
Application Note 78
Using Power Management

with the DS87C5x0

APPLICATION NOTE 78

030998 1/27

OVERVIEW
Power management is critical in battery–powered
applications. Differences of microamperes can trans-
late into months or years of operating life, which can
make or break a product in the marketplace. The high
level of integration of Dallas Semiconductor microcon-
trollers make them ideal for portable or battery–oper-
ated applications which demand low power consump-
tion. By combining the processor and peripherals onto a
single die, redundant hardware is eliminated, and power
savings are achieved. In addition, power management
features designed into the DS87C5x0 High–Speed
Microcontrollers further reduce power consumption.

Dallas Semiconductor microcontrollers are manufac-
tured with a Complementary Metal Oxide Semiconduc-
tor (CMOS) process which makes them inherently low
power devices. Unlike other technologies, CMOS
devices have an infinitesimal quiescent current and only
draw significant currents when switching logic states.
This means that without further intervention, the user
has already designed a low power system. The power
management features of the DS87C5x0 family of micro-
processors allow the system designer to effect an even
greater reduction in power. The maximum current con-
sumption in both operating and halted states of the
microcontroller is shown below.

Maximum Current, 25 MHz
Slowest Operating Speed (PMM2) Osc. Halted

DS87C520 1.2 mA 1 µA

A number of factors can affect power consumption that
are generally beyond the ability of the device to control
during operation. The single largest factor in power con-
sumption of a microcontroller is clock frequency. The
power consumed by a microprocessor is directly pro-
portional to its operating speed, so it follows that a
device operating at the lowest possible frequency will
produce the maximum power savings. The speed cho-
sen depends on the system requirements, most notably
interrupt service time. Temperature can also affect
power consumption. Semiconductor devices draw

greater power at lower temperatures. If the system
under development is being designed for cold tempera-
tures, the designer should expect higher than typical
power consumption values. System design also has a
direct bearing on power consumption, and driving large
external loads will increase power consumption.

This application note covers the DS87C520 and
DS87C530 High–Speed Microcontrollers. Their power
management features are explained, and techniques
are presented for minimizing power consumption.
Because the power management feature operates in
conjunction with many of the peripheral functions, espe-
cially the interrupt and serial functions, the user is urged
to become familiar with the overall operation of the pro-
cessor before beginning this section.

The DS87C5x0 incorporates a number of new features
specifically designed for power management. They
were designed to reduce power consumption without
sacrificing throughput or responsiveness to external
events. These features are listed below:

DYNAMIC CLOCK SPEED CONTROL
The High–Speed Microcontrollers support four clock
management modes: Stop, PMM1 (Power Manage-
ment Mode 1), PMM2 (Power Management Mode 2),
and Idle. The DS87C5x0 can dynamically switch
between these modes, allowing the user to optimize the
speed of the device while minimizing power consump-
tion. The Stop mode has been improved over standard
8051 capabilities, and now supports resume from exter-
nal interrupts as well as reset sources.

SWITCHBACK
The DS87C5x0 incorporates an automatic “switchback”
feature to allow a device operating in a Power Manage-
ment Mode (PMM) to switch into “high gear” upon
receipt of an external interrupt or serial port transmis-
sion. This enables a device in power–saving mode
respond quickly to external events and/or operate its

APPLICATION NOTE 78

030998 2/27

serial ports. Traditional 8051–based devices without the
switchback feature lose the ability to service interrupts
quickly without running the device at high speed, and
higher power consumption, constantly.

SELECTABLE CLOCK SOURCE
The crystal oscillator is a large consumer of power on
any microcontroller, especially during low power opera-
tion. The DS87C5x0 ring oscillator, used for quick starts
from Stop mode, can also be used to provide an approxi-
mately 3 to 4 MHz clock source during normal operation.
Although a crystal oscillator is still required at power–up,
once the crystal has stabilized, device operation can be
switched to the ring oscillator, realizing a power savings
of as much as 25 mA.

BAND–GAP REFERENCE DISABLING
The DS87C5x0 gives the user the option of disabling the
band–gap reference, which is used to detect a power
failure while in Stop mode. Stop mode current can be
reduced from 80 µA to 1 µA by using this feature.

ENHANCED STATUS REPORTING
Although the ability to dynamically switch the internal
clock speed is a benefit, if performed at the wrong time it
can seriously interfere with the operation of timing–de-
pendent functions. The Status register (STATUS;C5h),
new to the DS87C5x0 devices, contains information
about the status of both serial ports, the crystal oscilla-
tor, and high priority, low priority, and power fail inter-
rupts. The software can delay or cancel a planned
speed change based on the information in this register.

CLOCK SPEED CONTROL
Description
The operating frequency of a microcontroller is the
single biggest factor in determining power consumption.
The DS87C5x0 family of microcontrollers supports four
clock speed management modes which conserve
power by slowing or stopping the internal clock. These
modes allow the system designer to maximize power
savings with a minimum impact on performance.

PMM1
Power Management Mode 1 (PMM1) allows the user to
run the DS87C5x0 at a reduced speed to save power.
Setting the clock divider rate bits (PMR.7–6) will force
the part from its default 4 clocks per machine cycle

(divide by 4) to 64 clocks per machine cycle (divide by
64). The external crystal continues to operate at full
speed. All peripherals and instructions will operate at
this reduced speed. The DS87C5x0 can resume divide
by 4 operation by setting the appropriate clock divider
rate bits or by utilizing the switchback feature.

PMM2
Power Management Mode 2 (PMM2) allows the user to
run the DS87C5x0 at an even slower speed to improve
power savings. Setting the clock divider rate bits
(PMR.7–6) will force the part from its default 4 clocks per
machine cycle (divide by 4) to 1024 clocks per machine
cycle (divide by 1024). The external crystal continues to
operate at full speed. All peripherals and instructions will
operate at this reduced speed. The DS87C5x0 can
resume full–speed (divide by 4) operation by setting the
appropriate clock divider rate bits or by utilizing the
switchback feature. This mode permits an even greater
power savings over PMM1.

STOP MODE
The Stop mode is the lowest power state available to the
DS87C5x0. It is initiated by setting the Stop bit
(PCON.1). While in this mode the crystal oscillator is
stopped, and all internal clocking, including the Watch-
dog Timer, is halted. The real time clock on the
DS87C530 is unaffected by Stop mode. The Stop mode
is exited by an external interrupt, real–time clock inter-
rupt, an external reset via the RST pin, or a power–on
reset. Each interrupt will cause the device to vector to
the corresponding interrupt routine to resume execu-
tion.

The DS87C5x0 incorporates a ring oscillator to allow for
a fast resumption from Stop mode. This provides an
instantaneously available 4 MHz clock source for the
device to start operation. It can function until the crystal
has stabilized, or can continue to be used as the clock
source. The ring oscillator does not exhibit as much sta-
bility as an external clock, and the device should not per-
form timing measurements requiring high accuracy or
serial port data transfers while operating from the ring
oscillator. For more information concerning the use of
the ring oscillator, please consult the Clock Source Con-
trol section of this document.

APPLICATION NOTE 78

030998 3/27

IDLE MODE
The Idle mode halts operation of the DS87C5x0 proces-
sor core but leaves internal clocks, serial ports, and tim-
ers running. This mode is invoked by setting the IDL bit
(PCON.0), and can be exited by an interrupt or external
reset via the RST pin. Use of this mode is not recom-
mended on new designs, as lower power operation can
be achieved by placing the part in PMM2 and executing
NOPs. Its inclusion in the DS87C5x0 provides back-
ward software compatibility.

POWER MANAGEMENT MODES
The greatest power savings come from utilizing the
power management modes associated with the
DS87C5x0. Unlike other techniques, Power Manage-

ment Modes 1 and 2 (PMM1 and PMM2) allow the user
to reduce power consumption without sacrificing perfor-
mance. Although the power management features are
an important part of a power efficient design, a thorough
understanding of the microprocessor will allow the sys-
tem designer to achieve maximum power savings.

The clock speed management modes are designed to
be part of a progressive level of power reduction, based
on external activity and performance needs. PMM1 and
PMM2 provide the lowest level of power consumption
while still permitting full computational and peripheral
operation. Figure 1 demonstrates the progression of
clock management modes. As explained later, transi-
tions between PMM1 and PMM2 must be made through
divide by 4 mode.

PROGRESSION OF CLOCK SPEED MODES Figure 1

POWER ON DIVIDE BY 4
MODE

PMM1
(DIV. BY 64)

PMM2
(DIV. BY 1024) STOP MODE

APPLICATION NOTE 78

030998 4/27

ENTERING AND EXITING POWER
MANAGEMENT MODES
Software invokes the desired power management
mode using bits in the Power Management Register
(PMR). Stop mode is invoked by setting the STOP bit
(PCON.1). The device speed is selected by the clock
divider rate bits CD1, CD0 (PMR.7–6), shown below.

