
Revision 1.02

Crypto iButton
Firmware Reference Manual

September 2, 1997

Introduction 4
Firmware Inside The Crypto iButton 5
Development Support 5
Software Development and Usage Model 6
API Specification 7
FindCiBs 8
SelectCiB 9
SetCommonPIN 10
MasterErase 12
CreateTransactionGroup 14
SetGroupPIN 16
CreateCiBObject 18
SetCiBObjectAttr 21
LockCiB 23
LockGroup 25
InvokeScript 27
ReadCiBObject 29
WriteCiBObject 31
ReadGroupName 33
DeleteGroup 35
GetGroupID 37
GetCiBConfiguration 39
ReadRealTimeClock 41
ReadTrueTimeClock 43
CheckGroupCRC 45
ReadRandomBytes 47
ReadFirmwareVersionID 49
ReadFreeRAM 50
ChangeGroupName 51
DisableKeySetGeneration 53
GenerateRSAKeySet 55
GenerateRSAModAndExp 57
GenerateRSAKeySetNP 60
GeneratePrime 62
GenerateRandomExponent 64
GetCiBError 66

Script Language 67
Appendix A: Error Code Definitions 68
Appendix B: Defines And Structures 72
1) RETPACKET 72
2) PIN 73
3) NAME 73
4) CIBOBJ 74
5) CIBINFO 74
6) BIGNUM 75
Appendix C: Device Communications 76
Introduction 76
Execution Of A Firmware Function Command 78
OWMS Error Codes 82
Message Fragmentation and Block Formatting 84
Block Fragmentation Example 85
Header Calculation Program 88
Glossary 91

Introduction
The Crypto iButton is a single-chip, physically secure coprocessor with integrated 1024-bit
arithmetic accelerator and continuously running true time clock in a self-contained stainless steel
package. In contrast to other products the Crypto iButton requires just a single data line plus
ground reference for communication and power supply. Its true time clock and the internal
NVSRAM are powered by an internal lithium cell.

The built-in firmware of the Crypto iButton is easy to use for a great variety of high security
applications. The non-volatile memory together with the well designed firmware functions make the
Crypto iButton very cost effective since several independent applications may share the same
physical device. Each service provider reserves its own private memory section (Transaction
Group) inside the device without the risk of overwriting other service provider's data.

Privacy is established by using PINs (Personal Identification Numbers). If desired, the device can be
made inaccessible to others by setting the common PIN or be locked completely. Locking,
however, does not even allow the service provider to make any more changes to the device's
original configuration.

The Crypto iButton is set up by the service provider for an application by creating a transaction
group that contains all data objects required to perform the handling and processing of data. This
group may be locked and protected by a PIN to prevent unauthorized access. After this preparation
phase the Crypto iButton is used by loading new data into input objects, invoking a script (an object
stored in the transaction group containing instructions) and, after the computation is done, reading
the result from output objects.

Firmware Inside The Crypto iButton
The Crypto iButton contains 32K Bytes of pre-programmed ROM containing the device's firmware.
This firmware is developed and maintained solely by Dallas Semiconductor, not by the user of the
Crypto iButton or service provider. The major portion of this manual is dedicated to explaining this
firmware. Dealing with the firmware makes application development for the Crypto iButton more
efficient and faster than writing assembly language code for a microcontroller.

The firmware of the Crypto iButton consists of four layers
a) elementary communication and power management
b) command interpreter to execute single commands
c) script interpreter to apply a series of operations and functions to data stored in the device

d) library of functions accessible to the script interpreter

The functions of layer a) are invisible to the user. What they accomplish and how they work is
described in detail in Appendix D, Device Communications. The firmware functions that realize an
operating system to execute commands sent by the bus master (layer b) are explained in the
section API Specification (Application Program Interface). Except for the API functions that
logically singulate and address a specific Crypto iButton and provide error code information to the
application software, each of the functions has a direct firmware equivalent to be used if the
application platform is not supported by an API. The section Script Language defines the
elements and syntax of the script language and discusses examples that represent a variety of
typical Crypto iButton applications.

Development Support
In a typical application the Crypto iButton is temporarily connected to a DS1410E adapter that
interfaces it to the parallel port (LPT) of a computer. Application software running on the computer
calls API functions that, in turn, call operating system functions of the Crypto iButton's firmware and
invoke scripts that the service provider has implemented when preparing the Crypto iButton for the
application. They also manage the power supply to the Crypto iButton. This API is currently
available from Dallas Semiconductor for IBM-compatible computers running under WINDOWS
3.1x , WINDOWS 95 and WINDOWS NT. APIs for other computer types and operating systems are
in preparation.

Scripts are very compact sets of instructions to be applied to data already transferred to the Crypto
iButton. To simplify script development and testing, Dallas Semiconductor has developed a text
based script compiler that is available for several different computer types. Which computers and
operating systems are currently supported and how this compiler is invoked is explained in
Appendix C, Script Compiler.

Software Development and Usage Model
The Crypto iButton's API is provided as Dynamic Link Library (DLL). This allows the service provider
to develop application software using any high level language that is supported by a compiler that
creates Windows or Windows 95 compatible code. For currently unsupported target machines the
software development is more complex since one has to deal directly with the firmware functions
that realize the operating system of the Crypto iButton.

After the Crypto iButton's functionality (usage model) to be implemented in the application program
and the application program itself are defined, the software development goes through three
phases, the preparation phase, setup phase and debug phase.

In the preparation phase, the software developer
• defines all data and script objects needed to perform the data processing inside the Crypto

iButton
• writes and compiles the script(s) using the script compiler
• writes a setup program that allows calling functions of the Crypto iButton's operating system
• writes a test version of the application program that writes objects of the transaction group,

invokes script(s), reads objects, displays data and allows interaction for debugging purposes.

In the setup phase, the software developer uses the setup program to
• create a transaction group for this usage model in the Crypto iButton
• set a PIN for the transaction group (recommended)
• create all data and script objects needed to perform the data processing
• set attributes of these objects

In the debug phase, the software developer

• uses the test version of the application program to debug both the script(s) and the functions
calling on the Crypto iButton's operating system

To modify scripts or objects inside the transaction group, one uses the setup program.

After the scripts are debugged one locks the transaction group and the first device is ready for use.
More devices can now be set up automatically by re-creating the same transaction group and its
objects and writing the same data into the objects. All of this assumes no key generation.

Now the application program can be optimized and debugged. The use of the Crypto iButton
typically consists of the same sequence of calls, which first write data to input objects of the
transaction group, invoke script(s) and then read the output objects to obtain the results.

API Specification
This section of the Firmware Reference Manual describes all Application Program Interface (API)
and Firmware Function Commands in a standardized way. The API is highly pointer-oriented
whereas the firmware function call basically exchanges bytes with the Crypto iButton. The
information to be provided or received is essentially the same.

The Firmware Function Commands are relevant if there is no API for the desired platform
available. Otherwise the API should be preferred since it frees the developer from the burden of
having to write software for communicating with the Crypto iButton on a hardware level.

When communicating directly with the Crypto iButton on a hardware level, the information listed in
the section Transmit has to be written to the Intermediate Product Register (IPR), the information
listed under Receive is to be read from the IPR. In either case the information in the IPR is
accompanied by an 8-byte block header containing transfer management data. This block header
is generated and written to the I/O buffer by the bus master when data is transmitted to the Crypto
iButton. When receiving the result of the execution of a firmware command, the Crypto iButton
generates the header and makes it available to the bus master through the I/O buffer so that the
data in the IPR can be read correctly and error-checked by using the block header information.

Details on how the block header is generated and other relevant information on communicating
directly with the firmware are found in Appendix D, Device Communications. For timing
specifications of the electrical communications protocol and hardware command codes to access
the registers and to run the microcontroller inside the device please refer to the DS1954 Crypto
iButton Data Sheet.

Calling Conventions

The Crypto iButton API uses the same calling conventions as the WIN32 API functions.

FindCiBs

The FindCiBs function searches all of the peripheral ports with 1-wire bus drivers for Crypto
iButtons.

API Call & Return
LPBYTE DLLEXPORT FindCiBs(

LPWORD lpCiBNum // Pointer to number of CiBs found
);

If the function succeeds, the return value is a pointer to the top of the buffer containing the ROM
IDs of all of the Crypto iButtons found during the search. If the function fails for any reason, the
return value is a NULL pointer.

FIRMWARE Call & Return
This function is realized by the hardware of the Crypto iButton.

Parameters And Description
Name Description
lpCiBNum (output) pointer to a word that contains the number of Crypto iButtons found during
the search

Firmware Equivalent
Name Length
(n/a) (This function has no firmware equivalent)

Error Codes
Name API Firmware Explanation
ERR_NO_CIBS_FOUND F000H (n/a) No Crypto iButtons were found during the
previous search.
ERR_ADAPTER_NOT_FOUND F300H (n/a) No 1-wire adapter could be found on system.

Remarks
The buffer containing the ROM IDs is simply a contiguous list. The GetCiBError function may be
used to retrieve error information.

SelectCiB

SelectCiB is called to specify which Crypto iButton will be addressed for following communications.

API Call & Return
BOOL DLLEXPORT SelectCiB(

LPBYTE lpRomID // Pointer to ROM data
);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE.

FIRMWARE Call & Return
This function is realized by the hardware of the Crypto iButton.

Parameters And Description
Name Description
lpRomID (input)pointer to the ROM data of a Crypto iButton.

Firmware Equivalent
Name Length
(n/a) (This function has no firmware equivalent)

Error Codes
Name API Firmware Explanation
ERR_BAD_CIB_ROM F100H (n/a) The specified ROM was not found in the previous search.

Remarks
All other API functions use the ROM data set by SelectCiB when accessing the 1-wire bus.
Therefore, SelectCiB must be called before any of the functions that communicate with the Crypto

iButton firmware. If the specified ROM data was found during the last search (see FindCiBs),
SelectCiB will return TRUE. Otherwise SelectCiB will return FALSE.

SetCommonPIN

The SetCommonPIN function changes the common PIN (personal identification number).

API Call & Return
BOOL DLLEXPORT SetCommonPIN(

LPPIN lpCommonPIN, // Pointer to current common PIN structure
LPPIN lpNewPIN, // Pointer to new common PIN structure
BYTE OptionByte // Common PIN option byte
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 01H, old PIN, new PIN, PIN option byte

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
lpCommonPIN (input) pointer to a structure that contains the current common PIN, that is used to
access system level commands (such as the master erase command). The PIN supplied must
match the actual common PIN exactly for SetCommonPIN to succeed
lpNewPIN (input) pointer to a structure that contains the PIN that will replace the old
common PIN.
OptionByte (input) 1 byte, see below
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
old PIN 0 to 8 bytes
new PIN 1 to 8 bytes
PIN option byte 1 byte, see table below

Option Byte
Name Value Explanation
PIN_TO_ERASE 00000001b The common PIN is required to execute the master erase
command.
PIN_TO_CREATE 00000010b The common PIN is required to create a transaction
group.
The PIN option byte may be the bitwise-or of any of the above values.

