PROPAGATION OF SHORT RADIO WAVES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
RADIATION LABORATORY SERIES

Board of Editors

LOUIS N. RIDENOUR, Editor-in-Chief
GEORGE B. COLLINS, Deputy Editor-in-Chief

BRITTON CHANCE, S. A. GODSMIT, R. G. HERR, HUBERT M. JAMES, JULIAN K. KNIPP,
JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALBERT
M. STONE, LOUIS A. TURNER, GEORGE E. VALLEY, JR., HERBERT H. WHEATON

1. Radar System Engineering—Ridenour
2. Radar Aids to Navigation—Hall
3. Radar Beacons—Roberts
4. Loran—Pierce, McKenzie, and Woodward
5. Pulse Generators—Glaser and Lebacqz
6. Microwave Magnetrons—Collins
7. Klystrons and Microwave Triodes—Hamilton, Knipp, and Kuper
8. Principles of Microwave Circuits—Montgomery, Dicke, and Purcell
9. Microwave Transmission Circuits—Ragan
10. Waveguide Handbook—Marcowitz
11. Technique of Microwave Measurements—Montgomery
12. Microwave Antenna Theory and Design—Silver
13. Propagation of Short Radio Waves—Kerr
14. Microwave Duplexers—Smullin and Montgomery
15. Crystal Rectifiers—Torrey and Whitner
16. Microwave Mixers—Pound
17. Components Handbook—Blackburn
18. Vacuum Tube Amplifiers—Valley and Wallman
19. Waveforms—Chance, Hughes, MacNicol, Sayre, and Williams
20. Electronic Time Measurements—Chance, Hulsizer, MacNicol, and Williams
21. Electronic Instruments—Greenwood, Holdam, and MacRae
22. Cathode Ray Tube Displays—Soller, Starr, and Valley
23. Microwave Receivers—Van Voorhis
24. Threshold Signals—Lawson and Uhlenbeck
25. Theory of Servomechanisms—James, Nichol, and Phillips
26. Radar Scanners and Radomes—Cady, Karelitz, and Turner
27. Computing Mechanisms and Linkages—Svoboda
28. Index—Henney
Foreword

The tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together, even though often in widely separated laboratories, that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicated.

L. A. DuBridge
Most of the volumes of the Radiation Laboratory Series are devoted to specific radar subjects such as components, systems and their applications, or measurement techniques. This volume, however, treats the phenomena associated with the propagation of short radio waves between terminal points, whether they be the radar antenna serving a dual purpose or the antennas of a communications system. The intention is to present a summary of the state of knowledge in the microwave-propagation field at the close of the war. There has been no attempt to produce either a handbook or textbook, but only an interim report on a rapidly changing subject. An attempt has been made to survey all relevant information that was available, from whatever source, and to summarize as much of it as was feasible.

The preparation of the book was undertaken primarily by the Propagation Group (Group 42), and all of its thirty-odd members contributed either directly or indirectly to the material given here. In addition, substantial contributions have been made by authors who were not members of this group but who worked closely with the group during the war. The division of authorship was to a certain extent arbitrary. The principal criterion was, of course, familiarity with the subject matter, and where possible the people who had made original contributions were favored. There were limiting factors, however, such as the degree of availability of possible authors and the fact that it was impractical to have a large number of writers. Unfortunately, it is impossible to give adequate recognition to all those who have contributed directly or indirectly or even to represent the correct proportion of the contributions of those whose names appear here.

A vast amount of material was available for consideration—much more than could have been presented in one volume. Consequently, some topics have been omitted completely, as, for example, diffraction by trees, hills, and obstacles other than the earth or objects used as radar targets. In this case, as in some others, no significant original work on the subject was done at the Radiation Laboratory, and reviewing work done entirely by others did not appear desirable. Other subjects that have been omitted are the numerous attempts at application of radio-meteorology to forecasting of radio and radar propagation performance and the climatological studies needed to make such knowledge useful on
a world-wide scale. In this case, authors were not available to undertake the work. In choosing the meteorological material that was to be presented, it was decided that in the limited time available it was feasible to present only the material considered to have the soundest fundamental background and to eliminate material that involved an appreciable amount of speculation or that would require reworking or further research to put it into the desired form. In general, throughout the book when similar decisions were necessary, they were nearly always made in favor of an exposition of selected material rather than a sketchy, uncritical report of a large amount. We are aware that despite our attempts to include data from many sources our own work tends to predominate; knowing it most thoroughly, we have treated it in greatest detail.

