
Application Note 27
Understanding and Using Cyclic

 Redundancy Checks with Dallas
 Semiconductor iButtonTM Products

APPLICATION NOTE 27

030698 1/15

INTRODUCTION
The Dallas Semiconductor iButton products are a family
of devices that all communicate over a single wire fol-
lowing a specific command sequence referred to as the
1–WireTM Protocol. A key feature of each device is a
unique 8–byte ROM code written into each part at the
time of manufacture. The components of this 8–byte
code can be seen in Figure 1. The least significant byte
contains a family code that identifies the type of iButton
product. For example, the DS1990A has a family code
of 01 Hex and the DS1991 has a family code of 02 Hex.
Since multiple devices of the same or different family
types can reside on the same 1–Wire bus simulta-
neously, it is important for the host to be able to deter-
mine how to properly access each of the devices that it
locates on the 1–Wire bus. The family code provides
this information. The next six bytes contain a unique se-
rial number that allows multiple devices within the same
family code to be distinguished from each other. This
unique serial number can be thought of as an “address”
for each device on the 1–Wire bus. The entire collection
of devices plus the host form a type of miniature local
area network, or Micro-LAN; they all communicate over
the single common wire. The most significant byte in the
ROM code of each device contains a Cyclic Redundan-
cy Check (CRC) value based on the previous seven by-
tes of data for that part. When the host system begins
communication with a device, the 8–byte ROM is read,

LSB first. If the CRC that is calculated by the host
agrees with the CRC contained in byte 7 of ROM data,
the communication can be considered valid. If this is not
the case, an error has occurred and the ROM code
should be read again.

Some of the iButton products have up to 8K bytes of
RAM in addition to the eight bytes of ROM that can be
accessed by the host system with appropriate com-
mands. Even if iButtons do not have CRC hardware on-
board, if the host has the capability to calculate a CRC
value for the ROM codes, then a procedure to store and
retrieve data in the RAM portion of the devices using
CRCs can also be developed. Data can be written to the
device in the normal manner; then a CRC value that has
been calculated by the host is appended and stored with
the data. When this data is retrieved from the iButton,
the process is reversed. The host compares the CRC
value that was computed for the data bytes to the value
stored in memory as the CRC for that data. If the values
are equal, the data read from the iButton can be consid-
ered valid. In order to take advantage of the power of
CRCs to validate the serial communication on the
1–Wire bus, an understanding of what a CRC is and
how they work is necessary. In addition, a practical
method for calculation of the CRC values by the host will
be required for either a hardware or software imple-
mentation.

APPLICATION NOTE 27

030698 2/15

iButton SYSTEM CONFIGURATION USING DOW CRC Figure 1

Dallas Semiconductor
1-Wire Device

DS19xx

Host System

64-BIT ONE-WIRE ROM CODE

GND

1–WIRE
 Bus

I/O
MSB

The CRC (Byte 7) has been computed for the data con-
tained in Byte 0 through Byte 6 and the value has been writ-
ten into Byte 7 for each Dallas Semiconductor 1–Wire de-
vice.

If CRC value that is computed for the first
56 data bits of the ROM code agrees with
CRC value contained in Byte 7 of ROM
code, continue reading data. Otherwise,
the ROM should be reread.

BI-DIRECTIONAL I/O
PORT

CRC CALCULATOR

I/O
FAMILY
CODE

CRC

LSB

Byte
7

Byte
6

Byte
5

Byte
4

Byte
3

Byte
2

Byte
1

Byte
0

GND

UNIQUE SERIAL NUMBER

BACKGROUND
Serial data can be checked for errors in a variety of
ways. One common way is to include an additional bit in
each packet being checked that will indicate if an error
has occurred. For packets of 8–bit ASCII characters, for
example, an extra bit is appended to each ASCII char-
acter that indicates if the character contains errors. Sup-
pose the data consisted of a bit string of 11010001. A
ninth bit would be appended so that the total number of
bits that are 1’s is always an odd number. Thus, a 1
would be appended and the data packet would become
111010001. The underlined character indicates the par-
ity bit value required to make the complete 9–bit packet
have an odd number of bits. If the received data was
11101000 1, then it would be assumed that the informa-
tion was correct. If, however, the data received was
111010101, where the 7th bit from the left has been in-
correctly received, the total number of 1’s is no longer
odd and an error condition has been detected and ap-
propriate action would be taken. This type of scheme is
called odd parity. Similarly, the total number of 1’s could
also be chosen to always be equal to an even number,
thus the term even parity. This scheme is limited to de-
tecting an odd number of bit errors, however. In the ex-
ample above, if the data was corrupted and became
111011101 where both the 6th and 7th bits from the left
were wrong, the parity check appears correct; yet the er-
ror would go undetected whether even or odd parity was
used.

