Security through Diversity

Adam/Javaman
adam@philtered.net/javaman@ghetto.org
Biological Perspectives

- Biological systems survive not as individuals but as populations.
- If you were not aware, the world will not stop turning if you die.
- From a genetic standpoint, individuals are highly variable, but are similar enough to one another so that we can interact and procreate.
Biological Perspectives

• Minor changes in our genome can give rise to rather devastating illnesses

• Rather than being naturally selected out, these variations have remained with our species... but why?
Base Pair Deletion

The CFTR gene resides on chromosome 7

- Isoleucine 506
- Isoleucine 507
- Phenylalanine 508 (Deleted in many CF patients)
- Glycine 509
- Valine 510

CFTR
Effect
Single Base Pair Errors

Normal Cells

```
  CAA  GTA  AAC  ATA  GGA  CTT  CTT
  GUU  CAU  UUG  UAU  CCU  GAA  GAA
```

<table>
<thead>
<tr>
<th>val</th>
<th>his</th>
<th>leu</th>
<th>thr</th>
<th>pro</th>
<th>glu</th>
<th>glu</th>
</tr>
</thead>
</table>

DNA mRNA Protein

Sickle Cells

```
  CAA  GTA  AAC  ATA  GGA  CAT  CTT
  GUU  CAU  UUG  UAU  CCU  GUA  GAA
```

<table>
<thead>
<tr>
<th>val</th>
<th>his</th>
<th>leu</th>
<th>thr</th>
<th>pro</th>
<th>val</th>
<th>glu</th>
</tr>
</thead>
</table>

DNA mRNA Protein
HbA
HbB
Effect
Biological Perspectives

- Single chromosome CTFR gene mutations protect against cholera
- Likewise individuals with HbB show increased resistance to malaria
- Research points to similar genetic resistance against HIV and SARS
Biological Perspectives

• Genetic variations may cause hereditary diseases, but also give us resistance to plagues
• Pathogens that are highly lethal to one set of individuals may cause no sickness in another.
• The diversity of the genetic code of the population leads to resistance in some individuals but not in others.
Biological Perspectives

- The survival of biological systems, including humanity, in response to environmental influences of all sorts has depended upon our genetic variations
Biological Perspectives

• When genetic diversity decreases, however, susceptibility to disease increases.
• Correspondingly, systems with little or no diversity suffer catastrophic plagues.
• Agricultural practices provide several examples.
A Six Pack and a Potato

• The Irish are in America because of poor farming practices involving their food staple
• ... not Guinness...
Irish Potato Famine

- Caused when *Phytophthora infestans* fungus ravaged the Irish potato crop.
- Originated from South America
- Local farmers kept the infection in check by planting a variety of potato crops
Learning from Mistakes

• Given the effect of the Great Potato Famine, global farming practices were irrevocably changed for the better, with farmers planting a variety of strains of standard food items.
Southern Corn Blight

- Another fungus, Bipolaris Maydis, ravaged U.S. high yield corn in the 1970’s
- Over 15%, or $1*10^9, worth of the crop was lost [Horsfall72]
Are computers that different?
Biological vs. Computational

- Individuals, both silicon and carbon based, are complex systems.
- Each composed of millions of lines or amino acids of instructions.
- Populations interact in complex networks, which are extremely statistically similar [Faloutsos99, Ebel02, Schroeder92]
Statistics of Networks

![Network Degree vs. Rank Plot](image)
Statistics of Networks

Frequency of Degree (log) vs. Degree (log)
Biological vs. Computational

- Individuals from both groups get “sick” because of flaws in their construction, and both suffer from similar epidemics. [Kephart91, Pastor-Satorras01]
- Repairing flaws in construction ranges from nearly impossible in the case of biological systems to nearly impossible in the case of computational systems.
The Principle of Security Through Diversity

- Computing systems should emulate biological systems to become survivable in the face of attack and adversity
Emulate?

• Survivability is only achieved for the species and not the individual, with the loss of a single individual being tolerated and expected.

• Emulation of biological systems should not stop at organic immune systems and self/non-self recognition.

• Are these systems true biological emulators?
Emulate?