Error Codes
Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match failed.
ERR_BAD_PIN_LENGTH 0083H 83H The supplied PIN was longer than 8 bytes.

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
Both, the common and group PINs are up to 8 bytes in length and are purely binary values. Initially,
the Crypto iButton has a PIN (Personal Identification Number) of 0 (Null) and an option byte of 0.
Once a PIN has been established, it can only be changed by providing the old PIN or by a Master
Erase. However, if the PIN_TO_ERASE bit is set in the option byte, the PIN can only be changed
through the set common PIN command. If no PIN has been set the length byte in the PIN structure
must be set to 0.

Changing and not publishing the common PIN will prevent other service providers from executing
the following commands:

SetCommonPIN always
LockCiB always
DisableKeySetGeneration always
CreateTransactionGroup only if the PIN_TO_CREATE bit is set
MasterErase only if the PIN_TO_ERASE bit is set

Therefore, when setting the common PIN it is highly recommended to set the PIN_TO_ERASE bit
to 1 and leave the PIN_TO_CREATE bit at 0. This allows the creation of additional transaction
groups but prevents accidental erasure of the Crypto iButton and further changes of the common
PIN.

MasterErase

The MasterErase function deletes all of the transaction groups.

API Call & Return
BOOL DLLEXPORT MasterErase(

LPPIN lpCommonPIN, // Pointer to common PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code, call the GetCiBError function.

FIRMWARE Call & Return
Transmit 02H, Common PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
lpCommonPIN (input) pointer to a structure that contains the current common PIN, that is used to
access system level commands.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Common PIN 1 to 8 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match failed.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the LSB (least significant bit) of the PIN option byte is clear (i.e. PIN not required for Master
Erase) then a 0 is transmitted for the Common PIN value. In general this text will always assume
a PIN is required. If no PIN has been established, a 0 should be transmitted as the PIN. This is true
for the common PIN and group PINS (see below). If the PIN was correct the firmware deletes all
groups (see below) and all objects within the groups. The common PIN and common PIN option
byte are both reset to zero.

See also the remarks at SetCommonPIN.

CreateTransactionGroup

The CreateTransactionGroup function allows the service provider to create a new transaction
group within the Crypto iButton provided it has not already been locked.

API Call & Return
BOOL DLLEXPORT CreateTransactionGroup(

LPPIN lpCommonPIN, // Pointer to common PIN structure
LPNAME lpGroupName, // Pointer to new group name structure
LPPIN lpGroupPIN // Pointer to PIN for new group
BYTE GroupAttr // Group attribute byte
LPBYTE lpGroupID // Pointer to group ID byte
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 03H, Common PIN, Group name, Group PIN, Group Attribute byte

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = Group ID if successful, 0 otherwise

Parameters And Description
Name Description
lpCommonPIN (input) pointer to a structure that contains the current common PIN.
lpGroupName (input) pointer to a structure that contains the initial name for the transaction
group to be created. The name must be less than or equal to 16 bytes in length.
lpGroupPIN (input) pointer to a structure that contains the initial PIN for the transaction group
to be created. The PIN must be less than or equal to 8 bytes in length.
GroupAttr (input) initial Group Attribute byte, reserved, should be set to 0.
lpGroupID (output) pointer to a byte that contains the firmware assigned ID for the newly
created group
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Common PIN 1 to 8 bytes
Group name 1 to 16 bytes
Group PIN 1 to 8 bytes
Group Attribute byte 1 byte

Error Codes
Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match failed.
ERR_BAD_PIN_LENGTH 0083H 83H The supplied PIN was longer than 8 bytes.
ERR_BAD_NAME_LENGTH 0085H 85H The supplied group name was more than 16
bytes long.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough memory to create a new
transaction group.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_OPEN_GROUP 0096H 96H There is an unlocked transaction group in the Crypto
iButton.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
All transaction groups must be locked before a new group can be created. There must also be at
least 512 bytes of RAM available in the Crypto iButton to create a new transaction group, even if the
new group will occupy less than 512 bytes. A transaction group can be created without knowing the
common PIN if the PIN_TO_CREATE bit of the Option Byte is 0. See SetCommonPIN for details.

SetGroupPIN

The SetGroupPIN function changes the PIN of a specific transaction group.

API Call & Return
BOOL DLLEXPORT SetGroupPIN(

BYTE GroupID // Desired transaction group's ID
LPPIN lpGroupPIN, // Pointer to current group PIN structure
LPPIN lpNewPIN, // Pointer to new group PIN structure
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 04H, Group ID, old GPIN, new GPIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.

lpGroupPIN (input) pointer to a structure that contains the current PIN for the transaction
group specified by GroupID.
lpNewPIN (input) pointer to a structure that contains the PIN that will replace the old group
PIN.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
old GPIN 0 to 8 bytes
new GPIN 1 to 8 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_PIN_LENGTH 0083H 83H The new PIN length was greater than 8 bytes.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
Both, the common and group PINs are up to 8 bytes in length and are purely binary values. If no
PIN has been set, the length byte in the PIN structure must be set to 0. The Group PIN only
restricts access to objects within the group specified by the group ID transmitted.

CreateCiBObject

The CreateCiBObject function creates new objects within an open transaction group.

API Call & Return
BOOL DLLEXPORT CreateCiBObject(

BYTE GroupID // ID of open transaction group
LPPIN lpGroupPIN // Pointer to group PIN
LPCIBOBJ lpNewObject // Pointer to object data structure
LPBYTE lpObjectID // Pointer to newly created object ID
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 05H, Group ID, Group PIN, Object type, Object attributes, Object data

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = object ID if successful, 0 otherwise

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.

lpNewObject (input) pointer to a structure containing the type, attributes and data of the object
to be created. Refer to CIBOBJ in Appendix B for the structure definition. Valid object types and
attributes are listed on the next page.
lpObjectID (output) pointer to a byte that contains the firmware assigned ID for the newly
created object
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Object type 1 byte
Object attributes1 byte
Object data 1 to 128 bytes

Object Type
Name Value Explanation
OUTPUT_OBJ 00H
WORKING_REG_OBJ 01H
ROM_DATA_OBJ 02H
RANDOM_FILL_OBJ 03H
RSA_MODULUS_OBJ 20H RSA modulus
RSA_EXPONENT_OBJ 21H RSA exponent
MONEY_REGISTER_OBJ 22H Money register
COUNTER_OBJ 23H Transaction counter
SCRIPT_OBJ 24H Transaction script
CLOCK_OFFSET_OBJ 25H Clock offset
SALT_OBJ 26H Random SALT
CONFIG_DATA_OBJ 27H Configuration object
INPUT_OBJ 28H Input data object
DESTRUCTOR_OBJ 29H Destructor

Object Attributes
Name Value Explanation
LOCKED_OBJ 00000001b The object is read-only.
PRIVATE_OBJ 00000010b The object is only accessible by transaction scripts.
DESTRUCTIBLE_OBJ 00000100b The object will become inaccessible to transaction scripts
once a destructor object becomes active.
CIB_CREATED_OBJ 10000000b The object was created by a Crypto iButton.
The object attribute byte may be the bitwise-or of any of the above values.

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough memory to create a new
transaction group.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_GROUP_LOCKED 0089H 89H The group specified by GroupID has been
locked.
ERR_BAD_OBJECT_TYPE 008AH 8AH The object type specified either does not exist, or
may not be created.
ERR_BAD_SIZE 008CH 8CH The length of the object data is not valid.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
Once a transaction group has been locked, object creation within that group is impossible. If the
CreateCiBObject command is successful the Crypto iButton firmware returns the Object's ID within
the group specified by the Group ID. If the PIN supplied by the host was incorrect or the group has
been locked by the Lock Group command (described below) the Crypto iButton returns an error
code. An object creation will also fail if the object is invalid for any reason. For example if the
object being created is an RSA modulus (object type 20H) and it is greater than 1024 bits in length.
Objects may also be locked, privatized and made destructible after creation by using the
SetCiBObjectAttr command described below. The CIB_CREATED_OBJ bit may only be set by the
firmware during the execution of one of the key set generation commands described below.

There is no command to change the size of an object once it is created. Therefore, to change the
size of an object, one has to delete the transaction group the object belongs to and then newly
create the transaction group with all of its objects. If the objects are created exactly in the same
sequence as they were before, they will keep their object IDs and there will be no need to re-
compile the scripts.

SetCiBObjectAttr

The SetCiBObjectAttr function allows the service provider to lock, privatize or make destructible a
specific object. Locking an object makes it read-only. Privatizing an object makes it accessible only
to transaction scripts. Making an object destructible limits the length of time that a specific object is
accessible to a transaction script.

API Call & Return
BOOL DLLEXPORT SetCiBObjectAttr(

BYTE GroupID // ID of open transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of object to lock
BYTE Attr // Attributes to be set
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit data

Transmit 06H, Group ID, Group PIN, Object ID (Lock Object)
07H, Group ID, Group PIN, Object ID (Privatize Object)
08H, Group ID, Group PIN, Object ID (Make Object Destructible)

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.

ObjectID (input)1 byte value that uniquely identifies the object within the transaction group
specified by GroupID.
Attr (input) 1 byte value that specifies the new attributes for the object specified by Object ID.
For valid attributes see next page.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.
Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Object ID 1 byte

Object Attributes
Name Value Explanation
LOCKED_OBJ 00000001b The object is read-only.
PRIVATE_OBJ 00000010b The object is only accessible by transaction scripts.
DESTRUCTIBLE_OBJ 00000100b The object will become inaccessible to transaction scripts
once a destructor object becomes active.
The object attribute byte may be the bitwise-or of any of the above values.

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_GROUP_LOCKED 0089H 89H The group specified by GroupID has been
locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_BAD_OBJECT_ID008EH 8EH The specified object does not exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the Group ID, Group PIN and Object ID are valid, the appropriate object attribute will be set.
Setting any object attribute bit is an irreversible operation.

LockCiB

The LockCiB function automatically locks an open transaction group if one exists and disables
group creation capability.

API Call & Return
BOOL DLLEXPORT LockCiB(

BYTE GroupID // ID of open transaction group
LPPIN lpCommonPIN // Pointer to common PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 09H, Group ID, Common PIN

Receive CSB = 0 if successful, appropriate error code otherwise

Output length = 0
Output Data = 0

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpCommonPIN (input) pointer to a structure that contains the common PIN for the Crypto iButton.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte, contents is 00H
Common PIN 1 to 8 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the host supplied Common PIN is correct and the Crypto iButton has not previously been locked,
the command will succeed. When the Crypto iButton is locked it will neither accept any new groups
or objects nor allow transaction groups to be deleted. This implies that all groups are automatically
locked.

