
Application Note 110
NiCD/NiMH Intelligent Battery

System Reference Design
Using the DS2437

APPLICATION NOTE 110

PRELIMINARY

030998 1/14

This Application Note presents a reference design for
the DS2437 Smart Battery Monitor contained within a
NiCD or NiMH battery pack. The DS2437 provides sev-
eral functions that are desirable to carry in a battery
pack: a means of tagging a battery pack with a unique
serial number, a direct–to–digital temperature sensor
which eliminates the need for thermistors in the battery
pack, an A/D Converter which measures the battery
voltage and current, an integrated current accumulator,
which keeps a running total of all current going into and
out of the battery, a real–time–clock, and 40 bytes of
nonvolatile EEPROM memory for storage of important
parameters such as battery capacity, capacity remain-
ing, and indication of battery cycling.

Information is sent to and from the DS2437 over a
1–WireTM interface, so that only one wire (and ground)
needs to be connected from a central microprocessor to
a DS2437. This means that battery packs need only
have three output connectors: battery power, ground,
and the 1–Wire interface.

Because each DS2437 contains a unique silicon serial
number, multiple DS2437s can exist on the same
1–Wire bus. This allows multiple battery packs to be
charged or used in the system simultaneously.

DS2437 Reference Design Hardware
The hardware for the DS2437 Reference Design was
set up to allow the user to view the contents of the
DS2437 inside the battery pack. The contents include
the basic battery information as well as the real–time
measurements that are being made during the current
charge/discharge cycle of the battery. The reference
design is relatively simple in terms of hardware and can
be broken into three main sections consisting of a micro-
controller, a LCD display and a battery charger.

Microcontroller
A DS5000 Microcontroller provides the controlling func-
tion of the reference design as it contains the software
that is described in the DS2437 Reference Design Soft-
ware portion of this application note. The DS5000 is an
8051–compatible microprocessor; it was chosen as the
example since many keyboard controllers are also
8051–compatible, and keyboard controllers are often
pressed into use as battery management processors in
notebook computer systems. Communication with an
external computer is accomplished through a RS232
serial port which passes through a DS232A Dual RS232
Transmitter/Receiver (Figure 1). This feature allows the
user to update the software programmed into the
DS5000.

APPLICATION NOTE 110

030998 2/14

RS232 INTERFACE FOR CHARGER Figure 1

A series of push buttons are connected to the microcon-
troller to allow the user to choose what information is to
be displayed on the LCD display. The RESET button
serves the purpose of resetting the system to its initial
state at any time. The SELECT button allows the user to
select between three main menu screens: Information,
Charge/Discharge Mode, and Graphics. The SCROLL
button provides a more detailed look at the information
contained inside each of the main menu items. The
Charge/Discharge Mode selection presents the real–

time measurements that are being made by the
DS2437. Changing between the charge and discharge
mode is done by using the MODE button and can only
take place from the first screen within the Charge/Dis-
charge Mode selection. Note that the default condition
is for the charger to go into discharge mode upon initial-
ization.

The microcontroller portion of this design is shown in
Figure 2.

MICROCONTROLLER AND USER PUSHBUTTONS Figure 2

APPLICATION NOTE 110

030998 3/14

LCD Display
The information contained in the various screens
described above is displayed on a DMC20261 20x2
LCD. This display provides the user with the ability to

observe the status of the DS2437 on two, twenty char-
acter lines with no additional hardware required. The
LCD display portion of the design is shown in Figure 3.

LCD DISPLAY Figure 3

Charger
A 12–15V power supply provides the charging current.
This supply also connects into a 78L05 Voltage Regula-
tor in order to achieve the +5 volt levels required

throughout the reference design. The power supply
section of this design is shown in
Figure 4.

POWER SUPPLY INPUT AND 5V REGULATOR Figure 4

APPLICATION NOTE 110

030998 4/14

The charger (Figures 5 and 6) is a linear charger which
controls current by the use of a DS1803 Digital Poten-
tiometer. This device uses a two–wire interface, so a
DS2407 is needed to allow the I/O to be done over the
same one–wire which is used by the DS2437. The volt-

age, VPOT, which is set by the digital potentiometer, will
vary according to the manipulations of the software, and
then be amplified in order to provide for a sufficient cur-
rent, up to several amps, to be input into the battery pack
for charging purposes.

