LORAN
1. Radar System Engineering—Ridenour
2. Radar Aids to Navigation—Hall
3. Radar Beacons—Roberts
4. LORAN—Pierce, McKenzie, and Woodward
5. Pulse Generators—Glasoe and Lebacqz
6. Microwave Magnetrons—Collins
7. Klystrons and Microwave Triodes—Hamilton, Knipp, and Kuper
8. Principles of Microwave Circuits—Montgomery, Dicke, and Purcell
9. Microwave Transmission Circuits—Ragan
10. Waveguide Handbook—Marcuvitz
11. Technique of Microwave Measurements—Montgomery
12. Microwave Antenna Theory and Design—Silver
13. Propagation of Short Radio Waves—Kerr
14. Microwave Duplexers—Smullin and Montgomery
15. Crystal Rectifiers—Torrey and Whitmer
16. Microwave Mixers—Pound
17. Components Handbook—Blackburn
18. Vacuum Tube Amplifiers—Valley and Wallman
19. Waveforms—Chance, Hughes, MacNichol, Sayre, and Williams
20. Electronic Time Measurements—Chance, Hulsizer, MacNichol, and Williams
21. Electronic Instruments—Greenwood, Holdam, and MacRae
22. Cathode Ray Tube Displays—Soller, Starr, and Valley
23. Microwave Receivers—Van Voorhis
24. Threshold Signals—Lawson and Uhlenbeck
25. Theory of Servomechanisms—James, Nichols, and Phillips
26. Radar Scanners and Radomes—Cady, Karelitz, and Turner
27. Computing Mechanisms and Linkages—Svoboda
28. Index—Henney
LORAN

Long Range Navigation

Edited by

J. A. PIERCE
RESEARCH FELLOW, CRUFT LABORATORY
HARVARD UNIVERSITY

A. A. McKENZIE
ASSOCIATE EDITOR, ELECTRONICS

R. H. WOODWARD
RESEARCH FELLOW, CRUFT LABORATORY
HARVARD UNIVERSITY

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT
NATIONAL DEFENSE RESEARCH COMMITTEE

First Edition

NEW YORK · TORONTO · LONDON
McGRAW-HILL BOOK COMPANY, INC.
1948
LORAN

Copyright, 1948, by the

PRINTED IN THE UNITED STATES OF AMERICA

All rights reserved. This book, or
parts thereof, may not be reproduced
in any form without permission of
the publishers.

SCIENCE LIBRARY

MASS. INST. TECH.
MAR 12 1946
LIBRARY
LORAN

EDITORIAL STAFF

L. A. Turner
J. A. Pierce
A. A. McKenzie
R. H. Woodward

CONTRIBUTING AUTHORS

D. Davidson A. J. Poté
J. H. Halford B. W. Sitterly
R. B. Lawrance G. C. Trembly
G. H. Musselman J. A. Waldschmitt
J. A. Pierce J. C. Williams
R. H. Woodward
Foreword

The tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields, and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of other scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together even though often in widely separated laboratories that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicated.

L. A. DuBridge.
Preface

The preceding volumes of the Radiation Laboratory Series are surveys of radar system engineering, radar systems of navigation, and radar beacons. Like radar, the long-range system of navigation described in this volume depends upon the transmission and reception of pulsed radio signals, but it makes use of much lower radio frequencies and does not involve reflection from a target.

The Loran system was developed at the Radiation Laboratory during World War II to meet the needs of the Navy in convoy operations and to provide all-weather navigation for aircraft by day and night. At the close of the war, some 70 Loran transmitting stations were in operation, providing nighttime service over 60 million square miles, or three-tenths of the surface of the earth. About 75,000 shipborne and airborne navigation receiver-indicators had been delivered by various manufacturers, while the Hydrographic Office had prepared and shipped 2½ million charts to the operating agencies.

The purposes of the present volume are to describe the Loran system, its principles and its equipment, as they existed at the end of the war and to offer suggestions for their adaptation and improvement for civilian service in time of peace. Since electronic time measurements are fully discussed in other volumes of this series, these techniques have not been treated in detail here. Similarly, relatively little space has been devoted to material found in the instruction books for various items of Loran equipment.