See also the remarks at SetCommonPIN.

LockGroup

The LockGroup function locks a transaction group. Once a transaction group has been locked, no
more objects can be created within that group.

API Call & Return
BOOL DLLEXPORT LockGroup(

BYTE GroupID // ID of open transaction group
LPPIN lpGroupPIN // Pointer to group PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 0AH, Group ID, Group PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.

lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
lpRP (output) pointer to a structure that receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_GROUP_LOCKED 0089H 89H The group specified by GroupID has already
been locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the group PIN provided is correct, the Crypto iButton firmware will not allow further object creation
within the specified group. Locked groups may be deleted if the Crypto iButton has not been
locked. Since groups are completely self-contained entities they may be deleted by executing the
Delete Group command (described below).

InvokeScript

The InvokeScript function executes a transaction script within a specific group in the Crypto iButton.

API Call & Return
BOOL DLLEXPORT InvokeScript(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of script object
WORD RunMS // Number of milliseconds to allow the script

// to complete
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 0BH, Group ID, Group PIN, Object ID

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = estimated completion time

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.

lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
ObjectID (input)1 byte value that uniquely identifies the object within the transaction group
specified by GroupID. ObjectID must be a handle to a script object.
RunMS (input) 16-bit value that specifies the length of time (in milliseconds) required for the script
to complete.
lpRP (output) pointer to a structure that receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Object ID 1 byte

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_BAD_OBJECT_ID008EH 8EH The specified object does not exist.
ERR_NOT_SCRIPT_ID 0095H 95H The specified object was not a transaction script.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
The invoke script command may take several seconds to complete. It blocks communication to
any 1-wire device on the 1-wire bus. If an error code was returned in the CSB, the time estimate will
be 0.

ReadCiBObject

The ReadCiBObject function reads an object's attributes, type, length, and data.

API Call & Return
BOOL DLLEXPORT ReadCiBObject(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of object to read
LPCIBOBJ lpObject // Pointer to object data structure
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 0CH, Group ID, Group PIN, Object ID

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = object length if successful, 0 otherwise
Output Data = object data if successful, 0 otherwise

Parameters And Description
Name Description

GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
ObjectID (input)1 byte value that uniquely identifies the object within the transaction group
specified by GroupID.
lpObject (output) pointer to the object structure that will receive the object's data.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Object ID 1 byte

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_BAD_OBJECT_ID008EH 8EH The specified object did not exist within the group.
ERR_OBJECT_PRIVATE 0091H 91H The object is private and may not be read.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
Only open or locked objects may be read. If the Group ID, Group PIN and Object ID were correct,
the Crypto iButton checks the attribute byte of the specified object. If the object has not been
privatized, the Crypto iButton will transmit the object data.

WriteCiBObject

The WriteCiBObject function writes new data into an open object.

API Call & Return
BOOL DLLEXPORT WriteCiBObject(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of object to write
LPCIBOBJ lpObject // Pointer to object data structure
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 0DH, Group ID, Group PIN, Object ID, Object Size, Object Data

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description

Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
ObjectID (input)1 byte value that uniquely identifies the object within the transaction group
specified by GroupID.
lpObject (input) pointer to the object structure that contains the data to write to the object.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID, 1 byte
Group PIN 1 to 8 bytes
Object ID 1 byte
Object Size 1 byte
Object Data 1 to 128 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_SIZE 008CH 8CH The object data length specified was illegal.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_BAD_OBJECT_ID008EH 8EH The specified object did not exist within the group.
ERR_OBJECT_LOCKED 0090H 90H The object is locked and is read-only.
ERR_OBJECT_PRIVATE 0091H 91H The object is private and is read-only.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
Only open objects may be written. If the Group ID, Group PIN and Object ID are correct, the Crypto
iButton checks the attribute byte of the specified object. If the object has not been locked or
privatized, the Crypto iButton will clear the objects previous size and data and replace it with the
new object data. Note that the object type and attribute byte are not affected.

ReadGroupName

The ReadGroupName function reads a transaction group's name by specifying it's ID.

API Call & Return
BOOL DLLEXPORT ReadGroupName(

BYTE GroupID // ID of open transaction group
LPNAME lpGroupName // Pointer to transaction group name
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 0EH, Group ID

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = length of group name, 0 otherwise

Output Data = group name, 0 otherwise

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupName (output) pointer to a buffer that contains the name of the transaction group
specified by GroupID. Refer to RETPACKET in Appendix B for the structure definition to obtain the
length of the group name. A group name may be up to 16 bytes long.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
All byte values are legal in a group name. Transaction group IDs are numbered sequentially
starting from 1. Using the ReadGroupName function one can determine the transaction group of
interest without first knowing the group ID.

DeleteGroup

The DeleteGroup function deletes a locked transaction group.

API Call & Return
BOOL DLLEXPORT DeleteGroup(

BYTE GroupID // ID of open transaction group
LPPIN lpGroupPIN // Pointer to group PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 0FH, Group ID, Group PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the group PIN and group ID are correct the Crypto iButton will delete the specified group. Deleting
a group causes the automatic destruction of all objects within the group. If the Crypto iButton
has been locked the Delete Group command will fail.

If the Crypto iButton has been locked, the MasterErase function must be called to remove the
group. Note however, that a successful call to the MasterErase function deletes all of the
transaction groups within the Crypto iButton.

GetGroupID

If one knows the name of the transaction group of interest, the GetGroupID function allows to
retrieve the group's ID.

API Call & Return
BOOL DLLEXPORT GetGroupID(

BYTE GroupID // ID of open transaction group
LPNAME lpGroupName // Pointer to group name structure
LPBYTE lpGroupID // Pointer to group ID byte
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 10H, Group name

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = Group ID if successful, 0 otherwise

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupName (input) pointer to a structure containing the name of the desired transaction
group.

lpGroupID (output) pointer to a byte that contains the group ID that belongs to the name
pointed to by lpGroupName.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group name 1 to 16 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_NAME_LENGTH 0085H 85H The name length specified was greater than 16
bytes.
ERR_GROUP_NOT_FOUND 0098H 98H A matching group name was not found.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
This function provides a quick method for determining if the desired transaction group exists within
a Crypto iButton. No PIN is required.

GetCiBConfiguration

The GetCiBConfiguration function is called to retrieve important Crypto iButton configuration
information

API Call & Return
BOOL DLLEXPORT GetCiBConfiguration(

LPCIBINFO lpConfig // Pointer to configuration data
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 11H

Receive CSB = 0
Output length = 2
Output Data = Crypto iButton configuration structure

Parameters And Description
Name Description
lpConfig (output) pointer to a structure that contains the Crypto iButton's configuration
information. Refer to CIBINFO in Appendix B for the structure definition.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
(n/a) (the function call requires no parameters)

Configuration Structure

Name Sequence Explanation
GroupNum byte 1 number of transaction groups currently within the Crypto iButton.
CiBFlags byte 2 Flag byte (see below)

Flag Byte
Name Value Explanation
CIB_LOCKED 00000001b The Crypto iButton has been locked.
PIN_TO_CREATE 00000010b The Crypto iButton requires the common PIN to allow
transaction group creation.

The flag byte is the bitwise-or of any of the above values

Error Codes
Name API Firmware Explanation
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
This function provides a quick method for determining the number of transaction groups within the
Crypto iButton.

ReadRealTimeClock

The ReadRealTimeClock function reads the contents of the Real Time Clock in the Crypto iButton.

API Call & Return
BOOL DLLEXPORT ReadRealTimeClock(

LPDWORD lpRTCSeconds // 4 most significant bytes of the RTC
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 15H

Receive CSB = 0
Output length = 4
Output Data = 4 most significant bytes of the RTC

Parameters And Description
Name Description
lpRTCSeconds (output) pointer to a 4 byte unsigned number that receives the 4 most significant
bytes of the RTC.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
(n/a) (the function call requires no parameters)

Error Codes
Name API Firmware Explanation

ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
This command is normally used by a service provider to compute a clock offset during transaction
group creation. The value returned is the total number of seconds that have elapsed since the
battery was attached at the factory. Only the 4 most significant bytes of the RTC are read by this
command. The sub-second bytes are not returned. The value is not adjusted with a clock offset.

ReadTrueTimeClock

The ReadTrueTimeClock function reads the value of the Real Time Clock added to a clock offset
(specified by ObjectID).

API Call & Return
BOOL DLLEXPORT ReadTrueTimeClock(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ObjectID // ID of clock offset object
LPDWORD lpSeconds // RTC bytes + offset
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 16H, Group ID, Group PIN, ID of offset object

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 4 if successful, 0 otherwise
Output Data = Real time clock + clock offset ID

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
ObjectID (input)1 byte value that uniquely identifies the object within the transaction group
specified by GroupID. ObjectID must be a handle to a clock offset object.
lpSeconds (output) pointer to a 4 byte unsigned number that receives the 4 most significant
bytes of the RTC added to the 4 bytes of the clock offset. The addition is performed modulo 232.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
ID of offset object 1 byte

Error Codes
Name API Firmware Explanation

ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_BAD_OBJECT_ID008EH 8EH The specified object does not exist.
ERR_BAD_OBJECT_TYPE 008AH 8AH The specified Object ID is not a clock offset.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
This command succeeds if the group ID and group PIN are valid, and the object ID is the ID of a
clock offset. The clock offset object's value is computed (by the service provider) as the difference
between the 4 most significant byte of the RTC, and some meaningful time (such as the number of
seconds since 12:00 AM January 1, 1970). The Crypto iButton adds the clock offset to the current
value of the 4 most significant bytes of the RTC and returns that value in the output data field.

CheckGroupCRC

The CheckGroupCRC function verifies the integrity of a transaction group.

API Call & Return
BOOL DLLEXPORT CheckGroupCRC(

BYTE GroupID // ID of transaction group
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 1DH, Group ID

Receive CSB = 0 if CRC was good, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_BAD_GROUP_CRC 0097H 97H The saved group CRC did not match the CRC
just computed by firmware.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks

The Crypto iButton firmware maintains a CRC16 value for each transaction group. The integrity of
each group may be checked at any time.

ReadRandomBytes

The ReadRandomBytes function gives convenient access to a source of high quality random
numbers.