1–WIRE CONTROL OF 2–WIRE DIGITAL POTENTIOMETER Figure 5

POWER AMPLIFIER FOR CHARGER OUTPUT Figure 6

APPLICATION NOTE 110

030998 5/14

The charging current is obtained in the following fash-
ion. First, the software measures the battery pack volt-
age and initializes the charger’s output voltage to the
battery pack voltage so that there will be no current flow
at the beginning of the charge cycle. Note that the char-
ger can only see 8–bit values, so the voltage reading is
truncated to 8 bits.

The voltage output by the charger is given by:
Vout = VPOT * (1 + 100/47)

VPOT is calculated from :
VPOT = (tap/255) *5

where the tap is the digital potentiometer setting, 255 is
the total number of taps available, and the voltage
across the pot is 5 volts.

Thus, solving for the tap since Vout is known, provides:
 tap = Vout * 255/((1 + 100/47)*5)

The tap or wiper setting on the DS1803 Digital Poten-
tiometer is then incremented step by step and the cur-
rent is measured at each step along the way. Once the
current reaches the desired current level, the tap is no
longer incremented and the charging will continue at a
fairly constant level. As the battery voltage rises, the
current will drop; the software will respond to this drop in
current by further incrementing the tap until the desired
current level is restored. This monitoring and adjust-
ment process continues until a terminating condition is
encountered.

A charging cycle will terminate if one of several charge
termination schemes are met:

Negative Delta V
In this scheme, the battery pack voltage is
constantly monitored. When the pack reaches
a peak value, and then drops below the peak
value by 10 mV per cell on a subsequent num-
ber of readings, the charging cycle is termi-
nated.

Zero Delta V
This scheme is very similar to Negative Delta V
except that instead of looking for the voltage to
drop, the voltage is monitored to find out where
it stops rising and “flattens out”. When the volt-
age “flattens out” the charge cycle terminates.

Delta T/Delta t
This scheme is by far the best one and requires
the battery pack temperature to be monitored
over time. When the slope of the temperature
with respect to time takes a “sharp turn up”
(increases by 2.5 degrees C in a one minute
period), then the pack has been charged to
capacity and charging should terminate.

Absolute T
This scheme is implemented for protection of
the parts involved in the battery pack. When the
temperature, measured from inside the battery
pack, becomes greater than 60 degrees C,
charging will terminate.

The details of the charging technique and these termi-
nating conditions are located in the DS2437 Reference
Design Software portion of this application note.

The battery pack is connected to the charger through a
three terminal connector whose terminals are the posi-
tive battery voltage (POS), the data (DQ), and the nega-
tive battery voltage (NEG).

MEMORY MAP OF THE DS2437
The battery packs used with this reference design con-
tain a DS2437 and support components are needed.
These devices are mounted on a PCB inside the battery
pack; this battery pack is referred to as an Intelligent
Battery. A schematic of the PCB in the Intelligent Bat-
tery is shown in Figure 7.

APPLICATION NOTE 110

030998 6/14

BATTERY PACK ELECTRONICS Figure 7

The memory of the DS2437 is partitioned into eight
pages, with Pages 0–2 being composed primarily of vol-
atile SRAM and Pages 3–7 being composed of
EEPROM. For a complete look at the memory map of
the DS2437, refer to the DS2437 Data Sheet. The
information programmed onto Pages 3–7 of the
DS2437 memory are outlined below. It is recommended
that intelligent battery designs based on the DS2437
use a similar scheme for data storage and data format.

Page 3:

Manufacturer ID
Byte 0 contains the manufacturer ID which is a
code which identifies the manufacturer of the
equipment with which the battery pack is
intended to be used (i.e., an OEM); or, the ID of
a battery pack manufacturer which is to be
generic across many different OEM applica-
tions.

This provides a means of matching the battery
pack and the end equipment; if the pack

inserted into the equipment does not have a
recognized ID code, the equipment may elect to
reject that battery pack. Likewise, a charger
into which a battery pack is inserted which does
not recognize that pack’s ID may choose not to
charge that pack because the charger may not
know how to safely charge the pack. Another
option may be to charge a foreign or unrecog-
nized battery pack at a known safe level, prob-
ably using a slow charge or trickle charge
regime. This design merely reads the code and
displays it, and makes no distinction between
packs which have a different code.