CLOCK DIVISOR RATE BIT SETTINGS

CD1 CD0 MACHINE CYCLE RATE

0 0 Reserved

0 1 4 clocks (default)

1 0 64 clocks (PMM1)

1 1 1024 clocks (PMM2)

PMM1 and PMM2 can be exited by configuring the clock
divider rate bits CD1, CD0, or by the switchback func-
tion. Entry to or exit from either PMM can only be via the
divide by 4 mode. For example, to go from PMM1 (divide

by 64) to PMM2 (divide by 1024) mode, it is necessary to
first switch from PMM1 to divide by 4 mode, and then
from divide by 4 to PMM2. Attempts to execute an illegal
speed change will be ignored and the bits will remain
unchanged. It is the responsibility of the software to test
for serial port activity using the Status register (STA-
TUS;C5h) before attempting to change speed. Chang-
ing speed during an asynchronous serial port operation
will corrupt the serial transmission.

When PMM is invoked, the external crystal will continue
to operate at full speed, and the DS87C5x0 will still
execute four internal states per machine cycle. In PMM
the device performs an internal divide of the external
clock, by 16 for PMM1 (16 x 4=64) or 256 for PMM2
(256 x 4=1024) to achieve the desired frequency, as
opposed to actually performing 64 or 256 internal states
per instruction. For example, operations that occur dur-
ing C2 will still do so. Most applications will not find it
necessary to attend to this much detail, but the informa-
tion is provided for calculating critical timings.

INTERNAL TIMING RELATIONSHIPS IN PMM1 Figure 2

C1 C2 C3 C4 C1 C2

MACHINE
CYCLES

ALE

INTERNAL
CLOCK
(PMM1)

EXTERNAL
CLOCK

 64 CLOCK CYCLES

 SINGLE–CYCLE INSTRUCTION

 MACHINE CYCLE MACHINE CYCLE

 SINGLE–CYCLE
INSTRUCTION

APPLICATION NOTE 78

030998 5/27

Note that changing the clock divisor, either manually or
through a switchback, will not affect Timed Access pro-
cedures. Timed Access operates in relation to internal
machine cycles, not an absolute time reference.

TIMERS AND PMM
Timers 0, 1, and 2 will default on power–up to a 12 exter-
nal clocks per timer tick to remain compatible with the
original 8051/8032 specifications. The timers can be

individually configured to run at a rate of four external
clocks per timer tick when the device is operating in
divide by 4 mode by setting the relevant bits in the Clock
Control Register (CKCON;8Eh). During PMM timers 0,
1, and 2 operate at correspondingly reduced clock
rates, because the timers derive their time base from the
internal clock. This will also affect the operation of the
serial ports in PMM as the timers are used to generate
baud rates. Table 2 shows the effect of the clock divide
rate on timer operation.

EFFECT OF CLOCK MODES ON TIMER OPERATION Table 2

CD1 CD0

OSC.
CYCLES PER

MACHINE
CYCLE

OSC. CYCLES
PER TIMER
0/1/2 CLOCK

OSC. CYCLES
PER TIMER 2

CLOCK, BAUD
RATE GEN.

OSC. CYCLES
PER SERIAL

PORT CLOCK
MODE 0

OSC. CYCLES PER
SERIAL PORT

CLOCK MODE 2

CYCLE
TxM=1 TxM=0 T2M=1 T2M=0 SM2=0 SM2=1 SMOD=0 SMOD=1

0 0 Reserved

0 1 4 12 4 2 2 12 4 64 32

1 0 64 (PMM1) 192 64 32 32 192 64 1024 512

1 1 1024 (PMM2) 3072 1024 512 512 3072 1024 16,384 8192

The watchdog timer runs off the same time base as the
internal clocks; i.e. if the device is in PMM1, the watch-
dog will also be running in a divide by 64 mode. This
keeps the watchdog timer synchronized with the opera-
tion of the processor when switching between PMM and
divide by 4 mode. Applications that use the watchdog
timer as an additional timer should take this into account
if PMM is used.

The real time clock is independent of the PMM setting. It
uses the external 32 KHz crystal as its reference, and
can be accessed in any mode.

MANUALLY EXITING PMM
In addition to the switchback feature, it is also possible
to manually exit a PMM by configuring the clock divider
rate bits. Entry to or exit from either PMM can only be via
the divide by 4 mode, and attempts to execute an illegal
speed change will be ignored and the bits will remain
unchanged. If a timing–dependent operation may be in
progress, the Status register (STATUS;C5h) should be
interrogated to determine if it has been completed
before switching out of or into PMM.

RESET SENSITIVITY IN PMM
While in PMM, the method used to detect an external
reset pulse differs from that used in divide by 4 mode. In
divide by 4 mode, (and standard 8051 architecture) a
reset must be high for two machine cycles to be
detected. If this were true in PMM, reset would have to
be asserted for a minimum of 128 or 2048 clock cycles.
To avoid this, devices operating in PMM employ a posi-
tive edge–detect sensor, rather than a one machine
cycle qualification to detect a reset signal. This means
that devices which use PMM are more susceptible to
noise and additional care must be taken to keep the
reset signal noise–free.

SWITCHBACK FEATURE
Description
The switchback feature allows the user to quickly
restore the DS87C5x0 to a higher speed when an event
occurs. When enabled, a qualified event causes the
device to automatically switch from divide by 64 (PMM1)
or divide by 1024 (PMM2) to divide by 4 operation with-
out software intervention. This allows the device to

APPLICATION NOTE 78

030998 6/27

respond to high priority or interrupt driven events with a
minimum delay. The following sources can trigger a
switchback:

external interrupt 0/1/2/3/4/5,
serial start bit detected, Serial Port 0/1,
transmit buffer loaded, Serial Port 0/1,
watchdog timer reset,
power–on reset,
external reset.

Because of the intimate relationship between PMM,
switchback, external interrupts, timer/counters, and the
serial ports, it is highly recommended that the system
designer become familiar with these features before
attempting to use the switchback feature.

Status Register
A Status register (STATUS;C5h) has been added to the
DS87C5x0 to aid the software in determining whether a
speed change is appropriate. The Status register pro-
vides information on the status of both serial ports, and
high priority, low priority, and power fail interrupts, allow-
ing the device to determine whether or not the device
should be switched into PMM.

The benefits of the Status register become apparent
when using the switchback feature to exit or enter PMM.
A device executing an interrupt service routine in PMM
will not execute a switchback in response to an interrupt
of equal or lower priority. The Status register can be
used to test for an interrupt service routine in progress,
and can hold off entering PMM until finished, or take
another course of action.

Enabling/Initiating Switchback
Automatic switchback is enabled by setting the SWB bit
(PMR.5). When a qualified switchback event occurs,
the device will exit either PMM and return to the default
operating mode of 4 clocks per machine cycle. Clearing
the SWB bit will disable the ability of external interrupts
and serial ports to cause future switchbacks, but will not
affect the current speed of the DS87C5x0. Five condi-
tions must be met for an external interrupt to cause a
switchback:

1. The device must currently be in PMM1 or PMM2.

2. The SWB bit (PMR.5) must be set.

3. Global Interrupts must be enabled by setting the EA
bit (IE.7).

4. The specific interrupt must be enabled.

5. The specific interrupt occurs and is acknowledged.

Switchbacks via the serial port are slightly different. In
general, switchbacks are caused by interrupts. In the
case of the serial ports, this introduces a problem as
they generate interrupts only upon receipt or transmis-
sion of a complete word. For the serial port to properly
receive or transmit a word at standard baud rates, it
must be operating at full speed. If the DS87C5x0 is
operating in PMM, it would never complete a reception
to initiate an interrupt, or the corresponding switchback.

The DS87C5x0 solves this problem by initiating a
switchback, if enabled, upon the receipt of a falling edge
on the RX pin, not the receiver interrupt. This switches
the device back to full speed on the next internal
machine cycle, in time to capture the start bit, and the
rest of the transmission. Note that the ability of the serial
port to initiate a switchback is not dependent on the
Enable Serial Port Interrupt bits (IE.4 or IE.6), only the
specific Receiver Enable bit (SCON0.4 or SCON1.4).
Four conditions must be met for a serial port reception to
cause a switchback:

1. The device must currently be in PMM1 or PMM2.

2. The SWB bit (PMR.5) must be set.

3. The specific serial port must be enabled by setting
the specific Receiver Enable bit (SCON0.4 or
SCON1.4).

4. A falling edge is detected on the specific RX pin.

The switchback feature also works in conjunction with
the transmit function. If the appropriate conditions are
met, a device operating in a PMM will automatically
return to divide by 4 mode when a serial port buffer
(SBUF0;99h or SBUF1;C1h) is loaded. This removes
the need for the user to manually set the speed to divide
by 4 before initiating the transmission. The transmitter
interrupt can be used to signal when the transmission is
complete so that software can return the device to the
appropriate PMM. Three conditions must be met for a
serial port transmission to cause a switchback:

1. The device must currently be in PMM1 or PMM2.

2. The SWB bit (PMR.5) must be set.

3. A serial port transmission must be initiated by load-
ing the specific serial port buffer (SBUF0;99h or
SBUF1;C1h).

APPLICATION NOTE 78

030998 7/27

Although both the serial port transmit and receive func-
tions are possible in PMM, it is not possible to configure
the baud rate generator to any standard rate (300, 1200,
2400, etc.) in these modes, making it impossible to com-
municate with a standard peripheral. The use of the
switchback feature is strongly recommended if serial
port activity and PMM are to be used in a design.

