# LTE and IMSI catcher myths

Ravishankar Borgaonkar, Altaf Shaik, N. Asokan, Valtteri Niemi, Jean-Pierre Seifert

Blackhat EU, Amsterdam, Netherlands

13 November 2015







#### **Outline**

- Fake base stations in GSM/3G
- LTE/4G Security
- Types of vulnerabilities in practice
- Building LTE/4G base station
- Attacking methods/demos
- Impact & Analysis



#### Motivation

- Baseband story
- Platform for practical security research in LTE/4G
- Attacking cost VS security measures (defined in 15 years back)







#### Fake base-stations..1

- Used for: IMSI/IMEI/location tracking, call & data interception
- Exploit weaknesses in GSM & 3G networks (partially)
- Knows as IMSI Catchers
- Difficult to detect on normal phones (Darshak, Cryptophone or Snoopsnitch)









#### Fake base-stations..2









## Why in GSM & 3G

- GSM lack of mutual authentication between base station and mobiles
- 3G no integrity protection like in LTE, downgrade attacks
- GSM/3G power is to base station, decides when and how to authenticate/encrypt
- IMSI/IMEI can be requested any time









## LTE/4G networks

 Widely deployed, 1.37 billion users at the end of 2015



- Support for VoLTE
- High speed data connection and quality of service
- More secure than previous generations











## **Enhanced security in LTE**

- Mutual authentication between base station & mobiles
- Mandatory integrity protection for signaling messages
- Extended AKA & key hierarchy
- Security algorithms
- Other features (not relevant for this talk)





## **Paging in LTE**









## Paging in LTE



IMSI = 404220522xxxxx



Paging Request Type 2

{404220522xxxxxx : A000FFFF }



eNodeB



TMSI = A000FFFF







## **LTE Smart Paging**









### Enhanced security w.r.t fake base station

- Mutual authentication between base station & mobiles
- Mandatory integrity protection for signaling messages
- IMEI is not given in non-integrity messages
- Complexity in building LTE fake base station\*
- But in practice:
  - √ implementations flaws, specification/protocol deficiencies?

\* https://insidersurveillance.com/rayzone-piranha-lte-imsi-catcher/







# **Specification Vulnerabilities**



## LTE RRC protocol\*: specification vulnerability

#### RRC protocol – setup & manage over-the-air connectivity!

- Broadcast information
  - ✓ UE identities
  - ✓ Network information (SIB) messages
  - Neither authenticated nor encrypted
- UE measurement reports
  - ✓ Necessary for smooth handovers
  - ✓ UE sends "Measurement Report" messages
  - ✓ Requests not authenticated: reports are not encrypted



\*3GPP TS 36.331 : E-UTRA; RRC protocol Fig. source: http://fteuniversity.com/







## LTE RRC protocol\*: specification vulnerability

#### RRC protocol – setup & manage over-the-air connectivity!

- Broadcast information
- UE Identities IMSI, TMSI
- Network information messages (SIB)
- Neither authenticated nor encrypted



\*3GPP TS 36.331: E-UTRA; RRC protocol

SIB: System Information Blocks





## **EMM** protocol\*: specification vulnerability

#### **EMM protocol - Controlling UE mobility in LTE network!**

- Tracking Area Update(TAU) procedure
  - ✓ UE sends "TAU Request" to notify TA
  - ✓ During TAU, MME & UE agree on network mode
  - ✓ "TAU Reject" used to reject some services services (e.g., LTE services) to UE
  - However, reject messages are not integrity protected
- LTE Attach procedure
  - ✓ UE sends its network capabilities
  - ✓ Unlike security algorithms, no protection
  - Network capabilities are not protected against bidding down attacks







## Vulnerabilities in baseband chipset



#### **IMEI** leak: implementation vulnerability

# \*

#### TAU reject – special cause number!

- IMEI is leaked by popular phones
- Triggered by a special message
- Fixed now but still your device leak ;)
- IMEI request not authenticated correctly







## LTE RRC\*: implementation vulnerability

# \*

#### RLF reports – network troubleshooting!

- When Radio Link Failure happens
- Informs base station of RLF
- UE sends "RLF report" message
- Privacy sensitive information in RLF report
- Request not authenticated: reports are not encrypted