Much of the wartime work was necessarily done in haste without adequate preliminary planning, care in execution, or sufficient analysis of results. If we appear to be overly critical or pedantic here, the reader is asked to understand that this arises, at least in part, from the reaction of the authors to the nature of much of the source material from which the following chapters are formed. We have not hesitated to point out the need for critical examination of the data reviewed here, for such an examination must certainly be one of the first steps in further research in the field. We have also made numerous suggestions for future investigations.

The methods employed in recent propagation research are, we believe, rather important, and we have described them in some detail when it appeared that the description would aid others in future plans. Apparatus details involving radio-frequency techniques are omitted, as most of them are covered in other volumes of this series, but methods of planning experiments and of analyzing results are emphasized. The meteorological instrumentation and new measurement techniques are also emphasized, as they are of utmost importance in investigations of the effects of atmospheric refraction on microwave transmission.

Nomenclature and symbols were matters about which positive decisions were necessary if the book was to be readable. The present choice is the result of considerable deliberation and compromise among several well-established but highly conflicting systems. It embodies as much as possible of the best or of the most firmly established features of each system. A serious attempt has been made to avoid undue overlapping use of symbols but at the same time to adhere to uniform usage throughout the book; some inconsistencies appear inevitable, however.

We have attempted to acknowledge the sources of all our information, even though, unfortunately, these sources are frequently in the form of reports that possibly will never be generally available. Some of the reports cited here are beginning to appear in the literature as this material goes to press, however, and the appropriate footnote references have been inserted wherever possible. When the source of experimental material is not specifically stated, it may be assumed to be the Radiation Laboratory,
but because of the high mobility of ideas, it is not always possible to be certain of their origin. Except for the measurements on oxygen and water-vapor absorption, ship and aircraft cross sections, and a few miscellaneous items, almost all of the Radiation Laboratory material is the work of the Propagation Group or of its close associates.

The information summarized here represents a large investment of effort by many persons and agencies, and it is impossible to acknowledge fully our indebtedness to all of them. Our principal indebtedness is to the remainder of the Propagation Group, whose work contributed so much to this volume. Second, we must acknowledge particular indebtedness to the several authors who at considerable inconvenience to themselves contributed their services long after the termination of the activities of the Radiation Laboratory Office of Publications.

We should like to acknowledge specifically the very great assistance rendered by the several branches of the armed services, who contributed generously in both man power and in equipment such as boats, aircraft, housing facilities, and the many other items necessary to carry on field operations on a large scale. We should like to thank the members of the U.S. Weather Bureau and its several branch offices, whose personnel not only contributed information but in some cases participated in our research program. We are also greatly indebted to Dr. Charles Brooks of the Blue Hill Observatory of Harvard University for his meteorological advice. Most of the aircraft soundings in Chapter 3 were obtained by Robert H. Burgoyne and Earl G. Boardman, who contributed his aircraft and his services as skillful pilot. This work deserves special mention because of its hazardous and highly exacting nature.

In an attempt to ensure accuracy in reporting the work of other groups, we have submitted portions of the manuscript for review to several individuals and organizations. Particular thanks are due to the following people: Sir Edward Appleton, Dr. R. L. Smith-Rose, and the other members of the Tropospheric Wave Propagation Committee in England; Dr. John B. Smyth of the U.S. Navy Electronics Laboratory; A. B. Crawford of the Bell Telephone Laboratories; Professor Paul A. Anderson of Washington State College; Dr. H. H. Beverage of RCA Laboratories; K. A. Norton and Dr. T. J. Carroll of the Central Radio Propagation Laboratory, Bureau of Standards; and Professor C. R. Burrows of Cornell University. The corrections and suggestions offered by these men have been of great value in integrating the descriptions of the work with which they are most familiar. Thanks are also due Norma W. Donelan for her aid in final preparation of the manuscript.
Contents

