PROPAGATION OF SHORT RADIO WAVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY RADIATION LABORATORY SERIES

Board of Editors

LOUIS N. RIDENOUR, Editor-in-Chief GEORGE B. COLLINS, Deputy Editor-in-Chief

BRITTON CHANCE, S. A. GOUDSMIT, R. G. HERB, HUBERT M. JAMES, JULIAN K. KNIPP, JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALBERT M. STONE, LOUIS A. TURNER, GEORGE E. VALLEY, JR., HERBERT H. WHEATON

1. RADAR SYSTEM ENGINEERING--Ridenour

- 2. RADAR AIDS TO NAVIGATION--Hall
- 3. RADAR BEACONS-Roberts
- 4. LORAN- Pierce, McKenzie, and Woodward
- 5. Pulse Generators -Glasoe and Lebacqz
- 6. MICROWAVE MAGNETRONS-Collins
- 7. KLYSTRONS AND MICROWAVE TRIODES -Hamilton, Knipp, and Kuper
- 8. PRINCIPLES OF MICROWAVE CIRCUITS-Montgomery, Dicke, and Purcell
- 9. MICROWAVE TRANSMISSION CIRCUITS-Ragan
- 10. WAVEGUIDE HANDBOOK-Marcuvitz
- 11. TECHNIQUE OF MICROWAVE MEASUREMENTS Montgomery
- 12. MICROWAVE ANTENNA THEORY AND DESIGN -Silver
- 13. PROPAGATION OF SHORT RADIO WAVES--Kerr
- 14. MICROWAVE DUPLEXERS-Smullin and Montgomery
- 15. CRYSTAL RECTIFIERS Torrey and Whitmer
- 16. MICROWAVE MIXERS-Pound
- 17. Components Handbook-Blackburn
- 18. VACUUM TUBE AMPLIFIERS -- Valley and Wallman
- 19. WAVEFORMS-Chance, Hughes, MacNichol, Sayre, and Williams
- Electronic Time Measurements --- Chance, Hulsizer, MacNichol, and Williams
- 21. Electronic Instruments -- Greenwood, Holdam, and MacRae
- 22. CATHODE RAY TUBE DISPLAYS-Soller, Starr, and Valley
- 23. MICROWAVE RECEIVERS-Van Voorhis
- 24. THRESHOLD SIGNALS-Lawson and Uhlenbeck
- 25. THEORY OF SERVOMECHANISMS-James, Nichols, and Phillips
- 26. RADAR SCANNERS AND RADOMES-Cady, Karelitz, and Turner
- 27. Computing Mechanisms and Linkages-Svoboda
- 28. INDEX-Henney

PROPAGATION OF SHORT RADIO WAVES

Edited by

DONALD E. KERR assistant professor, department of physics johns hopkins university

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT NATIONAL DEFENSE RESEARCH COMMITTEE

FIRST EDITION

NEW YORK • TORONTO • LONDON McGRAW-HILL BOOK COMPANY, INC. 1951

FK 6573

MAI 1.13

4

PROPAGATION OF SHORT RADIO WAVES

Copyright, 1951, by the McGraw-Hill Book Company, Inc.

PRINTED IN THE UNITED STATES OF AMERICA

All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

SCIENCE LIBRARY

PROPAGATION OF SHORT RADIO WAVES EDITORIAL STAFF

DONALD E. KERR LEON B. LINFORD S. A. GOUDSMIT ALBERT M. STONE

CONTRIBUTING AUTHORS

ARTHUR E. BENT RICHARD A. CRAIG WILLIAM T. FISHBACK JOHN E. FREEHAFER WENDELL H. FURBY HERBERT GOLDSTEIN ISADORE KATZ DONALD E. KERR R. B. MONTGOMERY EDWARD M. PURCELL PEARL J. RUBENSTEIN A. J. F. SIEGERT J. H. VAN VLECK .

THE tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together, even though often in widely separated laboratories, that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicated.

L. A. DUBRIDGE

.

Must of the volumes of the Radiation Laboratory Series are devoted to specific radar subjects such as components, systems and their applications, or measurement techniques. This volume, however, treats the phenomena associated with the propagation of short radio waves between terminal points, whether they be the radar antenna serving a dual purpose or the antennas of a communications system. The intention is to present a summary of the state of knowledge in the microwave-propagation field at the close of the war. There has been no attempt to produce either a handbook or textbook, but only an interim report on a rapidly changing subject. An attempt has been made to survey all relevant information that was available, from whatever source, and to summarize as much of it as was feasible.