CONSIDERATIONS WHEN USING
SWITCHBACK
Switchback Timing
One of the primary considerations when using the
switchback procedure is the time required to return the

device to full speed from a PMM. This is a factor in calcu-
lating the latency associated with servicing an interrupt.
Switchbacks will occur at the C1 cycle of the first instruc-
tion following the event initiating the switchback. If the
current instruction in progress is a write to the IE, IP, EIP
or EIE register, interrupt processing will be delayed until
the completion of the following instruction. Figure 3
demonstrates the timing relationship between inter-
rupts and switchbacks during a two–cycle instruction.

INTERRUPT–DRIVEN SWITCHBACK Figure 3

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4C1 C2 C3 C4

INTERRUPT ACTIVEINTERRUPT
INACTIVE

INTERNAL
CLOCK

ALE

INTERRUPT
SOURCE

EXTERNAL
INTERRUPT
FLAG

HIP, LIP

 MACHINE CYCLE 1 MACHINE CYCLE 2

 PMM1 OR PMM2 FULL
OPERATION

MACHINE
CYCLE 3

MACHINE
CYCLE 4

NOTES:
1. Internal clock cycle is 16 external clock cycles for PMM1 and 256 external clock cycles for PMM2.

2. Polarity of interrupt varies with respect to external interrupt number.

3. Example shows two–cycle instruction. Execution of the interrupt and switchback will occur at the end of the
last machine cycle of the instruction in which the interrupt is acknowledged.

APPLICATION NOTE 78

030998 8/27

One exception to the above timing relationship is that
serial port switchbacks will occur immediately upon
receipt of a falling edge on an enabled serial port
receiver. The switchback will occur at the start of the

next internal clock cycle following the falling edge. Fig-
ure 4 demonstrates the timing relationship between
serial port activity and switchbacks.

SERIAL PORT DRIVEN SWITCHBACK Figure 4

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2C3 C4 C1 C2

 MACHINE CYCLE 1 MACHINE CYCLE 2

 PMM1 OR PMM2 FULL
OPERATION

MACHINE
CYCLE 3

INTERNAL
CLOCK

ALE

RX

SPRA0,
SPRA1

SERIAL START BIT

NOTES:
1. Internal Cx cycle is 16 external clock cycles for PMM1 and 256 external clock cycles for PMM2.

2. SPRA0 and SPRA1 will change within 1 machine cycle of the falling edge RX.

3. Example shows single–cycle instructions. Execution of the interrupt and switchback will occur at the end of
the last machine cycle of the instruction in which the interrupt is acknowledged.

Interrupt Priority
Because the switchback feature uses interrupts to qual-
ify execution, it is affected by interrupt priorities. The
external interrupts initiate a switchback upon the start of
the interrupt service routine. If a higher priority interrupt
is in progress, the associated switchback will remain
pending. It is not possible to enable or disable the
switchback function for individual interrupt sources,
except by enabling or disabling the specific interrupt.

The following example will illustrate how a problem
could occur if the priority of the interrupt sources is not
taken into account. Assume that the user is employing
both Timer 0 and External Interrupt 1 in a design which
utilizes PMM. While operating in PMM, a Timer 0 inter-
rupt occurs, and the device begins executing the inter-
rupt service routine (ISR). During the Timer 0 ISR, an
External Interrupt 1 occurs, signaling an external event

that needs to be serviced quickly. Because both inter-
rupts have the same priority, External Interrupt 1 will
remain pending until completion of the Timer 0 ISR.
Although such interrupt priorities are a normal consider-
ation in any design, the reduced operating speed in
PMM will further increase the latency associated with
servicing External Interrupt 1. This could be avoided by
specifying External Interrupt 1 as a high priority interrupt
and leaving Timer 0 as a low priority interrupt.

A serial port–initiated switchback does not utilize the
interrupt structure, and is therefore not affected by inter-
rupt priorities. Serial port–initiated switchbacks are
enabled or disabled via the specific receiver enable bit
(SCON0.4 or SCON1.4). The ability of a serial port to ini-
tiate a switchback is not dependent on the Enable Serial
Port Interrupt bits (IE.4 or IE.6).

APPLICATION NOTE 78

030998 9/27

Serial Port Activity and PMM
Because the function of PMM is to change the internal
clock frequency of the DS87C5x0, timing–dependent
peripherals such as the serial ports can be affected. The
user must be sure that the serial ports are not receiving
or transmitting when switching into PMM. The simplest
way to do this is to interrogate the serial port activity bits
in the Status register (STATUS.3–0).

During a receive operation, the falling edge of the start
bit will activate the switchback, if enabled. The serial
port activity monitor bit will be set, and the serial port will
then check for a valid start bit. If the start bit is received,
the serial reception will continue normally, and generate
an interrupt when the entire word is received, if enabled.
To minimize power consumption, PMM may be enabled
again at the start of the serial port interrupt service rou-
tine if no further processing is needed in divide by 4
mode.

It is possible to experience a “spurious” switchback
caused by a noisy serial port. The DS87C5x0 initiates a

switchback on the first falling edge on the RX pin, and
begins looking for a valid start bit. If a valid start bit is not
received, the system will abort the serial activity, clear-
ing the activity bit, and no serial port interrupt will be
executed. The switchback has already been initiated,
however, and the device is now operating at full speed.
To return the device to PMM, it will be necessary for the
user to manually reset the clock rate divider bits.

The code fragment shown in Figure 5 illustrates one
possible test for an invalid return to divide by 4 mode.
This test can be inserted into the main code loop where it
will be periodically executed, or it could be made part of
a timer interrupt routine. If no interrupts or serial ports
are active, it is likely that the device should be in PMM,
not divide by 4 mode. This code should be customized
according to the specific configuration, i.e. if a PMM
should be allowed in a low priority interrupt, then mask
out that bit when testing the Status register.

INVALID SWITCHBACK TEST EXAMPLE Figure 5

MODETEST: PUSH A ;Save the current value of the accumulator.
 MOV A, PMR ;Move the data to a bit–addressable register.
 JB E7, PMM_ON ;If bit 7 is set, device is already in PMM.
CHK_STAT: MOV A, STATUS ;Check status register for active interrupts.
 AND A, #0EFh ;Check for user–defined activity.
 JNZ CHK_STAT ;If activity, loop until complete.
 . ;(Code can either loop until the condition
 . ; clears or abort attempt to reenter PMM.)
ENA_PMM: OR PMR, #0C0h ;Status okay for return to PMM. Set Clock Rate
 ; Divider bits (example shows return to PMM2)
PMM_ON: POP A ;Restore accumulator.

Multiprocessor Communications in PMM
The effectiveness of PMM and the switchback feature is
affected if multiprocessor communications protocols
are used. The DS87C5x0 includes features that will
support multiple processors on the same serial port. In
serial port modes 2 and 3 it is possible to use the SM2
flag (SCON0.5 or SCON1.5) to signify that the received
byte is an address. The slave address recognition regis-
ters (SADDR0;A9h, SADDR1;AAh, SADEN0;B9h,
SADEN1;BAh) can be programmed to ignore a trans-
mission (not cause a receiver interrupt) when a received
address does not match a user defined pattern.

The implication of multiprocessor communications for
power management is that a switchback is generated by

the detection of the first falling edge on a serial port, not
the generation of a valid interrupt. As a result, an invalid
address which should be ignored by a particular proces-
sor will still generate a switchback. Normally, the part
could be returned to PMM at the start of the serial port
interrupt service routine. Unfortunately, in the above
mentioned case no interrupt will be generated. To allevi-
ate this problem, one should avoid using a multiproces-
sor communication scheme in conjunction with PMM. If
the system power considerations will allow for an occa-
sional erroneous switchback, the polling scheme shown
in Figure 5 can be used to place the device back into
PMM.

APPLICATION NOTE 78

030998 10/27

CLOCK SOURCE CONTROL
Description
The DS87C5x0 incorporates a number of features to
control the clock source to the device. By controlling the
source of the system clock, the system designer can
simultaneously achieve higher performance and
decreased power consumption. To provide maximum
flexibility, the DS87C5x0 will operate from three clock
sources:

1. External Crystal (using internal crystal oscillator),

2. External Clock Oscillator,

3. Internal Ring Oscillator.

EXTERNAL CRYSTAL
The most common clocking source for the DS87C5x0 is
an external crystal. The DS87C5x0 incorporates a crys-
tal amplifier which is designed to drive industry standard
crystals over the operating range of the device. External
crystals provide a highly accurate clock source for tim-
ing–dependent peripherals such as internal timers and
serial ports, as well as device operation. The DS87C5x0
requires a fundamental–mode, parallel–resonant (also
called anti–resonant) AT cut crystal. Crystal oscillators
have significant start up times, however, which can
delay the operation of the device when powering on or
resuming from the Stop mode. The DS87C5x0 must
start operation with an external crystal or external clock
source after a power–on reset.