The manufacturer ID chosen for this design is a
hex 44, which is the ASCII character ‘D’; this
represents that Dallas Semiconductor is the
manufacturer.

Chemistry
Byte 1 contains the chemistry of the battery
pack which is coded to contain one of the vari-
ous types of battery chemistries.

APPLICATION NOTE 110

030998 7/14

The coding scheme used is shown in the table below:

CODE CHEMISTRY ABBREVIATION

0000 Primary Cell ––––

0001 Lead Acid PbAc

0010 Lithium Ion LION

0011 Nickel Cadmium NiCd

0100 Nickel Metal Hydride NiMH

0101 Nickel Zinc NiZn

0110 Rechargeable Alkaline–Manganese RAM

0111 Zinc Air ZnAr

The coding scheme can also be located in the
PRE_SCR.C section of code under the
info_2() function.

The remaining codes not used are reserved for
future use and definition to accommodate new
cell chemistries.

The Primary Cell code (0000) indicates to the
host system or battery charger that this pack is
made up of primary cells and is therefore not
rechargeable. A charger which detects this
chemistry should NOT attempt to charge this
battery pack at all, and if it is capable, should
notify the user that the pack is not a recharge-
able type.

This reference design is set up to handle chem-
istries of either the NiCD or NiMH type.

Number of Cells
Byte 2 contains the number of individual cells
(numCells) that comprise the battery pack.
This allows the system to describe the battery
pack more completely, or to allow charging or
power management systems to calculate, from
the battery voltage, the average cell voltage for
a cell within the battery pack.

This reference design is configured for packs of
6 cells.

Maximum Cell Voltage
Bytes 3 and 4 contain the maximum cell voltage
LSB and MSB, respectively (maxCellVLSB and

maxCellVMSB). The two bytes are formatted
such that voltage is given in millivolts by the fol-
lowing equation.

maximum cell voltage = ((maxCellVMSB * 256)
+ maxCellVLSB) / 1000

The maximum cell voltage is the maximum volt-
age that an individual cell within the battery
pack is designed or characterized to reach.
Typically, voltages above this level will result in
damage to the cell or indicate that a cell is dam-
aged.

The maximum cell voltage can be used to
determine if a battery is in an overcharge condi-
tion, and may be used as a primary or second-
ary termination limit for charging, depending
upon the cell manufacturer’s recommenda-
tions. It may also be used by a host system to
determine the relative “health” of a battery after
charging.

This reference design has the maximum cell
voltage set at 1.6V.

Minimum Cell Voltage
Bytes 5 and 6 contain the minimum cell voltage
LSB and MSB, respectively (minCellVLSB and
minCellVMSB). The two bytes of the minimum
cell voltage are formatted in the same manner
as the bytes of the maximum cell voltage. The
minimum cell voltage is the minimum voltage
that an individual cell within the battery pack is
designed or characterized to reach under nor-
mal charge/discharge conditions.

APPLICATION NOTE 110

030998 8/14

The minimum cell voltage can be used to deter-
mine if a battery is deeply discharged. It may be
used by a charging system as a limit to prevent
rapid charging of the battery pack, indicating
instead to perform a slow or trickle charge until
the actual battery cell voltage rises above this
minimum level. It may be used as a limit below
which the cell should not be discharged. It may
also be used by a host system to determine the
relative “health” of a battery after charging or
discharging. Lower than normal cell voltages
may indicate a damaged cell.

This reference design uses a minimum cell volt-
age of 0.9V.

Byte 7 is not used.

Page 4:

Designed Pack Voltage
Bytes 0 and 1 contain the designed pack volt-
age LSB and MSB, respectively (des-
PackVLSB and desPackVMSB). The designed
pack voltage is the theoretical voltage of the
new battery pack and is formatted in the same
manner as Bytes 3 and 4 of Page 3 to give a
value of millivolts.

This reference design assumes a designed
pack voltage of 7.2V.

Minimum Battery Temperature
Byte 2 contains the minimum battery tempera-
ture (minBattTemp) which is the lowest temper-
ature, in degrees C, at which the battery can be
charged.