The preparation of the book was undertaken primarily by the Propagation Group (Group 42), and all of its thirty-odd members contributed either directly or indirectly to the material given here. In addition, substantial contributions have been made by authors who were not members of this group but who worked closely with the group during the war. The division of authorship was to a certain extent arbitrary. The principal criterion was, of course, familiarity with the subject matter, and where possible the people who had made original contributions were favored. There were limiting factors, however, such as the degree of availability of possible authors and the fact that it was impractical to have a large number of writers. Unfortunately, it is impossible to give adequate recognition to all those who have contributed directly or indirectly or even to represent the correct proportion of the contributions of those whose names appear here.

A vast amount of material was available for consideration—much more than could have been presented in one volume. Consequently, some topics have been omitted completely, as, for example, diffraction by trees, hills, and obstacles other than the earth or objects used as radar targets. In this case, as in some others, no significant original work on the subject was done at the Radiation Laboratory, and reviewing work done entirely by others did not appear desirable. Other subjects that have been omitted are the numerous attempts at application of radiometeorology to forecasting of radio and radar propagation performance and the climatological studies needed to make such knowledge useful on

ix

a world-wide scale. In this case, authors were not available to undertake the work. In choosing the meteorological material that was to be presented, it was decided that in the limited time available it was feasible to present only the material considered to have the soundest fundamental background and to eliminate material that involved an appreciable amount of speculation or that would require reworking or further research to put it into the desired form. In general, throughout the book when similar decisions were necessary, they were nearly always made in favor of an exposition of selected material rather than a sketchy, uncritical report of a large amount. We are aware that despite our attempts to include data from many sources our own work tends to predominate; knowing it most thoroughly, we have treated it in greatest detail.

Much of the wartime work was necessarily done in haste without adequate preliminary planning, care in execution, or sufficient analysis of results. If we appear to be overly critical or pedantic here, the reader is asked to understand that this arises, at least in part, from the reaction of the authors to the nature of much of the source material from which the following chapters are formed. We have not hesitated to point out the need for critical examination of the data reviewed here, for such an examination must certainly be one of the first steps in further research in the field. We have also made numerous suggestions for future investigations.

The methods employed in recent propagation research are, we believe, rather important, and we have described them in some detail when it appeared that the description would aid others in future plans. Apparatus details involving radio-frequency techniques are omitted, as most of them are covered in other volumes of this series, but methods of planning experiments and of analyzing results are emphasized. The meteorological instrumentation and new measurement techniques are also emphasized, as they are of utmost importance in investigations of the effects of atmospheric refraction on microwave transmission.

Nomenclature and symbols were matters about which positive decisions were necessary if the book was to be readable. The present choice is the result of considerable deliberation and compromise among several wellestablished but highly conflicting systems. It embodies as much as possible of the best or of the most firmly established features of each system. A serious attempt has been made to avoid undue overlapping use of symbols but at the same time to adhere to uniform usage throughout the book; some inconsistencies appear inevitable, however.

We have attempted to acknowledge the sources of all our information, even though, unfortunately, these sources are frequently in the form of reports that possibly will never be generally available. Some of the reports cited here are beginning to appear in the literature as this material goes to press, however, and the appropriate footnote references have been inserted wherever possible. When the source of experimental material is not specifically stated, it may be assumed to be the Radiation Laboratory, but because of the high mobility of ideas, it is not always possible to be certain of their origin. Except for the measurements on oxygen and watervapor absorption, ship and aircraft cross sections, and a few miscellaneous items, almost all of the Radiation Laboratory material is the work of the Propagation Group or of its close associates.

The information summarized here represents a large investment of effort by many persons and agencies, and it is impossible to acknowledge fully our indebtedness to all of them. Our principal indebtedness is to the remainder of the Propagation Group, whose work contributed so much to this volume. Second, we must acknowledge particular indebtedness to the several authors who at considerable inconvenience to themselves contributed their services long after the termination of the activities of the Radiation Laboratory Office of Publications.