DESCRIPTION
Dallas Semiconductor 1–Wire CRC
The error detection scheme most effective at locating
errors in a serial data stream with a minimal amount of
hardware is the Cyclic Redundancy Check (CRC). The
operation and properties of the CRC function used in
Dallas Semiconductor products will be presented with-
out going into the mathematical details of proving the
statements and descriptions. The mathematical con-
cepts behind the properties of the CRC are described in
detail in the references. The CRC can be most easily un-
derstood by considering the function as it would actually
be built in hardware, usually represented as a shift reg-
ister arrangement with feedback as shown in Figure 2.
Alternatively, the CRC is sometimes referred to as a
polynomial expression in a dummy variable X, with
binary coefficients for each of the terms. The coeffi-
cients correspond directly to the feedback paths shown
in the shift register implementation. The number of
stages in the shift register for the hardware description,
or the highest order coefficient present in the polynomial
expression, indicate the magnitude of the CRC value
that will be computed. CRC codes that are commonly
used in digital data communications include the
CRC–16 and the CRC–CCITT, each of which computes
a 16–bit CRC value. The Dallas Semiconductor 1–Wire
CRC (DOW CRC) magnitude is eight bits, which is used
for checking the 64–bit ROM code written into each

APPLICATION NOTE 27

030698 3/15

1–Wire product. This ROM code consists of an 8–bit
family code written into the least significant byte, a
unique 48–bit serial number written into the next six by-
tes, and a CRC value that is computed based on the pre-
ceding 56 bits of ROM and then written into the most sig-
nificant byte. The location of the feedback paths
represented by the exclusive–or gates in Figure 2, or the
presence of coefficients in the polynomial expression,
determine the properties of the CRC and the ability of
the algorithm to locate certain types of errors in the data.
For the DOW CRC, the types of errors that are detect-
able are:

1. Any odd number of errors anywhere within the
64–bit number.

2. All double-bit errors anywhere within the 64–bit
number.

3. Any cluster of errors that can be contained within
an 8–bit “window” (1–8 bits incorrect).

4. Most larger clusters of errors.

The input data is Exclusive–Or’d with the output of the
eighth stage of the shift register in Figure 2. The shift
register may be considered mathematically as a divid-
ing circuit. The input data is the dividend, and the shift
register with feedback acts as a divisor. The resulting
quotient is discarded, and the remainder is the CRC val-
ue for that particular stream of input data, which resides
in the shift register after the last data bit has been shifted
in. From the shift register implementation it is obvious
that the final result (CRC value) is dependent, in a very
complex way, on the past history of the bits presented.
Therefore, it would take an extremely rare combination
of errors to escape detection by this method.

The example in Figure 3 calculates the CRC value after
each data bit is presented. The shift register circuit is al-
ways reset to 0’s at the start of the calculation. The com-
putation begins with the LSB of the 64–bit ROM, which
is the 02 Hex family code in this example. After all 56
data bits (serial number + family code) are input, the val-
ue that is contained in the shift register is A2 Hex, which
is the DOW CRC value for that input stream. If the CRC
value which has been calculated (A2 Hex in this exam-
ple), is now used as input to the shift register for the next
eight bits of data, the final result in the shift register after
the entire 64 bits of data have been entered should be all
0’s. This property is always true for the DOW CRC algo-
rithm. If any 8–bit value that appears in the shift register
is also used as the next eight bits in the input stream,
then the result that appears in the shift register after the
8th data bit has been shifted in is always 00 Hex. This
can be explained by observing that the contents of the
8th stage of the shift register is always equal to the in-
coming data bit, making the output of the EXOR gate
controlling the feedback and the next state value of the
first stage of the shift register always equal to a logic 0.
This causes the shift register to simply shift in 0’s from
left to right as each data bit is presented, until the entire
register is filled with 0’s after the 8th bit. The structure of
the Dallas Semiconductor 1–Wire 64–bit ROM uses this
property to simplify the hardware design of a device
used to read the ROM. The shift register in the host is
cleared and then the 64 ROM bits are read, including the
CRC value. If a correct read has occurred, the shift reg-
ister is again all 0’s which is an easy condition to detect.
If a non-zero value remains in the shift register, the read
operation must be repeated.

