks

2 CE_BadSeq Blocks missing or out-of-sequence
Occurrence: if blocks of a multi-block command are not transmitted in their natural

sequence or a block is skipped
Corrective action: reset Crypto iButton (Reset Micro command) and repeat sending the

firmware command and its data

3 CE_BufOverrun Message Buffer overrun occurred
Occurrence: if a multi-block command exceeds the size of the internal command

buffer; currently the buffer size is 256 bytes.
Corrective action: modify the command and its parameters to fit into 256 bytes

4 CE_BadCKSum Running checksum failure
Occurrence: if the checksum in the header of a block does not match the checksum

calculated by the Crypto iButton
Corrective action: re-transmit header and data of the block and start the micro again

5 CE_HdrSize Bad header length found in I/O buffer
Occurrence: if the block header is not 8 bytes long
Corrective action: re-transmit the header and start the micro again

6 CE_DataSize Bad data length found in IPR
Occurrence: if the number of bytes written to the IPR differs from the block length

value in the block header
Corrective action: re-transmit header and data of the block and start the micro again

7 CE_BadCRC Bad CRC check between header & data block
Occurrence: if the CRC in the header of a block does not match the CRC calculated

by the Crypto iButton

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 93/102

Corrective action: re-transmit header and data of the block and start the micro again

9 CE_FFONotEmpty Master failed to read I/O buffer completely
Occurrence: if the bus master has not read all bytes of the I/O buffer
Corrective action: read status to get the number of unread bytes and read the I/O buffer

again for the remaining bytes

10 CE_Standby No more data, standing by
Occurrence: if a firmware command is completed and the micro is run again

(continue program command)
Corrective action: none

11 CE_ResponseRdy Response message to host has been loaded
Occurrence: if the Crypto iButton has the first block of a multi-block response

message ready in the I/O buffer and IPR for the bus master to read
Corrective action: read I/O buffer to get the length of the data block and then read the

data from the IPR

12 CE_RespIncomp Response message incomplete
Occurrence: if the Crypto iButton has another block of a multi-block response

message ready in the I/O buffer and IPR for the bus master to read
Corrective action: read I/O buffer to get the length of the data block and then read the

data from the IPR

13 CE_NoHeader No header found after Start Program command
Occurrence: if the Crypto iButton is run (Start Program command) and the bus

master has not written a data block header to the I/O buffer
Corrective action: re-transmit header and data of the block and start the micro again

29 CE_FirstBirth Device is in first-birthday initialization
Occurrence: if a master erase command has been sent that has not yet been

completed
Corrective action: give power for 4 seconds to complete the command

32 to 63 CE_CIInComp Command interpreter incomplete status
Occurrence: if a firmware function command is not yet completed; the lower the

number, the closer the command is to completion
Corrective action: write a new run time value to OWUS and run the micro (Continue

Program command)

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 94/102 Dallas Semiconductor Company Confidential

Message Fragmentation and Block Formatting
When a message longer than 128 bytes or a smaller user-defined size is exchanged
between bus master and Crypto iButton it is necessary to fragment the message into
blocks. To be able to re-assemble the message error free either inside the Crypto iButton
or the bus master each block is accompanied by a control header. A header is always
eight bytes in length. The size of the data block may vary from 1 to 128 bytes.

The 8-byte header is formed as follows:

Byte Number Description
1 Block Number
2 Block Length
3 Remaining Length, Low byte
4 Remaining Length, High byte
5 Block CRC-16, Low byte
6 Block CRC-16, High byte
7 Check sum, Low byte
8 Check sum, High byte

Definitions

Block Number Counting starts with 0 and increments by 1 with every subsequent
block. For the last block the most significant bit of the block number
is set to 1. This convention allows detecting blocks that are out of
sequence. The maximum number of blocks that can be sent in a
single message to 128.

Block Length The number of bytes to be exchanged through the IP Register.
Valid numbers are 1 to 128 decimal or 1 to 80 hex. A zero value is
not allowed.

Remaining Length This 16-bit value represents the number of message bytes that
have not yet been transmitted successfully, including those in this
block. In the first block, this value wil be the length of the entire
message. In the last block, this value will equal the block length
byte.

