
Cryptographic iButton Script Language

Version 1.00
17-Apr-97

Contents

CONTENTS 2

INTRODUCTION 3

CRYPTO IBUTTON™ SCRIPT LANGUAGE COMPONENTS 4

OBJECTS 4
COMPOSITE OBJECTS 6
SCRIPT OPERATORS 6
SCRIPT STATEMENTS 8
FUNCTIONS (SOFTWARE ICS) 10

THE GROUP SOURCE FILE 12

OBJECT DECLARATION SECTION 12
SCRIPT IMPLEMENTATION SECTION 13
SYMBOL FILE 14

APPENDIX A: OBJECT DEFINITIONS 15

APPENDIX B: SAMPLE SCRIPTS 18

APPENDIX C: RESERVED WORDS 21

APPENDIX D: SCRIPT INTERPRETER ERROR CODES 22

04/17/97 Page 3 of 23

Introduction

One of the major design goals of the Crypto iButton™ firmware is to give the service
provider enough flexibility to support a broad range of security related applications. The 2
main components of the firmware that meet this goal are the command interpreter and the
script interpreter. The command interpreter provides a set of firmware commands that
allow the service provider to create a complete transaction group. A transaction group
contains data objects (money registers, exponents, moduli, etc.) and script objects. Script
objects contain a set of instructions for the manipulation of the data objects. The script
interpreter carries out these instructions.

Scripts are actually created using a compiler that runs on a PC or a workstation. The output
of the script compiler is a script object to be added to a transaction group. This document is
mainly concerned with describing the input to the script compiler, known as the group file,
and the language in which it is written.

04/17/97 Page 4 of 23

Crypto iButton Script Language Components

Objects

Crypto iButton objects are the most primitive data structure operated upon by the script
interpreter. This section describes the internal representation of objects and the attributes,
which determine their accessibility.

All Crypto iButton objects are either user objects or automatic objects. The service
provider creates user objects using the CreateCiBObject1 command. This is typically when
the object’s attributes are set.

The internal representation of all objects is the same (see Figure 1). The first byte of the
object structure is the object structure length. This byte is set at the time of object creation
and determines the maximum length of the object data field. This implies that an object can
shrink after creation but never grow past its initial length. The next byte in the object
structure is the attribute byte. The attribute byte is simply the bitwise-or of any (or none) of
the possible attribute bits. Currently 4 of the possible 8 attribute bits are being used. Table 1
describes the possible attributes of a Crypto iButton object.

Attribute Definition Value
Open Anybody knowing the group PIN has full read/write access to

an open object.
00H

Locked Anybody knowing the group PIN has read-only access to
locked objects. Only a script can alter the contents of a locked
object.

01H

Private Private objects may not be read or written from outside the
Crypto iButton. Only the script interpreter has any access to
private objects.

02H

Destructible Destructible objects become inaccessible by the script
interpreter when the value of the Crypto iButton’s real time
clock exceeds the value of the group’s destructor object.

04H

CiB Created CiB created objects are elements of key sets generated by the
Crypto iButton2.

80H

Table 1

The next byte in the object structure specifies the object’s type. Appendix A contains a
complete list of Crypto iButton supported objects and their definitions. The length byte
specifies the length in bytes of the current object data.

1 The Crypto iButton Firmware Reference Manual contains a complete listing of all firmware commands.
2 Currently only RSA key set generation is supported by the Crypto iButton firmware. When an RSA key set is generated the Crypto iButton
automatically makes one of the exponents private. A host system may use this attribute bit to determine that nobody (even the service
provider) ever knew the private exponent.

04/17/97 Page 5 of 23

Object
structure
length (1 byte)

Attribute
(1 byte)

Type
(1 Byte)

Length
(1 byte)

Object data (1-128 bytes)

Figure 1

The memory required for user objects is contained entirely with its transaction group. Table
2 contains a list of user objects, their allowable sizes and their type bytes.