DALLAS 1–WIRE 8–BIT CRC Figure 2

1ST
STAGE

2ND
STAGE

3RD
STAGE

4TH
STAGE

5TH
STAGE

6TH
STAGE

7TH
STAGE

8TH
STAGE

X0 X1 X2 X3 X4 X5 X6 X7 X8

INPUT DATA

Polynomial = X8 + X5 + X4 + 1

APPLICATION NOTE 27

030698 4/15

Until now, the discussion has centered around a hard-
ware representation of the CRC process, but clearly a
software solution that parallels the hardware methodol-
ogy is another means of computing the DOW CRC val-
ues. An example of how to code the procedure is given
in Table 1. Notice that the XRL (exclusive or) of the A
register with the constant 18 Hex is due to the presence
of the EXOR feedback gates in the DOW CRC after the
fourth and fifth stages as shown in Figure 2. An alterna-
tive software solution is to simply build a lookup table
that is accessed directly for any 8–bit value currently
stored in the CRC register and any 8–bit pattern of new
data. For the simple case where the current value of the
CRC register is 00 Hex, the 256 different bit combina-
tions for the input byte can be evaluated and stored in a
matrix, where the index to the matrix is equal to the value
of the input byte (i.e., the index will be I = 0–255). It can
be shown that if the current value of the CRC register is
not 00 Hex, then for any current CRC value and any in-
put byte, the lookup table values would be the same as
for the simplified case, but the computation of the index
into the table would take the form of:

New CRC = Table [I] for I=0 to 255 ;
where I = (Current CRC) EXOR (Input byte)

For the case where the current CRC register value is 00
Hex, the equation reduces to the simple case. This se-
cond approach can reduce computation time since the
operation can be done on a byte basis, rather than the
bit-oriented commands of the previous example. There
is a memory capacity tradeoff, however, since the look-
up table must be stored and will consume 256 bytes
compared to virtually no storage for the first example ex-
cept for the program code. An example of this type of
code is shown in Table 2. Figure 4 shows the previous
example repeated using the lookup table approach.
Two properties of the DOW CRC can be helpful in de-
bugging code used to calculate the CRC values. The
first property has already been mentioned for the hard-
ware implementation. If the current value of the CRC
register is used as the next byte of data, the resulting
CRC value will always be 00 Hex (see explanation
above). A second property that can be used to confirm
proper operation of the code is to enter the 1’s comple-
ment of the current value of the CRC register. For the
DOW CRC algorithm, the resulting CRC value will al-
ways be 35 Hex, or 53 Decimal. The reason for this can
be explained by observing the operation of the CRC reg-
ister as the 1’s complement data is entered, as shown in
Figure 5.

ASSEMBLY LANGUAGE PROCEDURE Table 1
DO_CRC: PUSH ACC ;save accumulator

PUSH B ;save the B register
PUSH ACC ;save bits to be shifted
MOV B,#8 ;set shift = 8 bits ;

CRC_LOOP: XRL A,CRC ;calculate CRC
RRC A ;move it to the carry
MOV A,CRC ;get the last CRC value
JNC ZERO ;skip if data = 0
XRL A,#18H ;update the CRC value

;

ZERO: RRC A ;position the new CRC
MOV CRC,A ;store the new CRC
POP ACC ;get the remaining bits
RR A ;position the next bit
PUSH ACC ;save the remaining bits
DJNZ B,CRC_LOOP ;repeat for eight bits
POP ACC ;clean up the stack
POP B ;restore the B register
POP ACC ;restore the accumulator
RET

APPLICATION NOTE 27

030698 5/15

EXAMPLE CALCULATION FOR DOW CRC Figure 3

Complete 64–Bit 1–Wire ROM Code: A2 00 00 00 01 B8 1C 02
Family Code: 0 2 Hex

0000 0010 Binary

Serial Number: 0 0 0 0 0 0 0 1 B 8 1 C Hex
0000 0000 0000 0000 0000 0000 0000 0001 1011 1000 0001 1100 Binary

CRC VALUE INPUT VALUE
00000000 0
00000000 1
10001100 0 2
01000110 0 _____
00100011 0
10011101 0
11000010 0 0
01100001 0 _____
10111100 0
01011110 0
00101111 1 C
00010111 1 _____
00001011 1
00000101 0
10001110 0 1
01000111 0 _____
10101111 0
11011011 0
11100001 0 8
11111100 1 _____
11110010 1
11110101 1
01111010 0 B
00111101 1 _____
00011110 1
10000011 0
11001101 0 1
11101010 0 _____
01110101 0
10110110 0
01011011 0 0
10100001 0 _____
11011100 0
01101110 0
00110111 0 0
10010111 0 _____
11000111 0
11101111 0
11111011 0 0
11110001 0 _____
11110100 0
01111010 0
00111101 0 0
10010010 0 _____
01001001 0
10101000 0
01010100 0 0
00101010 0 _____
00010101 0
10000110 0
01000111 0 0
10101101 0 _____
11011010 0
01101101 0
10111010 0 0
01011101 0 _____

10100010 = A2 Hex = CRC Value for [00000001B81C (Serial Number) + 02 (Family Code)]

APPLICATION NOTE 27

030698 6/15

CRC VALUE INPUT VALUE
10100010 0
01010001 1
00101000 0 2
00010100 0 _____
00001010 0
00000101 1
00000010 0 A
00000001 1 _____