This may be used by a power management
system to disconnect the battery from a load, or
minimize the load on a battery pack, if the bat-
tery pack temperature is below this limit. For
charging systems, this limit may be used to pre-
vent charging of a battery or indicate that rapid
charging should not take place while the battery

is below this limit, switching the charger instead
to a slow or trickle charge until the battery tem-
perature rises above this limit.

This reference design uses a minimum battery
temperature value of 10 degrees C.

Maximum Battery Temperature
Byte 3 contains the maximum battery tempera-
ture (maxBattTemp), in degrees C, under which
the battery can be charged.

This may be used by a power management
system to disconnect the battery from a load, or
minimize the load on a battery pack, if the bat-
tery pack temperature is above this limit. For
charging systems, this limit may be used to pre-
vent charging of a battery or indicate that rapid
charging should not take place while the battery
is above this limit, switching the charger instead
to a slow or trickle charge until the battery tem-
perature falls below this limit.

This reference design uses a maximum battery
temperature of 60 degrees C.

Maximum Charge Current
Byte 4 contains the maximum charge current
(maxChargeCurr) , in tenths of amps, that the
battery pack can sustain under charge. Cur-
rents over this limit may damage the pack.

This reference design uses a maximum charge
current of 1.9A.

Date of Assembly
Bytes 5 and 6 contain the date of assembly LSB
and MSB, respectively (assemDateLSB and
assemDateMSB). The date is packed such
that:

assembly date = (year – 1980)*512 + month* 32
+day where year is found in bits 9–15, month in
bits 5–8 and day in bits 0–4. The following table
outlines the format for date packing:

FIELD BITS USED FORMAT ALLOWABLE VALUES

Day 0–4 5–bit binary value 1–31 corresponds to date

Month 5–8 4–bit binary value 1–12 corresponds to month

Year 9–15 7–bit binary value 0–127 corresponds to year biased by 1980

APPLICATION NOTE 110

030998 9/14

Charger Control Mode
Byte 7 contains the charger control mode
(chgCtlMode) which defines the Intelligent Bat-
tery pack’s capabilities for use with a Battery
Charger.

This register is used to report to the Battery
Charger how this pack should be charged. It
may allow the Battery Charger to override the
Intelligent Battery’s charge parameter defini-
tions, or it may restrict the charger to only using
those parameters stored in the Intelligent Bat-

tery. Furthermore, it provides a host system or
charger a method to determine the capabilities
of the Intelligent Battery pack semiconductor
content.

The flags within this register are defined as fol-
lows:

MSB LSB

X DIS IC CC T V I CAP

� X indicates don’t care; an unused bit.

� Discharge before charge (DIS) bit is set if the battery pack should have a deep discharge cycle done
on it before charging. This bit may be used with the Cycle Count parameter to allow a Battery Charger
to determine if it should perform a deep discharge prior to charging the battery pack.

� Internal Charger (IC) bit set indicates that the Intelligent Battery pack contains its own charge
controller.

� Charge Controller Enabled (CC) bit is set to enable the battery pack’s internal charge controller. When
this bit is cleared, the internal charge controller is disabled (default). This bit is active only if the Internal
Charger bit is set.

� Temperature (T) bit set indicates that the Intelligent Battery pack can measure and report its own tem-
perature.

� Voltage (V) bit set indicates that the Intelligent Battery pack can measure and report its own voltage.

� Current (I) bit set indicates that the Intelligent Battery pack can measure and report its own current in
both charge and discharge modes.

� Capacity (CAP) bit set indicates that the Intelligent Battery pack can measure and report its own
remaining capacity.

In this reference design, the packs used have a
DS2437 present, but no internal charger. We
also do not accomodate discharge–before–
charge. The Charger Control Register is then
set so that DIS is 0, IC is 0, CC is 0, and T, V, I
and CAP are all set to 1, since the DS2437 can
measure temperature, voltage, current, and
capacity.

Page 5:

Full Charge Capacity
Byte 0 and 1 contain the full charge capacity
LSB and MSB, respectively (fullChgCapLSB
and fullChgCapMSB), which is the theoretical
capacity of a fully charged pack. This is
expressed in milliAmp Hours at a C/5 discharge
rate and will typically be the 1C rate for a bat-

tery. The bytes are formatted using the same
equation as Bytes 3 and 4 of Page 3.

