A new kind of protections ?
 
Design your own CPU !!
 
by anormal/kindergarten



.Index.
    1. intro, ideas, etc...
    2. first example: stup8CPU
    3. second example: memoCPU
    4. closing words: greetings, stupid things, etc...




1. intro, ideas, etc...

    hey you!: What are you doing?, let me guess it... sitting comfortably in your chair, looking at the screen of your display, reading the new essays from Fravia???. Maybe with a glass of your favorite drink?(remember more caffeine means more power!!!, so get a jolt cola now!!!), and listening to some deep and relaxing ambient music (let me recommend you: "lifeforms" or "isdn" from future sound of london, "ghost in the shell" original sound track, or some of the goldieīs CDs: "timeless", "saturnzreturn").

    Fraviaīs is a nice site, isnīt it???. He, he... well in this essay iīll try to show you a new kind of protection scheme. I say "new", because i only have seen this one 3 times, iīll explain this later. Through this text, we are going to learn how design and implement our own cpus, of course in software.

    A new CPU?. Yes, let me explain the main points of this idea:

    1. Design the architecture of a new cpu: number of registers, kind and usage of memory, opcodes and special functions, like ports for accessing external devices, etc.

    2. Write a emulation of this CPU for intel x86 machines (or motorola, or whatever ...). We could code this emulation in assembler, c, lisp, basic, etc... I think a big overbloated compiler (like visual basic) will generate enough tons of code to keep our crackers happy for a while, of course, the two examples in this essay are coded in hardcore assembler.

    3. Code the protection scheme: keyfiles, passwords checks, hashing cryptography schemes, etc..., in the assembler language of the emulated cpu.

    4. Compile the protection, with our own compiler, assembler, etc, and ...

    5. Execute the protection scheme under the emulator.

Nice, eh?. Iīm sure you got the point.

    I think this is a good protection, because we hide the real protection scheme under tons of bastard code. The well learn scheme cmp var,1 - jne go_beggar, will be hidden deep inside the kernel of the emulator. The only defense we have against a cracker is trying to bore him, if he get bored tracing tons of stupid code heīll give up.
    Some advantages are: extensibility: we could code different protections in seconds. Portability: just coding the emulator for a different system, unix, macs, etc, we can execute the "same protection" in a portable fashion.

    Weak points: the cracker could reverse engineer the emulator, guess how the cpu works, make a dissasembler, and ... , you could guess the rest. Funny, eh?

    A solution: we must code emulator for the cpu to be very hard to understand. Itīs a lot harder to patch the code in this way, remember that the opcodes of the cpu are emulated in a confusing way. The cracker must patch the emulated code, not the emulator. He first need to build a disassembler or, at last, know very well the inner working of the CPU.

    Letīs see the examples.

2. first example: stup8CPU

    In this example we are going to design a cpu with this features(?):

-------------------------
project name: stup8cpu
por: anormal/kindergarten
-------------------------

:description:
-------------

 registers:
            1 accumulator (8 bits)
            1 index       (8 bits)

 memory:
            0..................31....................255 bytes
            [-- idx to inm ---][----- code + data -----]
            [------------ 256 bytes of ram ------------]

:opcodes:
---------
    pnemonic       type     opcode    meaning         
   ------------------------------------------------
    mov idx,@inm   arith     010 (2)  load a number in index register
    load           arith     001 (1)  load accumulator with contents of [idx]
    sub acc,@inm   arith     011 (3)  accumulator-=inm
    inc idx        arith     000 (0)  inc idx
    output         ctrl      101 (5)  print accumulator in screen
    input          ctrl      110 (6)  input bytes from keyboard and put them in [idx] 0 terminated
    jnz @label     ctrl      111 (7)  jmp to label if accumulator is <> 0
    stop           ctrl      100 (4)  stop the cpu