00000000 = 00 Hex = CRC Value for A2 [(CRC) + 00000001B81C (Serial Number) + 02 (Family Code)]

DOW CRC LOOKUP FUNCTION Table 2
Var
 CRC : Byte;

Procedure Do_CRC(X: Byte);
{
 This procedure calculates the cumulative Dallas Semiconductor 1–Wire CRC of all bytes passed to it. The result
accumulates in the global variable CRC.
}

Const
 Table : Array[0..255] of Byte = (

0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31, 65,
157, 195, 33, 127, 252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130, 220,
35, 125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3, 128, 222, 60, 98,
190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158, 29, 67, 161, 255,
70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7,
219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196, 154,
101, 59, 217, 135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122, 36,
248, 166, 68, 26, 153, 199, 37, 123, 58, 100, 134, 216, 91, 5, 231, 185,
140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242, 172, 47, 113, 147, 205,
17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236, 14, 80,
175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176, 238,
50, 108, 142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45, 115,
202, 148, 118, 40, 171, 245, 23, 73, 8, 86, 180, 234, 105, 55, 213, 139,
87, 9, 235, 181, 54, 104, 138, 212, 149, 203, 41, 119, 244, 170, 72, 22,
233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20, 246, 168,
116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107, 53);

Begin
 CRC := Table[CRC xor X];
End;

APPLICATION NOTE 27

030698 7/15

TABLE LOOKUP METHOD FOR COMPUTING DOW CRC Figure 4

Current CRC
Value (= Current

Table Index)

Input Data New Index
(= Current CRC xor

Input Data)

Table (New Index)
(= New CRC Value)

0000 0000 = 00 Hex 0000 0010 = 02 Hex (00 H xor 02 H) =
02 Hex = 2 Dec

Table[2]= 1011 1100 = BC Hex = 188 Dec

1011 1100 = BC Hex 0001 1100 = 1C Hex (BC H xor 1C H) =
A0 Hex = 160 Dec

Table[160]= 1010 1111 = AF Hex = 175 Dec

1010 1111 = AF Hex 1011 1000 = B8 Hex (AF H xor B8 H) =
17 Hex = 23 Dec

Table[23]= 0001 1110 = 1E Hex = 30 Dec

0001 1110 = 1E Hex 0000 0001 = 01 Hex (1E H xor 01 H) =
 1 F Hex = 31 Dec

Table[31]= 1101 110 = DC Hex = 220 Dec

1101 1100 = DC Hex 0000 0000 = 00 Hex (DC H xor 00 H) =
 DC Hex = 220 Dec

Table[220]= 1111 0100 = F4 Hex = 244 Dec

11110100 = F4 Hex 0000 0000 = 00 Hex (F4 H xor 00 H) =
 F4 Hex = 244 Dec

Table [244]= 0001 0101 = 15 Hex = 21 Dec

0001 0101 = 15 Hex 0000 0000 = 00 Hex (15 H xor 00 H) =
 15 Hex = 21 Dec

Table[21]= 1010 0010 = A2 Hex = 162 Dec

1010 0010 = A2 Hex 10100010 = A2 Hex (A2 H xor A2 H) =
 Hex = 0 Dec

Table[0]=0000 0000 = 00 Hex = 0 Dec

CRC REGISTER COMBINED WITH 1’S COMPLEMENT OF CRC REGISTER Figure 5

CRC Register Value Input

X0 X1 X2 X3 X4 X5 X6 X7 X7*
1 X0 X1 X2 X3* X4* X5 X6 X6*
1 1 X0 X1 X2* X3 X4* X5 X5*
1 1 1 X0 X1* X2* X3 X4* X4*
0 1 1 1 X0 X1* X2 X3 X3*
1 0 1 1 0 X0* X1* X2 X2*
1 1 0 1 0 1 X0* X1* X1*
0 1 1 0 1 0 1 X0* X0*
0 0 1 1 0 1 0 1 Final CRC Value = 35 Hex, 53 Decimal

Note: Xi* = Complement of Xi

CRC–16 COMPUTATION FOR RAM
RECORDS IN iButtons
As mentioned in the introduction, some iButton devices
have RAM in addition to the unique 8–byte ROM code
found in all iButtons. Because the amount of data stored
in RAM can be large compared to the 8–byte ROM
code, Dallas Semiconductor recommends using a
16–bit CRC value to ensure the integrity of the data,
rather than the 8–bit DOW CRC used for the ROM. The
particular CRC suggested is commonly referred to as
CRC–16. The shift register and polynomial representa-
tions are given in Figure 6. The figure shows that for a
16–bit CRC, the shift register will contain 16 stages and

the polynomial expression will have a term of the six-
teenth order. As stated previously, the iButton devices
do not calculate the CRC values. The host must gener-
ate the value and then append the 16-bit CRC value to
the end of the actual data. Due to the uncertainty of the
iButton’s “communication channel,” i.e., the two metal
contact surfaces, data transfers can experience errors
that generally fall into three categories. First, brief inter-
mittent connections can cause small numbers of bit er-
rors to occur in the data, which the normal CRC–16
function is designed to detect. The second type of error
occurs when contact is lost altogether, for example
when the iButton is removed from the reader too quickly.