EXTERNAL CLOCK SOURCE
If a clock oscillator is already present in the system, it
can be used as the external clock source for the
DS87C5x0. External clock oscillators suffer from the
same start–up delays as the internal crystal oscillator,
and do not provide any special benefits. Either an exter-
nal crystal or external clock source can be used to clock
the device following a power–on reset or power–fail
reset.

RING OSCILLATOR
The ring oscillator is a low power digital oscillator inter-
nal to the DS87C5x0. It can be used as the primary sys-
tem clock, instead of an external crystal or clock oscilla-
tor, at any time except immediately following a
power–on reset. When enabled, it provides a 4 MHz
clock source for device operation. This is typically a
lower frequency than the system clock, and this pro-
vides a significant power savings. Once the device has
switched to the ring oscillator as the clock source, the
external crystal amplifier can be disabled, further reduc-
ing power consumption.

In addition, the ring oscillator eliminates the delay
associated with a crystal oscillator and provides an
almost instantaneous startup from Stop mode. When
used to restart the DS87C5x0 from Stop mode, the ring
oscillator will function for a minimum of 65,536 clock
cycles, at which time it can automatically switch to the
external crystal or continue to run from the ring oscilla-
tor. The ring oscillator cannot be used to clock the
device from a power–on state, however. Because the
ring oscillator does not exhibit as much stability as an
external clock, the DS87C5x0 should not perform timing
measurements or serial port data transfers while using
the ring oscillator as the clock source.

The ring oscillator finds wide applicability in applications
that only require sporadic bursts of processing. Such a
system will occasionally awaken from Stop mode, per-
form some activity, and then return to Stop mode. The
ring oscillator allows the system to quickly switch from
the lowest power state, perform an operation, and then
return to a low power state, without restarting a halted
external crystal. Figure 6 shows the advantages of
restarting from Stop mode with and without the ring
oscillator.

APPLICATION NOTE 78

030998 11/27

ADVANTAGES OF RING OSCILLATOR Figure 6

ÏÏÏÏÏÏ
ÏÏÏÏÏÏ

ÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏ

CRYSTAL
OSCILLATION

uC OPERATING uC OPERATING

STOP MODE WITHOUT RING STARTUP

RING
OSCILLATION

INTx

POWER
CONSUMPTION

uC HALTED uC HALTED

ENTER STOP
MODE

EXIT STOP
MODE

CLOCK
STABLE

ENTER STOP
MODE

CRYSTAL
WARM UP1

1. Crystal Warm up period is 4 to 10 ms depending on crystal type and speed.

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

ÏÏÏÏÏÏ
ÏÏÏÏÏÏ

CRYSTAL
OSCILLATION

uC OPERATING

STOP MODE WITH RING STARTUP

RING
OSCILLATION

INTx

POWER
CONSUMPTION

uC HALTED uC HALTED

ENTER STOP
MODE

EXIT STOP
MODE

ENTER STOP
MODE

ÏÏÏÏÏ
ÏÏÏÏÏ

uC OPERATING1

POWER SAVED2

1. Diagram assumes that the operation following Stop requires less than 18 ms to complete.

2. Additional power savings due to decreased ring oscillation current compared to crystal amplifier.

Even if timing–dependent functions are necessary
shortly after resuming Stop mode, the ring oscillator
may be beneficial. Typically there is some processing
that is necessary along with a timing routine or serial
port transmission. Prior to executing the Stop com-
mand, the device should switch to the crystal as the
clock source and set the RGSL bit. Upon resuming from
Stop, the device can execute code while running from
the ring oscillator in preparation for the timing depen-
dent operation. The device can then loop until the
RGMD bit has been cleared, indicating that the crystal

or external clock source is now the clock source, and
timing dependent operations can begin.

CLOCK CONTROL BITS
There are a number of bits that are used to configure the
clock management modes of the DS87C5x0. These
allow the system to switch between different clock
sources, indicate the current status of the clock source,
and select how the device will resume from Stop mode.
The pertinent bits are shown in Table 3.

APPLICATION NOTE 78

030998 12/27

CLOCK CONTROL AND STATUS BIT SUMMARY Table 3

BIT
NAME

LOCATION FUNCTION RESET WRITE ACCESS

XT/RG EXIF.3 Crystal/Ring Clock Source Select.
0 = Select ring oscillator as clock source.
1 = Select crystal or external clock as clock

source.

1 0 anytime;
1 when XTUP=1
and XTOFF=0

RGMD EXIF.2 Ring Oscillator Mode Status.
0 = Crystal or external clock is current clock

source.
1 = Ring oscillator is current clock source.

0 None

RGSL EXIF.1 Ring Oscillator Select, Stop Mode.
0 = Crystal or external clock will be the clock

source when resuming from Stop mode.
1 = Ring oscillator will be the clock source

when resuming from Stop mode.

Note: Upon completion of crystal warm up
period, device will switch to clock source
designated by XT/RG bit.

Unchanged
except after pow-
er–on reset, when
it is cleared to 0.

Unrestricted

XTOFF PMR.3 Crystal Oscillator Disable.
0 = Crystal oscillator is enabled.
1 = Crystal oscillator is disabled. Device is

operating from ring oscillator.

0 0 anytime;
1 when XT/RG=0

XTUP STATUS.4 Crystal Oscillator Warm Up Status.
0 = Oscillator warm up still in progress.
1 = Oscillator warm up complete.

1 None

CRYSTAL OSCILLATOR STARTUP DELAY
When power is applied to a crystal oscillator after a
period of non–operation, a short period of time is
required before the amplitude of the pulse is sufficient to
provide a stable clock source. This can result in missed
or corrupted clock signals, possibly disrupting proces-
sor operation. To ensure a valid clock signal, the
DS87C5x0 uses a crystal startup counter to detect
65,536 oscillations of the external crystal or clock oscil-
lator before allowing the device to resume operation.
This means that devices utilizing slower crystals will
have longer crystal startup times. The crystal startup
counter is more sensitive than the internal clock cir-
cuitry, and uses the count of both bad and good pulses
to determine the warm–up period. The counter value
was chosen to allow the majority of crystals enough time
to stabilize before releasing the device to run off the
external crystal. The counter is reset anytime the
XTOFF bit is cleared.

The status of the crystal startup counter can be deter-
mined by reading the Crystal Oscillator Warm Up Status
Bit, XTUP (STATUS.4). Note that this bit will always be
set upon a power–on reset, because the counter must

time out before the device will resume operation. For the
same reason, this bit will also be set when resuming
from Stop mode with the XT/RG bit set to 1. When
switching from the ring oscillator to the crystal oscillator,
the XTUP bit can be used to tell when the crystal has
stabilized. Attempts to switch to the external crystal
before the XTUP bit has been set will be disregarded.

SWITCHING BETWEEN CLOCK SOURCES
On occasion the device may wish to switch between the
ring oscillator and crystal oscillator. The device can
switch to the ring oscillator at any time as there is no
start up delay associated with the ring oscillator. Clear-
ing the Crystal Oscillator/Ring Oscillator Select Bit,
XT/RG (EXIF.3) will enable the ring oscillator. If there is
no expectation that the crystal oscillator will be needed
soon, the crystal oscillator can be disabled by setting the
Crystal Oscillator Disable Bit, XTOFF (PMR.3). This will
provide a significant power savings. Note that clearing
the XT/RG bit does not automatically disable the crystal
amplifier.

APPLICATION NOTE 78

030998 13/27

Switching the clock source from the ring oscillator to the
crystal oscillator is more involved due to the startup
delays inherent in the external crystal. The procedure is
as follows:

1. Clear the Crystal Oscillator Disable Bit, XTOFF
(PMR.3) to restart the crystal oscillator.

2. Wait for the Crystal Oscillator Warm Up Status bit,
XTUP (STATUS.4) to be set, indicating that the
external crystal warm up period is complete.

3. Set the Crystal Oscillator/Ring Oscillator Select Bit,
XT/RG (EXIF.3) to select the crystal as the clock
source.

CLOCK SOURCE AFTER RESET
Following a power–on reset, the RGSL bit is cleared and
the XT/RG bit is set. This forces the device to operate
from an external crystal or external clock source,
regardless of the clock source prior to the event. The
crystal startup counter will be reset and begin counting

down, allowing time for the crystal to stabilize before
resuming operation.

In the case of external (hardware) and watchdog resets,
the XT/RG bit will remain unchanged. This allows the
device to continue from the same clock source that was
active before the reset event. Regardless of the state of
the XT/RG bit, the XTOFF bit is cleared following any
reset, which begins the crystal oscillator warm up. If the
crystal will not be used, the appropriate reset routines
should set the XTOFF bit to disable the crystal oscillator
to conserve power.