API Call & Return
BOOL DLLEXPORT ReadRandomBytes(

BYTE nBytes // Desired number of random bytes
LPBYTE lpRandomBuff // Pointer to buffer for random bytes
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 17H, Length (L)

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = L if successful, 0 otherwise
Output Data = L bytes of random data if successful

Parameters And Description
Name Description
nBytes (input) number of random bytes requested
lpRandomBuff (output) pointer to the buffer that will receive the random bytes from the Crypto
iButton.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Length (L) 1 byte unsigned binary number in the range of 1 to 128

Error Codes
Name API Firmware Explanation
ERR_BAD_SIZE 008CH 8CH The number of bytes requested was too large.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
ReadRandomBytes can return as many as 128 bytes of random data. This command provides a
good source of cryptograhpically useful random numbers.

ReadFirmwareVersionID

The ReadFirmwareVersionID function returns the firmware version ID string.

API Call & Return
BOOL DLLEXPORT ReadFirmwareVersionID(

LPNAME lpFirmwareID // Pointer to firmware ID string

LPRETPACKET lpRP // Pointer to return packet
);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 18H

Receive CSB = 0
Output length = Length of firmware version ID string
Output Data = Firmware version ID string

Parameters And Description
Name Description
lpFirmwareID (output) pointer to a structure that receives the firmware version ID string.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
(n/a) (the function call requires no parameters)

Error Codes
Name API Firmware Explanation
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If a good communication link exists between the host and the Crypto iButton, this function should
never fail. This command returns the firmware version ID as a Pascal type string (length + data).

ReadFreeRAM

The ReadFreeRAM function returns the amount of RAM still available in the Crypto iButton for
transaction groups.

API Call & Return
BOOL DLLEXPORT ReadFreeRAM(

LPWORD lpFreeRam // Pointer to free RAM word
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 19H

Receive CSB = 0
Output length = 2
Output Data = 2 byte value containing the amount of free RAM

Parameters And Description

Name Description
lpFreeRAM (output) pointer to an unsigned short integer that will receive the number of free
bytes of RAM.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
(n/a) (the function call requires no parameters)

Error Codes
Name API Firmware Explanation
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the Crypto iButton is locked this function will return 0 bytes free.

ChangeGroupName

The ChangeGroupName function changes the name of the transaction group (or the name of the
Crypto iButton) provided one knows the group PIN.

API Call & Return
BOOL DLLEXPORT ChangeGroupName(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
LPNAME lpGroupName // Pointer to new group name
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 1AH, Group ID, Group PIN, New Group name

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
lpGroupName (input) pointer a structure that contains the new name for the transaction group.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
New Group name 1 to 16 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_BAD_NAME_LENGTH 0085H 85H The length of the new name was greater than 16
bytes.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the group ID specified exists in the Crypto iButton and the PIN supplied is correct, the transaction
group name is replaced by the new group name supplied by the host. To change the name of the
Crypto iButton, set GroupID to 0 and set lpGroupPIN to the common PIN. This will replace the
Crypto iButton's name by the new name supplied by the host.

DisableKeySetGeneration

The DisableKeySetGeneration function is used to free RAM normally reserved for generating RSA
key sets.

API Call & Return
BOOL DLLEXPORT DisableKeySetGeneration(

LPPIN lpCommonPIN // Pointer to the common PIN
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 1BH, Group ID, Common PIN

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 0
Output Data = 0

Parameters And Description
Name Description
lpCommonPIN (input) pointer to a structure that contains the Crypto iButton's common PIN.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte, value = 0
Common PIN 1 to 8 bytes

Error Codes
Name API Firmware Explanation
ERR_BAD_COMMON_PIN 0081H 81H The common PIN match failed.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_NO_KEY_GENERATION 0099H 99H Key set generation has already been disabled.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
This command enables the service provider to free memory normally required by key set
generation commands for use by transaction groups. Disabling key set generation is an irreversible
operation. If the common PIN transmitted by the host is valid further RSA key set generation will be
impossible. Note that locking the Crypto iButton automatically disables key set generation.

See also the remarks at SetCommonPIN.

GenerateRSAKeySet

The GenerateRSAKeySet function instructs the Crypto iButton to generate a new RSA key set on
behalf of a specific transaction group.

API Call & Return
BOOL DLLEXPORT GenerateRSAKeySet(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ModulusSize // Number of bytes in modulus
LPBYTE lpModulusID // Pointer to modulus ID
LPBYTE lpPublicExpID // Pointer to public exponent ID
LPBYTE lpPrivateExpID // Pointer to private exponent ID
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 1CH, Group ID, Group PIN, Modulus size in bytes

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 3 if successful, 0 otherwise
Output Data = Modulus ID, public exponent ID, private exponent ID

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
ModulusSize (input) number of bytes in the modulus to be generated
lpModulusID (output) pointer to a byte that contains the object ID assigned to the newly created
modulus
lpPublicExpID (output) pointer to a byte that contains the object ID assigned to the newly created
public exponent.
lpPrivateExpID (output) pointer to a byte that contains the object ID assigned to the newly created
private exponent.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Modulus size in bytes 1 byte unsigned binary number in the range of 4 to 128

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough free RAM to store all of
the new objects.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_GROUP_LOCKED 0089H 89H The specified transaction group has been locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_NO_KEY_GENERATION 0099H 99H Key generation has been disabled.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the group ID specified exists in the Crypto iButton , the PIN supplied is correct and key generation
capability is enabled, the firmware will generate an entire RSA key set. The modulus and one of
the exponents will immediately be locked by the firmware. The other exponent will be privatized. If
successful this command will return the object ID's of the modulus, public exponent and private
exponent respectively. All objects created by Crypto iButton key generation commands have the
CIB_CREATE bit set in the attribute byte to make them distinguishable from objects created by the
service provider.

All of the key set generation commands that create a modulus object immediately destroy the
prime factors P and Q used to generate the modulus N (where N = P * Q). However Φ(N) = (P - 1)
* (Q - 1) is saved until the transaction group is locked. This gives the service provider the ability to
generate additional RSA exponent pairs using the same modulus. Even though the Crypto
iButton remembers ΦΦ for each modulus created on behalf of an open group, ΦΦ may never
be read.

 GenerateRSAModAndExp

The GenerateRSAModAndExp gives the service provider the ability to specify his own public
exponent and have the Crypto iButton generate a modulus and private exponent.

API Call & Return
BOOL DLLEXPORT GenerateRSAModAndExp(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ModulusSize // Number of bytes in modulus
BYTE ExponentID // ID of public exponent
LPBYTE lpModulusID // Pointer to modulus ID
LPBYTE lpPrivateExpID // Pointer to private exponent ID
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 1FH Group ID, Group PIN, Modulus size in bytes, Exponent ID

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 2 if successful, 0 otherwise

Output Data = Modulus ID, Private Exponent ID

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
ModulusSize (input) number of bytes in the modulus to be generated
ExponentID (input) 1 byte value that uniquely identifies an RSA public exponent created by the
service provider
lpModulusID (output) pointer to a byte that contains the object ID assigned to the newly created
modulus
lpPrivateExpID (output) pointer to a byte that contains the object ID assigned to the newly created
private exponent.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.

Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Modulus size in bytes 1 byte unsigned binary number in the range of 4 to 128
Exponent ID 1 byte

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough free RAM to store all of
the new objects.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_GROUP_LOCKED 0089H 89H The specified transaction group has been locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_NO_KEY_GENERATION 0099H 99H Key generation has been disabled.
ERR_BAD_MODULUS_ID 009AH 9AH The specified modulus does not exist.
ERR_BAD_EXPONENT_ID 009BH 9BH The specified exponent does not exist.
ERR_NOT_CIB_CREATED 009CH 9CH The modulus specified was not created by a
Crypto iButton.
ERR_EXP_NOT_REL_PRIME 009DH 9DH The specified public exponent was not relatively
prime to the Φ of the modulus generated by the Crypto iButton.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the group ID specified exists in the Crypto iButton , the PIN supplied is correct and key generation
capability is enabled, the firmware will generate a new RSA modulus N and a new exponent D such
that E * D Mod Φ(N) = 1. E is the RSA exponent whose ID was passed in the transmit data packet
and Φ(N) = Φ(P * Q) = (P - 1) * (Q - 1). The modulus object N will be locked and the exponent D
will be privatized by the firmware. This allows the service provider to choose a public exponent E
without ever knowing the private exponent D. The prime factors P and Q used to generate the
modulus N are destroyed and Φ is saved until the transaction group is locked

The firmware first generates the modulus N (N = P * Q). It then calculates Φ(N) = (P - 1) * (Q - 1).
If the public exponent is not relatively prime to Φ(N), the firmware destroys P, Q, N and Φ. This
causes the command interpreter to return the error code ERR_EXP_NOT_REL_PRIME. However,
the command may be retried since a new Φ(N) will be generated.

GenerateRSAKeySetNP

The GenerateRSAKeySetNP function instructs the Crypto iButton to generate a new RSA key set
on behalf of a specific transaction group. Unlike the GenerateRSAKeySet command, this
command does not privatize one of the exponents automatically. Once the key set components
have been read one of the exponents must be privatized before using the transaction group.

API Call & Return
BOOL DLLEXPORT GenerateRSAKeySetNP(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ModulusSize // Number of bytes in modulus
LPBYTE lpModulusID // Pointer to modulus ID
LPBYTE lpExp1 // Pointer to 1st exponent ID
LPBYTE lpExp2 // Pointer to 2nd exponent ID
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 1CH, Group ID, Group PIN, Modulus size in bytes

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 3 if successful, 0 otherwise
Output Data = Modulus ID, public exponent ID, private exponent ID

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
ModulusSize (input) number of bytes in the modulus to be generated
lpModulusID (output) pointer to a byte that contains the object ID assigned to the newly created
modulus
lpExp1 (output) pointer to a byte that contains the object ID assigned to the newly created
exponent.
lpExp2 (output) pointer to a byte that contains the object ID assigned to the newly created
exponent.
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.
Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Modulus size in bytes 1 byte unsigned binary number in the range of 4 to 128

Error Codes
Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough free RAM to store all of
the new objects.

ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_GROUP_LOCKED 0089H 89H The specified transaction group has been locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_NO_KEY_GENERATION 0099H 99H Key generation has been disabled.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the group ID specified exists in the Crypto iButton , the PIN supplied is correct and key generation
capability is enabled, the firmware will generate an entire RSA key set. The modulus and both of
the exponents will immediately be locked by the firmware. NO exponents will be privatized. If
successful this command will return the object ID's of the modulus, and both exponents. None of
these objects will have the CIB_CREATE bit set in the attribute byte.

GeneratePrime

The GeneratePrime function instructs the Crypto iButton to generate a prime number from 1 to 128
bytes in length.