The Full Charge Capacity may be used by a
host system to determine power management
settings for a particular battery pack and
desired run time. It may also be used to inform
the user about the rated capacity of the Intelli-
gent Battery pack.

The full charge capacity for the batteries used in
this reference design are 1.6 Ah for the NiCD
pack and 1.7 Ah for the NiMH pack.

Negative Delta V
Byte 2 contains the limit for Negative Delta
V per battery cell (deltaVcell) in millivolts. This
data would likely only be used with NiCD or
NiMH chemistries; for other chemistries to

APPLICATION NOTE 110

030998 10/14

which this parameter does not apply, this
parameter should be 0.

A 10mV/cell Negative Delta V is used in this ref-
erence design for the NiCD pack; the NiMH
pack uses Zero Delta V termination, so this
parameter is set to zero for that pack.

Delta T
Byte 3 contains the limit for the change in tem-
perature (deltaTemp), or the allowable differ-
ence between the battery temperature and the
ambient temperature, in degrees C. This
parameter is used to allow a Battery Charger to
determine if a battery is going into an over-
charge state by noting a certain temperature
rise above ambient.

This reference design uses a value of 15
degrees C. This parameter is not used in this
design, however, since no ambient tempera-
ture sensor is available.

Delta T/time
Byte 4 contains the allowable limit of tempera-
ture change over a one minute period (deltaT-
time) given in tenths of a degree C.

This parameter is used to allow a Battery Char-
ger to determine if a battery is going into an
overcharge state by noting a certain tempera-
ture rise in a given period of time.

This parameter is set to 2.5 degrees C/minute
in this reference design.

Battery Pack Manufacturer
Byte 5 and 6 contain information on the battery
pack manufacturer (packManfByte1 and pack-
ManfByte2, respectively) of the cells used in
the Intelligent Battery pack. This may be an
identifying number or character, or string of
characters which will uniquely identify the
manufacturer.

This is used to identify, for reliability or traceabil-
ity purposes, the manufacturer or assembler of
the Intelligent Battery pack. A host system or
charger may, if it supports the format used, dis-
play the manufacturer name as an identifier and
advertisement for the cell manufacturer.

This reference design uses two ASCII charac-
ters to identify the pack manufacturer. The
characters are “DS” to identify Dallas Semicon-
ductor as the pack manufacturer.

Lot Code
Byte 7 contains the lot code (lotCode) for the
battery pack as defined by the assembler of the
pack, for traceability and reliability purposes.

Page 6:

Date of Purchase
Bytes 0 and 1 contain the date that the battery
pack was purchased (purchaseDateLSB and
purchaseDateMSB, respectively). The date is
packed into the format as described for Bytes 5
and 6 of Page 4.

This parameter can be used to uniquely identify
the pack and provide the system with informa-
tion on the pack for reliability, traceability, and
warranty purposes.

The date of purchase for the battery packs used
in this design is set to 3/6/97.

Date of First Use
Bytes 2 and 3 contain the date the battery pack
was first used (firstUseDateLSB and firstUse-
DateMSB, respectively). The date is packed
into the format as described for Bytes 5 and 6 of
Page 4.

This parameter can be used to uniquely identify
the pack and provide the system with informa-
tion on the pack for reliability, traceability, and
warranty purposes.

The date of purchase for the battery packs used
in this design is set to 3/7/97.

Assembler
Bytes 4, 5, 6 and 7 of Page 6 and Bytes 0,1 and
2 of Page 7 contains information that identifies
the assembler of the Intelligent Battery pack.
This may be an identifying number or character,
or string of characters that is at the discretion of
the assembler.

APPLICATION NOTE 110

030998 11/14

This parameter is used here as 6 ASCII charac-
ters – “DALLAS”, which identifies Dallas Semi-
conductor as the Assembler.

Page 7:
Bytes 0,1 and 2 are described with Bytes 4,5,6
and 7 of Page 6.

Termination Scheme
Byte 3 contains the coded termination scheme
that is selected for this battery pack. The cod-
ing scheme can be viewed in the PRE_SCR.C
code listing under the charge_3() function, and
in the table below. The various terminating
schemes are explained in the Charger section
of the hardware portion of this application note.