CLOCK SOURCE AFTER STOP
During Stop mode, internal clocking to the DS87C5x0 is
halted. Upon receipt of an external interrupt or reset, the
device will use the state of the XTOFF, XT/RG, and
RGSL bits prior to entering Stop mode to determine the
state of the ring oscillator and crystal amplifier. The pos-
sible configurations are shown in Table 4.

CLOCK SOURCE AFTER STOP MODE DETERMINATION Table 4

XT/RG XTOFF RGSL

CLOCK SOURCE
WHEN EXITING

STOP MODE

CLOCK SOURCE
AFTER CRYSTAL

WARM–UP PERIOD
STARTUP DELAY

WHEN RESUMING?

CRYSTAL
OSCILLATOR

STATUS

0 0 x Ring Oscillator Ring Oscillator No Oscillator
enabled

0 1 x Ring Oscillator Ring Oscillator No Oscillator dis-
abled

1 0 0 Crystal Oscillator Crystal Oscillator Yes Oscillator
enabled

1 0 1 Ring Oscillator Crystal Oscillator No Oscillator
enabled

If the clock source before entering Stop mode is the ring
oscillator, the device will resume operation using the
ring oscillator and continue running from the ring oscilla-
tor after the crystal warm–up period. If the device enters
Stop mode running from the crystal oscillator, the Ring
Oscillator Select, Stop Mode bit, RGSL (EXIF.1) deter-
mines the clock source when resuming from Stop mode.
Upon completion of the crystal warm–up period the
device may continue to operate from the ring oscillator,
or may switch to the external crystal or clock source.
This is determined by the state of the XT/RG bit prior to
entering Stop mode.

It should be noted that the crystal amplifier will begin its
warm–up period automatically if the XT/RG bit was set
prior to entering Stop mode. This will happen if the
device was running from the external crystal or external
oscillator, or if it was running from the ring oscillator but
with the crystal amplifier still running. (Although not a
logical choice, this is theoretically possible.) When
resuming from the ring oscillator with the intent to con-
tinue from the ring oscillator, however, starting the crys-
tal warm–up process is unnecessary. To prevent the
crystal warm–up, make sure the device is operating
from the ring oscillator and the XTOFF bit is set before
entering Stop mode.

APPLICATION NOTE 78

030998 14/27

The ring oscillator is especially useful for systems which
require short bursts of processing upon resuming from
Stop mode. Operating from the ring allows the system to
wake up, perform a short operation, and return to Stop
mode in less time that it would require for an external
crystal to stabilize. This provides a two–fold power sav-
ings: The time out of Stop mode is reduced due to the
quick start of the ring oscillator, and the ring oscillator
itself typically uses less power than the crystal amplifier.

RING OSCILLATOR CONSIDERATIONS
The ring oscillator used in the High–Speed Microcon-
troller Family is essentially a chain of inverters with a
propagation delay. Although it exhibits fast start up
times, it does not carry the stability of a piezo electric
quartz crystal oscillator. The ring oscillator will oscillate
from 3 to 4 MHz over the temperature and voltage range
specified for the device. This variation makes it difficult
to generate a stable time base for timers and timing–
sensitive operations. Interrupt latencies will also be
more difficult to calculate due to the variation of the main
system clock.

It is not advised to operate the serial ports in asynchro-
nous mode (Modes 1, 2, or 3) while running from the ring
oscillator. The serial ports use internal timers to gener-
ate their baud rate, and the resulting frequency is not
stable enough to support an asynchronous serial trans-
mission. Synchronous serial transmissions in mode 0
are possible, however, due to the synchronizing clock
generated by the host processor.

The use of the ring oscillator does not impair the opera-
tion of the real–time clock, watchdog timer, or Timed
Access operations. The real time clock incorporated in
the DS87C530 is excited by an external 32 KHz crystal
which is independent of the system clock. The watch-
dog timer and Timed Access procedures both function
with respect to internal clock cycles, not an absolute
time reference, and will operate properly. If an absolute
time period is required for the watchdog timer, then an
external clock source is recommended.

PERFORMING A “RING–OSCILLATOR
SWITCHBACK”
The switchback feature of the DS87C5x0 allows the
device to “wake up” for serial port operations when oper-
ating in PMM1 or PMM2. Although the device will
execute a switchback regardless of the clock source,
the device must be operating from a crystal or external
clock source for the serial operation to be successful. In
most cases, this would preclude the use of the ring oscil-
lator or Stop mode if serial port operations are expected.
However, it is possible to “switchback” from the ring
oscillator to the crystal upon receipt of a serial transmis-
sion.

In the case of a serial transmission, the ring oscillator
presents little problem; the system can simply enable
the crystal oscillator, wait for the crystal to stabilize, and
then begin the transmission. Serial receptions are more
difficult. There is no way that a DS87C5x0 operating
from a ring oscillator will be able to successfully capture
a serial data transfer on the first try. One possible solu-
tion would be to employ an a handshaking protocol to
confirm that the receiver is ready and the data should be
resent. The key in such a scheme is to have the
DS87C5x0 detect that a serial operation has been
attempted and execute a section of code that will switch
over to the crystal source.

The recommended approach utilizes an external inter-
rupt as a serial port activity monitor. If a negative edge
triggered interrupt such as INT0, INT1, INT3, or INT5 is
tied to the RX pin, the falling edge of a start bit will gener-
ate an interrupt and a switchback. The interrupt service
routine will enable the crystal clock source and wait until
it is stable, at which time the device will transmit a ready
signal back to the originator. The following code exam-
ple demonstrates one way to do this.

In addition, the delay associated with restarting the crys-
tal can be avoided by keeping the crystal amplifier
enabled when running from the ring oscillator. This
seems counterproductive at first, as it increases the
power consumption slightly when compared to running
from the ring oscillator alone. However, when operating
the device from a relatively high–speed crystal, the
reduced speed of the ring oscillator still results in a net
power savings.

APPLICATION NOTE 78

030998 15/27

PROGRAM EXAMPLE: SOFTWARE RING OSCILLATOR SWITCHBACK

;Program RING_SWB
;
;This program shows how the serial ports can be operated in conjunction with
;the ring oscillator. When receiving a byte, the falling edge of the start
;bit will generate an INT1. The INT1 ISR will restart the crystal oscillator.
;When the crystal has stabilized, the system will transmit a ready character
;to the originator to indicate that the receiver is ready.
;
;The core of the program continuously scans Port 1 and records the maximum
;value. The program performs two operations: transmit the maximum
;recorded value, and reset the maximum value to 0. Receipt of an invalid
;command will cause the device to return an error code to the host and
;switch back to the ring oscillator. Invalid codes can also be used to
;intentionally return the device to the ring oscillator at the completion
;of the data transfer. Valid commands will be echoed back to the originator
;to confirm receipt.
;***
;Register Equates
P0 equ 80h ;Port 0
SP equ 81h ;Stack Pointer
PCON equ 87h ;Power Control Register
TMOD equ 89h ;Timer Mode Control Register
TH1 equ 8Dh ;Timer 1 MSB (used for baud rate generation)
P1 equ 90h ;Port 1
EXIF equ 91h ;External Interrupt Flag Register
SCON0 equ 98h ;Serial Port 0 Control Register
SBUF0 equ 99h ;Serial Port 0 Data Buffer
IE equ 0A8h ;Interrupt Enable Register
P3 equ 0B0h ;Port 3
PMR equ 0C4h ;Power Management Register
STATUS equ 0C5h ;Status Register
ACC equ 0E0h ;Accumulator
;R0 : Command Register.
;R1 : Maximum Value observed on Port 1.

;Bit Equates
RI_0 equ 98h ;Serial Port 0 Receiver Interrupt Flag
TI_0 equ 99h ;Serial Port 0 Transmitter Interrupt Flag
IE1 equ 8Ah ;Interrupt 1 Flag.
TR1 equ 8Eh ;Timer 1 Run control.
REN_0 equ 9Ch ;Serial Port 0 Receiver Enable
EX1 equ 0AAh ;External Interrupt 1 Enable
EA equ 0AFh ;Global Interrupt Enable

;String Equates
RDY_CHAR equ ’!’
ERR_CHAR equ ’?’

;Interrupt Vector Table.
 cseg at 0 ;Reset vector.

APPLICATION NOTE 78

030998 16/27

 ljmp START
 cseg at 13h ;External Interrupt 1 vector.
 ljmp EXT_INT1
 cseg at 23h ;Serial Interrupt 0 vector.
 ljmp SER0_INT

 cseg at 100h ;Beginning of code segment.

START: MOV SP, #40h ;Initialize stack pointer.
 MOV P3, #0Fh ;Set port pins as inputs.
 MOV P1, #0FFh ;Set port pins as inputs.
 CALL RING_ENA ;Switch to ring oscillator to conserve power.

 MOV TH1, #0FDh ;Set timer for 19200 baud rate at 11.059 MHz
 MOV TMOD, #20h ;Set Timer as mode 2 for baud rate generation.
 MOV SCON0, #50h ;Select Mode 1, enable receiver.
 ORL PCON, #80h ;Set SMOD for 19200 operation.
 SETB TR1 ;Start Timer 1 for baud rate generation.