FOREWORD ... vii
PREFACE ... ix

CHAP. 1. ELEMENTS OF THE PROBLEM 1

(JOHN E. FREEHAFER AND DONALD E. KERR)

EVOLUTION OF THE PRESENT PROBLEMS 1
1.1. The Ionosphere and the Transmission of Long Waves 1
1.2. Optical Properties of Short Waves 3

TROPOSPHERIC REFRACTION 9
1.3. The Effects of Variable Gradients of Refractive Index 9
1.4. The Meteorological Elements and the Modified Index 12
1.5. The Modified Index and Field-strength Distribution 15

ATMOSPHERIC SCATTERING AND ATTENUATION 22
1.6. Radar Echoes from Precipitation 22
1.7. Scattering and Absorption by Particles 23
1.8. Absorption by Gases 25

CHAP. 2. THEORY OF PROPAGATION IN A HORIZONTALLY STRATIFIED ATMOSPHERE 27

(JOHN E. FREEHAFER, WILLIAM T. FISHBACK, WENDELL H. FURRY, AND DONALD E. KERR)

FUNDAMENTAL CONCEPTS 27
2.1. Transmission in Free Space 27
2.2. The Transmission Medium and the Pattern-propagation Factor 34

GEOMETRICAL OPTICS 41
2.3. Ray-tracing Formulas 41
2.4. The Modified Index 50
2.5. Limitations of Ray Methods 53

PHYSICAL OPTICS 58
2.6. The Field from a Dipole in a Stratified Atmosphere near the Earth 58
2.7. The Fundamental Theorem 65
2.8. Phase-integral Methods 70

THE LINEAR MODIFIED-INDEX PROFILE 87
2.9. The Properties of Solutions of \(\frac{d^2y}{dt^2} + t^2 y = 0 \) 87
2.10. The Field Integral 95
2.11. The Interference Region 98
2.12. The Diffraction Region 109

METHODS FOR CALCULATING FIELD STRENGTH WITH STANDARD REFRACTION 112
2.13. The Interference Region 113
2.14. The Diffraction Region 122
CONTENTS

2:15. The Intermediate Region .. 125
2:16. Contours of Constant Field Strength 130

THE BILINEAR MODIFIED-INDEX PROFILE 140
2:17. Definition of the Problem and Preliminary Formulation 140
2:18. Methods for Calculating Characteristic Values 146
2:19. Behavior of Characteristic Values and Characteristic Functions for the First Mode ... 161
2:20. The Problem of Calculating Field Strength for the Bilinear Profile ... 168

NONLINEAR MODIFIED-INDEX PROFILES 174
2:21. The Linear-exponential and Power-law Profiles 174

CHAP. 3. METEOROLOGY OF THE REFRACTION PROBLEM 181
(RICHARD A. CRAIG, ISADORE KATZ, R. B. MONTGOMERY,
AND PEARL J. RUBENSTEIN)

HUMIDITY AND REFRACTIVE INDEX 181
3:1. Vapor Pressure and Saturated Vapor 182
3:2. Water-vapor Concentration 184
3:3. Saturation Temperatures on Isobaric Cooling 186
3:4. Refractive Index of Air at Radio Frequencies 189

VERTICALLY HOMOGENEOUS AIR AND ADIABATIC CHANGES 193
3:5. Adiabatic Temperature Lapse Rate and Potential Temperature 194
3:6. Humidity Lapse in Homogeneous Air 196
3:7. Gradient of Refractive Modulus in Homogeneous Air, Potential Modulus ... 198
3:8. Characteristic Curves and Mixing 200

REPRESENTATION AND DESCRIPTION OF SOUNDINGS 202
3:9. Approximate Formula for Refractive Modulus 203
3:10. Representation of Soundings 206

EDDY DIFFUSION .. 208
3:11. Eddy Viscosity and Eddy Diffusivity 208
3:12. Layer of Frictional Influence in Neutral Equilibrium 213