API Call & Return
BOOL DLLEXPORT GeneratePrime(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE PrimeSize // Number of bytes in prime number
LPBIGNUM lpPrime // Pointer to prime data
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 1DH, Group ID, Group PIN, Modulus size in bytes

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = Length of prime number in bytes
Output Data = Prime number data LSB first

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
PrimeSize (input) number of bytes in the prime to be generated
lpPrime (output)pointer to a structure which receives the prime number
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.
Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Prime size in bytes 1 byte unsigned binary number in the range of 1 to 128

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough free RAM to store all of
the new objects.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_GROUP_LOCKED 0089H 89H The specified transaction group has been locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_NO_KEY_GENERATION 0099H 99H Key generation has been disabled.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the group ID specified exists in the Crypto iButton , the PIN supplied is correct and key generation
capability is enabled, the firmware will generate the prime number.

GenerateRandomExponent

The GenerateRandomExponent function instructs the Crypto iButton to generate an automatically
privatized random exponent.

API Call & Return
BOOL DLLEXPORT GenerateRandomExponent(

BYTE GroupID // ID of transaction group
LPPIN lpGroupPIN // Pointer to group PIN
BYTE ExpSize // Number of bytes in exponent
LPBYTE lpExpID // Pointer to object ID of exponent
LPRETPACKET lpRP // Pointer to return packet

);

If the function succeeds, the return value is TRUE. If the function fails for any reason, the return
value is FALSE. To retrieve the error code use the GetCiBError function.

FIRMWARE Call & Return
Transmit 1EH, Group ID, Group PIN, Exponent size in bytes

Receive CSB = 0 if successful, appropriate error code otherwise
Output length = 1 if successful, 0 otherwise
Output Data = Object ID of newly created exponent object

Parameters And Description
Name Description
GroupID (input) 1 byte value that uniquely identifies the transaction group within the Crypto iButton.
lpGroupPIN (input) pointer to a structure that contains the PIN for the transaction group
specified by GroupID.
ExpSize (input) number of bytes in the exponent to be generated
lpExpID (output)pointer to a byte which receives the exponent object ID
lpRP (output) pointer to a structure which receives the return packet from the Crypto iButton.
Firmware Equivalent
Name Length
Group ID 1 byte
Group PIN 1 to 8 bytes
Exponent size in bytes 1 byte unsigned binary number in the range of 1 to 128

Error Codes

Name API Firmware Explanation
ERR_BAD_GROUP_PIN 0082H 82H The group PIN match failed.
ERR_INSUFFICIENT_RAM 0086H 86H There was not enough free RAM to store all of
the new objects.
ERR_CIB_LOCKED 0087H 87H The Crypto iButton has been locked.
ERR_GROUP_LOCKED 0089H 89H The specified transaction group has been locked.
ERR_BAD_GROUP_ID 008DH 8DH The specified transaction group does not exist.
ERR_NO_KEY_GENERATION 0099H 99H Key generation has been disabled.
ERR_CIB_NOT_FOUND F200H (n/a) The selected Crypto iButton can no longer be
found.

Remarks
If the group ID specified exists in the Crypto iButton , the PIN supplied is correct and key generation
capability is enabled, the firmware will randomly generate a new private exponent.

GetCiBError

The GetCiBError function returns the last error that occurred while communicating with the Crypto
iButton.

API Call & Return
WORD DLLEXPORT GetCiBError(VOID);

This function never fails.

FIRMWARE Call & Return
This is an API function only. The firmware returns error codes in the Command Status Byte (CSB).

Parameters And Description
Name Description
(n/a) (this function requires no parameters)

Firmware Equivalent
Name Length
(n/a) (This function has no firmware equivalent)

Error Codes
Name API Firmware Explanation
(n/a) (n/a) (n/a) (This function always returns valid data.)

Remarks
The low byte of the return value is used for command interpreter and script interpreter errors. The
high byte is used for low level communication errors and data formatting errors. A listing of possible
error codes is provided in Appendix A.

Script Language
The firmware functions described in the previous section of this manual provide the handles to
creating objects, setting attributes and PINs and many other essential operations. The most
important of these firmware functions is the one that activates the script interpreter, the highest
layer of the Crypto iButton's firmware.

As a computer makes use of registers, data memory, I/O channels, peripherals and program
memory, the script interpreter does the same with the objects of a transaction group. Currently,
there are 14 different object types, each for a specific purpose (see CreateCiBObject description).
The object that equivalents the program memory of a common computer is called script. Such

scripts store very compact program code that is step by step interpreted and executed by the script
interpreter whenever the InvokeScript command is called.

The simple script language supported by the Crypto iButton script interpreter is described in detail
in the document entitled Cryptographic iButton Script Language.

 Appendix A: Error Code Definitions

Error Name Error Code Error Source Description
ERR_BAD_COMMON_PIN 81H Command Interpreter This error code will be returned when a
command requires a common PIN and the PIN supplied does not match the Crypto iButton's
common PIN. Initially the common PIN is set to 0.
ERR_BAD_GROUP_PIN 82H Command Interpreter Transaction groups may have their own
PIN. If this PIN has been set (by a set group PIN command) it must be supplied to access any of
the objects within the group. If the Group PIN supplied does not match the actual group PIN, the
Crypto iButton will return this error code.
ERR_BAD_PIN_LENGTH 83H Command Interpreter There are 2 commands that can change
PIN values. The set group PIN and the set common PIN commands. Both of these require the new
PIN as well as the old PIN. This error code will be returned if the old PIN supplied was correct, but
the new PIN was greater than 8 characters in length.
ERR_BAD_NAME_LENGTH 85H Command InterpreterA transaction group name may not
exceed 16 characters in length. If the name supplied is longer than 16 characters, this error code
is returned.
ERR_INSUFFICIENT_RAM 86H Command Interpreter The create transaction group and create
object commands return this error code when there is not enough heap available in the Crypto
iButton.
ERR_CIB_LOCKED 87H Command Interpreter When the Crypto iButton has been locked, no
groups or objects can be created or destroyed. Any attempts to create or delete objects will
generate this error code.
ERR_CIB_NOT_LOCKED 88H Command Interpreter If the Crypto iButton has not been locked.

ERR_GROUP_LOCKED 89H Command Interpreter Once a transaction group has been
locked object creation within that group is not possible. Also the objects' attributes and types are
frozen. Any attempt to create objects or modify their attribute or type bytes will generate this error
code.
ERR_BAD_OBJECT_TYPE 8AH Command Interpreter When the host sends a create object
command to the Crypto iButton, one of the parameters it supplies is an object type (see command
section). If the object type is not recognized by the firmware it will return this error code.
ERR_BAD_OBJECT_ATTR 8BH Command Interpreter When the host sends a create object
command to the Crypto iButton, one of the parameters it supplies is an object attribute byte (see
command section). If the object attribute byte is not recognized by the firmware this error code will
be returned.
ERR_BAD_SIZE 8CH Command Interpreter This error code is normally generated when
creating or writing an object. It will only occur when the object data supplied by the host has an
invalid length.
ERR_BAD_GROUP_ID 8DH Command Interpreter All commands that operate at the
transaction group level require the group ID to be supplied in the command packet. If the group ID
specified does not exist in the Crypto iButton it will generate this error code.
ERR_BAD_OBJECT_ID 8EH Command Interpreter All commands that operate at the object
level require the object ID to be supplied in the command packet. If the object ID specified does
not exist within the specific transaction group (also specified in the command packet) the Crypto
iButton will generate this error code.
ERR_OBJECT_LOCKED 90H Command Interpreter Locked objects are read only. If a write
object command is attempted and it specifies the object ID of a locked object the Crypto iButton will
return this error code.

ERR_OBJECT_PRIVATE 91H Command Interpreter Private objects are not directly readable
and may not be modified by the write object command. If a read object command or a write object
command is attempted, and it specifies the object ID of a private object, the Crypto iButton will
return this error code.
ERR_MAX_GROUPS 92H Command Interpreter Only 32 (= MAX_GROUPS) transaction
groups may be created. If a service provider attempts to create more transaction groups than
MAX_GROUPS, the firmware will return this error code.
ERR_MAX_OBJECTS 93H Command Interpreter Each transaction group may have as
many as 127 (= MAX_OBJECTS) objects. Any attempt by a service provider to create more will
result in this error code being returned.
ERR_NOT_SCRIPT_ID 94H Command Interpreter If the object ID passed to the script
interpreter for the invoke script command is not the ID of a script object, this error code will be
returned.
ERR_OPEN_GROUP 95H Command Interpreter If a service provider attempts to create a
new transaction group while an existing group is unlocked, the command interpreter will return this
error code.
ERR_BAD_GROUP_CRC 96H Command Interpreter This error code is only returned by the
check group crc command if the crc check fails.
ERR_BAD_PACKET_LEN 97H Command Interpreter If the ReadRandomBytes command is
executed and requests more than 128 bytes this error code is returned.
ERR_GROUP_NOT_FOUND 98H Command InterpreterThis error code is generated by the get
group id command if the name supplied does not match the name of any of the transaction groups
in the Crypto iButton.
ERR_NO_KEY_GENERATION 99H Command Interpreter If any of the key set generation
commands are called after the Crypto iButton has been locked or the disable key set generation
command has been called, the command interpreter will return this error code.
ERR_BAD_MODULUS_SIZE 9AH Command InterpreterThe generate RSA key set command
requires a requested modulus size. If the modulus size specified is illegal, the command
interpreter will return this error code.
ERR_KEY_GEN_DISABLED 9BH Command Interpreter This error code is returned when a key
set generation command is executed after key set generation has been disabled.
ERR_NO_CIBS_FOUND F000H Access System DLL This error occurs when the FindCiBs
function is unable to find any Crypto iButtons during its search.
ERR_BAD_CIB_ROM F100H Access System DLL This error occurs when the ROM data
specified in a call to SelectCiB was not found in the last search performed by FindCiBs.
ERR_CIB_NOT_FOUND F200H Access System DLL The currently selected Crypto iButton
can no longer be found.
ERR_ADAPTER_NOT_FOUND F300H Access System DLL During the last search by
FindCiBs, no 1-wire adapters were found.

Appendix B: Defines And Structures

DEFINES

#define MAX_PIN_LEN 8 // Maximum PIN length
#define MAX_NAME_LEN 16 // Maximum group name length
#define MAX_PACKET_LEN 128 // Maximum data packet length
#define MAX_OBJ_LEN 128 // Maximum length of object data

STRUCTURES

1) RETPACKET

The RETPACKET structure defines the information returned by the Crypto iButton's command
interpreter.

typedef struct _RETPACKET
{

BYTE CSB;
BYTE GroupID;
BYTE DataLen;
BYTE CmdData[MAX_PACKET_LEN];

}
RETPACKET, *PRETPACKET, NEAR *NPRETPACKET, FAR *LPRETPACKET;

Members And Description
Name Description
CSB CSB (command status byte) is set to 0 upon successful completion of any command. If a
command fails CSB is set to the appropriate error code (see appendix A).
GroupID The group ID for which the command was executed
DataLen DataLen specifies the number of bytes returned in the CmdData array.
CmdData CmdData is an array of bytes that contains all of the data returned by the
command interpreter. All of the API functions return this same data in a command specific
structure.