 MOV IE, #94h ; Enable global, serial 0, and ext. interrupt 1.
 MOV R1, #0 ;Reset maximum value counter.

CLR_BUF: MOV R0, #0 ;This is the reentry point after command
 ; completion that clears the command buffer.
 ; It then falls through to the main prog loop.

MAIN: CJNE R0, #0, COMMAND ;If R0<>0, then service pending command.

PORTSCAN: MOV A, P1 ;Get the current port value.
 PUSH ACC ;Make a temporary copy of port value.
 CLR C ;Compare current value to maximum. If smaller,
 SUBB A, R1 ; or equal, loop back for next check.
 POP ACC ;Restore port value. Note that this does not
 ; affect the carry flag from the SUBB inst.
 JC MAIN ;If negative number from SUBB, value is not
 ; a new maximum, so go on.
 MOV R1, A ;We have a new maximum. Store it.
 JMP MAIN ;End of main program loop

COMMAND: CJNE R0, #’1’, CHECK_2 ;If command is not XMIT_MAX, go on.

XMIT_MAX: MOV A, STATUS ;Host is requesting maximum value. Wait until
 JB ACC.1, XMIT_MAX ; serial port transmit activity is complete.
 MOV SBUF0, R1 ;Send maximum value back to host.
 JMP CLR_BUF ;Return to main loop to await next command.

CHECK_2: CJNE R0, #’2’,INVALID ;If command is not RESET_MAX, then an
 ; invalid command has been received.

RESET_MAX: MOV R1, #0 ;Host is requesting that maximum value
 JMP CLR_BUF ; be reset. Zero value and return

APPLICATION NOTE 78

030998 17/27

 ; to mail loop to await next command.

INVALID: MOV SBUF0, #ERR_CHAR ;An invalid command has been received.
 CALL RING_ENA ;Return to ring oscillator and clear the
 JMP CLR_BUF ; command buffer. This will also be called
 ; intentionally by the originator to return
 ; the device to the ring oscillator.

;***
;SER0_INT – This ISR handles serial port 0 interrupts. Receiver interrupts
; will be caused by receipt of a command byte from the originator.
; The byte will then be echoed back to confirm receipt.
;
; Transmitter interrupts are called by the transmission of data
; or a status character to the originator.
;***
SER0_INT: JB TI_0, XMIT_INT ;Determine source of interrupt.

 MOV R0, SBUF0 ;Interrupt was serial reception. Save command
 CLR RI_0 ; byte in R0 for main program loop and clear
 ; receiver interrupt flag.
 MOV SBUF0, R0 ;Echo data to acknowledge receipt.
 RETI

XMIT_INT: CLR TI_0 ;Interrupt was caused by transmitter. Clear
 RETI ; interrupt flag and return.

;***
;EXT_INT1 – This ISR restarts the crystal in response to a falling edge
; on the INT0 pin, which is also tied to the serial port 0 RX pin.
; When crystal has stabilized, it sends a ready signal to the originator.
; Further INT1s are disabled until the data has been received to prohibit
; data bits from being mistaken as start bits.
;***
EXT_INT1: CLR EX1 ;Disable any more serial restart interrupts
 CALL XTAL_ENA ;Start crystal oscillator
 MOV SBUF0, #RDY_CHAR ;Send Ready signal
 CLR RI_0 ;Any serial port receiver interrupts at this
 ; point are erroneous, so ignore them.
 RETI

;***
;XTAL_ENA – This subroutine checks to see if the crystal is running, and if
; not, enables it and waits until it has stabilized.
;***
XTAL_ENA: PUSH ACC ;Save accumulator
 ANL PMR, #0F7h ;Clear XTOFF bit to restart crystal.

XTALWAIT: MOV A, STATUS ; Check XTUP: Loop until crystal has stabilized.
 JNB ACC.4, XTALWAIT

APPLICATION NOTE 78

030998 18/27

 ORL EXIF, #08h ;Switch to crystal as clock source.
 SETB REN_0 ;Crystal is active, enable receiver.
 POP ACC ;Restore Accumulator.
 RET ;Device is now running from crystal. Exit.

;***
;RING_ENA – This subroutine checks to see if there is any serial port
; activity, and if not, switches back to the ring oscillator.
;***
RING_ENA: PUSH ACC ;Save accumulator

WAIT_SERIAL:
 MOV A, STATUS ;Test lower nibble of status reg for serial
 ANL A, #0Fh ; port activity. If serial ports are still
 JNZ WAIT_SERIAL ; active, wait before switching to ring.

 CLR REN_0 ;Ignore any serial port activity while running
 ; from ring oscillator.
 CLR IE1 ;Clear any outstanding serial interrupts that
 SETB EX1 ; may have been generated by serial data and
 ; reenable external interrupt 1 to detect the
 ; start of another serial transfer.

 ANL EXIF, #0F7h ;Clear XT/RG to enable ring oscillator.
 ORL PMR, #08h ;Set XTOFF bit to disable crystal.

 POP ACC ;Restore Accumulator.
 RET ;Device is now running from ring. Exit.

DEVELOPING A POWER MANAGEMENT
FRAMEWORK
The Dallas Semiconductor approach to power manage-
ment allows system designers to reduce power con-
sumption while maintaining maximum performance. To
achieve the maximum possible savings, the device
operating conditions should be carefully analyzed and a
power management scheme developed.

The determination of which power management modes
to utilize, when to switch modes, and how to handle
high–priority tasks is application dependent. No single
approach will suit all possible combinations. In general,
the selection of clock speeds and sources depends on
the assigned tasks, and the need for timing–dependent
operations such as serial ports activity.

There are two basic classes of systems which employ
power management. The first is systems which hiber-
nate or spend almost all of their operating time in a
standby state, such as Stop or PMM2. These systems
are often used in unattended systems to gather data or
as environmental monitors. They are characterized by
relatively infrequent I/O activity at specific intervals. The
second class of systems usually performs a high rate of
I/O activity on several devices, or otherwise must be
operating constantly. A hibernation approach would be
impractical in this instance as the device would spend
most of its time simply restarting from the low power
state. These two approaches are discussed in more
detail in the following sections.

APPLICATION NOTE 78

030998 19/27

BURST MODE OPERATION
A common mode of operation is to have the device oper-
ate in a low power state, perform a brief task, and then
place the device back into a low power state until
another event occurs. Actions such as a keypad press,
or card reader activity fall within this category. Such
peripherals typically generate an external interrupt
which executes a switchback or resume from Stop
mode.

The decision on what to designate as the standby state
depends on the type of activity that will initiate a return to
the active state. If serial port activity is expected, then
the standby state must be one that can receive serial
data, such as PMM2. A system which can tolerate
longer interrupt latencies can use Stop mode as the low
power state.

An examination of the power consumption in the various
modes shows that when using a burst–mode approach,
the most power savings can be gained by operating in
divide by 4 mode, rather than the PMMs. Divide by 4
mode gives 16 times the performance of PMM1, but
consumes only four times the current. The higher pow-
er/performance ratio of divide by 4 mode means that

less total energy will be consumed during the subrou-
tine. As a result, routines that wake from Stop mode to
perform short bursts of activity and then return to Stop
should do so in divide by 4 mode.

PROGRAM EXAMPLE: REMOTE DATA
LOGGER
The following program illustrates a generic scheme for
running a remote, battery–powered data–logging
device which requires only sporadic use. In this exam-
ple, a DS87C530 “hibernates” in Stop mode until a key-
pad is pressed and performs some operation. After the
operation is performed, the device will return to Stop
mode. This device runs off the ring oscillator during
most of its awake state, unless a serial transfer is
expected or in progress. Periodically a real–time clock
interrupt will cause the device to acquire data from an
external source, record it in the on–chip SRAM, and
return to Stop mode. Figure 7 shows the state diagram
for how the device works. Although this example uses
the internal real time clock of the DS87C530, it can be
easily modified to work with an internal timer in PMM2 or
external real time clock.