Block CRC-16 This 16-bit value is the non-inverted CRC-16 check of the length of
the block and the message data in the block. The CRC generator
starts with all zeros at the beginning of each block. See the
example on the subsequent pages for details.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 95/102

Check sum This 16-bit value represents the running modulo-65536 sum of all
the data and header bytes that have been sent since the start of
the message up to but not including these check sum bytes
themselves. The check sum accumulator starts will all zeros at the
first block. Then every byte starting with the block number, block
length, remaining length followed by the data bytes and the CRC16
of the block are added. This results is then transmitted as check
sum for the first block. The starting value of the check sum
accumulator for the next block is obtained by adding the low byte
and high byte of the transmitted check sum to the transmitted
check sum. See the example on the subsequent pages for details.

Block Fragmentation Example
The following pages show the calculation of the headers of a 12-byte message that is to
be transmitted in three blocks might appear as follows. The data content of this example
message is a 01,02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C (all hexadecimal). The block
length is chosen to be 4 bytes for the first block, 3 for the second and 5 for the last block.

Header Calculation For The First Block

Description Input
Value

CRC16
Calculation

Check Sum
Calculation

Resulting
Header

starting condition 0000 0000
block number 00 not counted 0000 00
block length 04 C301 0004 04
remaining length low 0C not counted 0010 0C
remaining length high 00 not counted 0010 00
data byte #1 01 00C3 0011
data byte #2 02 90C1 0013
data byte #3 03 9111 0016 50
data byte #4 04 CF50 001A
CRC low 50 006A
CRC high CF 0139 CF

check sum low 39 0172 39

check sum high 01 0173 01

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 96/102 Dallas Semiconductor Company Confidential

Header Calculation For The Second Block

Description Input
Value

CRC16
Calculation

Check Sum
Calculation

Resulting
Header

starting condition 0000 0173
block number 01 not counted 0174 01
block length 03 0140 0177 03
remaining length low 08 not counted 017F 08
remaining length high 00 not counted 017F 00
data byte #1 05 F3C0 0184
data byte #2 06 5273 018A 52
data byte #3 07 2752 0191
CRC Low 52 01E3
CRC High 27 020A 27

check sum low 0A 0214 0A

check sum high 02 0216 02

Header Calculation For The Last (Third) Block

Description Input
Value

CRC16
Calculation

Check Sum
Calculation

Resulting
Header

starting condition 0000 0216
block number 82 not counted 0298 82
block length 05 03C0 029D 05
remaining length low 05 not counted 02A2 05
remaining length high 00 not counted 02A2 00
data byte #1 08 9602 02AA
data byte #2 09 C7D7 02B3
data byte #3 0A 5907 02BD
data byte #4 0B 0559 02C8 C5
data byte #5 0C 3FC5 02D4
CRC Low C5 0399
CRC High 3F 03D8 3F

check sum low D8 04B0 D8

check sum high 03 04B3 03

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 97/102

A message of 12 bytes is normally not split into three blocks and it is also not common to
change the size of each block. The example above was chosen to explain the most
general case only. One could have transmitted the same message in a single piece. In
that case the header would have been 80, 0C, 0C, 00, 47, 9A, C7, 01, all values in
hexadecimal.

Due to the hardware design of the IPR, the maximum size of a data block is 128 bytes.
This is sufficient for almost all commands. However, depending on the electrical contact
between Crypto iButton and bus master, a smaller block size may be more efficient if the
contact is intermittent. It takes less time to resent a few bytes rather than 128 bytes if only
a single byte is corrupted. Regardless what block size is cosen, all but the last block have
the same size.

The manual calculation of the check sum and the CRC16 is very time consuming and
error prone. To simplify the debugging of a application-specific program that
communicates with the Crypto iButton on the hardware level, a simple program has been
developed that generates the header information based on the specified block size and
hexadecimal input data. This program is listed on the following pages. Copies can be
requested via EMAIL to AutoID.Support@dalsemi.com.