:notes: -------- this cpu has 2 8bits registers: 1 accumulator and 1 index. it has a total memory of 256 bytes. the first 32 bytes of memory are used to store inmediates. So, the total amount of diferent inmediates in a program are 32. Every opcode is coded in just 1 byte, the opcodes that works with inmediates, donīt have the inmediate in the byte, they only have an index to the first 32 bytes Do you understand?. We have 8 different opcodes. So we need only 3 bits of opcodes. We use the rest 5 bits to code the index to the inmediates zone. Putting an index to inmediates zone in an opcode that doesnīt use index (like the stop) causes not effect. After the cpu is powered on, the initial program counter is just after the inmediateīs zone.
:example protection in the asm code of the emulated cpu: -------------------------------------------------------- mov idx,messini ;point idx to message print1: load ;load a byte from message sub acc,key0 ;decode byte of message inc idx ;to get next byte output ;print the char in the screen jnz print1 ;loop mov idx,pass input ;get a string from keyboard load ;get char sub acc,key1 ;sub key1 jnz bad ;itīs <>0 then is bad, inc idx load sub acc,key2 ;etc.. jnz bad inc idx load sub acc,key3 jnz bad inc idx load sub acc,key4 jnz bad inc idx load sub acc,key5 ;weīll put 1 check for every letter in the password jnz bad inc idx mov idx,messok ;right password print2: load inc idx sub acc,key6 ;print message output jnz print2 stop ;stop cpu bad: mov idx,messbad ;bad password jnz print2
:emulation: ----------- notes: - bx points to the position 0 of the emulated ram - al contains the actual opcode to be emulated - ip of the emulated cpu is hold in si The inner working of this emulation is very easy. Main loop of the emulator: start: mov bx,offset ram ;points bx to emulated ram mov si,offset ram+32d ;initial ip run: lodsb ;load opcode mov di,ax and di,0111b ;get instruction shl di,1 add di,offset optable call [di] ;emulate! endemul: jmp run ;get next opcode The procedures use to emulated the different opcodes are: movidx: shr al,3 xlat ;al=bx+al, with this we get an inmediate mov idx,al ret load: mov al,idx xlat mov acc,al ret subacc: shr al,3 xlat sub acc,al ret incidx: inc idx ret output: mov dl,acc mov ah,02 int 21h ret input: mov dx,offset buffer mov ah,0ah int 21h mov al,idx sub ah,ah mov di,ax add di,bx xchg ax,si mov si,offset buffer+2 xor cx,cx mov cl,[buffer+1] rep movsb xchg ax,si ret jnzlabel: cmp acc,0 jne jump ret jump: sub ah,ah shr al,3 xlat mov si,ax add si,bx ret stop: pop ax ret
Ok, i wish you understand all. The only thing that is missing itīs how we are going to compile the protection, and how to use the language. Well, very simple, weīll use macros in turbo assembler to build the opcodes in memory. Look at this: ; opcode macronization :) _inc_idx macro db 0 ;opcode=0 endm _load macro db 1 ;opcode=0 endm _mov_idx macro idx_inm db 2 or (idx_inm shl 3) ;opcode=2 + index endm _sub_acc macro idx_inm db 3 or (idx_inm shl 3) ;opcode=3 + index endm _stop macro db 4 ;opcode=4 endm _output macro db 5 ;opcode=5 endm _input macro db 6 ;opcode=6 endm _jnz macro idx_inm db 7 or (idx_inm shl 3) ;opcode=7 + index endm This is complete source code. Just do tasm /m2 stup8cpu.asm and a tlink /t stup8cpu.obj to compile it.
; ------------------------------------------------------------------------ ; project: stup8cpu ; code: anormal/loki/kindergarten/trkitzr ; ; rev: 0.000 : Sun 02-08-1998 : initial code, not debug ; rev: 0.001 : Sun 02-15-1998 : some fixes, some debugging ; rev: 0.002 : Sun 02-22-1998 : +debugging ; i was getting a stupid error due to the use of si without initializating ; time: 0.000 : 1:30 ; time: 0.001 : 1:10 ; time: 0.002 : 2:10 c0de segment assume cs:c0de,ds:c0de org 100h .486 ; opcode macronization :) _inc_idx macro db 0 endm _load macro db 1 endm _mov_idx macro idx_inm db 2 or (idx_inm shl 3) endm _sub_acc macro idx_inm db 3 or (idx_inm shl 3) endm _stop macro