2) PIN

PIN defines the structure of the Crypto iButton's common and group PINS.

typedef struct _PIN
{

BYTE Len;
BYTE PINData[MAX_PIN_LEN];

}
PIN, *PPIN, NEAR *NPPIN, FAR *LPPIN;

Members And Description
Name Description
Len Len specifies the PIN length in bytes.
PINData PINData is an array of bytes that specifies a group or common PIN.

3) NAME

NAME defines the structure of transaction group names.

typedef struct _NAME
{

BYTE Len;
BYTE NameData[MAX_NAME_LEN];

}
NAME, *PNAME, NEAR *NPNAME, FAR *LPNAME;

Members And Description
Name Description
Len Len specifies the length of a group name in bytes.
NameData NameData is an array of bytes that specifies a transaction group name

4) CIBOBJ

CIBOBJ defines the generic structure of any Crypto iButton object.

typedef struct _CIBOBJ
{

BYTE Attr;
BYTE Type;
BYTE Len;
BYTE ObjData[MAX_OBJ_LEN]

}
CIBOBJ, *PCIBOBJ, NEAR *NPCIBOBJ, FAR *LPCIBOBJ;

Members And Description
Name Description
Attr Attr specifies the attributes of an object. For details on the attributes, please refer to
CreateCiBObject in the main section of this document.
Type Type is the object type specification byte. For details on types, please refer to
CreateCiBObject in the main section of this document.
Len Len specifies the length of the object data in bytes.
ObjData ObjData is an array of bytes that contain the actual object data.

5) CIBINFO

CIBINFO defines the structure of the data returned by a call to the GetCiBConfiguration
command.

typedef struct _CIBINFO
{

BYTE GroupNum;
BYTE CiBFlags;

}
CIBINFO, *PCIBINFO, NEAR *NPCIBINFO, FAR *LPCIBINFO;

Members And Description
Name Description
GroupNum GroupNum specifies the number of transaction groups currently within the Crypto
iButton.
CiBFlags CiBFlags is a flag byte. For details on flags, please refer to GetCiBConfiguration
in the main section of this document.

6) BIGNUM

BIGNUM defines the structure of the data returned by a call to the GeneratePrime command.

typedef struct _BIGNUM
{

BYTE Len;
BYTE NumArr[MAX_PACKET_LEN];

}
BIGNUM, *PBIGNUM, NEAR *NPBIGNUM, FAR *LPBIGNUM;

 Members And Description

Name Description
Len Length of large integer in bytes
NumArrByte array of binary representation of large integer

 Appendix C: Device Communications

Introduction
The Crypto iButton operates in an environment where communication and power supply share the
same conducting path, and where the available amount of power is limited. To make operation
under these conditions possible, the device separates communication from execution, performing
each at different times. Every firmware function starts with the bus master (host) communicating
with the I/O buffer and Intermediate Product Register (IPR) to set up an operation, then issuing a
RUN command and then providing power on the line for some fixed amount of time while the
command is carried out.

Some commands may be processed quickly while others may take several seconds to complete.
An internal timer controlled by the OWUS register causes an alarm so that the device may
terminate work-in-progress and be prepared for the loss of power as the bus master comes back
on line to check status. The bus master and the device must agree on the run time period prior to
beginning an execution cycle. If the bus master removes power and attempts to communicate while
the microcontroller in running, a power failure will occur and the work in progress will be
interrupted.

The communication protocol of the Crypto iButton provides several types of commands and
signaling for managing this interaction. These include commands to read the status of the Crypto
iButton and to send status information back to the device, and also two different RUN command,
one called Start Program, the other called Continue Program.

When the bus master wishes to execute a firmware function, it must adhere to appropriate
protocols at various levels, as shown below.

Crypto

Command Protocol

Block Communications Protocol

Extended 1-Wire Protocol

Command Response

Buttoni

The Command Protocol defines the type of operation to be performed by the device and with this
the result of the operation. What information is to be transmitted on byte level and the expected
format of the result are explained for each operation in the section API Specification under the
headline FIRMWARE Call & Return.

The Block Communications Protocol delivers the Command Messages or Responses reliably
and handles fragmentation of the message or response when necessary. This protocol includes

the interaction with the device that is necessary to execute the operation to completion. The Block
Communications Protocol logically writes to and reads from the I/O buffer and Intermediate
Product Register (IPR). The I/O buffer is used to receive/transmit the header information that
applies to and safeguards the command and result data that is exchanged through the IPR. Details
on this header are discussed later in this section.

The Extended 1-Wire Protocol is the standard Dallas 1-Wire Multidrop Serial Communications
Protocol with extensions to support the power transfer. This protocol directly interacts with the
hardware of the Crypto iButton. It synchronizes bus master and Crypto iButton on the Crypto
iButton's hardware command level and physically communicates with the I/O buffer and IPR on bit
and byte level. This protocol is described in the DS1954 Crypto iButton Data Sheet.

Execution Of A Firmware Function Command
General Firmware Function Command Flow Chart Figure 1

Execute a Firmware Function Command (simplified)
Access device (Reset/Presence Sequence, Match ROM)
Write data block header to I/O Buffer (Write I/O Buffer)
Access device
Write data block data to IPR (Write IPR)
Access device
Write run time value to OWUS (Write Status)
Access device
Run Micro (Start Program)
Power on
Wait for as long as the run time value specifies
Power off
Access device
Get device status (Read Status)
Command completed ? (OWMS bit 5 = 0) no yes
Access device
Write new run time value to OWUS (Write Status)
Access device
Run Micro (Continue Program)
Continue this loop until command is completed
Access device
Read data block header from I/O Buffer (Read I/O Buffer)
Access device
Read data block data from IPR (Read IPR)
1-Wire Reset (Reset/Presence Sequence)

Simplifications:
• All input data required to execute the firmware function command fits into one data block. For

multiple input data blocks see Figure 2.
• All output data generated by the firmware function command fits into one data block. For

multiple output data blocks see Figure 3.
• The device is assumed to be ready to receive a new firmware function command. To verify the

device status and complete an interrupted command see Figure 4.
• Data written to the device is not read back for verification. For verification see note following

Figure 4.
• No error handling is done. Error codes, their occurance, meaning and corrective actions are

discussed later in this appendix.

In case N data blocks have to be transmitted rather than 1 the first four statements of Figure 1 are
replaced by the flow chart in Figure 2.

Flow Chart For Multiple Data Blocks To Be Transmitted Figure 2
For data blocks 1 to N-1
Access device (Reset/Presence Sequence, Match ROM)
Write data block header to I/O Buffer (Write I/O Buffer)
Access device
Write data block data to IPR (Write IPR)
Access device
Write minimum run time value to OWUS (Write Status)
Access device
Run Micro (Start Program)
Power on
Wait for as long as the run time value specifies
Power off
Access device
Write last data segm. header to I/O Buffer (Write I/O Buffer)
Access device
Write last data block data to IPR (Write IPR)
(continued as shown in Figure 1)

In case the output data generated by a firmware function command extends over several data
blocks the end section of Figure 1 is replaced by the flow chart in Figure 3.

Flow Chart For Multiple Data Blocks To Be Received Figure 3

(from Figure 1)
Continue this loop until command is completed
Access device (Reset/Presence Sequence, Match ROM)
Read data block header from I/O Buffer (Read I/O Buffer)
Access device
Read data block data from IPR (Read IPR)
Last block ? (MS Bit of Block Nr. = 1) no yes
Access device
Write minimum run time value to OWUS (Write Status)
Access device
Run Micro (Continue Program)
Power on
Wait for as long as the run time value specifies
Power off
Continue this loop until all blocks are received
1-Wire Reset (Reset/Presence Sequence)

In any case it is recommended to verify that the Crypto iButton is ready to receive a new command
before one tries to execute another firmware function. The flow chart in Figure 4 shows the
necessary steps.

After this check any previously interrupted command will definitely be completed and one can
continue with the flow chart of Figure 1. Any output data that could have been generated by the
interrupted command will be discarded automatically by the firmware in order to maintain privacy.
Check If The Device Is Ready For A New Command Figure 4

Check for readiness / complete interrupted command
Access device (Reset/Presence Sequence, Match ROM)

Get device status (Read Status)
 yes Accellerator running ? (CPST ≠ 0) no

Cmd. compl. ? (OWMS Bit 5 = 0) no yes
Access device
Write run time value to OWUS (Write Status)

Access device
Run Micro (Continue Program)
Power on
Wait for as long as the run time value specifies *
Power off
Continue this loop until command is completed

* If the arithmetic accellarator is running the run time value cannot be specified. Therefore the
waiting time has to be 3812.5 ms to be on the safe side.

Data Verification
Verification of data written to the I/O buffer is solely based on the CRC16 that the Crypto iButton
responds with after as many bytes as indicated by the length byte have been transmitted. Data
written to the IPR may be read back for verification. However, it requires less time and program
code and it is safe to rely on the CRC16 that the Crypto iButton responds with after the data has
been written to the IPR. More details on reading and writing the I/O buffer and the IPR are found in
the Crypto iButton data sheet.

OWUS Run Time Specification
If power is available, the microcontroller inside the Crypto iButton will run as long as the code
written to the OWUS register specifies. Only the lower 4 bits of the OWUS content are relevant.
The formula is: Run_Time = number * 250 ms + 62.5 ms. For the majority of firmware functions the
minimum value of 62.5 ms is by far enough. For the number-crunching functions such as
generation of key sets or modulus and exponent and de- or encryption the run time can be a few
seconds or longer. Even with the maximum run time value of 3812.5 ms several cycles may be
necessary.
OWMS Error Codes
The portion of the firmware that takes care of the correct data transfer to and from the Crypto
iButton has its own set of error codes. These codes are available to the bus master through the
lower 6 bits of the OWMS register that is read with the Read Status command. They must not be
confused with the error codes that are generated by the command interpreter or script interpreter
(see Appendix A). Those error codes are read by the bus master from the IPR as the result of the
execution of a firmware function command.

0 CE_Reset System is reset
Occurrence: if the Crypto iButton is ready for a new command
Corrective action: none

1 CE_MsgInComp Message incomplete
Occurrence: if one or more blocks of a multi-block command have been transmitted
Corrective action: send the remaining blocks

2 CE_BadSeq Blocks missing or out-of-sequence
Occurrence: if blocks of a multi-block command are not transmitted in their natural

sequence or a block is skipped
Corrective action: reset Crypto iButton (Reset Micro command) and repeat sending the firmware

command and its data

3 CE_BufOverrun Message Buffer overrun occurred

Occurrence: if a multi-block command exceeds the size of the internal command buffer;
currently the buffer size is 256 bytes.