We should like to acknowledge specifically the very great assistance rendered by the several branches of the armed services, who contributed generously in both man power and in equipment such as boats, aircraft, housing facilities, and the many other items necessary to carry on field operations on a large scale. We should like to thank the members of the U.S. Weather Bureau and its several branch offices, whose personnel not only contributed information but in some cases participated in our research program. We are also greatly indebted to Dr. Charles Brooks of the Blue Hill Observatory of Harvard University for his meteorological advice. Most of the aircraft soundings in Chapter 3 were obtained by Robert H. Burgoyne and Earl G. Boardman, who contributed his aircraft and his services as skillful pilot. This work deserves special mention because of its hazardous and highly exacting nature.

In an attempt to ensure accuracy in reporting the work of other groups, we have submitted portions of the manuscript for review to several individuals and organizations. Particular thanks are due to the following people: Sir Edward Appleton, Dr. R. L. Smith-Rose, and the other members of the Tropospheric Wave Propagation Committee in England; Dr. John B. Smyth of the U.S. Navy Electronics Laboratory; A. B. Crawford of the Bell Telephone Laboratories; Professor Paul A. Anderson of Washington State College; Dr. H. H. Beverage of RCA Laboratories; K. A. Norton and Dr. T. J. Carroll of the Central Radio Propagation Laboratory, Bureau of Standards; and Professor C. R. Burrows of Cornell University. The corrections and suggestions offered by these men have been of great value in integrating the descriptions of the work with which they are most familiar. Thanks are also due Norma W. Donelan for her aid in final preparation of the manuscript.

CAMBRIDGE, MASS. July, 1947 DONALD E. KERR

Contents

	DRD			• •	•	vii
PREFAC	E <i>.</i>		· •	· •	·	ix
Снар. 1.	ELEMENTS OF THE PROBLEM	•				1
Evolui	TION OF THE PRESENT PROBLEMS					1
1·1. 1· 2 .	The Ionosphere and the Transmission of Long Waves Optical Properties of Short Waves			· • •		1 3
TROPOS	PHERIC REFRACTION					9
1.3.	The Effects of Variable Gradients of Refractive Index					9
1·4. 1·5.	The Meteorological Elements and the Modified Index The Modified Index and Field-strength Distribution					12 15
ATMOSE	PHERIC SCATTERING AND ATTENUATION					22
1.6.	Radar Echoes from Precipitation					22
1.7.	Scattering and Absorption by Particles					23
1.8.	Absorption by Gases					25
Снар. 2.	THEORY OF PROPAGATION IN A HORIZONTALL FIED ATMOSPHERE (JOHN E. FREEHAFER, WILLIAM T. FISHBACK, WENDELL H. FURRY, AND DONALD E. KERR)					27
FUNDAN	MENTAL CONCEPTS					27
2·1. 2·2.	Transmission in Free Space					27 34
GEOME'	rrical Optics					41
2·3. 2·4. 2·5.	Ray-tracing Formulas	·	· ·	 	•	41 50 53
Payate	AL OPTICS					58
2·6.	The Field from a Dipole in a Stratified Atmosphere near t					58
2·7. 2·7. 2·8.	The Fundamental Theorem Phase-integral Methods					65 70
THE L	NEAR MODIFIED-INDEX PROFILE					87
2 ·9.	The Properties of Solutions of $d^2y/d\zeta^2 + \zeta y = 0$					87
	The Field Integral					95
	The Interference Region					98 109
Метно	ds for Calculating Field Strength with Standard I	Ref	RAC'	rioi	NT.	112
	The Interference Region					113 122