CODE TERMINATION SCHEME

0 Negative Delta V

1 Zero Delta V

2 Delta T

3 Delta T/time

4 Constant Voltage, Current Limited (this is for
a future implementation for Li–lon batteries)

For this reference design, the Negative Delta V
termination is used for the NiCD pack, and the
Zero Delta V termination is used for the NiMH
pack.

Total Charge Accumulator (CCA)
Bytes 4 and 5 contain the charging current
accumulator bytes (ccaByte0 and ccaByte1,
respectively) that represents the total charging
current the battery has encountered in its life-
time. The bytes are formatted to give charge in
units of C, such that:

charge = (ccaByte1 * 256 + ccaByte0) * .32

Further information on the format of data in
these registers can be found in the DS2437
data sheet.

Total Discharge Accumulator (DCA)
Bytes 6 and 7 contain the discharging current
accumulator bytes (dcaByte0 and dcaByte1,
respectively) that represents the total discharg-

ing current the battery has encountered in its
lifetime. The bytes are formatted in the same
manner as the charging current accumulator
such that:

 discharge = (dcaByte1 * 256 + dcaByte0) * .32

Further information on the format of data in
these registers can be found in the DS2437
data sheet.

DS2437 Reference Design Software
The software for the DS2437 Reference Design was
created to provide programmed and real–time data from
the DS2437 in the battery pack and display it to the user
in an efficient manner. This was realized through the
implementation of a main event loop that checks to see
if any changes were made in the system since the past
loop and then makes those updates, which are in turn
displayed to the LCD display.

The Ds2437 Reference Design Software is available for
downloading from the Dallas Semiconductor Home
Page at ‘http://www.dalsemi.com’ or by calling (972)
371–4167 to request a disk copy of the software.

Initialization
Upon starting the program for the first time, following a
RESET call, or after a battery has been removed and
after a battery inserted or if a new battery has been
introduced to the system, the system goes through an
initialization routine.The first step is to set up commu-
nication with the DS5000 at a 9600 Baud Rate which is
accomplished with the setting of SCON, TMOD, TCON,
and TH1 to the values prescribed in the code. Then the
variables are initialized to their respective values and
the function initialize() is called. This function clears
the display and positions the cursor in a manner to pre-
pare it to receive the next screen command.

A battery check is accomplished by calling two func-
tions, Find Devices() and Identify Devices() . These
two functions take advantage of some of the 1–Wire
software to determine what type, if any, of 1–Wire
devices are connected to the system and identify the
specific part numbers of the detected devices. Once the
battery check determines if a battery is connected to the
system, then the data currently on the DS2437 can be
read with the read_data() function and the main event
loop begins.

APPLICATION NOTE 110

030998 12/14

In the event that the battery becomes overly discharged
(i.e., the battery voltage falls below 2.7 Volts), the
read_data() function will return 0xFF’s for all of the pro-
grammed and real–time data that is requested from the
EEPROM. The ROM Code, however, will still be read-
able at this time. The Reference Design Software con-
tains code that allows the battery to be charged under
trickle charge conditions until the voltage reaches a
level that will allow the EEPROM of the DS2437 to be
read properly.

Note the create_data() function can be used to change
the data that is programmed into the Ds2437, but it is
commented out at this time along with the ‘#include
“setup.c”’ statement that contains that code. If the
create_data() function is made active along with the
‘#include’ statement, then the data is written to the
EEPROM of the DS2437 upon initialization.

Event Loop
The main event loop begins every sixth cycle by check-
ing to see if indeed the battery has remained in the sys-
tem since the last cycle. If it has, or if it is not time to
check again, then the loop continues. The first action in
this event loop is to obtain all the real–time measure-
ments that the DS2437 has taken and to convert those
measurements into a readable format to be placed on
the LCD display when they are needed. The
read_real_time() function accomplishes this task.

The system software then checks the status of the but-
tons that control the screen selection. The buttons are
all initialized to a start up level that will begin at the
’Information’ menu screen in the discharge mode. If a
button is pressed, the new screen will be selected and
displayed during the following event loop. The new
screen is determined from the pick_screen() function
which also accesses the screen() function; this pro-
vides the formatted output for the LCD display.

