MASSACHUSETTS INSTITUTE OF TECHNOLOGY RADIATION LABORATORY SERIES

LOUIS N. RIDENOUR, Editor-in-Chief

PULSE GENERATORS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY RADIATION LABORATORY SERIES

Board of Editors

LOUIS N. RIDENOUR, Editor-in-Chief GEORGE B. COLLINS, Deputy Editor-in-Chief

BRITTON CHANCE, S. A. GOUDSMIT, R. G. HERB, HUBEBT M. JAMES, JULIAN K. KNIPP, JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALBERT M. STONE, LOUIS A. TURNER, GEORGE E. VALLEY, JR., HERBERT H. WHEATON

- 1. RADAR SYSTEM ENGINEERING-Ridenour
- 2. RADAB AIDS TO NAVIGATION-Hall
- 3. RADAR BEACONS-Roberts
- 4. LORAN-Pierce, McKenzie, and Woodward
- 5. PULSE GENERATORS-Glasoe and Lebacqz
- 6. MICROWAVE MAGNETRONS-Collins
- 7. KLYSTEONS AND MICROWAVE TRIODES-Hamilton, Knipp, and Kuper
- 8. PRINCIPLES OF MICROWAVE CIRCUITS-Montgomery, Dicke, and Purcell
- 9. MICBOWAVE TRANSMISSION CIRCUITS-Ragan
- 10. WAVEGUIDE HANDBOOK-Marcuvitz
- 11. TECHNIQUE OF MICROWAVE MEASUREMENTS-Montgomery
- 12. MICROWAVE ANTENNA THEORY AND DESIGN-Silver
- 13. PROPAGATION OF SHORT RADIO WAVES-Kerr
- 14. MICROWAVE DUPLEXERS-Smullin and Montgomery
- 15. CRYSTAL RECTIFIERS-Torrey and Whitmer
- 16. MICBOWAVE MIXERS-Pound
- 17. COMPONENTS HANDBOOK-Blackburn
- 18. VACUUM TUBE AMPLIFIERS--Valley and Wallman
- 19. WAVEFORMS-Chance, Hughes, MacNichol, Sayre, and Williams
- 20. ELECTRONIC TIME MEASUREMENTS—Chance, Hulsizer, MacNichol, and Williams
- 21. ELECTRONIC INSTRUMENTS-Greenwood, Holdam, and MacRae
- 22. CATHODE RAY TUBE DISPLAYS-Soller, Starr, and Valley
- 23. MICBOWAVE RECEIVERS-Van Voorhis
- 24. THRESHOLD SIGNALS-Lawson and Uhlenbeck
- 25. THEORY OF SERVOMECHANISMS-James, Nichols, and Phillips
- 26. RADAB SCANNERS AND RADOMES-Cady, Karelitz, and Turner
- 27. COMPUTING MECHANISMS AND LINKAGES-Svoboda
- 28. INDEX-Henney

PULSE GENERATORS

Edited by

G. N. GLASOE professor of physics, rensselaer polytechnic institute

J. V. LEBACQZ

ASSISTANT PROFESSOR OF ELECTRICAL ENGINEERING THE JOHNS HOPKINS UNIVERSITY

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT NATIONAL DEFENSE RESEARCH COMMITTEE

FIRST EDITION

NEW YORK AND LONDON MCGRAW-HILL BOOK COMPANY, INC.

1948

TK6573 . 1441 V.5

PULSE GENERATORS

COPYRIGHT, 1948, BY THE MCGRAW-HILL BOOK COMPANY, INC. PRINTED IN THE UNITED STATES OF AMERICA

> All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

Science Library

BARKER ENGINEERING LIBRARY

THE MAPLE PRESS COMPANY, YORK, PA.

.

PULSE GENERATORS

EDITORIAL STAFF George B. Collins G. Norris Glasoe Jean V. Lebacqz Howard D. Doolittle Barbara Dwight

CONTRIBUTING AUTHORS

W. Н. Возтіск	A. S. Jerrems
J. R. Dillinger	L. G. Kersta
P. C. Edwards	Н. Н. Коѕкі
O. T. Fundingsland	J. V. Lebacqz
K. J. Germeshausen	R. S. STANTON
P. R. GILLETTE	H. J. WHITE

G. N. GLASOE

Ser the Delever mercel clear the the a state

00

The tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields, and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of other scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together even though often in widely separated laboratories that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicated.