- Epidemic manifestation closely resembles biological systems
- Biological systems evolve in tune to viruses
- Populations are wiped out by their lack of variation
- Populations which should have been wiped out are kept in place by flawed market economics
The Principle of Security Through Diversity

- Described in several position papers [Zhang01, Geer03, Stamp04],
- For good reason, the topic has been extremely controversial
Published Works

- A. Stamp, “Risks of Monoculture”, 2004
Go Forth and Diversify!

- It should be the job of the security community to encourage/enforce diversity by any means necessary
- Implementing any form of diversity on a large scale remains a challenge
Diversity Schemes

- Manual and Automatic systems for introducing heterogeneous behavior must be considered
Manual Diversity

• Manual replication of functionality in an uncommon way.
Manual Diversity

- Obvious example: Web Browsers
- Third party browsers
- Non-standard plug-ins
Manual Diversity

- Replicate libraries that have already been written in a totally new and more secure way using totally new and more secure programming languages
- ... for the love of all that is holy, replace OpenSSL
Manual Diversity

• Implement new parsers for old grammars in new ways
 • ASN.1 parser in Lisp
 • Great idea for a senior project
Manual Diversity

- Make it easy to run different operating systems on all types of hardware, with only a few basic requirements
- Functional out-of-the-box, like knoppix
- Easy to use for a beginner, (again, like knoppix)
Manual Diversity

- Don’t stop at reinventing the wheel, do things that are totally new!
- Run crypto streams through the GPU, design reconfigurable computing back-ends to handle parser state machines, pass out computations over MPI to terminals in cubicles staffed by illegal immigrants
Manual Diversity

• Caveat: Use existing API interface schemas, or create thin API calls to your libraries, otherwise they may never be used
• People need to be able to rapidly swap out one library for another in light of a security event
• Programmers of new applications like familiar interfaces
Manual Diversity

• Idea described by Joseph and Avižienis, “A Fault Tolerance Approach to Computer Viruses”, 1988
Automatic Diversity

- Algorithms exist which can automatically introduce variability into multiple levels of system behavior.
Current Body of Work

• Introducing randomization on a system-by-system basis has been explored

• Manipulating instruction sets [Barrantes03, Kc03], general stochastic configuration manipulation [Linger99], source code manipulation [Etoh04]

• These techniques often require source code access, and don’t take into account the state of the network
Stochastic Structural Manipulation

- Proposed by Linger in “Systematic Generation of Stochastic Diversity as an Intrusion Barrier in Survivable Systems Software”, 1999
- Determines program flow and randomly generates a functionally equivalent code flow
- Works at the source level, but can be implemented at the binary level
Randomized Stack Protection

- One method involves insertion of a randomized variable between a targeted buffer and the old frame
- Attacker must correctly “guess” the value held in this canary variable for a targeted function to return and subsequently execute the arbitrary code
- General idea behind the StackGuard project
Randomized Stack/Heap Protection

- Simpler methods that don’t require as much code transformation exist
- Randomize the relative location of the stack/heap
- While attacks are still COMPLETELY FEASIBLE, guessing the location of the offset takes time
Address Space Randomization

- Stack Randomization techniques don’t protect against return-to-libc style attacks
- Targets to shared libraries can be randomized [think PaX]
Instruction Set
Randomization

- Akin to running a processor with an alien instruction set
- Scrambles binaries using XOR encryption, decryption is done during the instruction decode stage of the processor
Instruction Set Randomization

- Can be easily done using runtime emulation schemes; think Bochs
- Including the technology in hardware would incur little to no speed penalty
- Even if the critical path lies in the IF/ID stage, pipelining is already implemented in most processors at this stage
Instruction Set Randomization

- See:
F.A.C.

• Frequently Asked Criticisms
Criticism #1

• This is just Security through Obscurity!
Answer #1

- The difference between diversity and obscurity is subtle but significant
- Obscurity implies keeping an system closed or hidden inherently improves security
- Diversity implies that all systems will be broken, but utilizing an uncommon system will slow down the attacker
Criticism #2

• This is f---ing impractical! I can’t manage this much software!
Answer #2a

• Ideally, diversity can be implemented in a completely transparent fashion, with multiple versions of libraries being continually updated by vendors.
Answer #2b

- Yeah, and redeploying software every day is practical?
- HINT: patch management
- Also, how practical is every single Internet-wide virus?
Questions?