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ABSTRACT 

The radio controlled improvised explosive device (RCIED) is one of the deadliest 

threats to military personnel supporting the global war on terrorism and due to its success 

is expected to play a major role as a weapon of choice in future insurgencies.  To mitigate 

the risk of a RCIED attack, electronic jamming devices are utilized to interrupt the 

communications between a remote control and the RCIED trigger.  We consider two 

approaches to determine the optimal jamming strategy for the coalition force.  First, we 

formulate a mixed integer program to find the optimal jamming strategy based on recent 

attack data of RCIEDs.  Second, we formulate a two-person zero-sum game to determine 

the optimal mixed strategy for jamming.  With a simulation study, we found that with the 

first approach the coalition force tends to be overly optimistic in predicting the outcome, 

and is likely to underperform.  In addition, the first approach allows the possibility for 

smart insurgents to deploy RCIEDs to purposely mislead the coalition force on what they 

plan to do in the future.  The second game-theoretic approach provides a robust jamming 

strategy no matter how Red chooses to deploy their RCIEDs. 
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EXECUTIVE SUMMARY 

The improvised explosive device (IED) is the deadliest threat to military 

personnel supporting the global war on terrorism.  From October 7, 2001 there have been 

over 2,373 deaths due to IEDs and the use of the IED has grown to unmatched numbers 

in use against military forces and has been termed the insurgent’s “Weapon of Choice.”  

One prominent form of the IED is the radio controlled IED (RCIED), which is detonated 

remotely via radio signals.  Insurgent forces utilize common commercially available radio 

controlled devices such as garage door openers, cordless telephones, and cellular phones 

to remotely detonate these deadly roadside bombs.  To prevent RCIED attacks, coalition 

forces use recent attack data to design the loadset for their electronic jamming devices.  

Does using recent attack data furnish coalition forces with the best strategy to exploit the 

disruption of the highly adaptive insurgents’ future RCIED operations? 

In this thesis, we develop a two-person zero-sum game for the combat between 

RCIEDs and electronic jammers.  The model parameters include the RCIEDs available, 

their respective signal power, frequency used, and damage function.  The problem facing 

the jammer is how to allocate a given jamming power among frequency channels in order 

to minimize the expected damage incurred by RCIED attacks.  The model is implemented 

in an Excel interface, with the solution algorithm written in GAMS and solved using 

CPLEX. 

Using a test example with 15 RCIEDs covering 21 frequency channels, the model 

produces the optimal RCIED mixture for the insurgents.  Based on this optimal mixture, 

we simulate RCIED attacks that are observed by the coalition forces, who then design the 

optimal loadset based on those observations.  We found that when using past to predict 

future, the coalition force tends to be overly optimistic in predicting the outcome.  The 

coalition force is also likely to underperform, and the performance gap depends highly on 

the size of collected data.  Furthermore, if the jamming loadset is determined based on 

the RCIED attack data, it is possible for smart insurgents to deploy RCIEDs to purposely 

mislead the coalition force about what they plan to do in the future. 
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I. INTRODUCTION  

Improvised explosive devices (IED) may have been an old tactic revived by 

insurgents, and may grow into a prominent tactic for insurgents and terrorist worldwide 

to threaten forces (Wilson 1).  The U.S. counter-IED strategy now follows three distinct 

paths: defeat the device, attack the network, and train the force (Atkinson 21).  Prior to 

exploring the creation of this game theoretic model, many concepts must be explained or 

explored to formulate and understand the background of this horrific weapon. 

The improvised explosive device is the deadliest threat to military personnel 

supporting the global war on terrorism.  From October 7, 2001 there have been over 

2,373 deaths due to IEDs (Defense Manpower Data Center).  The use of the IED has 

grown to unmatched numbers in use against military forces and has been termed the 

insurgent’s “Weapon of Choice.” (Australian Government, Department of Defense)  Due 

to the continued success of this strategic weapon, this type of weapon is expected to both 

continue in employment, and grow in application by insurgencies.  Examples are seen 

worldwide. 

One prominent form of the IED is the Radio Controlled IED (RCIED), which is 

detonated remotely via radio signals.  Insurgent forces utilize common commercially 

available radio controlled devices such as garage door openers, cordless telephones, and 

cellular phones to remotely detonate these deadly roadside bombs.  To prevent RCIED 

attacks, coalition forces use electronic jammers to jam the communications between the 

wireless trigger and the bomb itself.  Due to power limitations, however, usually the 

electronic jammer cannot jam all frequency bands.  One common way to decide which 

frequency bands to jam is to use recent attack data to determine which bands the 

insurgents are more likely to use.  The focal point of this thesis is finding an answer to 

the question, “Does using recent attack data furnish coalition forces with the best strategy 

to exploit the disruption of the highly adaptive insurgents’ future RCIED operations?” 
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When taking a given amount of available power how do we apply this power to 

our electronic jamming systems in order to minimize the threat?  This thesis considers 

two approaches.  The first approach is to look at the recent attack data on RCIED triggers 

usage and design the optimal loadset by assuming what will happen in the future is 

similar to what has happened in the past.  The second approach is to apply a game-

theoretic model by assuming the insurgents actively choose their RCIED triggers in order 

to inflict the maximal damage.  