REMOTE DATA LOGGER EXAMPLE STATE DIAGRAM Figure 7

RESPOND
TO KEYPRESS

D
O

W
N

LO
A

D
 R

E
Q

U
E

S
T

CLK: RING
XTAL: ON

TRANSMIT
STORED DATA

CLK: CRYSTAL
XTAL: ON

LOG DATA

CLK: RING
XTAL:OFF

STOP MODE

CLK: HALTED
XTAL:OFF

RTC INTERRUPT

TASK COMPLETE

APPLICATION NOTE 78

030998 20/27

PROGRAM EXAMPLE: BURST–MODE DATA LOGGER

;***
;Program DATA_LOG
;
;This program demonstrates burst mode operation in a data logger device. The
;device remains in Stop mode until a real time clock or external interrupt
;resumes operation. When an operation is complete, the device will switch
;back to the ring oscillator and return to Stop mode.
;
;The real time clock will interrupt the system twice per hour to read a value
;from port 1, which it will store until requested. The interrupt is called
;on the hour to start the data acquisition. The routine presented is simple and
;generic, so the data could be from a D/A converter or a temperature sensor,
;for example.
;
;Upon receiving an external interrupt, the device will start the crystal
;amplifier in expectation of possible serial port activity, but continue to
;operate from the ring oscillator. If serial activity is detected or desired,
;the device will hold operation until the crystal has warmed up, and then
;switch operation to it.
;***
;Register equate table
P0 equ 80h ;Port 0 Latch
SP equ 81h ;Stack Pointer
DPL equ 82h ;Data Pointer 0 Low Register
DPH equ 83h ;Data Pointer High Register
DPL1 equ 84h ;Data Pointer 1 Low Register
DPH1 equ 85h ;Data Pointer High Register
DPS equ 86h ;Data Pointer Select Register
PCON equ 87h ;Power Control Register
TCON equ 88h ;Timer Control Register
TMOD equ 89h ;Timer Mode Register
TH1 equ 8Dh ;Timer 1 MSB
P1 equ 90h ;Port 1 Latch
EXIF equ 91h ;External Interrupt Flag Register
SCON0 equ 98h ;Serial Port 0 Control Register
SBUF0 equ 99h ;Serial Port 0 Data Buffer
P2 equ 0A0h ;Port 2 Latch
IE equ 0A8h ;Interrupt Enable Register
P3 equ 0B0h ;Port 3 Latch
IP equ 0B8h ;Interrupt Priority Register
PMR equ 0C4h ;Power Management Register
STATUS equ 0C5h ;Status Register
TA equ 0C7h ;Timed Access Register
ACC equ 0E0h ;Accumulator
EIE equ 0E8h ;Extended Interrupt Enable Register
RTASS equ 0F2h ;Real Time Alarm SubSecond Register
RTAS equ 0F3h ;Real Time Alarm Second Register
RTAM equ 0F4h ;Real Time Alarm Minute Register
EIP equ 0F8h ;Extended Interrupt Priority Register
RTCC equ 0F9h ;Real Time Clock Control

APPLICATION NOTE 78

030998 21/27

;Bit equate table
RI_0 equ 98h ;Serial Port 0 Receiver Interrupt Flag
TI_0 equ 99h ;Serial Port 0 Transmitter Interrupt Flag
EX1 equ 0AAh ;External Interrupt 1 Enable bit
F0 equ 0D5h ;General purpose flag.

;Constant equate table
DATA_TABLE equ 0000h ;Put data log table at start of SRAM

 cseg at 0 ;Reset vector.
 ljmp START
 cseg at 13h ;External Interrupt 1 vector.
 ljmp EXT_INT1
 cseg at 23h ;Serial Interrupt 0 vector.
 ljmp SER_INT0
 cseg at 6Bh ;Real time clock Interrupt vector.
 ljmp RTC_INT
;
 cseg at 100H ;Beginning of code segment.
START:
 MOV SP, #80h ;Set up stack pointer.

 MOV P1, #0FFh ;Set port 1 as inputs.
 MOV P3, #0Bh ;Set RXD0, TXD0 & INT1 as inputs.
 MOV PMR, #01h ;Select on–chip SRAM.
 MOV RTAM, #00h ;Set minute, second, and subsecond alarms.
 MOV RTAS, #00h ; Alarm will wake device every hour on the hour
 MOV RTASS, #00h ; to initiate temperature gathering.

 MOV TA, #0AAh ;Timed access write to enable minute, second,
 MOV TA, #55h ; and subsecond compares.
 ORL RTCC, #0C1h

 MOV SCON0, #050h ;Set serial port 0 for Mode 3
 MOV TH1, #0E6h ;Timer 1 reload value for 2400 baud at 24 MHz.
 MOV TMOD, #20h ;Set timer 1 to 8–bit auto reload and start it.
 MOV TCON, #40h

 MOV IP, #10h ;Serial port 0 and RTC high priority interrupts
 MOV EIP, #20h ; so they can interrupt Ext. interrupt 1 routine.
 MOV EIE, #20h ;Enable Serial port 0, Ext. Int. 1. and
 MOV IE, #94h ; RTC interrupts.

;***
;This is the main program loop. It does nothing but wait for interrupts, and
; when they are complete, switches back to the ring oscillator and puts the
; part back into Stop mode.
;***

MAIN: ANL EXIF, #0F7h ;Switch to ring.

APPLICATION NOTE 78

030998 22/27

 ORL EXIF, #02h ;Enable restart from ring.
 ORL PMR, #08h ;Disable crystal.
 ORL PCON, #02h ;Set the STOP bit to halt the device.

 JMP MAIN ;End of main program loop

;***
;SER_INT0 – This ISR handles serial port 0 interrupts. Serial port interrupts
; will only be possible when the device is ”active” following a
; keypress. The primary function of this interrupt is to transmit
; the next character in the table until all data has been sent.
;***
SER_INT0: JB TI_0,XMIT_INT ;Test for transmit or receive interrupt.

 CLR RI_0 ;This example does not receive serial data.
 RETI ; This code is included for completeness.

XMIT_INT: CLR TI_0 ;Clear transmit interrupt and send next byte.
 MOV A, DPL1 ;Check to see if we are at the end of the
 CJNE A, DPL, NOT_END ; data. If DPTR0 and DPTR1 are same, then
 MOV A, DPH1 ; then all the data has been sent.
 CJNE A, DPH, NOT_END
 SETB F0 ;We have reached the end of the table.
 RETI ; Set completion flag and exit.

NOT_END: PUSH DPS ;Preserve current data pointer.
 MOV DPS, #01h ;Switch to DPTR1 to track data pointer.
 MOVX A, @DPTR ;We still have data, so transmit it, restore
 MOV SBUF0, A ; data pointer, and return to send next byte.
 POP DPS
 RETI

;***
;EXT_INT1 – This ISR is generated by activity on a keypad. It causes the
; device to read a command on Port 0 and take the appropriate action.
; This simple example performs two functions:
; 1. Download stored data to host through serial port 0.
; 2. Clear the data table by resetting the data pointer.
; If the command is to download stored data, it will switch to the
; crystal first. The F0 flag is used to indicate when all the data
; has been sent. This prevents the software from exiting the ISR
; and reentering Stop mode before all the data has been transmitted.
;***
EXT_INT1: ANL PMR, #0F7h ;Enable crystal for possible serial activity.

 MOV A, P0 ;Read the data on Port 0 and take
 CJNE A, #00h, CHECK_2 ; appropriate action.
 JMP DNLOAD
CHECK_2: CJNE A, #01h, INVALID

CLEAR: MOV DPTR, #DATA_TABLE ;Zero all of on–chip SRAM space from 0–3FFh.

APPLICATION NOTE 78

030998 23/27

 MOV A,#0h ; Reset data pointer. Use A for faster fill.
NEXT_LOC: MOVX @DPTR, A ;Fill location & increment to next one.
 INC DPTR
 MOV R0, DPH ;If DPH is not 04, then do next location.
 CJNE R0, #04h, NEXT_LOC

 MOV DPTR, #DATA_TABLE ;On–chip SRAM has been cleared. Reset
 RETI ; pointer to beginning of table and return.

DNLOAD: MOV A, STATUS ;Wait until crystal has stabilized.
 JNB ACC.4, DNLOAD
 ORL EXIF, #08h ;Switch to the crystal.

 MOV A,#’!’ ;Transmit starting character. Remaining
 MOV SBUF0, A ; data will be sent by serial port
 JNB F0, $;Loop here until entire table is transmitted.
 CLR F0 ;Transmit complete. Clear completion flag.

 MOV DPS, #01h ;Switch to DPTR1 and reset transmit pointer.
 MOV DPTR, #DATA_TABLE
 MOV DPS, #0h ;Switch back to DPTR0 to log data.
 ANL EXIF, #0F7h ;Switch back to ring oscillator and return

INVALID: RETI ; to Stop mode.