User Object Size
(bytes)

Type
byte

Modulus 1-128 20H
Exponent 1-128 21H
Money 1-128 22H
Counter 1-128 23H
Script 4-128 24H
ClockOffset 4 25H
SALT 1-128 26H
Configuration 1-128 27H
InputData 1-128 28H
Destructor 4 29H

Table 2

Automatic (auto) objects are created by the firmware when the Crypto iButton is initialized.
The memory they occupy is reserved and their attributes are pre-set. Table 3 contains a list
of automatic objects, their attributes, allowable sizes and corresponding type bytes.

Automatic
Object

Attributes Size
(bytes)

Type
byte

OutputData 1 Locked 1-128 A0H
OutputData 2 Locked 1-128 A1H
WorkingRegister Private 1-128 A2H
ROMData Locked 8 A3H
RandomFill Private 1-128 A4H

Table 3

The automatic objects are shared between groups. This leads to a different set of rules for
auto objects since it is important that transaction groups be completely isolated from one

04/17/97 Page 6 of 23

another. The Crypto iButton firmware manages these objects to make sure that one
transaction group can not access (read or write) data belonging to another transaction
group. Any time the Crypto iButton’s command interpreter processes a group level
command, it checks to see if a transition from one group to another has occurred. When a
different group is accessed the firmware destroys the contents of the OutputData objects.
This implies that the OutputData objects are not to be used for long-term storage. It is
important that the group author keep this in mind when designing his/her group. The
working register is used as a temporary working space for scripts and is unconditionally
cleared every time the command interpreter is executed. Also, the integrity of the ROM
data object is verified on every execution of the command interpreter.

Composite Objects

Composite (or nested) objects are simply objects that contain embedded objects within their
data area. They are used to bundle several pieces of information together in a single packet
that can be interpreted later by another Crypto iButton. Using composite objects is a good
way to reduce the number of objects contained within a transaction group. The data area of
a composite object is shown in the Figure 2 below.

T1 L1 D1 T2 L2 D2 … TN TN DN

TN = Type byte of embedded object N
LN = Length byte of embedded object N

DN = Data area of embedded object N

Figure 2

The overall length of a composite object can be described as follows:

Where

LC = Length of composite object
N = Number of embedded objects contained in composite
LE = Length of embedded object

Script Operators

The Crypto iButton script language provides several operators that allow for the
manipulation of object data. There are several types of operators including, arithmetic,
assignment and comparison operators. This section provides a detailed description of all
operators supported by the Crypto iButton script language.

∑ =
+=

N

1i
iEc)(LN*2L

04/17/97 Page 7 of 23

Addition (+)

The addition operator provides for the binary addition of two identically sized objects. If
the object data fields have different lengths or the addition results in an overflow the script
interpreter will abort and return an error code.

Subtraction (-)

The subtraction operator provides for the binary subtraction of two identically sized objects.
If the object data fields have different lengths or the subtraction results in an underflow the
script interpreter will abort and return an error code. This prevents a money register from
ever becoming negative.

Multiplication (*)

The multiplication operator may be used to multiply 2 objects of any size. If the result of
the multiplication is too large to store in the target object, the script interpreter will generate
an error code.

Exclusive-Or (Xor)

This operator provides for the bitwise exclusive-or of 2 objects. Like the addition and
subtraction operators the Xor operator requires identically sized objects.

Exponentiation (^)

The exponentiation operator is used for modular exponentiation only. If the modulus (see
below) operator does not follow the ^ operator the script interpreter will not attempt the
exponentiation and will return an error code.

Temp := InputPacket ^ PublicExp; { Illegal }
Temp := InputPacket ^ PublicExp Mod RSAModulus; { OK }

Modulus (Mod)

The modulus operator produces the remainder of an integer division. The modulus operator
is used in modular exponentiations such as those required by RSA and Diffie-Hellman.