CONTENTS

	The Intermediate Region	125 130
2.17. 2.18.	ILINEAR MODIFIED-INDEX PROFILE Definition of the Problem and Preliminary Formulation Methods for Calculating Characteristic Values Behavior of Characteristic Values and Characteristic Functions for the	140 140 146
2 ·20.	First Mode The Problem of Calculating Field Strength for the Bilinear Profile	$\frac{161}{168}$
Nonlin	vear Modified-index Profiles	174
2.21.	The Linear-exponential and Power-law Profiles	174
Снар. 3.	METEOROLOGY OF THE REFRACTION PROBLEM (Richard A. Craig, Isadore Katz, R. B. Montgomery, and Pearl J. Rubenstein)	181
HUMIDI	ITY AND REFRACTIVE INDEX	181
3·1.	Vapor Pressure and Saturated Vapor	182
3·2.	Water-vapor Concentration	184
3.3.	Saturation Temperatures on Isobaric Cooling	186
3·4.	Refractive Index of Air at Radio Frequencies	189
VERTIC	ALLY HOMOGENEOUS AIR AND ADIABATIC CHANGES	193
3 ∙5.	Adiabetic Temperature Lapse Rate and Potential Temperature	194
3.6.	Humidity Lapse in Homogeneous Air	196
3.7.	Gradient of Refractive Modulus in Homogeneous Air, Potential Modulus	
3.8.	Characteristic Curves and Mixing	200
Repres	SENTATION AND DESCRIPTION OF SOUNDINGS	202
3 ·9.	Approximate Formula for Refractive Modulus	203
3 ·10.	Representation of Soundings	206
EDDY I	DIFFUSION	208
		208
		213
	Logarithmic Distributions in the Turbulent Boundary Layer	215
VERMIC	AL DISTRIBUTIONS IN NEUTRAL AND UNSTABLE EQUILIBRIUM	219
	Heating from Below	
	Q.	$\frac{220}{223}$
	Rate of Modification of Unstable Air	
VERTIC	AL DISTRIBUTIONS IN STABLE EQUILIBRIUM	228
		228
	Shear in Stable Equilibrium	234
		237
3 ·20.	Complex Over-water Modifications	250
3 ·21.	Nocturnal Cooling and Diurnal Cycles	253
OTHER	Atmospheric Processes and Their Effect on M-profiles	260
3.22.	Subsidence and Subsidence Inversions	260
	Fronts and Frontal Inversion	
3·24.	Sea-breeze Circulations	264

CON	TEN	TS
-----	-----	----

	Horizontal Gradients				267 268
	MENTS TO MEASURE TEMPERATURE AND HUMIDITY				200
	SPHERE				272
3.27	Psychrograph				272
	Wired Sonde				283
	Aircraft Psychrometers				287
	Resistance Thermometer and Humidiometer				
	Thermocouples				
	General Problems Associated with Low-level Soundings				
	rological Constants				
3 ∙33.	Useful Meteorological Constants				
Снар. 4.	EXPERIMENTAL STUDIES OF REFRACTION . (Pearl J. Rubenstein, Donald E. Kerr, and William T. Fishback)	D			
One-wa	Y TRANSMISSION OVER WATER	·	· ·	· · · ·	2 94
	Transmission over Massachusetts Bay				
4.1.	Radio Measurements Program				
4 ·2.	Meteorological Measurements and Analysis				
4 ·3.	General Characteristics of Transmission				
4-4.	Comparison with Theory				
4.5.	Transmission under Complex Conditions				
4 ·6.	Some Statistical Results Transmission Experiments in the British Isles	·	•••	• • • •	319
4·7 .	The Irish Sea Experiment				322
4.8.	South Wales to Mt. Snowdon				
	Transmission along the California Coast				
4.9.	San Diego to San Pedro				328
	Transmission over an Inland Lake				
4 ·10.	Flathead Lake	•			335
One-wa	Y TRANSMISSION OVER LAND			:	336
	Early Experiments				
	Summary of General Characteristics				
4·13.	Additional Observations				343
4 ·14.	Discussion				350
	TRANSMISSION				
	New England Coast				
	California Coast				
	Welsh Coast				
	The English Channel Region				
	Other Regions				
SPACE	VARIATIONS IN FIELD STRENGTH				272
	Shallow Surface <i>M</i> -inversions				
	Deep Surface <i>M</i> -inversions				
	Elevated <i>M</i> -inversions				
ANGLE	MEASUREMENTS ON SHORT OPTICAL PATHS				
	Measurements of Angle of Arrival				
$\frac{1}{4}$ 23. 4.24.	Theoretical Discussion	:			391