Corrective action: modify the command and its parameters to fit into 256 bytes

4 CE_BadCKSum Running checksum failure
Occurrence: if the checksum in the header of a block does not match the checksum

calculated by the Crypto iButton
Corrective action: re-transmit header and data of the block and start the micro again

5 CE_HdrSize Bad header length found in I/O buffer
Occurrence: if the block header is not 8 bytes long
Corrective action: re-transmit the header and start the micro again

6 CE_DataSize Bad data length found in IPR
Occurrence: if the number of bytes written to the IPR differs from the block length value in

the block header
Corrective action: re-transmit header and data of the block and start the micro again

7 CE_BadCRC Bad CRC check between header & data block
Occurrence: if the CRC in the header of a block does not match the CRC calculated by the

Crypto iButton
Corrective action: re-transmit header and data of the block and start the micro again

9 CE_FFONotEmpty Master failed to read I/O buffer completely
Occurrence: if the bus master has not read all bytes of the I/O buffer
Corrective action: read status to get the number of unread bytes and read the I/O buffer again for

the remaining bytes

10 CE_Standby No more data, standing by
Occurrence: if a firmware command is completed and the micro is run again (continue

program command)
Corrective action: none

11 CE_ResponseRdy Response message to host has been loaded
Occurrence: if the Crypto iButton has the first block of a multi-block response message

ready in the I/O buffer and IPR for the bus master to read
Corrective action: read I/O buffer to get the length of the data block and then read the data from

the IPR

12 CE_RespIncomp Response message incomplete
Occurrence: if the Crypto iButton has another block of a multi-block response message

ready in the I/O buffer and IPR for the bus master to read
Corrective action: read I/O buffer to get the length of the data block and then read the data from

the IPR

13 CE_NoHeader No header found after Start Program command
Occurrence: if the Crypto iButton is run (Start Program command) and the bus master has

not written a data block header to the I/O buffer
Corrective action: re-transmit header and data of the block and start the micro again

29 CE_FirstBirth Device is in first-birthday initialization
Occurrence: if a master erase command has been sent that has not yet been completed
Corrective action: give power for 4 seconds to complete the command

32 to 63 CE_CIInComp Command interpreter incomplete status

Occurrence: if a firmware function command is not yet completed; the lower the number, the
closer the command is to completion

Corrective action: write a new run time value to OWUS and run the micro (Continue Program
command)

Message Fragmentation and Block Formatting
When a message longer than 128 bytes or a smaller user-defined size is exchanged between bus
master and Crypto iButton it is necessary to fragment the message into blocks. To be able to re-
assemble the message error free either inside the Crypto iButton or the bus master each block is
accompanied by a control header. A header is always eight bytes in length. The size of the data
block may vary from 1 to 128 bytes.

The 8-byte header is formed as follows:
Byte Number Description
1 Block Number
2 Block Length
3 Remaining Length, Low byte
4 Remaining Length, High byte
5 Block CRC-16, Low byte
6 Block CRC-16, High byte
7 Check sum, Low byte
8 Check sum, High byte

Definitions

Block Number Counting starts with 0 and increments by 1 with every subsequent block. For
the last block the most significant bit of the block number is set to 1. This
convention allows detecting blocks that are out of sequence. The maximum
number of blocks that can be sent in a single message to 128.

Block Length The number of bytes to be exchanged through the IP Register. Valid
numbers are 1 to 128 decimal or 1 to 80 hex. A zero value is not allowed.

Remaining Length This 16-bit value represents the number of message bytes that have not yet
been transmitted successfully, including those in this block. In the first
block, this value wil be the length of the entire message. In the last block,
this value will equal the block length byte.

Block CRC-16 This 16-bit value is the non-inverted CRC-16 check of the length of the block
and the message data in the block. The CRC generator starts with all zeros
at the beginning of each block. See the example on the subsequent pages
for details.

Check sum This 16-bit value represents the running modulo-65536 sum of all the data
and header bytes that have been sent since the start of the message up to
but not including these check sum bytes themselves. The check sum
accumulator starts will all zeros at the first block. Then every byte starting
with the block number, block length, remaining length followed by the data
bytes and the CRC16 of the block are added. This results is then transmitted
as check sum for the first block. The starting value of the check sum
accumulator for the next block is obtained by adding the low byte and high
byte of the transmitted check sum to the transmitted check sum. See the
example on the subsequent pages for details.

Block Fragmentation Example

The following pages show the calculation of the headers of a 12-byte message that is to be
transmitted in three blocks might appear as follows. The data content of this example message is a
01,02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C (all hexadecimal). The block length is chosen to be 4
bytes for the first block, 3 for the second and 5 for the last block.

Header Calculation For The First Block
Description Input Value CRC16 Calculation Check Sum Calculation

Resulting Header
starting condition 0000 0000
block number 00 not counted 0000 00
block length 04 C301 0004 04
remaining length low 0C not counted 0010 0C
remaining length high 00 not counted 0010 00
data byte #1 01 00C3 0011
data byte #2 02 90C1 0013
data byte #3 03 9111 0016 50
data byte #4 04 CF50 001A
CRC low 50 006A
CRC high CF 0139 CF

check sum low 39 0172 39

check sum high 01 0173 01

Header Calculation For The Second Block
Description Input Value CRC16 Calculation Check Sum Calculation

Resulting Header
starting condition 0000 0173
block number 01 not counted 0174 01
block length 03 0140 0177 03
remaining length low 08 not counted 017F 08
remaining length high 00 not counted 017F 00
data byte #1 05 F3C0 0184
data byte #2 06 5273 018A 52
data byte #3 07 2752 0191
CRC Low 52 01E3
CRC High 27 020A 27

check sum low 0A 0214 0A

check sum high 02 0216 02

Header Calculation For The Last (Third) Block
Description Input Value CRC16 Calculation Check Sum Calculation

Resulting Header
starting condition 0000 0216
block number 82 not counted 0298 82
block length 05 03C0 029D 05
remaining length low 05 not counted 02A2 05
remaining length high 00 not counted 02A2 00
data byte #1 08 9602 02AA
data byte #2 09 C7D7 02B3
data byte #3 0A 5907 02BD

data byte #4 0B 0559 02C8 C5
data byte #5 0C 3FC5 02D4
CRC Low C5 0399
CRC High 3F 03D8 3F

check sum low D8 04B0 D8

check sum high 03 04B3 03

A message of 12 bytes is normally not split into three blocks and it is also not common to change
the size of each block. The example above was chosen to explain the most general case only. One
could have transmitted the same message in a single piece. In that case the header would have
been 80, 0C, 0C, 00, 47, 9A, C7, 01, all values in hexadecimal.

Due to the hardware design of the IPR, the maximum size of a data block is 128 bytes. This is
sufficient for almost all commands. However, depending on the electrical contact between Crypto
iButton and bus master, a smaller block size may be more efficient if the contact is intermittent. It
takes less time to resent a few bytes rather than 128 bytes if only a single byte is corrupted.
Regardless what block size is cosen, all but the last block have the same size.

The manual calculation of the check sum and the CRC16 is very time consuming and error prone.
To simplify the debugging of a application-specific program that communicates with the Crypto
iButton on the hardware level, a simple program has been developed that generates the header
information based on the specified block size and hexadecimal input data. This program is listed on
the following pages. Copies can be requested via EMAIL to AutoID.Support@dalsemi.com.
Header Calculation Program
'
' Com Layer Message Former -
'
Start:
 CLS
 LOCATE 24, 1
 INPUT "Maximum Segment Length (default=128): "; MaxBlock%
 IF MaxBlock% = 0 THEN MaxBlock% = 128
ReDo:
 PRINT "Input a string of two-character hex values separated by spaces (Q to quit):"
 INPUT a$
 IF UCASE$(a$) = "Q" THEN END
 a$ = LTRIM$(RTRIM$(a$)) + " "
 msg$ = ""
 FOR n% = 1 TO LEN(a$) STEP 3
 IF MID$(a$, n% + 2, 1) <> " " THEN
 BEEP
 PRINT "Bad hex string format"
 GOTO ReDo
 END IF
 msg$ = msg$ + CHR$(VAL("&H" + MID$(a$, n%, 2)))
 NEXT n%
 PRINT : PRINT

 BlockNumber% = 0
 Remain% = LEN(msg$)
 cksum& = 0

 DO WHILE Remain% > 0
 PRINT
 PRINT "Block Number ="; BlockNumber%; TAB(30); "Bytes remaining:"; Remain%
 PRINT

 ' Compute the length of the message segment to send -
 IF Remain% <= MaxBlock% THEN
 SegLen% = Remain% ' Use length of remaining msg
 ELSE
 SegLen% = MaxBlock% ' Use maximum length
 END IF

 ' Extract the desired segment from the message -
 segment$ = MID$(msg$, (BlockNumber% * MaxBlock%) + 1, SegLen%)

 ' Build the header -
 IF SegLen% = Remain% THEN
 x% = BlockNumber% OR &H80
 ELSE
 x% = BlockNumber%
 END IF
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 1"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 ' Add segment length and length remaining to header -
 x% = SegLen%
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 2"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 x% = Remain% AND 255
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 3"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 x% = Remain% \ 256
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 4"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)
 PRINT

 ' Compute the crc16 and checksum of the message segment -
 crc& = 0
 x% = SegLen%
 GOSUB DoCRC16
 PRINT "Segment Length (hex) = "; HEX$(SegLen%); TAB(40); "crc = "; HEX$(crc&)
 PRINT
 FOR ln% = 1 TO SegLen%
 byt% = ASC(MID$(segment$, ln%, 1))
 cksum& = 65535 AND (cksum& + byt%)
 x% = byt%
 GOSUB DoCRC16
 char% = byt% AND 127
 IF char% < 32 THEN char% = 32
 PRINT "Segment byte"; ln%; " (hex)"; TAB(25); HEX$(byt%); TAB(30); CHR$(char%); TAB(40);
"crc = "; HEX$(crc&); TAB(55); "cksum = "; HEX$(cksum&)
 NEXT ln%
 PRINT

 x% = crc& AND 255
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 5"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 x% = crc& \ 256
 Header$ = Header$ + CHR$(x%)

 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 6"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 z& = cksum&

 x% = z& AND 255
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 7"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)

 x% = z& \ 256
 Header$ = Header$ + CHR$(x%)
 cksum& = 65535 AND (cksum& + x%)
 PRINT " Header byte 8"; " (hex)"; TAB(25); HEX$(x%); TAB(55); "cksum = "; HEX$(cksum&)
 BlockNumber% = BlockNumber% + 1
 Remain% = Remain% - SegLen%
 PRINT
 INPUT "Hit ENTER key..."; z$
 PRINT : PRINT