Out := g ^ x Mod n;

It is also used in simple modular reductions such as those required by DSA (the digital
signature algorithm).

r := g ^ k Mod p;

04/17/97 Page 8 of 23

r := r mod q; { Reduce result modulo q }

Assignment (:=)

This operator assigns the result of an expression to the object at the left side of the
assignment.

Composite assignment (<-)

The <- operator is identical to the := operator except that the type and length of the object is
copied to the data field of the object at the left side of <-. Both assignment operators are
described in more detail in the script statement section below.

Comparison (=)

The comparison operator compares the type, length and data fields of the objects on either
side of =. If the comparison fails the script interpreter aborts and returns an error code. The
comparison operator is described in more detail in the script statement section below.

Member of (.)

The dot operator references objects embedded within a composite object.

SALT = temp.s[1]; { Check the 1st Salt object in temp }

In this statement the type and length bytes used in the comparison are the type and length of
the SALT object contained within temp, not the type and length bytes of temp itself.

Concatenation (&)

The concatenation operator gives a script the ability to append objects. When the script
interpreter appends one object to another it always includes the type and length as well as
the data field in the copy.

Output <- Balance & Count;

After the statement above has been interpreted, the Output object will contain the type,
length and data of both the Balance and Count objects.

Script Statements

All script statements are either assignments or comparison statements. There are 2 different
assignment operators, regular assignment := and the composite assignment <-. The only

04/17/97 Page 9 of 23

difference between the 2 operators is that the <- operator includes the objects type and
length before copying its data field.

Output <- Balance;

After this statement is interpreted the data area of Output contains the type byte of Balance,
(a money register) the length of the Balance data field and finally the contents of the Balance
data field. Everything described below that applies to the := assignment statements, also
applies to the <- assignment statement.

Assignment Statements

The simplest assignment statement copies the data field of one object to the data field of
another object.

Output := Balance;

In this statement the value of the money register (Balance) is copied into the output data
object (Output). This is probably not a very useful statement since Balance is probably a
locked object and is therefore readable.

When the script interpreter encounters certain objects (such as counters) on the right side of
the assignment operator it interprets the behavior of that object and transfers the new object
data field to the assignment target.

Output := Count;

If the value of Count before this statement is interpreted is 5, the new value of count
becomes 6. The new value is placed in Output. The salt, clock offset and random fill objects
also have special behavior associated with them (see Appendix A and B for details). If these
objects are encountered on the left side of the assignment operator, or anywhere in a
comparison statement, the script interpreter treats them like any other object.

A more useful assignment statement might combine some input data (perhaps a random
challenge), a counter, ROM data and a time stamp.

Temp := (InputPacket & Count & ROM & Time);

The Temp object now contains the input data combined with the auto-incremented counter,
the Crypto iButton’s serial number and a time stamp formed by adding the value of Time, to

04/17/97 Page 10 of 23

the Crypto iButton’s real time clock. The result might then be hashed and the padded result
signed with the group’s secret exponent.

Output := (SHA1(Temp) & Pad) ^ SecretExp Mod RSAMod;

Assignment statements must obey a few rules, which are intended to keep the
implementation of the script interpreter simple. Embedded objects must not appear on the
left side of either assignment operator. The following statements are both illegal.

Temp.m[1] := Balance;
Temp.s[1] <- MySALT;

Also assignment statements are always evaluated from left to right. Parentheses may
however be used when writing scripts to enhance readability.

Comparison statements

The comparison statement provides the only flow control currently supported by the Crypto
iButton script interpreter. If the comparison of 2 objects fails, the script is aborted
immediately and an error code3 is returned. The following code fragment shows a common
use of the comparison statement.