xv

CONTENTS

Снар. 5. ()	REFLECTIONS FROM THE EARTH'S SURFACE Donald E. Kerr, William T. Fishback, and Herbert Go	յել	:ST	EIN			396
THEOR	Y OF SPECULAR REFLECTION						396
5·1.	Fresnel's Equations for a Smooth Plane Surface						396
5 ·2.	Geometrical Interpretation of the Divergence Factor						404
5·3.	Effects of Reflections on Field Strength						406
5·4.	Surface Roughness						411
Reflec	CTION COEFFICIENT OF THE OCEAN						418
5·5.	Measurements of Short-time Variations						419
5.6.	Interference Measurements over Long Ranges						421
5· 7 .	Interference Measurements at Short Ranges						
5.8.	Interpretation of Measurements.						429
Reflec	CTION COEFFICIENT OF LAND						
5.9.	Measurements over Long Ranges						
	Measurements at Short Ranges						
	Measurements of Time Variations						
5.12.	Interpretation of Measurements.	•				·	435
	S IN RADAR HEIGHT MEASUREMENTS						436
	Qualitative Discussion						437
5 ·14.	Illustrative Examples						441
Снар. 6. Тиб В.	RADAR TARGETS AND ECHOES (Donald E. Kerr and Herbert Goldstein) adar Cross Section of Isolated Targets						445 445
6·1.	Scattering from a Sphere						445
6·2.	Vector Form of Huygens' Principle						454
6·3.	Scattering from Planes and Curved Surfaces						456
Count	EX TARGETS						460
6·4.	Radar Cross Section of Aircraft						
0.4. 6.5.	Radar Cross Section of Ships						470 472
	•						
Sea Ec							481
6 ∙6.	Nature of the Problem						481
6.7.	Nature of the Sea Surface						486
6·8.	Validity of the Fundamental Assumptions						490
6·9.	Frequency Dependence of Sea Echo						
	The Fluctuation of Sea Echo						
6.19	Theories of Sea Echo	•	• •	•	·	•	518
	RIGINS OF ECHO FLUCTUATIONS						527
	The Limitations of System Stability						
	Atmospheric Variations						
	Fluctuations in the Space Interference Pattern						
	Isolated Moving Targets						
	Interference Phenomena in Complex Targets						547
-	LUCTUATIONS OF CLUTTER ECHOES						-
6·18.	The Nature of Clutter Echoes						
6·19.	The Theory of Clutter Fluctuations						553

	CONTENTS		Х	tvii
	Experimental Techniques in the Study of Clutter Fluctuations Experimental Results			
Снар. 7.	METEOROLOGICAL ECHOES			588
ORIGIN	ог тне Есно			588
7·1. 7·2.	The Echo from Incoherent Scatterers Distributed in Volume Evidence of Direct Correlation between Meteorological Echoes	and	t	589
	Precipitation .			
7 ·3.	The Approximate Magnitude of Rain Echoes on the Drop Theory.			
7.4.	Possible Alternative Theories to Scattering by Drops			598
7 ·5.	Modifications of the Drop Theory		•	604
THE IN	TENSITY OF METEOROLOGICAL ECHOES			607
7.6.	The Radar Cross Section of Single Drops			
7.7.	Drop-size Distribution			
7 ·8.	Echoes from Solid Precipitation			618
GENER	AL PROPERTIES OF PRECIPITATION ECHOES			621
7.9.	Identifying Characteristics			621
	Confusion and Masking of Other Echoes			625
	5			
	TATION ECHO PROPERTIES AND METEOROLOGICAL STRUCTURE	1		626
	Classification of Echo Types	·		626
	Thunderstorms			627
	Other Forms of Localized Precipitation			
	Widespread Precipitation			
Снар. 8.	ATMOSPHERIC ATTENUATION	•	. '	641
8 ·1.	Properties of the Complex Dielectric Constant		. •	641
THEORY	OF ABSORPTION BY UNCONDENSED GASES			646
8·2.	Oxygen			
8.3.	Uncondensed Water Vapor			656
• • •	•			
	REMENT OF ATMOSPHERIC ABSORPTION			
8.4.	Direct Measurement of Absorption by Oxygen			
8 ∙5.	Measurements of Water-vapor Absorption	·	• •	666
ATTENU	NATION BY CONDENSED WATER			671
8·6 <i>.</i>	Phenomenology of Attenuation by Precipitation		. •	671
8 ∙7.	Calculation of Attenuation by Water Drops			674
8 ·8.	Calculation of Attenuation by Precipitation in Solid Form			
8 ·9.	Measurements of Attenuation by Rain			688
APPEND	(Donald E. Kerr, A. J. F. Siegert, and Herbert Goldstein)			693
Applica	tion of the Lorentz Reciprocity Theorem to Scattering			693
	nt and Incoherent Scattering from Assemblies of Scatterers			
NAME I	NDEY			70-
SUBJEC	Γ INDEX	•	•	713

.