db 4 endm _output macro db 5 endm _input macro db 6 endm _jnz macro idx_inm db 7 or (idx_inm shl 3) endm start: mov bx,offset ram mov si,offset ram+32d ;initial ip run: lodsb ;load opcode mov di,ax and di,0111b ;get instruction shl di,1 call [di+offset optable] endemul: jmp run db 0bfh movidx: shr al,3 xlat mov idx,al ret db 0bah load: mov al,idx xlat mov acc,al ret db 0eah subacc: shr al,3 xlat sub acc,al ret db 0bah incidx: inc idx ret db 0cdh output: mov dl,acc mov ah,02 int 21h ret acc db 0 input: mov dx,offset buffer mov ah,0ah int 21h mov al,idx sub ah,ah mov di,ax add di,bx xchg ax,si mov si,offset buffer+2 xor cx,cx mov cl,[buffer+1] rep movsb xchg ax,si ret idx db 0 jnzlabel: cmp acc,0 jne jump ret db 0b2h jump: sub ah,ah shr al,3 xlat mov si,ax add si,bx ret db 0b8h stop: pop ax ret buffer db 20h,0 db 20h dup (0) db 0eah optable dw incidx,load,movidx,subacc,stop,output,input,jnzlabel ;ram!!! ;vector of pointers to real inmediates ram db iniMess-ram ;0 db imprime-ram ;1 let_o db 'o' ;2 db pass-ram ;3 db badtry-ram ;4 let_u db 'u' ;5 db okMess-ram ;6 db badMess-ram ;7 let_l db 'l' ;8 db imprime2-ram ;9 let_r db 'r' ;10 let_p db 'p' ;11 db 32-12 dup(0) _mov_idx 0 imprime: _load _sub_acc 10 ;decode message _inc_idx _output _jnz 1 ;must be 'r' terminated, so 'r'-'r'=0 and the loop ends _mov_idx 3 _input _load ;the algorithm for checking the password is very, very, very, very simple :) _sub_acc 8 ;well, it really is pure crap _jnz 4 ;we only compare letter to letter, if not is equal then go_beggar! :) _inc_idx _load _sub_acc 5 _jnz 4 _inc_idx _load _sub_acc 11 _jnz 4 _inc_idx _load _sub_acc 5 _jnz 4 _inc_idx _load _sub_acc 8 _jnz 4 _inc_idx _load _sub_acc 2 _jnz 4 _inc_idx _mov_idx 6 imprime2: _load _inc_idx _sub_acc 8 _output _jnz 9 _stop badtry: _mov_idx 7 _jnz 9 pass: db 23,93,83,25,73,83,91 ;just some trash ;we could encode this strings with a irp or irpc macro in tasm, but iīve prefered to do it so for the sake ;of clarity, just use a good editor with columns to fill all that. One of my favorites is Boxer 7.5. iniMess: db 0ah + 'r' db 0dh + 'r' db 's' + 'r' db 't' + 'r' db 'u' + 'r' db 'p' + 'r' db '8' + 'r' db 'C' + 'r' db 'P' + 'r' db 'U' + 'r' db ' ' + 'r' db 'b' + 'r' db 'y' + 'r' db ' ' + 'r' db 'a' + 'r' db 'n' + 'r' db 'o' + 'r' db 'r' + 'r' db 'm' + 'r' db 'a' + 'r' db 'l' + 'r' db '/' + 'r' db 'k' + 'r' db 'i' + 'r' db 'd' + 'r' db 'e' + 'r' db 'r' + 'r' db 'g' + 'r' db 'a' + 'r' db 'r' + 'r' db 't' + 'r' db 'e' + 'r' db 'n' + 'r' db ' ' + 'r' db '-' + 'r' db ' ' + 'r' db 'f' + 'r' db 'e' + 'r' db 'b' + 'r' db '-' + 'r' db '9' + 'r' db '8' + 'r' db 0ah + 'r' db 0dh + 'r' db 'E' + 'r' db 'n' + 'r' db 't' + 'r' db 'e' + 'r' db 'r' + 'r' db ' ' + 'r' db 'p' + 'r' db 'a' + 'r' db 's' + 'r' db 's' + 'r' db 'w' + 'r' db 'o' + 'r' db 'r' + 'r' db 'd' + 'r' db ':' + 'r' db ' ' + 'r' db 'r' ;terminator okMess: db 0ah + 'l' db 0dh + 'l' db 'n' + 'l' db 'i' + 'l' db 'c' + 'l' db 'e' + 'l' db '!' + 'l' db '!' + 'l' db '!' + 'l' db '!' + 'l' db ',' + 'l' db ' ' + 'l' db 'e' + 'l' db 'm' + 'l' db 'a' + 'l' db 'i' + 'l' db 'l' + 'l' db ' ' + 'l' db 'm' + 'l' db 'e' + 'l' db ' ' + 'l' db 'n' + 'l' db 'o' + 'l' db 'w' + 'l' db '!' + 'l' db '!' + 'l' db ' ' + 'l' db 't' + 'l' db 'o' + 'l' db ' ' + 'l' db 'a' + 'l' db 'n' + 'l' db 'o' + 'l' db 'r' + 'l' db 'm' + 'l' db 'a' + 'l' db 'l' + 'l' db '@' + 'l' db 'x' + 'l' db 'x' + 'l' db 'x' + 'l' db 'x' + 'l' db 'x' + 'l' db 'x' + 'l' db 'x' + 'l' db '.' + 'l' db 'c' + 'l' db 'o' + 'l' db 'm' + 'l' db 0ah + 'l' db 0dh + 'l' db 'l' ;terminator badMess: db 0ah + 'l' db 0dh + 'l' db 'w' + 'l' db 'r' + 'l' db 'o' + 'l' db 'n' + 'l' db 'g' + 'l' db '!' + 'l' db ',' + 'l' db ' ' + 'l' db 't' + 'l' db 'r' + 'l' db 'y' + 'l' db ' ' + 'l' db 'a' + 'l' db 'g' + 'l' db 'a' + 'l' db 'i' + 'l' db 'n' + 'l' db ' ' + 'l' db 'm' + 'l' db 'a' + 'l' db 'n' + 'l' db '!' + 'l' db '.' + 'l' db '.' + 'l' db '.' + 'l' db 0ah + 'l' db 0dh + 'l' db 'l' ;terminator c0de ends end start