Wherever possible, the individual chapters have been written by those members of the group who have been most closely associated with the material concerned. However, many former members of the group who contributed greatly to the development of Loran concepts and equipment have been unable to describe their work in this volume. To Mr. Melville Eastham belongs the credit for the organization and administration of the Loran Group during the difficult early days. His leadership made the whole development possible and procured the needed support from the Services before the merit of the system had been fully demonstrated. Mr. Donald G. Fink and Professor J. C. Street made many
contributions and successively assumed the administrative burdens after the retirement of Mr. Eastham and before being called to more responsible duties elsewhere. Throughout the program Mr. Walter L. Tierney, who managed all field activities, was a source of strength to the entire group. Professor J. A. Stratton made valuable preliminary studies of propagation at Loran frequencies, but his knowledge and talents were soon demanded for other purposes. After the Loran system had been successfully demonstrated, Mr. Robert J. Dippy, the originator of the Gee system, brought the experience of the British laboratory, TRE, to bear upon Loran problems and helped the group especially in improving the designs of the receiver-indicator and the transmitter timer.

The U.S. Coast Guard, Bureau of Ships, General Electric Company, Sperry Gyroscope Company, Fada Radio and Electric Company, Radio Engineering Laboratories, and the Bartol Research Foundation have kindly supplied photographs and granted permission for their use as illustrations of Loran ground stations and equipment. The Hydrographic Office has granted permission for the reproduction, as Appendix A, of a summary report on its Loran program. Thanks are also due to Miss Constance Henderson for her aid in preparing the drawings and to Miss Corinne Susman for her capable service as editorial assistant.

The publishers have agreed that ten years after the date on which each volume of this series is issued, the copyright thereon shall be relinquished, and the work shall become part of the public domain.

The Authors.

Cambridge, Mass.,
October, 1946.
Contents

FOREWORD BY L. A. DuBridge iii
PREFACE ix

PART I. THE LORAN SYSTEM

Chap. 1. INTRODUCTION 3

Navigation by Fixing of Position 3
1.1. Position from Measurement of Two Bearings 3
1.2. Position from Measurement of One Distance and One Bearing 6
1.3. Position from Measurement of Two Distances 8
1.4. Position from Measurement of Two Differences of Distance 10

Navigation by Tracking and Homing 15
1.5. Tracking 15
1.6. Homing 16
1.7. General Comparison of Basic Techniques 17

Chap. 2. HISTORY OF LORAN 19
2.1. Origin of Pulsed Hyperbolic Navigation in the United States 19
2.2. North Atlantic Standard Loran Chain 26
2.3. European Sky-wave Synchronized Loran 30
2.4. Loran in the China-Burma-India Theater 34
2.5. Operations in the Pacific 35
2.6. Charting and Training 40
2.7. Service Areas 49

Chap. 3. PRINCIPLES OF LORAN 52
3.1. Time Differences and Lines of Position 52
3.2. Propagation and Range 59
3.3. Principles of Operation 63
3.4. Loran Geometry: the Pair 70
3.5. Loran Geometry: Triplets, Chains, and Quadrilaterals 76
3.6. Standard Loran 85
3.7. Sky-wave Synchronized Loran 94
3.8. Low Frequency Loran 97
3.9. Procedure in Loran Navigation 102
CONTENTS

CHAP. 4. FUTURE TRENDS .. 107

4.1. Potential Accuracy and Range 107
4.2. Automatic Data Analysis 108
4.3. Right-left Indicators .. 110
4.4. The Lorhumb Line ... 112
4.5. Relayed Fixes ... 115
4.6. Guidance of Pilotless Aircraft 116
4.7. Hyperbolic Surveying .. 117
4.8. The Current Problem ... 119

CHAP. 5. PROPAGATION ... 121

INTRODUCTION .. 121

5.1. Ground-wave Transmission at 2 Mc/sec 121
5.2. Signal-to-noise Factors at 180 kc/sec 123

LORAN SKY-WAVE TRANSMISSION AT 2 Mc/sec 126

5.3. The Ionosphere .. 126
5.4. Reflection ... 129
5.5. Absorption ... 131
5.6. E-layer Transmission ... 133
5.7. The Loran Sky-wave Delay Curve 137

LORAN SKY-WAVE TRANSMISSION ERRORS AT 2 Mc/sec 130

5.8. Normal Variations in the Sky-wave Delay 139
5.9. Sky-wave Accuracy Patterns 142
5.10. Sporadic E-region Ionization 144
5.11. Magnetic Activity .. 145