L. A. DUBRIDGE.

٠

•

WHEN the Radiation Laboratory was organized in the fall of 1940 in order to provide the armed services with microwave radar, one of the important technical problems facing this group was that of devising equipment capable of delivering high-power pulses to the newly developed cavity-magnetron oscillator. To be sure, some techniques for generating electrical pulses were available at this time. However, the special characteristics of these magnetrons and the requirements imposed by the operation of a microwave-radar system (high pulse power, short pulse duration, and high recurrence frequency) made it evident that new techniques had to be developed.

During the existence of the Radiation Laboratory the group assigned to the problem of pulse generation grew from a nucleus of about five people to an organization of more than ten times this number. The coordinated efforts of this group extended the development of pulse generators considerably beyond the original requirement of 100-kw pulses with a duration of 1 μ sec and a recurrence frequency of 1000 pps. The development extended to both higher and lower powers, longer and shorter pulses, and lower and higher recurrence frequencies. Besides the improvement of existing techniques, it was necessary to devise entirely new methods and to design new components to provide satisfactory pulse generators for radar applications. The use of a lumped-constant transmission line (line-simulating network) to generate pulses of specific pulse duration and shape was carried to a high state of development. As a result of work both on transformers that could be used for short pulses and high pulse powers and on new switching devices, highly efficient and flexible pulse generators using line-simulating networks were available at the end of the war. Concurrent with the work at the Radiation Laboratory, a large amount of work was done at similar laboratories in Great Britain, Canada, and Australia, and at many commercial laboratories in this country and abroad.

The purpose of this volume is to present the developments in the techniques of pulse generation that have resulted from this work. These techniques are by no means limited to radar applications: they may be used with loads of almost any conceivable type, and should therefore be applicable to many problems in physics and engineering. The discussion of pulse-generator design and operation is divided into three principal parts. Part I is concerned with hard-tube pulsers, which are Class C

PREFACE

amplifiers specifically designed for the production of pulses of short duration and high power; Part II presents the characteristics of the line-type pulser, which utilizes the line-simulating networks; Part III considers the design and characteristics of pulse transformers. Throughout this volume both the theoretical and the practical aspects of pulsegenerator design are given in order to avoid restricting the available information to radar applications.

Although the major part of this volume is written by a few members of the Radiation Laboratory staff, many other individuals at the Radiation Laboratory and elsewhere have contributed their ideas in the preparation of this material, and we hereby acknowledge their contributions. Particular mention must be made of the work done by Miss Anna Walter in connection with many of the mathematical analyses. Her painstaking work in checking the mathematical derivations and making the long and tedious calculations necessary for many of the curves and numerical examples is gratefully acknowledged. We are glad to acknowledge also the work of Miss F. Newell Dutton, who processed the numerous pulse photographs that appear throughout the volume.

We are also indebted to the many people who have contributed their time freely in reading various chapters and sections of the manuscript, and who have made valuable suggestions for the improvement of the discussion. We wish to acknowledge the help received in this way from Mr. J. P. Hagen and his associates at the Naval Research Laboratory; Dr. J. E. Gorham and his associates at the Army Signal Corps Laboratory; Dr. F. S. Goucher, Mr. E. P. Payne, Mr. A. G. Ganz, Mr. A. D. Hasley, Mr. E. F. O'Neill, and Mr. W. C. Tinus of the Bell Telephone Laboratories; Mr. E. G. F. Arnott, Mr. R. Lee, Mr. C. C. Horstman, and Dr. S. Siegel and his associates at the Westinghouse Electric Corporation; Mr. H. W. Lord of the General Electric Company; Dr. A. E. Whitford of the Radiation Laboratory and the University of Wisconsin; and Dr. P. D. Crout of the Massachusetts Institute of Technology.

The preparation of the manuscript and the illustrations for this volume would have required a much longer time if we had not had the aid of the Production Department of the Office of Publications of the Radiation Laboratories. We wish to express our appreciation of the efforts of Mr. C. Newton, head of this department, for his help in getting the work done promptly and accurately.

CAMBRIDGE, MASS., June, 1946. THE AUTHORS.