3. second example: memoCPU

    Ok. Are you ready for the second example?, open your eyes because this is a bit more complicated than the first one.

    This cpu is a bit special. It only has memory. No registers. Why?, well, i donīt know, i just designed so. Call it inspiration or whatever you want.

memory
--------
   0ffh bytes
   
   after cpu reset, i.e. at startup, the initial program counter will be 0.
   so weīll put our code at beginning of ram.
   
registers
----------

   sorry, no registers.
   in fact, the only problem will be how to implement indexes, this is solved through the mov opcode.

opcodes ------- an opcode is 4 bytes long, formed by opcode,param1,param2,next_ip opcode is the number of the opcode. param1, param2 are parameters of the opcode. and next_ip??, hehehe, this is feature i added after reading one of the apendixes in the nice "The jargon file", a compendium of words related to hacker (sub)culture, read it to get true knowledge from the real ancient masters. let me explain, next_ip is the position of the next opcode to be executed, eh?, yeah, in the x86 architecture, the next opcode is the next after the actual opcode. but my cpu is crazy like rats, so it let you to expecify the next opcode. Think a bit on this, we could create a web execution, a labyrinth of opcodes, jumping up and down though memory. A total knigtmare for the cracker!!!. in the examples i havenīt used this feature, i donīt want you to get crazy. Just know that feature and use it when you want. opcode pnemonic param1 param2 next_ip meaning -------------------------------------------------------------------------------- 0 xor orig1 ,dorig2 ,next_ip xors dorig2 with contents of orig1 2 add orig1 ,dorig2 ,next_ip adds contents of orig1 to dorig2 4 inp dest, ,cnt ,next_ip input cnt bytes from keyboard and put them in dest, cnt is updated with the number of bytes read 6 out orig ,nil ,next_ip display char in orig 8 mov @orig ,dest ,next_ip movs uses at double indirection, done so to implement indexes, mov contents of address pointed by orig to dest a stp nil ,nil ,nil stop cpu c jnz orig1 ,next_ip1,next_ip2 if contents of orig1<>0 jmp to ip1 else to ip2 i am sure you understood all the opcodes, if not reread them.
this is the initialization and main loop of the emulator: sub eax,eax sub cx,cx sub dx,dx mov si,offset memory ;si will be used like program counter, initially points to position 0 mov di,si ;di is used to acces the memory, sub bx,bx nextCycle: mov eax,[si] ;get opcode from next_ip mov bl,al call [bx+offset opcodeTable] shr eax,8 ;the next_ip is in the 1st byte of eax mov si,ax ;si=next_ip add si,di ;+initial offset jmp nextCycle very simple, just get an opcode in eax, and call the emulation procedure for that opcode. after returning from the call, the hi word of eax will be in ax, so shr eax,8 puts the next_ip opcode in al, we put it in si and loop!
letīs see the emulation procedures of each opcode, and the associated table of offsets to them. ;emulation procedures ---------------------------------------------------- opXor: mov bl,ah ;get orig1 mov cl,[bx+di] ;get value of orig1, remember di is always pointing to begining of memory shr eax,16 ;to get orig2, and next_ip mov bl,al ;get orig2 xorit: xor [bx+di],cl ;xor it ret opAdd: ;let's do it automodifying the code of opXor mov byte ptr [xorit],bh ;bh is always 0, 0 is the opcode for add :) call opXor