 LOOP
 GOTO Start
''
' The value in x% is the input byte value, crc& is the running result -
' The CRC-16 polynomial is 0xA001 (1001 0000 0000 0001)

DoCRC16:

 ' Repeat the iteration once for each of the eight bits -
 FOR n% = 0 TO 7

 ' Compute the XOR sum of the LS bit of x% with the lsb of crc% -
 bit% = (crc& XOR x%) AND 1
 ' Rotate crc& right one position (zero into ms bit) -
 crc& = crc& \ 2
 ' If the xor of the ls bits was a '1', apply the polynomial -
 IF bit% = 1 THEN crc& = (65535 AND (crc& XOR &HA001))
 ' Rotate the input byte to get the next bit into LS position -
 x% = x% \ 2

 NEXT n%
 RETURN

Glossary
API

The Crypto iButton Application Programming Interface (API) is a document containing the
function prototypes of every high-level function available to the user's program and a
description of the actions, formal parameters, and return values of the functions. The API is
presented in the Crypto iButton Firmware Reference Manual. The PC implementation of the
Crypto iButton API is provided in the dynamic link library CiBAPI.dll. The UNIX implementation
is provided in the archive file cibapi.a

Blue Dot™ Receptor
A mating connector for a Crypto iButton. Pressing the Blue Dot with the Crypto iButton snaps it
into position. The Blue Dot Receptor is connected to a PC through a DS1410E parallel port
adapter. It may also be connected to a UNIX machine (or other computer having an RS232C
serial port) with a DS9097U serial port adapter.

Clock Offset

This is one of the basic data types supported by the Crypto iButton. To obtain the actual date
and time (Real Time) as a long integer number of seconds since a predefined "zero" date, the
value of this offset is added to the value provided by the True Time Clock. Since every
Transaction Group can define a different Clock Offset object, the definition of the starting point
for time measurement is under the control of the Service Provider who programs the
Transaction Group. The commonly used UNIX standard reference date for time measurement
is 00:00:00 a.m. on January 1, 1970.

Communication Layer
This is an intermediate layer of software that manages the complex task of providing error-free
communication between the host and the Crypto iButton. The Win32 implementation of the
Communication Layer is contained in the dynamic link library CiBComm.dll.

Configuration Data
This is one of the basic data types supported by the Crypto iButton. It is an unstructured data
type which can accept any type of data. Each Transaction Group may contain one or more
Configuration Data objects. The configuration data may be any kind of information required by
the application. Examples include text to identify the version number and other relevant
information about the application, certificates signed by a Certifying Authority binding a public
key with a particular end user, and even as intermediate storage for complex calculations
performed by Transaction Scripts.

Destructor
This is one of the basic data types supported by the Crypto iButton. A destructor is a data
object that can be added to any Transaction Group. It contains a value of the True Time Clock
which acts as an expiration time for any destructible Transaction Script or other data object.
When the value of the True Time Clock is greater than or equal to the value in the destructor,
the destructible Transaction Scripts and destructible data objects no longer function and return
an error message. A destructor can be used to selectively eliminate certain scripts or data
objects on a particular date in the future. A destructor has no effect on the operation of the
group until it expires.

Documentation
Technical Documentation for the Crypto iButton is available on the internet through the URL
http://www.ibutton.com/crypto in the section titled "Additional Information". The primary
technical reference document to be found there is the Crypto iButton Firmware Reference
Manual. This reference manual outlines the design and development process for Crypto
iButton applications and provides the complete API specification for the Crypto iButton's
embedded firmware. Other significant documents include Cryptographic iButton Script
Language, which serves as a guide to creation of the scripts to support specialized applications
of the Crypto iButton, and Guide to the Open Standard Feature Set of the Crypto iButton, which
describes the cryptographic features expressed in the Dallas Primary Group.

E-Mail Demonstration
Dallas Semiconductor provides an encrypted e-mail demonstration website which uses the
Primary Group stored in the Crypto iButton to encrypt and decrypt messages sent from one
registered user to another. The present URL for this site is http://crypto.ibutton.com/email . A
full-featured encrypted e-mail service is under development by another company.

Exponent
An integer number used in RSA encryption. There are two exponents, one used for encryption
and the other for decryption. The decryption exponent is a large number, whereas the
encryption exponent may be large or small. The Crypto iButton allows a 1024 bit exponent.
This is one of the basic data types supported by the Crypto iButton.

Input Data
This is one of the basic data types supported by the Crypto iButton. Data can be transmitted to
a Crypto iButton from the host and placed in an Input Data object, to be acted on by a
Transaction Script. The Transaction Script typically performs an operation involving the input
data and one or more stored data values and places the result in one or more Output Data
objects.

Modulus
A large integer number used in RSA encryption. The modulus and the public exponent
constitute the public key, and the modulus and private exponent constitute the private key. The
Crypto iButton allows 1024 bit moduli. This is one of the basic data types supported by the
Crypto iButton.

Money Register
This is one of the basic data types supported by the Crypto iButton. It is an unsigned integer
with 1 to 128 bytes of precision, as determined by the Service Provider who programs the
Transaction Group. The values in Money Registers can be manipulated by the arithmetic
operators contained in the Transaction Scripts.

Output Data
This is one of the basic data types supported by the Crypto iButton. Output data resulting from
the execution of a Transaction Script is placed in one or more Output Data objects, where it
can be read by the host.

Primary Group
A Transaction Group that Dallas Semiconductor programs into every Crypto iButton to support
basic cryptographic services. The services provided by this group are described in the
document entitled, Guide to the Open Standard Feature Set of the Crypto iButton. This group
is stored by the name "Dallas Primary" in the Crypto iButton. It supports RSA
encryption/decryption and digital signature generation. (There is an exportable version which
supports only digital signature.) The encryption and decryption capability can be used with the
Dallas Semiconductor Crypto iButton E-Mail Demonstration website to send and receive RSA
encrypted e-mail to other registered users.

Random Salt
This is one of the basic data types supported by the Crypto iButton. It is a random number
which can be used as a challenge to authenticate another Crypto iButton. The Crypto iButton
can remember the previously issued Random Salt so that it can confirm the validity of the
response. This is useful when passing monetary value securely from one Crypto iButton to
another.

Real Time Clock
This is the time calculated by adding the value of the Clock Offset in a Transaction Group to
the value provided by the True Time Clock. The Real Time Clock provides a measure of the
number of seconds since a predefined zero reference date. The Clock Offset is used by the
Service Provider to set the Real Time Clock to the correct date and time.

Script Compiler
A program which takes a formal description of a Transaction Group written in Crypto iButton
Script Language and produces a bytecode representation of the scripts which can be
interpreted and executed by the Script Interpreter. The Script Compiler is named
SCompile.exe. It takes an input Script Language file named <script> and a symbol declaration
file named <script>.sym and produces a bytecode file named <script>.out. Sample contents of
these files are presented in the documents entitled Cryptographic iButton Script Language and
Guide to the Open Standard Feature Set of the Crypto iButton.

Script Interpreter
One of the major components of the Crypto iButton's operating system. The operating system
firmware of the Crypto iButton contains an input-output subsystem to communicate with the
outside world, a command interpreter to intercept and execute commands from the outside
world, a memory-management subsystem, and a Script Interpreter that interprets the stored
Transaction Scripts.

Script Language
The source code for specifying the contents of a Transaction Group and writing Transaction
Scripts. The document entitled Cryptographic iButton Script Language available as a link from
http://www.ibutton.com/crypto describes the attributes of the Script Language and provides
example code.

Service Provider
Crypto iButtons are designed to be issued to a Service Provider. The Service Provider designs
an application for the Crypto iButton, writes application-level software for the host, and
programs a Transaction Group in the Crypto iButton to provide the security services required by
the application. The Service Provider then co-issues the Crypto iButtons to his own customers.
The Service Provider may be able to utilize the features provided in the Primary Group for
some services (such as secure web e-mail) without having to program a proprietary
Transaction Group.

Software
Software has been written for Windows 95, Windows NT, and UNIX to implement the Crypto
iButton API specification as defined in the Crypto iButton Firmware Reference Manual. For
Windows 95 and Windows NT, this API is made available through the dynamic link library
CiBAPI.dll which provides all of the high-level function calls defined in the specification. This
library communicates with the Crypto iButton through the Communication Layer provided in
CiBComm.dll. The Communication Layer uses error detecting and correcting methods to
transport data without errors between the Crypto iButton and the PC. When used with the Blue
Dot receptor attached to the DS1410E parallel port adapter, the Communication Layer must
call on a device driver to transfer bits, bytes, and reset signals to and from the Crypto iButton.
The Windows 95 device driver is VSauthD.vxd, and the Windows NT device driver is
DS1410D.sys. For UNIX, the API is made available through cibapi.a, which contains both the
API implementation and the Communication Layer.

Transaction Counter
This is one of the basic data types supported by the Crypto iButton. Its purposes are to
maintain a record of the number of transactions performed and to identify transactions by a
unique set of sequential numbers. When a Transaction Counter appears on the right-hand
side of an assignment statement in a script, the Script Interpreter will automatically increment
the Transaction Counter.

Transaction Group
A collection of constants, variables, and procedures in a Crypto iButton that are designed to
accomplish particular tasks or provide a particular set of services. Each Transaction Group
stored in the Crypto iButton is independent of every other group. Memory in a Transaction
Group may be allocated for the following types of data:

Clock Offset Input Data Random Salt
Configuration Data Modulus Transaction Counter
Destructor Money Register
Exponent Output Data

In addition to these data types, there are also executable procedures called Transaction Scripts
which can perform mathematical and cryptographic operations among the data types listed
above.

Transaction Script
This is one of the basic data types supported by the Crypto iButton. A Transaction Script is a
bytecode or p-code procedure which acts on the contents of one or more data objects in the
transaction group and produces one or more results which are stored in data objects of the
group. Transaction Scripts are obtained by writing a set of procedures in the Script Language
of the Crypto iButton and compiling them with the Script Compiler to produce the Transaction
Scripts that are stored in the Crypto iButton. (In Object-Oriented Programming terminology, a
Transaction Group may be thought of as an object that is an instance of the class defined by
the Script Language, and the Transaction Scripts are methods which act on the instance
variables of the class.)

True Time Clock
This is a continuously running clock implemented in hardware in the Crypto iButton, controlled
by a quartz crystal, and continuously powered by the built-in lithium energy source. This clock
starts when the Crypto iButton is assembled and runs continuously. Attempts to alter its
timekeeping generate a tamper response that leaves evidence of the abuse.