LORAN TRANSMISSION AT 180 kc/sec 148

5.12. Low Frequency Loran Pulse Shapes 149
5.13. Observations on the Experimental Low Frequency Loran Triplet 157

CHAP. 6. METHODS OF COMPUTATION OF LORAN TABLES AND
CHARTS ... 170

6.1. Equations for Distance over the Earth 170
6.2. Equations for a Loran Line of Position 173
6.3. The Three Basic Methods of Computation 177
6.4. The Standard Inverse Method 179
6.5. The Direct Method, Using Plane Hyperbolas 180
6.6. A Mechanical Tracer of Plane Hyperbolas 186
6.7. The Direct Method, Using Spherical Hyperbolas 188
6.8. Factors Affecting the Correctness of Computed Loran Time
Differences ... 192
PART II. LORAN EQUIPMENT

CHAP. 7. TIMERS ... 197

7-1. General Requirements 197
7-2. Timer Models A, B, and B-1 199

MODEL C-1 TIMER ... 205

7-3. General Description of Timer Models C, C-1, and UJ 205
7-4. Block Diagram of Model C-1 Timer 207
7-5. Model C-1 Oscillator 215
7-6. Model C-1 Divider Unit 219
7-7. Model C-1 Selector Unit 226
7-8. Model C-1 Synchronizer 229

MODEL UE-1 TIMER ... 232

7-9. General Description of Model UE-1 Timer 232
7-10. Model UE-1 Oscillator 237
7-11. Model UE-1 Phase-control Unit 240
7-12. Model UE-1 Receiver 243
7-13. Model UE-1 Synchronizer 245

LOW FREQUENCY TIMER 249

7-14. General Requirements 249
7-15. Block Diagram of Low Frequency Timer 253

CHAP. 8. SWITCHING EQUIPMENT 258

8-1. General Requirements 258
8-2. The Switching Equipment Used with Model A, B, and B-1 Timers 261
8-3. Model C-1 Switching Equipment 261
8-4. Model UM Switching Equipment 265
8-5. Low Frequency Switching Equipment 271

CHAP. 9. TRANSMITTERS 275

9-1. General Requirements 275
9-2. Standard Loran Transmitters 277
9-3. Transmitter Test Oscilloscope 285
9-4. Low Frequency Transmitter Requirements 288
9-5. Low Frequency Transmitter 291

CHAP. 10. ANTENNA SYSTEMS 301

10-1. Requirements for Ground-station Antennas 301
10-2. Antenna Coupling Units 303
10-3. Prediction and Simulation of Antenna Characteristics 314
10-4. Ground-station Antennas for 2-Mc/sec Loran 323
10-5. Ground-station Antennas for 180-ke/sec Loran 329
10-6. Receiver-indicator Antennas 342
CONTENTS

CHAP. 11. RECEIVER-INDICATORS .. 345

SHIPBOARD RECEIVER-INDICATORS .. 345
11-1. Requirements and General Description 345
11-2. Model DAS-1 Receiver-indicator 350
11-3. Model DAS-2 Receiver-indicator 355
11-4. Model DBE Receiver-indicator 358

AIRBORNE RECEIVER-INDICATORS .. 363
11-5. General Description and Trends in Design 363
11-6. Model AN/APh7-4 Receiver-indicator 367
11-7. Model AN/APN-9 Receiver-indicator 374

TEST AND TRAINING EQUIPMENT ... 381
11-8. Pulse-signal Generators ... 381
11-9. The Supersonic Trainer ... 382

CHAP. 12. SPECIAL TECHNIQUES AND MEASUREMENTS 386

12-1. Receiver-design Notes ... 386
12-2. Differential-gain Principles 390
12-3. Pulse-signal Generator .. 395
12-4. Pulse-bandwidth Measurements 396
12-5. Spectrum Measurements .. 397
12-6. Cycle-matching Receivers .. 398

APPENDIX A. THE LORAN PROGRAM IN THE HYDROGRAPHIC OFFICE 403

APPENDIX B. LORAN GROUND STATIONS 419

APPENDIX C. DEMONSTRATIONS CONCERNING THE GEOMETRY OF
LORAN LINES .. 425
C-1. The Factor of Geometrical Precision 425
C-2. The Probable Ellipse ... 427
C-3. The Probable Error of a Fix 429

APPENDIX D. DETERMINATION OF ERRORS IN THE POSITIONS OF
LORAN TRANSMITTING STATIONS .. 432

BIBLIOGRAPHY .. 457

INDEX ... 469