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 98/102 Dallas Semiconductor Company Confidential

Header Calculation Program
'
' Com Layer Message Former -
'
Start:
 CLS
 LOCATE 24, 1
 INPUT "Maximum Segment Length (default=128): "; MaxBlock%
 IF MaxBlock% = 0 THEN MaxBlock% = 128
ReDo:
 PRINT "Input a string of two-character hex values separated by spaces (Q to quit):"
 INPUT a$
 IF UCASE$(a$) = "Q" THEN END
 a$ = LTRIM$(RTRIM$(a$)) + " "
 msg$ = ""
 FOR n% = 1 TO LEN(a$) STEP 3
 IF MID$(a$, n% + 2, 1) <> " " THEN
 BEEP
 PRINT "Bad hex string format"
 GOTO ReDo
 END IF
 msg$ = msg$ + CHR$(VAL("&H" + MID$(a$, n%, 2)))
 NEXT n%
 PRINT : PRINT

 BlockNumber% = 0
 Remain% = LEN(msg$)
 cksum& = 0

 DO WHILE Remain% > 0
 PRINT
 PRINT "Block Number ="; BlockNumber%; TAB(30); "Bytes remaining:"; Remain%
 PRINT
 ' Compute the length of the message segment to send -
 IF Remain% <= MaxBlock% THEN
 SegLen% = Remain% ' Use length of remaining msg
 ELSE
 SegLen% = MaxBlock% ' Use maximum length
 END IF

 ' Extract the desired segment from the message -
 segment$ = MID$(msg$, (BlockNumber% * MaxBlock%) + 1, SegLen%)

 ' Build the header -
 IF SegLen% = Remain% THEN
 x% = BlockNumber% OR &H80
 ELSE
 x% = BlockNumber%

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

Dallas Semiconductor Company Confidential 101596 99/102

 END IF
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 1"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 ' Add segment length and length remaining to header -
 x% = SegLen%
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 2"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 x% = Remain% AND 255
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 3"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 x% = Remain% \ 256
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 4"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)
 PRINT

 ' Compute the crc16 and checksum of the message segment -
 crc& = 0
 x% = SegLen%
 GOSUB DoCRC16
 PRINT "Segment Length (hex) = "; HEX$(SegLen%); TAB(40); "crc = "; HEX$(crc&)
 PRINT
 FOR ln% = 1 TO SegLen%
 byt% = ASC(MID$(segment$, ln%, 1))
 cksum& = 65535 AND (cksum& + byt%)
 x% = byt%
 GOSUB DoCRC16
 char% = byt% AND 127
 IF char% < 32 THEN char% = 32
 PRINT "Segment byte"; ln%; " (hex)"; TAB(25); HEX$(byt%); TAB(30); CHR$(char%);
TAB(40); "crc = "; HEX$(crc&); TAB(55); "cksum = "; HEX$(cksum&)
 NEXT ln%
 PRINT

 x% = crc& AND 255
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 5"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 x% = crc& \ 256
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 6"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

Note: This System Specification is a Preliminary Product Definition and is Subject to Change

101596 100/102 Dallas Semiconductor Company Confidential

 z& = cksum&

 x% = z& AND 255
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 7"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 x% = z& \ 256
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 8"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)
 BlockNumber% = BlockNumber% + 1
 Remain% = Remain% - SegLen%
 PRINT
 INPUT "Hit ENTER key..."; z$
 PRINT : PRINT

 LOOP
 GOTO Start
''
' The value in x% is the input byte value, crc& is the running result -
' The CRC-16 polynomial is 0xA001 (1001 0000 0000 0001)

DoCRC16:

 ' Repeat the iteration once for each of the eight bits -
 FOR n% = 0 TO 7

 ' Compute the XOR sum of the LS bit of x% with the lsb of crc% -
 bit% = (crc& XOR x%) AND 1
 ' Rotate crc& right one position (zero into ms bit) -
 crc& = crc& \ 2
 ' If the xor of the ls bits was a '1', apply the polynomial -
 IF bit% = 1 THEN crc& = (65535 AND (crc& XOR &HA001))
 ' Rotate the input byte to get the next bit into LS position -
 x% = x% \ 2

 NEXT n%
 RETURN

Glossary
Transaction Group

Object

etc.