1ST
STAGE

2ND
STAGE

3RD
STAGE

4TH
STAGE

5TH
STAGE

6TH
STAGE

7TH
STAGE

8TH
STAGE

X0 X1 X2 X3 X4 X5 X6 X7 X8

Polynomial = X16 + X15 + X2 + 1

9TH
STAGE

10TH
STAGE

11TH
STAGE

12TH
STAGE

13TH
STAGE

14TH
STAGE

15TH
STAGE

16TH
STAGE

X9 X10 X11 X12 X13 X14 X15

INPUT DATA

X16

APPLICATION NOTE 27

030698 8/15

This causes the last portion of the data to be read as log-
ic 1’s, since no connection to an iButton will be inter-
preted as all 1’s by the host. The normal CRC–16 func-
tion can also detect this condition under most
circumstances. The third type of error is generated by a
short circuit across the reader, which can be caused by
an iButton that is not inserted correctly, or tilted signifi-
cantly once in the reader. A short at the reader causes
the data to be read as all 0’s by the host. When using
CRCs, this can cause problems, since the method to de-
termine the validity of the data is to read the data plus the
stored CRC value, and see if the resulting CRC com-
puted at the host is 0000 Hex (for a 16–bit CRC.) If the
reader was shorted, the data plus the CRC value stored
with the data will be read as all 0’s, and a false read will
have occurred, but the CRC computed by the host will
incorrectly indicate a valid read. In order to avoid this sit-
uation, Dallas Semiconductor recommends storing the
complement of the computed CRC–16 value
(CRC–16*) with the data that is written into the RAM.
Using an uncomplemented CRC–16 value, the retrieval
of data from the iButton is similar to the DOW CRC case.
That is, if the CRC register in the host is initialized to
0000 Hex and then all of the data plus the CRC–16 value
stored with the data is read from the iButton, the result-

ing calculation by the host should have a 0000 Hex, as a
final result. If instead, the complement of the CRC–16
value is stored with the data in the iButton, then the CRC
register at the host is initialized to 0000 Hex and the ac-
tual data plus the stored CRC–16* value is read. The re-
sultant CRC value should be B001 Hex for a valid read.
This greatly improves the operation of the system, since
it can no longer be fooled by a short at the reader. The
reason that the CRC–16 function has these properties
can be shown in an analogous manner to the DOW CRC
case (see Figures 3 and 5). The operation of the 16–bit
CRC is identical in theory to the 8 bit version described
earlier, but the properties of the CRC change since a
16–bit value is now available for error detection. For the
CRC–16 function, the types of errors that are detectable
are:

1. Any odd number of errors anywhere within the data
record.

2. All double–bit errors anywhere within the data re-
cord.

3. Any cluster of errors that can be contained within a
16–bit “window” (1–16–bits incorrect).

4. Most larger clusters of errors.

CRC–16 HARDWARE DESCRIPTION AND POLYNOMIAL Figure 6

APPLICATION NOTE 27

030698 9/15

The hardware implementation of the CRC–16 function
is straightforward from the description given in
Figure 6. Table 3 shows a software solution that is anal-
ogous to the hardware operations which compute the
CRC–16 values using single–bit operations. As before,
a less computation–intensive software solution can be
developed through the use of a lookup table. The basic
concepts presented for the 8 bit DOW CRC lookup table
also work for the CRC–16 case. A slight modification in
procedure from the 8–bit case is required, however, be-
cause if the entire 16–bit result for the CRC–16 function
were mapped into one table as before, the table would
have 216 or 65536 entries. A different approach is
shown in Table 4, where the 16–bit CRC values are
computed and stored in two 256–entry tables, one con-
taining the high order byte and the other the low order
byte of the resultant CRC. For any current 16–bit CRC
value, expressed as Current_CRC16_Hi for the current
high order byte and Current _CRC16_Lo for the current

low order byte, and any new input byte, the equation to
determine the index into the high order byte table for
locating the new high order byte CRC value
(New_CRC16_Hi) is given as:

New_CRC16_Hi = CRC16_Tabhi[I] for I=0 to 255;
where I = (Current_CRC16_Lo) EXOR (Input byte)

The equation to determine the index into the low order
byte table for locating the new low order byte CRC value
(New_CRC16_Lo) is given as:

New_CRC16_Lo = (CRC16_Tablo[I]) EXOR (Cur-
rent_CRC16_Hi) for I=0 to 255;
where I = (Current_CRC16_Lo) EXOR (Input byte)

An example of how this method works is shown in Fig-
ure 7.