mov byte ptr [xorit],30h ;restore the value of the xor opcode = 30h ret opInp: mov cl,ah ;get dest shr eax,16 mov bl,al push bx ;saves ptr to maxcnt mov al,[bx+di] ;get max counter mov maxcnt,al mov dx,offset maxcnt ;weīll read bytes with int 21h push ax mov ah,0ah int 21h pop ax mov bl,cl ;restore dest mov cl,cnt mov si,offset buffer copy: mov al,[si] ;copy bytes from the x86 memory to memoCPU mov [bx+di],al inc si inc bx dec cl jnz copy pop bx mov cl,cnt mov [bx+di],cl ;updates maxcnt ret ret opOut: mov bl,ah ;nothing interesting here mov dl,[bx+di] mov ah,02 int 21h shr eax,16 ret opMov: mov bl,ah ;get orig1 mov bl,[bx+di] ;get pointer to value of orig1 mov cl,[bx+di] ;get value of orig1 shr eax,16 mov bl,al ;get orig2 mov [bx+di],cl ;xor it ret opStp: pop ax ;pop the return address to the main loop ret opJnz: mov bl,ah shr eax,16 cmp [bx+di],bh ;remember bh is always 0, is orig1=0? je not0 mov ah,al ;change the nextip not0: ret opcodeTable dw offset opXor,offset opAdd,offset opInp,offset opOut dw offset opMov,offset opStp,offset opJnz
this is the protection coded in the assembler of the memoCPU: the algorithm used is: read password make hash value of password if calculated hash=key nice else go_beggar the hash function is very easy, due to the fact that only one byte is used, the final hash space is very reduced, only 255 possible values, so, in theory 1 of each 255 strings will collide to the same value, you could test this yourself and see what i mean. i used this program to calculate the hash value: code segment org 100h assume cs:code,ds:code start: mov si,offset pass next: lodsb xor var1,al ;first xors every letter of password, from the first to the last one or al,al jne next std dec si dec si next2: lodsb add var1,al ;second adds every letter with calculated xor, from last to first or al,al jne next2 int 20h db 0 pass db 'password',0 var1 db 0 code ends end start
the protection coded in the assembler language of the memoCPU look carefully in the the data zone for an explanation of all the strange numbers buc1: <<<<------ this is position 0 of memory _mov 141,142,4 ;getchar from string _xor 143,142,8 ;xorit with key _add 145,143,12 ;inc key1 _out 142 ,16 ;print _add 144,140,20 ;dec length _add 145,141,24 ;inc ptr _jnz 140,0,28 ;if length<>0 repeat _inp 162,146,32 ;get 8max bytes pass _mov 158,157,36 ;saves maxcnt buc2: _mov 148,142,40 ;getchar from pass _xor 142,149,44 ;xor var2 with var1 _add 144,146,48 ;dec length pass _add 145,148,52 ;inc ptr _jnz 146, 36,56 ;if length<>0 repeat _add 144,148,60 ;dec ptr _add 144,157,64 ;dec maxcnt2 _mov 148,142,68 ;get last char from pass _add 142,149,72 ;var2+=last char from pass _jnz 157, 56,76 _add 150,149,80 ;add -result to var2 _jnz 149, 96,84 yes: _mov 160,151,88 ;ptr to st2=ptr to st3 _mov 159,154,92 ;key3=key2 _mov 161,152,96 ;length bad=length ok no: _mov 151,142,100 ;getchar _xor 154,142,104 ;xorit with key _add 145,154,108 ;inc key3 _out 142 ,112 ;print _add 144,152,116 ;dec length _add 145,151,120 ;inc ptr _jnz 152,96 ,124 ;if length<>0 repeat _stp ; data zone, begins at 140 decimal dat db lst1 ;140=length of st1 db (offset st1-offset dat)+140 ;141=ptr to st1 db 00 ;142=var1 db 'r' ;143=key1 db 0ffh ;144=-1 db 1 ;145=1 mxc db 8 ;146=8 db 143 ;147=143 db 162 ;148=ptr to pass db 0 ;149=0 ;var2 db -0f0h ;150=-result db (offset st2-offset dat)+140 ;151=ptr to st2 db lst2 ;152=length of st2 db 'u' ;153=key2 db 'v' ;154=key3 db lst3 ;155=length of st3 db (offset st3-offset dat)+140 ;156=ptr to st3 db 00 ;157=maxcnt2 db (offset mxc-offset dat)+140 ;158=ptr to maxcnt db 153 ;159=ptr to key2 db 156 ;160=ptr to ptr to st2 db 155 ;161=ptr to length st3 pas db 19,87,83,71,15,23,84,27,89,58 ;162=pass (initializated with garbage) db 'apocalypse' ; rest of pass, hehehe st1 db 0ah xor 'r' ;st1 xor key1