The next step is a check to see if the user has selected to
enter the Charge Mode. This check is done once every
7 seconds. If the Charge Mode has been selected, then
the main_charge() function is invoked to begin increas-
ing the charging current as described in the Charger
section of this application note. Additionally, the system
checks once every fifth time through this charging loop if
the specified terminating condition has been met and
responds accordingly to the answer obtained.

The final step of the loop is to begin a charging cycle if
the measured capacity of the battery falls below 10%.
This is checked every thirty seconds. Note the timing
involved in many of the checks and function calls which
allow the loop to be repeated quickly and be able to
detect changes in the system in an efficient manner.
The different times reflect the priority of the changes
involved and how quickly action needs to be taken if
such an event occurs.

Battery Check
The battery_in_system() function performs the func-
tion of determining if a battery pack containing a
DS2437 is in the system. To accomplish this, FindDe-
vices() is accessed and another condition must be met.
The ow_reset() function is called to check if there is
indeed any kind of 1–Wire device found in the system,
either a DS2407 or a DS2437, and then returns a 0 if a
part has been found, or a 1 if no part is found. Then
First() and Next() are called to read the ROM code of all
parts found in the path. This will continue until all parts
have been found and their ROM codes identified.Then
IdentifyDevices() matches the ROM code of the parts
found to the appropriate family of devices. If at least one
DS2407 and one DS2437 are found, then no error will
be presented and the battery check will return a true
statement to the calling function.

Real–time Calculations
The real–time calculations are performed at the begin-
ning of the main event loop on each occurrence of the
loop. The real–time function begins by initiating a tem-
perature and voltage reading by writing a byte to the
DS2437 in the form of convert_T and convert_V,
respectively. Note that prior to writing any information to
a DS2437, access 2437() must be called to assure that
the part is there and prepare the DS2437 to accept the
information that is to be written.

Then each page within the DS2437 that contains real–
time data is read and the calculations are made to put
the data into a usable format. Temperature, voltage,
current and C_rate are calculated from page 0. C_rate is
a conversion factor that allows the current values
obtained to be changed into terms of amps. Page 1 con-
tains the real–time clock and the ICA, which is the
capacity of the battery. The variable now is the current
value of the real–time clock which has been running

APPLICATION NOTE 110

030998 13/14

since the part was first put into operation in the battery.
The LSB of the real–time clock is stored in timer_now
and that is used in the event loop to control the timing of
various processes described in the Event Loop section.
Page 7 contains information on the charge and dis-
charge activity over the life of the DS2437.

Note that more information on the manner in which
these variables are calculated can be obtained from the
DS2437 Data Sheet.

Push Buttons
As described in the Microcontroller section of the
DS2437 Reference Design Hardware portion of this
application note, there are four push buttons located on
the demo board. The three of interest here are the
SELECT,SCROLL, and MODE push buttons. Each of
these contain a value of 0 when they are idle. Upon
being pressed, a value of 1 is stored in the respective
location.

When one of these buttons is pressed during the main
event loop, it receives a value of 0. The press_select,
press_scroll, or press_mode variables are changed
from 0 to 1 when a 0 is found on the button associated
with each one. Then the next time through the loop,
whichever variable has the value of 1, if the respective
button has been released and has a value of 1 again,
then the select, scroll or charging value is updated
accordingly. The select, scroll and charging are the
variables that control which screen is to be displayed
during each cycle.

Screens
During each loop, pick_screen() is called. This func-
tion performs the task of selecting which screen is to be
displayed on the LCD display during that particular loop.
The screen is updated once every 11 times through the
loop, unless a condition has changed, such as a new
screen being selected, at which time it updates the
screen immediately.

Inside of pick_screen() , a switch is used to select the
proper screen based on the state of the variables select
and scroll. At each case, either the screen is called
directly or a pre screen function is called that prepares
any information that might need to be determined and
passes that to the screen. In either event, eventually a
screen is called that sends the appropriately formatted
data to the LCD for display. The display will then main-

tain that screen for 10 cycles or until a change is
requested by pushing a button or removing the battery.
If no change is detected over the given interval, then the
screen is simply refreshed and displays the same data.
However, if the screen happens to be one of the real–
time screens, then the updated measurements would
be displayed at that time.

For printing on the LCD, generally the screen will first be
initialized, using init_display() . Then the data to be
printed will be put into the display_string string using the
sprintf() function. Then the display_string will be printed
to the display on either line 0 or line 1 using the printd()
function.