ASSEMBLY LANGUAGE FOR CRC–16 COMPUTATION Table 3

crc_lo data 20h ; lo byte of crc calculation (bit addressable)
crc_hi data 21h ; hi part of crc calculation

•

•

•
;---
; CRC16 subroutine.
; - accumulator is assumed to have byte to be crc’ed
; - two direct variables are used crc_hi and crc_lo
; - crc_hi and crc_lo contain the CRC16 result
;---
crc16: ; calculate crc with accumulator

push b ; save value of b
mov b, #08h ; number of bits to crc.

crc_get_bit:
rrc a ; get low order bit into carry
push acc ; save a for later use

jc crc_in_1 ;got a 1 input to crc
mov c, crc_lo.0 ;xor with a 0 input bit is bit
sjmp crc_cont ;continue

crc_in_1:
mov c, crc_lo.0 ;xor with a 1 input bit
cpl c ;is not bit.

crc_cont:
jnc crc_shift ; if carry set, just shift
cpl crc_hi.6 ;complement bit 15 of crc
cpl crc_lo.1 ;complement bit 2 of crc

crc_shift

APPLICATION NOTE 27

030698 10/15

mov a, crc_hi ; carry is in appropriate setting
rrc a ; rotate it
mov crc_hi, a ; and save it
mov a, crc_lo ; again, carry is okay
rrc a ; rotate it
mov crc_lo, a ; and save it

pop acc ; get acc back
djnz b, crc_get_bit ; go get the next bit

pop b ; restore b
ret

end

APPLICATION NOTE 27

030698 11/15

ASSEMBLY LANGUAGE FOR CRC–16 USING A LOOKUP TABLE Table 4

crc_lo data 40h ; any direct address is okay
crc_hi data 41h
tmp data 42h

•

•

•
;---
; CRC16 subroutine.
; - accumulator is assumed to have byte to be crc’ed
; - three direct variables are used, tmp, crc_hi and crc_lo
; - crc_hi and crc_lo contain the CRC16 result
; - this CRC16 algorithm uses a table lookup
;---
crc16:

xrl a, crc_lo ; create index into tables
mov tmp, a ; save index
push dph ; save dptr
push dpl ;
mov dptr, #crc16_tablo ; low part of table address
movc a, @a+dptr ; get low byte
xrl a, crc_hi ;
mov crc_lo, a ; save of low result

mov dptr, #crc16_tabhi ; high part of table address
mov a, tmp ; index
movc a, @a+dptr ;
mov crc_hi, a ; save high result

pop dpl ; restore pointer
pop dph ;
ret ; all done with calculation

crc16_tablo:
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h

APPLICATION NOTE 27

030698 12/15

db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 000h, 0c1h, 081h, 040h, 001h, 0c0h, 080h, 041h
db 001h, 0c0h, 080h, 041h, 000h, 0c1h, 081h, 040h