okey man, get the point?, hehe finally the complete listing in assembler, to compile it do a tasm memocpu.asm /m4, tlink /t memocpu enjoy it!!! ;------------------------------------------------------------------------- ;------------------------------------------------------------------------- ; project name: memoCPU ; coder: anormal/kindergarten ; notes: just another CPU emulator designed with protection in mind ; ; ver: 0.001 : Mon 04-06-1998 : initial ; ver: 0.002 : Tue 04-07-1998 : +opcodes & macros ; ver: 0.003 : Wed 04-08-1998 : +emulated code ; +start debugging, tons (really) of fixes :) ; +and finished :) ; *1st working version ; time: 0.001 : 1:15 ; time: 0.002 : 0:50 ; time: 0.003 : 2:10 ; ; ;------------------------------------------------------------------------- ;------------------------------------------------------------------------- code segment org 100h assume cs:code,ds:code ; opcodes macros _xor macro orig1,orig2,next_ip db 0,orig1,orig2,next_ip endm _add macro orig1,orig2,next_ip db 2,orig1,orig2,next_ip endm _inp macro dest,cnt,next_ip db 4,dest,cnt,next_ip endm _out macro orig1,next_ip db 6,orig1,0,next_ip endm _mov macro orig1,dest,next_ip db 8,orig1,dest,next_ip endm _stp macro dd 0000000ah endm _jnz macro orig1,ip1,ip2 db 0ch,orig1,ip1,ip2 endm ;-------------------------------------------------------------------------- start: .386 sub eax,eax sub cx,cx sub dx,dx mov si,offset memory mov di,si sub bx,bx nextCycle: mov eax,[si] ;get opcode from next_ip mov bl,al call [bx+offset opcodeTable] shr eax,8 ;the next_ip is in the 1st byte of eax mov si,ax ;si=next_ip add si,di ;+initial offset jmp nextCycle ;emulation procedures ---------------------------------------------------- opXor: mov bl,ah ;get orig1 mov cl,[bx+di] ;get value of orig1 shr eax,16 mov bl,al ;get orig2 xorit: xor [bx+di],cl ;xor it ret opAdd: ;let's do it automodifying the code of opXor mov byte ptr [xorit],bh ;bh is always 0, 0 is the opcode for add :) call opXor mov byte ptr [xorit],30h ;restore the value of the xor opcode = 30 ret opInp: mov cl,ah ;get dest shr eax,16 mov bl,al push bx ;saves ptr to maxcnt mov al,[bx+di] ;get max counter mov maxcnt,al mov dx,offset maxcnt push ax mov ah,0ah int 21h pop ax mov bl,cl ;restore dest mov cl,cnt mov si,offset buffer copy: mov al,[si] mov [bx+di],al inc si inc bx dec cl jnz copy pop bx mov cl,cnt mov [bx+di],cl ;updates maxcnt ret ret opOut: mov bl,ah mov dl,[bx+di] mov ah,02 int 21h shr eax,16 ret opMov: mov bl,ah ;get orig1 mov bl,[bx+di] ;get pointer to value of orig1 mov cl,[bx+di] ;get value of orig1 shr eax,16 mov bl,al ;get orig2 mov [bx+di],cl ;xor it ret opStp: pop ax ;pop the return address to the main loop ret opJnz: mov bl,ah shr eax,16 cmp [bx+di],bh ;remember bh is always 0 je not0 mov ah,al ;change the nextip not0: ret opcodeTable dw offset opXor,offset opAdd,offset opInp,offset opOut dw offset opMov,offset opStp,offset opJnz ;begin of emulated code -------------------------------------------------- memory: buc1: _mov 141,142,4 ;getchar from string _xor 143,142,8 ;xorit with key _add 145,143,12 ;inc key1 _out 142 ,16 ;print _add 144,140,20 ;dec length _add 145,141,24 ;inc ptr _jnz 140,0,28 ;if length<>0 repeat _inp 162,146,32 ;get 8max bytes pass _mov 158,157,36 ;saves maxcnt buc2: _mov 148,142,40 ;getchar from pass _xor 142,149,44 ;xor var2 with var1 _add 144,146,48 ;dec length pass _add 145,148,52 ;inc ptr _jnz 146, 36,56 ;if length<>0 repeat _add 144,148,60 ;dec ptr _add 144,157,64 ;dec maxcnt2 _mov 148,142,68 ;get last char from pass _add 142,149,72 ;var2+=last char from pass _jnz 157, 56,76 _add 150,149,80 ;add -result to var2 _jnz 149, 96,84 yes: _mov 160,151,88 ;ptr to st2=ptr to st3 _mov 159,154,92 ;key3=key2 _mov 161,152,96 ;length bad=length ok no: _mov 151,142,100 ;getchar _xor 154,142,104 ;xorit with key _add 145,154,108 ;inc key3 _out 142 ,112 ;print _add 144,152,116 ;dec length _add 145,151,120 ;inc ptr _jnz 152,96 ,124 ;if length<>0 repeat _stp filler db 140-(offset filler - offset memory) dup (0) ; begins at 140 decimal dat db lst1 ;140=length of st1 db (offset st1-offset dat)+140 ;141=ptr to st1 db 00 ;142=var1 db 'r' ;143=key1 db 0ffh ;144=-1 db 1 ;145=1 mxc db 8 ;146=8 db 143 ;147=143 db 162 ;148=ptr to pass db 0 ;149=0 ;var2 db -0f0h ;150=-result db (offset st2-offset dat)+140 ;151=ptr to st2 db lst2 ;152=length of st2 db 'u' ;153=key2 db 'v' ;154=key3 db lst3 ;155=length of st3 db (offset st3-offset dat)+140 ;156=ptr to st3 db 00 ;157=maxcnt2 db (offset mxc-offset dat)+140 ;158=ptr to maxcnt db 153 ;159=ptr to key2 db 156 ;160=ptr to ptr to st2 db 155 ;161=ptr to length st3 pas db 19,87,83,71,15,23,84,27,89,58 ;162=pass (initializated with garbage) db 'apocalypse' ; rest of pass, hehehe st1 db 0ah xor 'r' ;st1[1] xor key1 db 0dh xor ('r'+01) ;st1[2] xor key1+1, etc... db 'm' xor ('r'+02) db 'e' xor ('r'+03) db 'm' xor ('r'+04) db 'o' xor ('r'+05) db 'C' xor ('r'+06) db 'P' xor ('r'+07) db 'U' xor ('r'+08) db ' ' xor ('r'+09) db 'b' xor ('r'+10) db 'y' xor ('r'+11) db ' ' xor ('r'+12) db 'a' xor ('r'+13) db 'n' xor ('r'+14) db 'o' xor ('r'+15) db 'r' xor ('r'+16) db 'm' xor ('r'+17) db 'a' xor ('r'+18) db 'l' xor ('r'+19) db '/' xor ('r'+20) db 'k' xor ('r'+21) db 'i' xor ('r'+22) db 'n' xor ('r'+23) db 'd' xor ('r'+24) db 'e' xor ('r'+25) db 'r' xor ('r'+26) db 'g' xor ('r'+27) db 'a' xor ('r'+28) db 'r' xor ('r'+29) db 't' xor ('r'+30) db 'e' xor ('r'+31) db 'n' xor ('r'+32) db 0ah xor ('r'+33) db 0dh xor ('r'+34) db 'E' xor ('r'+35) db 'n' xor ('r'+36) db 't' xor ('r'+37) db 'e' xor ('r'+38) db 'r' xor ('r'+39) db ' ' xor ('r'+40) db 'p' xor ('r'+41) db 'a' xor ('r'+42) db 's' xor ('r'+43) db 's' xor ('r'+44) db 'w' xor ('r'+45) db 'o' xor ('r'+46) db 'r' xor ('r'+47) db 'd' xor ('r'+48) db ':' xor ('r'+49) db ' ' xor ('r'+50) lst1 = $-offset st1 st2 db 0ah xor 'v' ;1xx=st2 xor key3 db 0dh xor ('v'+01) db 'B' xor ('v'+02) db 'a' xor ('v'+03) db 'd' xor ('v'+04) db '!' xor ('v'+05) db '!' xor ('v'+06) lst2 = $-offset st2 st3 db 0ah xor ('u') ;1xx=st2 xor key2 db 0dh xor ('u'+01) db 'G' xor ('u'+02) db 'o' xor ('u'+03) db 'o' xor ('u'+04) db 'd' xor ('u'+05) db '!' xor ('u'+06) db '!' xor ('u'+07) lst3 = $-offset st3 ;end of emulated code ---------------------------------------------------- maxcnt db 12 ;this 12 donīt means nothing is just some trash cnt db 82 ;more trash buffer db 'heavensfacility' ;more trash, hehehe, nice for lamers code ends end start