;***
;RTC_INT – This ISR is used to read a value from port 1. It is called every
; 30 minutes, and logs data to the data buffer. When done, it will
; return to the main loop where it will enter Stop mode again.
; This simple example assumes that the device will be read before
; the data overflows the on–chip SRAM, so no error checking is
; included.
;***
RTC_INT: ANL RTCC, #0FDh ;Clear RTC Interrupt flag.
 PUSH ACC ;Save accumulator.
 PUSH DPS ;Save data pointer, in case we are interrupting
 MOV DPS,#0h ; data download, and switch to data pointer 0.
 MOV A, P1 ;Read data from port 1, store it in data table.
 MOVX @DPTR, A
 INC DPTR ;Point to next location.
 XRL RTAM,#1Eh ;Toggles RTC alarm minute register between 0 &
 ; 30 to interrupt on hour and half hour.
 POP DPS ;Restore data pointer selector and accumulator.
 POP ACC
 RETI

DIVIDE BY 4 MODE
CLOCK OSCILLATOR

PMM1
CLOCK OSCILLATOR

PMM2
CLOCK OSCILLATOR

DIVIDE BY 4 MODE
RING OSCILLATOR/XTAL OFF

PMM1
RING OSCILLATOR/XTAL OFF

PMM2
RING OSCILLATOR/XTAL OFF

DIVIDE BY 4 MODE
CLOCK OSCILLATOR

DIVIDE BY 4 MODE
RING OSCILLATOR/XTAL ON

PMM1
RING OSCILLATOR/XTAL ON

PMM2
RING OSCILLATOR/XTAL ON

DIVIDE BY 4 MODE
CLOCK OSCILLATOR

DIVIDE BY 4 MODE
RING OSCILLATOR/XTAL OFF

PMM1
RING OSCILLATOR/XTAL OFF

PMM2
RING OSCILLATOR/XTAL OFF

a. Maximum Functionality
Progression

b. Low Power/Quick
Serial Response

c. Minimum Power
Progression

APPLICATION NOTE 78

030998 24/27

GRADUAL POWER DOWN
Often, a device will need to be operating constantly dur-
ing periods of little activity. This may be to monitor sys-
tem status, or to time critical events. While such a sys-
tem can tolerate some performance degradation for the
sake of power savings, it cannot halt operation by using
the Stop mode. The Power Management modes used in
the DS87C5x0 allow software to gradually reduce sys-
tem performance based on the amount and type of
tasks. This approach is similar to that used by personal
computers, where inactivity for a specified period of time
will cause the system to reduce its speed to the next
lower level of performance.

The decision of when to switch modes, and which
modes to switch between is dependent on the user’s
application. Constructing a “power path” is the simplest
way to determine what speeds and clock source are

appropriate. For a relatively simple system, only a few
states are needed. The power management modes
PMM1 and PMM2 were specifically designed to be part
of such a gradual power reduction.

Figure 8 demonstrates a number of power paths pos-
sible with the DS87C5x0 power management capabili-
ties. Figure 8a shows a relatively complicated scheme
which performs a gradual reduction in operating speed,
while keeping the clock oscillator operating as long as
possible to perform timing–dependent functions. Figure
8b switches to the ring oscillator and gradually reduces
the speed of the device, but keeps the crystal amplifier
enabled in case the device needs to quickly respond to
serial port activity. Figure 8c provides the lowest power
consumption by switching to the ring oscillator and dis-
abling the crystal amplifier.

SAMPLE POWER PATHS Figure 8

APPLICATION NOTE 78

030998 25/27

PROGRAM EXAMPLE: SYSTEM MONITOR
The following program illustrates a basic scheme for
operating a device that constantly monitors the state of
a system. It operates similar to the way that a personal
computer manages its power; if no activity is detected in
a specified period of time it switches to the next lower
power saving mode.

The program monitors an peripheral on port 1, and
updates a display mapped into external memory as

needed. The watchdog timer is used to poll the status of
the system, which is indicated by the F0 flag. If there is
no activity before the timer times out, the device will con-
tinue to decrease its speed. Because the watchdog
timer period is affected by the speed of the device, the
watchdog divide ratio is adjusted to keep as constant an
interval as possible. The methods demonstrated could
also be used to detect a spurious switchback caused by
noise on the serial port and return the device to PMM.

PROGRAM EXAMPLE: GRADUAL POWER DOWN

;***
;Program GRADUAL.ASM
;
;This program shows a gradual version of power management. The watchdog timer
;is used to periodically check the F0 flag to see if any activity has
;occurred since the last timer interrupt. If no activity has occurred,
;then the device will switch the clock to the next lower level of operation.
;This example also demonstrates how an external interrupt would be used in
;conjunction with the watchdog timer.
;***
;Register equate table
CKCON equ 8Eh ;Clock Control Register
P1 equ 90h ;Port 1
IE equ 0A8h ;Interrupt Enable Register
PMR equ 0C4h ;Power Management Register
STATUS equ 0C5h ;Status Register
TA equ 0C7h ;Timed Access Register
WDCON equ 0D8h ;Watchdog Control Register
ACC equ 0E0h ;Accumulator
EIE equ 0E8h ;Extended Interrupt Enable Register

OLD_VAL equ 0CDh ;Previous value from external device.
 ;Note that this location is normally TH2, but
 ;we are using it for direct register instruction.

;Bit definition table
RWT equ 0D8h ;Reset watchdog timer bit.
F0 equ 0D5h ;General purpose user flag.
WDIF equ 0DBh ;Watchdog interrupt flag.
EWDI equ 0ECh ;Watchdog interrupt enable.

;Definition equate table.
DISPLAY equ 2000h ;External location of display.

 cseg at 0 ;Reset vector.
 ljmp START

 cseg at 63h ;Watchdog Timer Interrupt vector.

APPLICATION NOTE 78

030998 26/27

 ljmp WDOG_INT
;
 cseg at 100h ;Beginning of code segment.

START: MOV TA, #0AAh ;Timed access
 MOV TA, #55h
 SETB RWT ;Reset watchdog timer

 MOV DPTR, #DISPLAY ;Set data pointer to location of display.

 CLR F0 ;Clear activity flag
 MOV CKCON, #0C1h ;Set watchdog divide ratio to 2**26.
 MOV EIE, #10h ;Watchdog Interrupt Enable.
 MOV IE, #80h ;Enable all interrupts.
 MOV OLD_VAL,P1

MAIN: MOV A, P1 ;Examine external parameter.
 CJNE A, OLD_VAL, DIFF ;Begin display update if different.
 JMP MAIN

DIFF: MOV CKCON, #0C1h ;Return watchdog divide ratio to slow speed.
 MOV PMR, #041h ;Switch back to divide by 4 mode.
 MOV OLD_VAL, A ;Save new value.
 MOVX @DPTR, A ;Put new value to display.
 SETB F0 ;Set flag to indicate we have activity.
 SETB EWDI ;Reenable watchdog interrupt (in case device
 ; was operating in /1024)
 JMP MAIN ;End of main program loop

;***
;WDOG_INT – This ISR periodically tests for activity, and if none has been
; detected, drops the device to the next lower clock speed.
; Because the watchdog interval is a function of the clock divisor,
; the watchdog divide ratio is modified in each mode to keep a
; relatively constant interrupt frequency. The following table
; shows the frequencies, assuming a crystal speed of 25 MHz.
; When the device enters /1024 mode, it disables the watchdog
; interrupt, because there is no slower speed to enter.
;
; Clock Mode Divide Ratio WD1 WD0 Watchdog Timeout
; Divide by 4 2**26 1 1 2684 mS
; PMM1 (/64) 2**23 1 0 5368 mS
;***
WDOG_INT: JB F0, DONEWDOG ;If activity has been detected, do not change
 ; speed.
 PUSH ACC ;Save accumulator.

 MOV A, PMR ;Check current speed.
 JNB ACC.7, D4TO64 ;If CD1 = 0, then mode is /4, switch to /64.

D64TO1024: MOV PMR, #041h ;Speed is now /64. Change to /1024 by first

APPLICATION NOTE 78

030998 27/27

 MOV PMR, #0C1h ; going from /64 to /4 and then from /4 to /1024.
 CLR EWDI ;Since we are now in /1024 there is no need
 ; to go slower, so disable watchdog interrupt.

D1024: POP ACC ;Restore Accumulator.
DONEWDOG: CLR F0 ;Clear activity flag.
 MOV TA, #0AAh ;Timed access to clear Watchdog Interrupt flag.
 MOV TA, #55h
 CLR WDIF
 RETI ;Exit

D4TO64: MOV A, STATUS ;Speed is now /4. Change to /64. Because we
 ANL A, #0CFh ; are entering PMM, test for activity. Check all
 JNZ D1024 ; bits in Status Register except XTUP, and LIP
 ; because the watchdog interrupt is low priority.
 ; If any activity bit is set, abort speed change.
 MOV PMR, #081h ;There is no activity. Change clock from to /64.
 MOV CKCON, #81h ;Change watchdog divide ratio from 2^26 to 2^23.
 JMP D1024

BAND–GAP DISABLING
The band–gap reference, used to detect a power failure,
draws approximately 150 µA. During Stop mode, this
can be an appreciable amount of the total current
drawn. The DS87C5x0 supports the option of disabling
the band–gap reference, eliminating the associated cur-
rent drain. When disabled, the device loses the ability to
generate a power–fail interrupt or a power–fail reset.
The device will continue to operate until VCC drops
below VRST, at which time the device will cease opera-
tion. Without the bandgap reference, the device has no

way of detecting an imminent power loss, or performing
an orderly shutdown. When power resumes, the device
will perform a power–on reset.

Setting the Band–Gap Select bit, BGS (EXIF.0) enables
the band–gap reference during Stop mode. The default
or reset condition is with the bit cleared, and the band–
gap disabled during Stop mode. Note that this bit can be
only changed using a timed access write. It has no con-
trol of the reference during full power, PMM, or Idle
modes.