crc16_tabhi:
db 000h, 0c0h, 0c1h, 001h, 0c3h, 003h, 002h, 0c2h
db 0c6h, 006h, 007h, 0c7h, 005h, 0c5h, 0c4h, 004h
db 0cch, 00ch, 00dh, 0cdh, 00fh, 0cfh, 0ceh, 00eh
db 00ah, 0cah, 0cbh, 00bh, 0c9h, 009h, 008h, 0c8h
db 0d8h, 018h, 019h, 0d9h, 01bh, 0dbh, 0dah, 01ah
db 01eh, 0deh, 0dfh, 01fh, 0ddh, 01dh, 01ch, 0dch
db 014h, 0d4h, 0d5h, 015h, 0d7h, 017h, 016h, 0d6h
db 0d2h, 012h, 013h, 0d3h, 011h, 0d1h, 0d0h, 010h
db 0f0h, 030h, 031h, 0f1h, 033h, 0f3h, 0f2h, 032h
db 036h, 0f6h, 0f7h, 037h, 0f5h, 035h, 034h, 0f4h
db 03ch, 0fch, 0fdh, 03dh, 0ffh, 03fh, 03eh, 0feh
db 0fah, 03ah, 03bh, 0fbh, 039h, 0f9h, 0f8h, 038h
db 028h, 0e8h, 0e9h, 029h, 0ebh, 02bh, 02ah, 0eah
db 0eeh, 02eh, 02fh, 0efh, 02dh, 0edh, 0ech, 02ch
db 0e4h, 024h, 025h, 0e5h, 027h, 0e7h, 0e6h, 026h
db 022h, 0e2h, 0e3h, 023h, 0e1h, 021h, 020h, 0e0h
db 0a0h, 060h, 061h, 0a1h, 063h, 0a3h, 0a2h, 062h
db 066h, 0a6h, 0a7h, 067h, 0a5h, 065h, 064h, 0a4h
db 06ch, 0ach, 0adh, 06dh, 0afh, 06fh, 06eh, 0aeh
db 0aah, 06ah, 06bh, 0abh, 069h, 0a9h, 0a8h, 068h
db 078h, 0b8h, 0b9h, 079h, 0bbh, 07bh, 07ah, 0bah
db 0beh, 07eh, 07fh, 0bfh, 07dh, 0bdh, 0bch, 07ch
db 0b4h, 074h, 075h, 0b5h, 077h, 0b7h, 0b6h, 076h
db 072h, 0b2h, 0b3h, 073h, 0b1h, 071h, 070h, 0b0h
db 050h, 090h, 091h, 051h, 093h, 053h, 052h, 092h
db 096h, 056h, 057h, 097h, 055h, 095h, 094h, 054h
db 09ch, 05ch, 05dh, 09dh, 05fh, 09fh, 09eh, 05eh
db 05ah, 09ah, 09bh, 05bh, 099h, 059h, 058h, 098h
db 088h, 048h, 049h, 089h, 04bh, 08bh, 08ah, 04ah
db 04eh, 08eh, 08fh, 04fh, 08dh, 04dh, 04ch, 08ch
db 044h, 084h, 085h, 045h, 087h, 047h, 046h, 086h
db 082h, 042h, 043h, 083h, 041h, 081h, 080h, 040h

APPLICATION NOTE 27

030698 13/15

COMPARISON OF CALCULATION AND TABLE LOOKUP METHOD FOR CRC–16 Figure 7

Example:
CRC register starting value: 90 F1 Hex
Input Byte: 75 Hex

Calculation Method

Current CRC Value

1001 0000 1111 0001

0100 1000 0111 1000

0010 0100 0011 1100

1011 0010 0001 1111

1111 1001 0000 1110

1101 1100 1000 0110

1100 1110 0100 0010

1100 0111 0010 0000

0110 0011 1001 0000

New CRC Value = 63 90 Hex

Input

1

0

1

0

1

1

1

0

Table Lookup Method

Current_CRC16_Lo = F1 Hex
Current_CRC16_Hi = 90 Hex
Input byte = 75 Hex

Tabhi Index= (Current_CRC16_Lo) EXOR (Input byte)
= F1 EXOR 75= 84 Hex = 132 Dec

New_CRC16_Hi = Tabhi[132] = 63 Hex (from Table 4.)

Tablo Index = (Current_CRC16_Lo) EXOR (Input byte) = 132 Dec
Tablo[132] = 00 Hex (from Table 4.)
New_CRC16_Lo = Tablo[132] EXOR (Current_CRC16_Hi)

= 00 EXOR 90 = 90 Hex

New CRC Value = 63 90 Hex

An interesting intermediate method is presented in
Table 5. The code will generate a CRC–16 value for
each byte input to it by operating on the entire current
CRC value and the incoming byte using the equations
shown in Figure 8. The derivations for the equations are
also shown, using alpha characters to represent the
current 16–bit CRC value and numeric characters to
represent the bits of the incoming byte. The result after
eight shifts yields the equations shown. These equa-
tions can then be used to precompute large portions of
the new CRC value. Notice, for example, that the quanti-
ty ABCDEFGH01234567 (defined as the EXOR of all of
those bits) is the parity of the incoming data byte and the
low order byte of the current CRC. This method reduces
computation time and memory space as compared to
both the bit–by–bit and lookup table methods described
above. Finally, two properties of the CRC–16 function
that can be used as test cases are mentioned as an aid
to debugging the code for any of the previous methods.

The first property is identical to the DOW CRC case. If
the current 16–bit contents of the CRC register are also
used as the next 16–bits of input, the resulting CRC val-
ue is always 0000 Hex. A second property of the
CRC–16 function is also similar to the DOW CRC case,
if the 1’s complement of the current 16–bit contents of
the CRC register are also used as the next 16–bits of in-
put, the resulting CRC value is always B0 01 Hex. The
proof for these two CRC–16 properties follows in an
analogous way to the proof for the DOW CRC case.

REFERENCES:
Stallings, William, Ph.D., Data and Computer Commu-
nications. 2nd ed., New York: Macmillan Publishing.
107-112.

Buller, Jon, “High Speed Software CRC Generation”,
EDN, Volume 36, #25, pg. 210.