Temp := InputPacket ^PublicExp Mod RSAMod; { Decrypt signed packet }
MySALT = Temp.s[1]; { Challenge properly met? }
MyMoney := MyMoney+Temp.m[1]; { OK to increase balance. }

In this example a random challenge was generated by the Crypto iButton and contained in
the object MySALT. Once the signed challenge was received from the recipient it was
written into the InputPacket object. The script listed above decrypts the signed packet with
the public key (it is assumed that the public key being used has been previously verified).
The comparison statement is used to make sure that the SALT object in the resulting packet
is the same as MySALT. If they are identical the group’s money register balance is
increased and the script interpreter returns a successful status code. If the SALT object in
InputPacket is not identical to MySALT the script interpreter generates an error code and
does not interpret any statements that follow.

Functions (Software ICs)

The Crypto iButton script language provides very little in the way of operators and even less
for flow control. Because of these limitations is it is not useable for implementing complex
cryptographic algorithms such as hashing functions and block ciphers. In order to provide

3 Appendix D contains a complete list of script interpreter error codes.

04/17/97 Page 11 of 23

support for these and other complex operations the script interpreter4 allows calls into a
function library.

Function calls may appear only in assignment statements. The following statement calls the
SHA1 hash function and signs the result with the group’s secret exponent.

Output := SHA1(InputPacket) ^ SecretExp Mod RSAMod;

The parameter list is comma delimited and must be contained within parentheses. What is
actually passed to the SHA1 function is the object ID of InputPacket, not the object data.
This is similar to passing parameters by reference in other languages.

Currently (as of firmware revision 0.50) the only function supported is the SHA1 hash
function. Other functions such as DES, 3DES and DSA sign/verify are being considered for
addition to the function library.

4 Only Crypto iButton Firmware versions 0.50 and above support function calling.

04/17/97 Page 12 of 23

The Group Source File

The script compiler requires 2 input files to generate script objects, the group source file
(with an extension of .ibg) and a symbol file (with an extension of .sym). The group source
file is comprised of a declaration section and 1 or more implementation sections. The
declaration section defines all group objects used by the scripts and specifies their attributes.
The implementation section contains the script source code. These sections will now be
described in detail.

Object Declaration Section

The object declaration section begins with the heading TransactionGroup, followed by the
group name. A transaction group designed for exchanging a triple DES key might have the
following header statement:

TransactionGroupTransactionGroup(‘3DES Exchange’);

The name of the transaction group must be contained within single quotes. The maximum
allowable group name length is 16 bytes and may consist of any ASCII characters other than
the single quote or parentheses. Note that the group source file is not case sensitive.

The object declarations follow immediately after the heading and are bracketed by
the begin and end reserved words5. This section associates object names with their types
and assigns their attributes. A sample declaration section for a group that uses RSA for
exchanging a symmetric key follows.

TransactionGroupTransactionGroup(‘3DES Exchange’);
{{

Transaction group used to exchange a triple DES key.
}}
BeginBegin

OpenOpen: { Read/Write objects }
 DESKey: InputDataInputData;

LockedLocked: { Read only objects }
 RSAMod: ModulusModulus;
 PublicExp: ExponentExponent;
 EncryptDESKey: ScriptScript;
 DecryptDESKey: ScriptScript;
 Result: OutputDataOutputData;

5 Appendix C contains a complete list of reserved words.

04/17/97 Page 13 of 23

Private:Private: {{ No read/write access to these objects }
 SecretExp: ExponentExponent;
 Pad: RandomFillRandomFill;
EndEnd

The declaration section is divided into open, locked and private subdivisions. The
subdivision in which an object is declared determines its attributes. If objects are declared
outside of any of these subdivisions script compiler assumes they are open objects.

Note that any object can be made destructible by appending the word Destructible to the
end of its declaration.

EncryptDESKey: ScriptScript; DestructibleDestructible;

Since this particular sample group does not contain a destructor, the destructible attribute
would have no affect on the group.

Script Implementation Section

A script implementation section consists of 2 parts. The first is the script declaration that
begins with the reserved word script followed by the name assigned to the script in the
object declaration section.

ScriptScript EncryptDESKey;

If the script itself is destructible, the word destructible should be appended to the end of
the script declaration.