VERTICAL DISTRIBUTIONS IN NEUTRAL AND UNSTABLE EQUILIBRIUM 219
3:14. Heating from Below ... 220
3:15. Application of Logarithmic Distribution 223
3:16. Rate of Modification of Unstable Air 226

VERTICAL DISTRIBUTIONS IN STABLE EQUILIBRIUM 228
3:17. Cooling from Below ... 228
3:18. Shear in Stable Equilibrium 234
3:19. Initially Homogeneous Warm Air over Cold Water 237
3:20. Complex Over-water Modifications 250
3:21. Nocturnal Cooling and Diurnal Cycles 253

OTHER ATMOSPHERIC PROCESSES AND THEIR EFFECT ON M-PROFILES 260
3:22. Subsidence and Subsidence Inversions 260
3:23. Fronts and Frontal Inversion 263
3:24. Sea-breeze Circulations 264
CONTENTS

3.25. Horizontal Gradients .. 267
3.26. Local Variations with Time .. 268

INSTRUMENTS TO MEASURE TEMPERATURE AND HUMIDITY IN THE LOWER
ATMOSPHERE .. 272
3.27. Psychrograph ... 272
3.28. Wired Sonde ... 283
3.29. Aircraft Psychrometers .. 287
3.30. Resistance Thermometer and Humidiometer 289
3.31. Thermocouples .. 290
3.32. General Problems Associated with Low-level Soundings 291

METEOROLOGICAL CONSTANTS ... 292
3.33. Useful Meteorological Constants 292

CHAP. 4. EXPERIMENTAL STUDIES OF REFRACTION 294
(PEARL J. RUBENSTEIN, DONALD E. KERR, AND
WILLIAM T. FISHBACK)

ONE-WAY TRANSMISSION OVER WATER 294
Transmission over Massachusetts Bay
4.1. Radio Measurements Program .. 296
4.2. Meteorological Measurements and Analysis 297
4.3. General Characteristics of Transmission 301
4.4. Comparison with Theory .. 307
4.5. Transmission under Complex Conditions 315
4.6. Some Statistical Results ... 319

Transmission Experiments in the British Isles
4.7. The Irish Sea Experiment ... 322
4.8. South Wales to Mt. Snowdon ... 328

Transmission along the California Coast
4.9. San Diego to San Pedro .. 328

Transmission over an Inland Lake
4.10. Flathead Lake .. 335

ONE-WAY TRANSMISSION OVER LAND 336
4.11. Early Experiments ... 336
4.13. Additional Observations ... 343
4.14. Discussion .. 350

RADAR TRANSMISSION ... 353
4.15. New England Coast ... 354
4.16. California Coast .. 361
4.17. Welsh Coast ... 363
4.18. The English Channel Region .. 367
4.19. Other Regions .. 369

SPACE VARIATIONS IN FIELD STRENGTH 373
4.20. Shallow Surface M-inversions ... 374
4.22. Elevated M-inversions ... 382

ANGLE MEASUREMENTS ON SHORT OPTICAL PATHS 385
4.23. Measurements of Angle of Arrival 386
4.24. Theoretical Discussion .. 391
CONTENTS

CHAP. 5. REFLECTIONS FROM THE EARTH'S SURFACE .. 396
 (DONALD E. KERR, WILLIAM T. FISHBACK, AND HERBERT GOLSTEIN)

THEORY OF SPECULAR REFLECTION .. 396
5.1. Fresnel's Equations for a Smooth Plane Surface 396
5.2. Geometrical Interpretation of the Divergence Factor 404
5.3. Effects of Reflections on Field Strength .. 406
5.4. Surface Roughness ... 411

REFLECTION COEFFICIENT OF THE OCEAN .. 418
5.5. Measurements of Short-time Variations .. 419
5.6. Interference Measurements over Long Ranges .. 421
5.7. Interference Measurements at Short Ranges ... 427
5.8. Interpretation of Measurements .. 429

REFLECTION COEFFICIENT OF LAND .. 430
5.9. Measurements over Long Ranges .. 430
5.10. Measurements at Short Ranges ... 433
5.11. Measurements of Time Variations .. 434
5.12. Interpretation of Measurements .. 435