Contents

FOREWORD	BY L. A. DUBRIDGE	vii
PREFACE.		ix
CHAR 1 IN	τρορμοτίον	1
CHAP. I. IN		1
1.1.	Parameters Fundamental to the Design of Pulse Generators	1
1.2.	The Basic Circuit of a Pulse Generator.	5
1.3.	Hard-tube Pulsers	6
1.4.	Line-type Pulsers	8
1.5.	A Comparison of Hard-tube and Line-type Pulsers	13
	PART I. THE HARD-TUBE PULSER	
Снар. 2. ТІ	HE OUTPUT CIRCUIT OF A HARD-TUBE PULSER	21
2 ·1.	The Basic Output Circuit.	21
THE DIS	charging of the Storage Condenser	25
2.2	The Output Circuit with a Resistance Load	26
2 ·3.	The Output Circuit with a Biased-diode Load	32
THE CHA	Arging of the Storage Condenser	51
2.4.	The Output Circuit with a High Resistance as the Isolating Element	52
2 .5.	The Output Circuit with an Inductance or an Inductive Resistor as the Isolating Element	61
Power 7	RANSFER TO THE LOAD	69
2.6.	Impedance-matching and Pulse-transformer Coupling to the Load	70
2.7.	The Effect of Stray Capacitance on the Pulser Power Output	76
2.8.	Output Power Regulation.	77
2.9.	Effects of Pulse-transformer Coupling to the Load	78
Снар. 3. VA	ACUUM TUBES AS SWITCHES	90
3.1.	Required Characteristics	90
3.2.	The Characteristic Curves for Triodes and Tetrodes and their	
2.0	Importance to the Function of a Pulser Switch Tube.	98
0°0.	Pulser Regulation	108

Снар. 4. D	RIVER CIRCUITS	119
4.1.	The Bootstrap Driver	120
4·2.	The Blocking Oscillator or Regenerative Driver	124
4·3.	The Multivibrator and Pulse-forming-network Drivers	132
Снар. 5. Р	ARTICULAR APPLICATIONS	140
5.1.	The Model 3 Pulser—A Light-weight Medium-power Pulser for	
	Airborne Radar Systems	140
5 ·2.	The Model 9 Pulser-A 1-Mw Hard-tube Pulser	152
5·3 .	A High-power Short-pulse Hard-tube Pulser	160
5.4.	The Application of Pulse-shaping Networks to the Hard-tube	
	Pulser	165
	PART II. THE LINE-TYPE PULSER	
Снар. 6. Т	HE PULSE-FORMING NETWORK.	175
6·1.	The Formation and Shaping of Pulses	175
6·2.	Networks Derived from a Transmission Line	179
6·3.	Guillemin's Theory and the Voltage-fed Network	189
6·4.	Current-fed Networks	207
6.5.	Materials and Construction.	213
6 ∙6.	Test Procedures	221
Снар. 7. Т	HE DISCHARGING CIRCUIT OF THE LINE-TYPE PULSER	225
7.1.	General Properties of the Discharging Circuit	225
7.2.	Pulser Characteristics.	233
7 ·3.	Pulser Regulation and Efficiency	244
7.4.	The Discharging Circuit and Pulse Shape	255
7 ·5.	Computed and Actual Pulse Shapes	261
Снар. 8. 5	WITCHES FOR LINE-TYPE PULSERS.	273
THE RO	TARY SPARK GAP	275
8.1.	Electrical Considerations in the Design of Rotary Spark Gaps	276
8.2.	Considerations of Mechanical Design	283
8.3.	Rotary-gap Performance	289
ENCLOSE	ED FIVED SDADE CADE	201
ENCLOSI		494
8.4.	General Operating Characteristics of Series Gaps.	296
8.5.	Trigger Generators	304
8.6.	Division of Voltage Across Series Gaps	312
8.7.	General Considerations for Gap Design	316
8.8.	The Cymarical-electrode Aluminum-cathode Gap	318
8.9.	The fron-sponge mercury-cathode Gap.	527
8.10	. The Three-electrode Fixed Spark Gap	ə ə 2
Тне Ну	drogen Thyratron	335
8.11	. General Operating Characteristics of the Hydrogen Thyratron 3	336
8.12	2. The Anode Circuit	344
8-13	8. The Grid Circuit	349