ScriptScript EncryptDESKey; DestructibleDestructible;

The body of a script is contained within a begin and end block that follows the declaration.
The entire EncryptDESKey script follows.

ScriptScript EncryptDESKey;
{

Encrypt triple DES key in input data object using the public
exponent.
}
BeginBegin

Result := (DESKey & Pad) ^ PublicExp Mod RSAMod;
EndEnd

04/17/97 Page 14 of 23

This sample script contains only a single statement. However multiple statements may be
contained within the begin/end block6.

Symbol file

Symbol information is maintained in a file with a sym extension. The symbol file is simply a
list that equates object names with their corresponding ids. The following symbol file would
be used with the key exchange group file described above.

RSAMod=01
PublicExp=02
SecretExp=03
DESKey=04
EncryptDESKey=05
DecryptDESKey=06
Result=A0
Pad=A4

Note that all object ids are in hexadecimal.

6 Appendix B contains several larger sample scripts.

04/17/97 Page 15 of 23

Appendix A: Object Definitions

OutputData

The OutputData object is used by transaction scripts as an output buffer. Two of these
objects are automatically created during Crypto iButton initialization. They are shared by all
transaction groups and are cleared automatically whenever a new transaction group is
accessed. Each output data object can be as large as 128 bytes in length and inherits PIN
protection from its group. There may not be any additional Output Data objects in a
transaction group.

WorkingRegister

This object is used by the script interpreter as working space and may be used in a
transaction script. This object is automatically created when the transaction group is
created. It is a private object and cannot be read using the ReadObject command. There may
only be one Working Register object in a transaction group.

ROMData

This object is automatically created when the transaction group is created. It is a locked
object and cannot be altered using the write object command. This object is 8 bytes in length
and its contents are identical to the 8 by ROM Data of the Crypto iButton. There may only
be one ROM Data object in a transaction group.

RandomFill

When the script interpreter encounters this type of object it automatically pads the current
message so that its length is 1 bit smaller than the length of the following modulus. This
object is automatically created when the transaction group is created. It is a private object
and may not be read using the read object command. There may only be one Random Fill
object in a transaction group.

Modulus

A modulus object is a large integer of at most 128 bytes in length. It must be used by
scripts, which perform modular exponentiations.

Exponent

An exponent object is (typically) a large integer of at most 128 bytes in length. It is used as
the exponent value in modular exponentiations.

Money

The money object may be used to represent money or some other form of credit. Once this
object has been created it must be locked to prevent a user from tampering with its value.

04/17/97 Page 16 of 23

Once locked only invoking a transaction script can alter the value of this object. A typical
transaction group, which performs monetary transactions, might have one script for
withdrawals from the money register and one for deposits to the money register.

Counter

The counter object is usually initialized to zero when it is created. Every time a transaction
script, which references this object, is invoked, the transaction counter increments by 1.
Once a transaction counter has been locked it is read only and provides an irreversible
counter.

Script

A script is a series of instructions to be carried out by the Crypto iButton’s script
interpreter. When invoked the Crypto iButton firmware interprets the instructions in the
script and typically places the results in the output data object (see above). The actual script
is simply a list of objects and valid script operators. Scripts may be as long as 128 bytes.

ClockOffset

This object is a 4-byte number, which contains the difference between the reading of the
Crypto iButton's real-time clock and some convenient time (e.g. 12:00AM, January 1,
1970). The true time can then be obtained from the Crypto iButton by adding the value of
the clock offset to the real-time clock.

SALT

A SALT (random challenge) object is simply a large random number. When the script
interpreter encounters a SALT object on the right-hand side of an assignment operator a
new random number replaces its value.

Configuration

This is a user-defined structure with a maximum length of 128 bytes. This object is typically
used to store configuration information specific to its transaction group. For example, the
configuration data object may be used to specify the format of the money register object
(i.e. the type of currency it represents). This object has no pre-defined structure.