APPLICATION NOTE 27

030698 14/15

ASSEMBLY LANGUAGE PROCEDURE FOR HIGH–SPEED CRC–16 COMPUTATION Table 5
lo equ 40h ; low byte of CRC
hi equ 41h ; high byte of CRC

•

•

•
crc16:
 push acc ; save the accumulator.

 xrl a, lo
 mov lo, hi ; move the high byte of the CRC.
 mov hi, a ; save data xor low(crc) for later
 mov c, p
 jnc crc0
 xrl lo, #01h ; add the parity to CRC bit 0
crc0:
 rrc a ; get the low bit in c
 jnc crc1
 xrl lo, #40h ; need to fix bit 6 of the result
crc1:
 mov c, acc.7
 xrl a, hi ; compute the results for other bits.
 rrc a ; shift them into place
 mov hi, a ; and save them
 jnc crc2
 xrl lo, #80h ; now clean up bit 7
crc2:
 pop acc ; restore everything and return
 ret

APPLICATION NOTE 27

030698 15/15

HIGH–SPEED CRC–16 COMPUTATION METHOD Figure 8

A
B

C
D

E
F

G
H

01
23

45
67

A
B

C
D

E
F

G
01

23
45

6
G

H
67

F
G

56
E

F
45

D
E

34
C

D
23

B
C

12
A

B
01

X
W

A
0

U
T

S
R

Q
A

B
C

D
E

F
G

H
P

01
23

45
67

A
B

C
D

E
F

G
01

23
45

6
A

B
C

D
E

F
01

23
45

F
G

56
E

F
45

D
E

34
C

D
23

B
C

12
A

B
01

X
W

A
0

A
B

C
D

E
F

01
23

45
A

B
C

D
E

01
23

4

A
B

C
D

01
23

A
B

C
01

2

A
B

01

E
F

45

D
E

34

C
D

23

B
C

12

A
B

01
X

W
A

0

U

A
0XW

A
B

C
D

E
01

23
4

A
B

C
D

01
23

A
B

C
01

2

A
B

01

A
0X

D
E

34

C
D

23

B
C

12

A
B

01
X

W
A

0

UT

C
D

23

B
C

12

A
B

01
X

W
A

0

UTS

B
C

12

A
B

01
X

W
A

0

UTSR

A
B

01
X

W
A

0

UTSRQ

W
A

0

UTSRQP
H

G
F

E
D

C
B

A

UTSRQP
H UTSRQP

G H TSRQP

F G H SRQP

E F G H RQP

D E F G H QP

C D E F G H P
A

B
C

D
E

F
G

H
01

23
45

6

A
B

C
D

E
F

G
01

23
45

A
B

C
D

E
F

01
23

4

A
B

C
D

E
01

23

A
B

C
D

01
2

A
B

C
01

A
B

0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

IN
P

U
T

76543210

R
E

G
IS

T
E

R
 S

TA
G

E
 (

S
E

E
 F

IG
U

R
E

 6
 F

O
R

 O
P

E
R

A
T

IO
N

)

C
U

R
R

E
N

T
 C

R
C

 V
A

LU
E

 =
 X

W
U

T
 S

R
Q

P
 H

G
F

E
 D

C
B

A
IN

P
U

T
 B

Y
T

E
 =

 7
65

4
32

10

N
O

TA
T

IO
N

: A
B

C
 =

 A
 E

X
O

R
 B

 E
X

O
R

 C

D
E

F
IN

IT
IO

N
: D

E
F

 E
X

O
R

 D
 =

 (
D

 E
X

O
R

 D
)

E
X

O
R

 E
F

 =
 0

 E
X

O
R

 E
F

 =
 E

F

T
H

IS
 Y

IE
LD

S
 T

H
E

 F
O

LL
O

W
IN

G
 D

E
F

IN
IT

IO
N

S
:

N
E

W
 C

R
C

 R
E

G
IS

T
E

R
 V

A
LU

E
S

 A
F

T
E

R
 E

IG
H

T
 S

H
IF

T
S

X
ne

w
 =

 A
B

C
D

E
F

G
H

01
23

45
67

W
ne

w
 =

 A
B

C
D

E
F

G
01

23
45

6
=

 A
B

C
D

E
F

G
H

01
23

45
67

 H
7

U
ne

w
 =

 G
6H

7
T

ne
w

 =
 F

5G
6

S
ne

w
 =

 E
4F

5
R

ne
w

 =
 D

3E
4

Q
ne

w
 =

 C
2D

3
P

ne
w

 =
 B

1C
2

H
ne

w
 =

 A
0B

1X
G

ne
w

 =
 A

0W
F

ne
w

 =
 U

E
ne

w
 =

 T
D

ne
w

 =
 S

C
ne

w
 =

 R
B

ne
w

 =
 Q

A
ne

w
 =

 P
 A

B
C

D
E

F
G

H
01

23
45

67