CON	TE	NT	\mathbf{s}
-----	----	----	--------------

CHAP. 9. THE CHARGING CIRCUIT OF THE LINE-TYPE PULSER 3	55
INDUCTANCE CHARGING FROM A D-C POWER SUPPLY	56
9.1. General Analysis of D-c Charging	56
9.2. Practical D-c Charging Reactors	64
9.3. The Design of D-c Charging Reactors	72
INDUCTANCE CHARGING FROM AN A-C SOURCE	80
9.4. General Analysis of A-c Charging	80
9.5. A-c Resonant Charging	86
9.6. A-c Nonresonant Charging	93
9.7. Practical A-c Charging Transformers.	00
9.8. The Design of High-reactance Transformers	07
9.9. Miscellaneous Charging Circuits.	14
CHAP. 10. PERFORMANCE OF LINE-TYPE PULSERS	17
10.1 Effects of Changes in Load Impedance	17
10.2 Short Circuits in the Load	 22
10.3 Open Circuits and Protective Measures.	31
	~~
PULSER PERFORMANCE WITH A MAGNETRON LOAD 4	35
10.4. Normal Operation of the Magnetron	35
10.5. Magnetron Mode-changing	38
10-3. Magnetron Sparking $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$	4 1
CHAP. 11. PARTICULAR APPLICATIONS	18
11.1. A High-power Rotary-gap Pulser	1 8
11.2. A High-power Airborne Pulser	54
11.3. Multiple-network Pulsers	33
11.4. The Anger Circuit	38
11.5. The Nonlinear-inductance Circuit	71
11.6. Special-purpose Output Circuits	76
11-7. Multiple-pulse Line-type Pulsers	35
11-8. Multiple-switch Circuit for Voltage Multiplication 49) 4
PART III. PULSE TRANSFORMERS	
CHAP. 12. ELEMENTARY THEORY OF PULSE TRANSFORMERS 49) 9
12.1. General Transformer Theory 49 12.2. Values of Elements in the Equivalent Circuit 5) 9 10
CHAP. 13. PULSE-TRANSFORMER DESIGN.	32
12.1 Conoral Bulgo transformer Design Considerations 5	20
13.9 Design Methode	36
13.3. Typical Pulse-transformer Designs.	55
100. All from a doo vienorormor boorgans, a a a a a a a a a a	
CHAP. 14. EFFECT OF PULSE-TRANSFORMER PARAMETERS ON CIRCUIT BEHAVIOR. 56	3 3
14.1 The Effect of Dulas transformer Decomptons on Dulas Charge on	
14-1. The Effect of Fulse-transformer Parameters on Fulse Shapes on Resistance and Biased-diode or Magnetron Loads 50	53

CONTENTS

14.2.	The Effect of Pulse-transformer Parameters on the Behavior of Regenerative Pulse Generators	575
14.3	The Effect of Pulse-transformer Parameters on Frequency	010
14 0.	Response	591
Снар. 15. У	IATERIALS AND THEIR USES IN DESIGN	599
Core M.	ATERIAL	599
15.1.	D-c Properties and Test Results.	599
15·2.	Pulse Magnetization	613
15·3.	Energy Loss and Equivalent Circuits	626
15-4.	Additional Aspects of Pulse Magnetization	633
15-5.	Techniques for Measuring Core Performance	639
Coil Ma	TERIAL	648
15.6.	Insulation	648
15.7.	Wire	655
APPENDIX A.	MEASURING TECHNIQUES	661
Oscillos	COPIC METHODS	662
A·1.	Signal Presentation	662
A-2.	Pulse Measurements	667
A.3.	Practical Considerations in Making Pulse Measurements	687
A·4.	Voltage and Current Measurements in the Charging Circuit of a Line-type Pulser.	690
Meterin	g Techniques	692
A.5.	Pulse Voltmeters	692
A·6.	The Average-current Meter.	701
A.7.	Auxiliary Measuring Techniques	706
APPENDIX B.	PULSE DURATION AND AMPLITUDE	7 10
B·1.	Equivalent Rectangular Pulse by Conservation of Charge and	711
B-2	Equivalent Rectangular Pulse by Minimum Departure Areas	716
В·3.	A Comparison of the Methods.	720
LIST OF SY	MBOLS	723
INDEX		729

xiv