

PULSED POWER SOURCES FOR BIO-MEDICAL APPLICATIONS

J.R. Mayes and W. J. Carey

Applied Physical Electronics, L.C. Austin, Texas 78734

W.C. Nunnally

The University of Missouri-Columbia Columbia, Missouri 65211

L. Altgilbers

U.S. Army Space and Missile Defense Command Huntsville, Alabama 35807

¹This work is partially supported by BMDO under U.S. Army contract number DASG60-99-C-0079

Presentation Summary

- Overview of generators used for this presentation
 - physical attributes
 - electrical characteristics
- Application results
 - Single generator systems
 - Generation of Ultra Wideband (UWB) signals
 - Marx generator driving a Backward Wave Oscillator (BWO)
 - Pulse shaping system
 - A multiple generator system The Gatling Marx Generator System

Marx Generator Summary – General Operation

- APELC generators based on the wave-erection concept
- Stray elements designed for optimal performance
- Very compact design

Moderate Voltage Marx Generator - Summary

- Credit card sized generator (~ 25.4 mm x 50.8 mm x 6.3 mm)
- 500 V charge voltage
- 2000 V peak output voltage
- 600 ps pulsewidth
- 50Ω load
- 50 kW peak power

Moderate Voltage Marx Generator – Proposed Characteristics

Symbol	Description	Value	Unit
V_{ch}	Charging Voltage	1	kV
N	Number of Marx stages	15	-
C_s	Stage capcitance	100	pF
η_{o}	Output voltage efficiency	85	%
Es	Energy stored per stage	50	μJ
E _T	Total Energy Stored in Marx	750	μJ
V_p	Peak output voltage	12.75	kV
Pp	Peak power delivered to the antenna	3.25125	MW
T _{RR}	Maximum Repetition Rate	10	kHz
P _{ave}	Average power	7.5	W
L	Length	8	in
d	diameter	1.25	in
W	Weight	< 1	lb

High Voltage Marx Generator Summary

- A 17 stage generator
 - 30 kV charging voltage
 - Approx. 1 ns pulse width (leading impulse), 14 ns full pulse width
 - 200 ps risetime
 - 3.8 J
 - currently producing a 360 kV pulse (% 65 voltage efficiency)
 - 3 in. diameter, 46 in. length

High Voltage, Large Pulse Marx Generator Summary

- A 13 stage generator
 - 40+ kV charging voltage
 - Pulse width of 20 ns
 - Risetime of 3 ns
 - 32 J
 - Currently generating a 270 kV pulse (% 50 efficiency)*
 - 5 in. diameter, 40 in length*

^{*} not maximized for performance nor volume usage

Applications – Single Pulse Radiation Systems

- Marx (~ 125 kV) driving rudimentary TEM horn
- Radiated signal observed with an EMCO 3106 horn 100 m from source
- Subsequent measurements (different radiating TEM horn) with an uncalibrated crystal detector

Applications – Single Pulse Systems Radiation Measurements

MARX USING TEM HORN

Signal measured with EMCO horn

Signal measured crystal detector

Applications – Single Pulse Microwave Systems (BWO)

- 270 kV Marx generator
- 35 GHz BWO
- TM_{01} mode

Applications – Single Pulse Systems, BWO Results

Witness plate illumination

B-dot signal with Marx waveform reference

- Approximately 20 ns window
- Approximately 30 MW of microwave energy

The Gatling Marx Generator System

- Multiple Marx sources
- RF burst ns separation of UWB pulses
- Sources act independently
- Variable pulse voltages
- Variable timing between pulses
- One common output transmission
- One load element Antenna, microwave head, cuvette

Gatling Marx Generator Results

- Gatling pulses measured with CVR
- 125 kV pulses

- Gatling pulses launched from rudimentary TEM horn
- Signal witnessed with EMCO 3106 antenna

Variable Frequency with High Voltage Pulses

- Two high voltage pulses of opposite polarity generated
- Temporal spacing between pulses determined by length of T-line
- Leads to frequency agility

Preliminary Results – Pulse Spacing

- T-line length = 5.5 ft. (one way)
- ΔT (between pulses) = 10.6 ns

- t-line length = 3.25 ft
- ΔT (between pulses) = 6.5 ns

Summary

Developing high voltage impulse sources for single and multi-pulse systems

- Voltages of hundreds of kV (present achievement 360 kV)
- Fast risetimes, 200ps
- Repetition rates of several Hz (goal: tens of Hz)
- Compact geometries
- Battery or AC power in

Developing high voltage long pulse sources for HPM loads

- Voltages of hundreds of kV
- Pulse energies from tens of Joules to kJ
- Repetition rates of several Hz