The screens are set up in a simple menu fashion. The
default selection is the ‘Information’ screen which is one
of three main menu titles. The other two are ‘Charge/
Discharge Mode’ and ‘Graphics’. Moving between
these screens is accomplished by pressing the
SELECT button. The screens will be stepped through,
up to one screen per loop, and will cycle back to the
‘Information’ screen after the ‘Graphics’ screen. Moving
between these main items can be done from any screen
to which the user has scrolled. Each main menu item
can be further explored using the SCROLL button which
allows the user to view each of the screens in that menu.
After the last item in the selected menu is viewed, the
first screen after the menu title will again be displayed.
On the first screen of the ‘Charge/Discharge Mode’
menu, the user has the choice of being in the charge or
discharge mode by pressing the MODE button. The
default setting is the discharge mode. All relavent
screen information can be viewed whether the refer-
ence design is charging or discharging.

Charging
Any time a charge cycle is initiated, the initial_charge()
function must be called in order to set the tap at the
appropriate level so that no current flows initially, as
described in the Charger section of this application
note. The function set_charge_level() takes the value
of tap that is calculated and sets the wiper position of the
DS1803 Digital Potentiometer to the desired position.
Also, the time that each charge cycle is started is time–
stamped into the start_of_charge variable so that the
duration of the charge cycle can be monitored relative to
the real–time clock.

APPLICATION NOTE 110

030998 14/14

The main_charge() function will increment the tap
value and set the charge level accordingly each time
through as long as the measured current of the DS2437
is less than the current specified as the maxChargeCurr
on the DS2437.

Within the main_charge() function , there is a condi-
tional call to the trickle_charge() function. Anytime the
voltage is below the minimum cell voltage (0.9 Volts) or
the temperature is below the minimum battery tempera-
ture (10 degrees C), then the trickle_charge() function
is called. This function sets the charge level to 1/10 of
the normal charge current and increments or decre-
ments the tap accordingly. The trickle_charge() func-
tion is continued to be called as long as a condition
exists which requires the battery to be trickle charged.

The trickle_charge() function is also called any time
the battery is in an overly discharged state (i.e., the bat-
tery voltage is below 2.7 Volts) which prevents the data
in the EEPROM from being read reliably or accurately.
Therefore, a trickle charge is invoked with a constant tap
level set until the data is again reliable.

Once a charging cycle is completed, as determined by a
terminating condition, the write_full_charge() function
is invoked which changes the capacity to read 100%. At
some times during a charging process a full charge
could read 120% or could read 80%, therefore, it is
reset to 100% following a completed charge cycle. Note
that to write to any one byte on a page of the DS2437,
each byte prior to the one that is to be written must also
be written. Therefore, in this case, the real–time clock
bits must be read and immediately written back so that
the 100 can be written to the ICA bit.

Terminating a Charge Cycle
During a charge cycle, there are several factors that
could cause the cycle to terminate. The meanings of
these termination schemes are outlined in the Charger
section of the DS2437 Reference Design Hardware
portion of this application note.

Once every thirty seconds measurements are made to
see if a terminating condition is met. However, the
checking of the termination condition does not start
immediately after charging begins; there must be a
period which allows the charging cycle to stabilize.
Therefore, any terminating condition that occurs prior
to one minute after the start_of_charge marker, will not
affect the charging cycle. The only exception to this is if
the battery pack temperature exceeds the maxBatt-
Temp which is set at 60 degrees C. Any time that condi-
tion is exceeded, the charging cycle will terminate.

The Delta T terminating condition is monitored on a slid-
ing one minute window that is updated every thirty
seconds. If the Delta T exceeds the specified limit in any
one minute period, then the charging cycle will termi-
nate. The Negative Delta V terminating condition is
monitored once a peak voltage is encountered. At that
time, whenever the current voltage drops below the
peak voltage by a value of Delta V, the charging cycle
will terminate. The Zero Delta V terminating condition is
monitored constantly until the voltage change is less
than 10 mV over a one minute sliding period, then the
charging cycle will terminate. A cycle is terminated
when the check_terminate() function returns a true
value to the calling function and then the
write_full_charge() function is invoked as described in
the Charging section above.