InputData

An input data object is simply an input buffer with a maximum length of 128 bytes. The host
uses input data objects to store data to be processed by transaction scripts.

Destructor

A destructor object is 4 bytes in length and is initialized to some value greater than the
Crypto iButton’s real time clock. When the script interpreter is called it checks the group to
see if it contains a destructor. If it does, it checks the script itself, and all objects referenced
in the script to see if they are destructible. If any of the objects are destructible, the script

04/17/97 Page 17 of 23

interpreter compares the value of the destructor with the value of the real time clock. If the
value in the clock is greater than the destructor’s value, the script interpreter terminates the
script with the ERR_DESTRUCTED_OBJECT error code. There may only be one
destructor object in a transaction group.

04/17/97 Page 18 of 23

Appendix B: Sample Scripts

Example 1: Digital Notary

The digital notary example listed below takes a small message as input data and hashes it
using the SHA1 function. A script execution count, time stamp and the Crypto iButton
serial number are all appended to the input and the result is hashed. The hash is then padded
with random data and the result is signed using the group’s secret exponent.

TransactionGroupTransactionGroup(‘Digital Notary’);
{

Transaction group that digitally signs information provided in the
input data object.
}
BeginBegin

OpenOpen:
Msg: InputDataInputData;

LockedLocked:
SignIt: ScriptScript;
Certificate: OutputDataOutputData;
RSAMod: ModulusModulus;
ExecCnt: CounterCounter;
TimeStamp: ClockOffsetClockOffset;
SerId: ROMDataROMData;

PrivatePrivate:
SecretExp: ExponentExponent;
Temp: WorkingRegisterWorkingRegister;
Pad : RandomFillRandomFill;

EndEnd

Script Script DigitalNotary;;

BeginBegin
Temp <- Msg & ExecCnt & TimeStamp & SerId;
Temp <- SHA1(Temp);
Certificate := (Temp & Pad)^ SecretExp Mod RSAMod;

EndEnd

The first assignment statement begins by copying Msg into Temp as an embedded object.
ExecCnt is then incremented by 1 and the result is appended to Msg. TimeStamp is a clock-
offset object. When a clock-offset object is referenced on the right side of an assignment
operator, the interpreter adds the clock offset value to current value of the real time clock.
The result is then appended to temp. Note that when ExecCnt is referenced its value is
changed. However the value of TimeStamp is not altered. The first assignment statement
concludes by appending the Crypto iButton’s serial number to the other 3 objects embedded
in Temp.

04/17/97 Page 19 of 23

The next statement hashes the intermediate value and reuses the temp object to hold the
result of the hash function. Finally the resulting hash value is padded with random data and
signed using the group’s secret RSA exponent.

Example 2: Electronic Purse

This sample group maintains a monetary balance in a money register using 2 scripts. One
script is used for deposits and the other for withdrawals. The deposit script is made
destructible to prevent refill of the money register after a pre-specified period of time.

TransactionGroupTransactionGroup(‘Checkbook’);
{

Maintain balance in a money register using separate scripts for
deposits and withdrawals.
}

BeginBegin
OpenOpen:

Request: InputDataInputData;

LockedLocked:
Deposit: ScriptScript;
Withdrawal: ScriptScript;
Challenge: SALTSALT;
Time: ClockOffsetClockOffset;
RSAMod,
VendMod: ModulusModulus;
VendorPub: ExponentExponent;
SerId: ROMDataROMData;
LifeSpan: DestructorDestructor;

PrivatePrivate:
SecretExp: ExponentExponent;
Temp: WorkingRegisterWorkingRegister;
Pad: RandomFillRandomFill;

EndEnd

ScriptScript Deposit; DestructibleDestructible;
{

Make deposit to money register if input certificate was signed by
the vendor.
}
BeginBegin