Fig. source: http://lteuniversity.com/







## LTE RRC\*: implementation vulnerability

# \*

#### Measurement reports – GPS co-ordinates!

- For handover
- Privacy sensitive information in the report
- Request not authenticated
- reports are not encrypted

```
measResultNeighCells: measResultListEUTRA (0)
  measResultListEUTRA: 1 item
     □ Item 0
        physCellId: 200
          - measResult
              rsrpResult: -112dBm <= RSRP < -111dBm (29)
locationInfo-r10
  - locationCoordinates-r10: ellipsoidPointWithAltitude-r10
       ellipsoidPointWithAltitude-r10:
     EllipsoidPointWithAltitude
        - latitudeSign: north (0)
          degreesLatitude: 52,
         - degreesLongitude: 13,
          altitudeDirection: herone (0)
         - altitude: 116 m
     gnss-TOD-msec-r10:
```







## **Network Configuration Issues**







## **Configuration issues**

#### Deployments all over the world!

- Smart Paging
  - ✓ Directed onto a small cell rather than a tracking area
  - ✓ Allows attacker to locate LTE subscriber in a cell
- GUTI persistence
  - ✓ GUTI change handover/attach/reallocation procedure
  - ✓ MNOs tend not to change GUTI sufficiently frequently
- MMF issues











### Building 4G fake base station and attack demos

#### **Ethical Consideration**







#### **Experiment Set-up**

#### Set-up cost - little over 1000 Euro!

- Hardware USRP, LTE dongle, LTE phones
- Software OpenLTE & srsLTE
- Implementation passive, semipassive, active



#### Thanks to OpenLTE and srsLTE folks!





#### **Location Leak Attacks**

#### **Exploit specification/implementation flaws in RRC protocol!**

- Passive : link locations over time
  - ✓ Sniff IMSI/GUTIs at a location (e.g., Airport/home/office)
  - ✓ Track subscriber movements (same GUTI for several days)







## Semi-Passive: determine tracking area & cell ID

- VolTE calls: Mapping GUTIs to phone number
  - ✓ 10 silent calls to victim's number
  - ✓ High priority → paging to entire tracking area(TA)
  - ✓ Passive sniffer in a TA
- Social identities: Mapping GUTIs to Social Network IDs
  - ✓ E.g., 10 Facebook messages, whatsapp/viber
  - ✓ Low priority → Smart paging to a last seen cell
  - ✓ Passive sniffer in a cell









## **Active: leak fine-grained location**

#### Precise location using trilateration or GPS!

- Measurement/RLF report
  - ✓ Two rogue eNodeBs for RLF
  - ✓ eNodeB1 triggers RL failure: disconnects mobile
  - ✓ eNodeB2 then requests RLF report from mobile









#### **DoS Attacks**

#### **Exploiting specification vulnerability in EMM protocol!**

- Downgrade to non-LTE network services (GSM/3G)
- Deny all services (GSM/3G/LTE)
- Deny selected services (block incoming calls)
- Persistent DoS
- Requires reboot/SIM re-insertion









## Summary

- New vulnerabilities in LTE standards/chipsets
- Social applications used for silent tracking
- Locating 4G devices using trialternation, GPS co-ordinates!
- DoS attacks are persistent & silent to users
- Configuration issues in deployed LTE networks





### Solution!

Use any old Nokia phone without battery and SIM card!









## **Impact**

#### Specification vulnerabilities affect every LTE-enabled device!

- Implementation issues are (almost) fixed by baseband chip manufacturers ©
- 3GPP/GSMA working on fixes
- However no updates from handset manufacturers yet ☺
- No response yet from MediaTek & Samsung S
- Mobile network operators (Germany) fixing their network configuration issues; others may affected as well ⊗





## **Thanks**

Questions?







## LTE Architecture



AS: Access Stratum

NAS: Non-Access Stratum

E-UTRAN: Evolved Universal Terrestrial Access Network

**UE**: User Equipment

S1: Interface

MME: Mobility Management Entity