ERRORS IN RADAR HEIGHT MEASUREMENTS .. 436
5.13. Qualitative Discussion .. 437
5.14. Illustrative Examples .. 441

CHAP. 6. RADAR TARGETS AND ECHOES ... 445
 (DONALD E. KERR AND HERBERT GOLSTEIN)

THE RADAR CROSS SECTION OF ISOLATED TARGETS 445
6.1. Scattering from a Sphere .. 445
6.2. Vector Form of Huygens' Principle .. 454
6.3. Scattering from Planes and Curved Surfaces .. 456

COMPLEX TARGETS .. 469
6.4. Radar Cross Section of Aircraft ... 470
6.5. Radar Cross Section of Ships .. 472

SEA ECHO ... 481
6.6. Nature of the Problem .. 481
6.7. Nature of the Sea Surface ... 486
6.8. Validity of the Fundamental Assumptions .. 490
6.9. Frequency Dependence of Sea Echo ... 494
6.10. Measurements of the Properties of Sea-echo Cross Section 499
6.11. The Fluctuation of Sea Echo .. 514
6.12. Theories of Sea Echo .. 518

THE ORIGINS OF ECHO FLUCTUATIONS .. 527
6.13. The Limitations of System Stability ... 527
6.15. Fluctuations in the Space Interference Pattern 535
6.16. Isolated Moving Targets .. 539
6.17. Interference Phenomena in Complex Targets .. 547

THE FLUCTUATIONS OF CLUTTER ECHOES ... 550
6.18. The Nature of Clutter Echoes .. 550
6.19. The Theory of Clutter Fluctuations .. 553
CONTENTS

6.20. Experimental Techniques in the Study of Clutter Fluctuations 562
6.21. Experimental Results 571

CHAP. 7. METEOROLOGICAL ECHOES 588
(Herbert Goldstein, Donald E. Kerr, and Arthur E. Bent)

Origin of the Echo 588
7.1. The Echo from Incoherent Scatterers Distributed in Volume 589
7.2. Evidence of Direct Correlation between Meteorological Echoes and Precipitation 591
7.3. The Approximate Magnitude of Rain Echoes on the Drop Theory 596
7.4. Possible Alternative Theories to Scattering by Drops 598
7.5. Modifications of the Drop Theory 604

The Intensity of Meteorological Echoes 607
7.6. The Radar Cross Section of Single Drops 608
7.7. Drop-size Distribution 615
7.8. Echoes from Solid Precipitation 618

General Properties of Precipitation Echoes 621
7.9. Identifying Characteristics 621
7.10. Confusion and Masking of Other Echoes 625

Precipitation Echo Properties and Meteorological Structure 626
7.11. Classification of Echo Types 626
7.12. Thunderstorms 627
7.13. Other Forms of Localized Precipitation 632
7.14. Widespread Precipitation 633
7.15. Cyclonic Storms of Tropical Origin 636

CHAP. 8. ATMOSPHERIC ATTENUATION 641
(J. H. Van Vleck, E. M. Purcell, and Herbert Goldstein)

8.1. Properties of the Complex Dielectric Constant 641

Theory of Absorption by Uncondensed Gases 646
8.2. Oxygen 648
8.3. Uncondensed Water Vapor 656

Measurement of Atmospheric Absorption 664
8.4. Direct Measurement of Absorption by Oxygen 665
8.5. Measurements of Water-vapor Absorption 666

Attenuation by Condensed Water 671
8.6. Phenomenology of Attenuation by Precipitation 671
8.7. Calculation of Attenuation by Water Drops 674
8.8. Calculation of Attenuation by Precipitation in Solid Form 685
8.9. Measurements of Attenuation by Rain 688

APPENDIX 693
(Donald E. Kerr, A. J. F. Siegent, and Herbert Goldstein)
Application of the Lorentz Reciprocity Theorem to Scattering 693
Coherent and Incoherent Scattering from Assemblies of Scatterers 699

NAME INDEX 707
SUBJECT INDEX 713