{ Decrypt packet using vendor’s public key }
Temp := Request ^ VendorPub Mod VendorMod;
{ Make sure the challenge was successfully met }
Temp.s[1] := Challenge;
{ Generate a new random challenge }
Challenge := Challenge;
Balance := Balance + Temp.m[1];

04/17/97 Page 20 of 23

EndEnd

ScriptScript Withdrawal;
{

Make withdrawal for money register and sign the input packet with
the group’s private key.
}
BeginBegin

Balance := Balance – Request.m[1];
Output := (Request & SerId & Time & Pad) ^ SecretExp Mod

RSAMod;
EndEnd

The deposit script decrypts the request certificate using the vendor’s public key and checks
the SALT object embedded in the resulting plaintext. If it matches the value of the
Challenge object, a new value of Challenge is generated and the money register is increased
by the amount indicated in the embedded money object. Note that line 3 (Challenge :=
Challenge;) of this script is required to avoid packet replay. Each time a random challenge
is successfully signed a new random challenge must be generated.

04/17/97 Page 21 of 23

Appendix C: Reserved Words

Begin

Used to specify the start of the script implementation or the object declaration section

End

Used to specify the end of the script implementation or the object declaration section

Open

Used to specify the start of the list of open objects.

Locked

Used to specify the start of the list of locked objects.

Private

Used to specify the start of the list of private objects.

TransactionGroup

Usually the 1st line of a group source file. The TransactionGroup line specifies the group
name.

Script

As well as being an object type, the reserved word script is used in the implementation
section to specify the beginning of the script code.

Note that all object types are reserved words. A list of object types and their definitions
appears in Appendix A.

04/17/97 Page 22 of 23

Appendix D: Script Interpreter Error Codes

Table 4 (Error codes)

Error Code Value Description

ERR_OPERATOR_NOT_EXPECTED C0H Returned when an operator was
misused.

ERR_EOS_EXPECTED C1H An end of statement (;) was expected
but was not found.

ERR_BAD_ID C2H An object that did not exist was
referenced within the script.

ERR_NOT_COMPOSITE C3H Returned when the member of (.)
operator references an embedded
object which may not contain
embedded objects.

ERR_UNEXPECTED_END C4H Returned when a statement ends
unexpectedly.

ERR_NOT_AN_OPERATOR C5H Returned when an operator was
expected, but no operator was found.

ERR_BAD_TYPE C6H The first byte after the member of (.)
operator must be an object type
specification byte. If it is not a valid
type byte, the script interpreter will
return this error code.

ERR_MEMBER_NOT_FOUND C7H The script interpreter could not find
the embedded object referenced by
the member of (.) operator.

ERR_BAD_COMPARE C8H The left and right values of a
comparison statement were not
identical.

ERR_BAD_ADDITION C9H An overflow occurred while adding 2
objects.

ERR_BAD_SUBTRACTION CAH An underflow occurred while
subtracting 2 objects.

04/17/97 Page 23 of 23

Error Code Value Description

ERR_SIZE CBH A size mismatch error has occurred.
This error code is usually returned
when the interpreter is instructed to
move an object into another object
with a smaller data field.

ERR_NOT_EXPONENT CDH The object id of an exponent did not
follow the exponentiation (^)
operator

ERR_NOT_MODULUS CEH The object ID of a modulus did not
follow the modulus (Mod) operator.

ERR_MOD_OP_EXPECTED CFH The exponentiation (^) operator and
the object ID of an exponent were
found, but not followed by the
modulus (Mod) operator and the ID
of a modulus.

ERR_OBJECT_DESTRUCTED D0H Before the script interpreter begins
executing the instructions within the
script, it checks all of the objects
referenced by the script to make sure
they have not become inactive. For
an object to be inactive it must be a
destructible object and the group
must contain a destructor whose
value is less than that of the real time
clock.

ERR_CIB_INACTIVE D1H The Crypto iButton’s activation
period has expired. This implies the
real time clock’s value has exceeded
that of the group 1 destructor.