4. closing words: greetings, stupid things, etc...

    Some final words:

    I only expect that some of this notes could serve to anyone :).     First of all i want to give thanks to solar_designer, for giving me hi file hackme.com (the one and only intelligent, original and portable crackme!!). This is the best "clever" protection scheme iīve seen in many time. This file,hackme.com, is a TRUE hardwork, a cpu emulated with NOR gates.

    Hey solar!!: wherever you are, thanks!.

    Second, i want to give thanks to Fravia for maintaining so astounding site, he has done of the HCU project a reality.

    I also want to greets to lord_byte for the initial testx series, the guys at #cracking, #ucf200, #pc, #revolt. Even when 80% all them are just a bunch of arrogant inmature kids... :)

    ejemm... enough greets...

    If you have better ideas than myself (this is very easy), then write an essay and send it to Fravia, @:]

    Finally, a stupid poem:

    Soul nopper


    NOPS in the middle of your code,
    suddenly a 75h becomes a EBh,
    INTs 1, 0CChs, SMIs in my screen,

    all i can afford, all i can forget,

    the ctrl+d firing the ice in the bus...
    the F12 PRETing until the end of the world ...
    the BMSG shouting your voices...

    and the only thing i can't crack...

    the scent you left behind,
    it's so long to XT, so long to BPM R,
    IF i BPIO 378h THEN you will hang.

    so,

    my dreams and your smile,
    my screen and your traps,
    dust in the wind, clouds in the sky.

(booarrrgg: you can vomit now :)



    You can reach me at anormal1@yahoo.com



© all rights reserved anormal/kindergarten, 1998.
Release to the public domain for free use and abuse to all cracking community, you could not use portions, or full algorithms of this page for commercial applications without written permission. Microsoft could buy a license to use this schemes in its products after paying to me, the author, a license of $1,000,000. Hey billy, thanks for all the blue screens.