When these two approaches are used, does the attack data and the game theoretic 

solutions provide the same or completely different solutions?  If the solutions are 

different, what drives the quality of the solution?  In addition, what is the relationship 

between the two solutions? 

In this thesis, we develop a two-person zero-sum game for the combat between 

Red, who attacks with RCIEDs and Blue, who defends with electronic jammers.  The 

model parameters include the RCIEDs available, their respective signal power, frequency 

used, and damage function.  Red chooses one RCIED in order to incur the maximal 

expected damage.  The problem facing Blue is how to allocate a given jamming power 

among frequency channels in order to minimize the expected damage incurred by RCIED 

attacks.  The model is implemented in an Excel interface, with the solution algorithm 

written in GAMS and solved using CPLEX. 

To compare the two approaches, we conduct a numerical experiment with 15 

RCIEDs covering 21 frequency channels.  We first use linear programming to compute 

the optimal mixed strategy for both players and the value of the game.  Next, we simulate 

Red’s optimal mixed strategy to generate a sequence of RCIED choices for Blue to 

observe.  After observing the percentage of each RCIED used by Red, Blue then 

formulates a mixed integer program to compute the optimal jamming strategy based on 

observed data.  Finally, we compare Blue’s performance in these two approaches.  

We found that when using past to predict future, the Blue tends to be overly 

optimistic in predicting the outcome.  Blue is also likely to underperform, and the 

performance gap depends highly on the number of observations used to collect the data.  
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Furthermore, if the jamming loadset is determined based on observations of the RCIED 

attack data, it is possible for Red to smartly deploy RCIEDs to purposely mislead the 

coalition force about what they plan to do in the future.  This causes Blue to suffer much 

more damage than they expected. 

A. RELATED WORK 

Martin and Nickerson (2008) developed the methodology to create an optimal 

jammer strategy using a zero-sum game technique as described in their joint thesis 

entitled, “A Game Theoretic Approach to IED Jamming Strategy”.  This thesis provided 

insight into the application of game theory in providing an optimal strategy of active 

jamming load sets. Lin and Shen (2008) wrote “A Game-Theoretic Model for Jamming 

Radio Controlled Improvised Explosive Devices” with the application “Jammer 

Decision-Aid Tool V1.”  This tool uses similar methodology as Martin and Nickerson’s 

earlier work while implementing and executing the model solely through Microsoft 

Excel.  The goal of this research is to expand upon the Jammer Decision-Aid Tool to 

incorporate active jamming techniques modeled to emulate current Counter RCIED 

Electronic Warfare (CREW) systems jamming capabilities and limitations.  In particular, 

this thesis extends the earlier work by allowing each RCIED trigger to operate with a 

different power, and allowing the jammer to allocate different power levels to frequency 

bands.  

B. THESIS ORGANIZATION 

The rest of this thesis is organized as follows.  Chapter II provides background on 

RCIEDs and various jamming technologies.  Chapter III introduces the methodology, in 

particular, a mathematical model we developed to analyze the jamming problem. Chapter 

IV presents the numerical experiments designed to provide insights into the risk of using 

past to predict future when jamming RCIEDs.  Lastly, Chapter V concludes the thesis and 

points out possible future research directions. 
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II. BACKGROUND ON RCIED AND JAMMING TECHNOLOGY 

This chapter provides an overview of the RCIED and the basic definitions related 

to jamming systems.  Section A reviews the basic definition of an RCIED as it is 

encountered on today’s battlefield.  Section B discusses the basic principles behind the 

effort aimed at countering the RCIED.  From this background, the foundation of a model 

is built and discussed through the following chapters 

A. RCIED 

An improvised explosive device (IED) is defined as a device placed or fabricated 

in an improvised manner incorporating destructive, lethal, noxious, pyrotechnic, or 

incendiary chemicals or explosives and designed to destroy, incapacitate, harass, or 

distract  (Department of Defense 256).  Essentially, an IED can incorporate military 

ordnance or parts of ordnance used with improvised components in a non-standard 

fashion or build with entirely non-military pieces. 

Almost any type of material can be found in the creation of an IED.  It is 

fundamentally a “homemade” device with the purpose of causing death, injury, or 

destruction.  IEDs are created in varying configurations, containers, functions, delivery 

methods, triggers, initiators, and explosive types.  What makes IEDs unique is that the 

bomb maker improvises with fairly common items that are readily available to build the 

device (Improvised Explosive Devices (IEDs)/Booby Traps). 

The RCIED is a type of IED defined by the trigger.  The trigger of an RCIED is a 

radio transmitter and receiver link.  A few examples are car alarms, wireless door bells, 

cell phones, pagers and walkie-talkies.  The initial threat from RCIEDs came from low 

frequency and low powered devices such as garage door openers, radio controlled toys, 

RC units from car alarms, and wireless doorbells.  Cellular, satellite and long range 

cordless telephones (LRCT) are currently some of the most used initiators for these 

devices (D'Alessio). 
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The device is constructed so that the receiver is connected to an electrical firing 

circuit.  The transmitted signal causes the receiver to initiate the IED.  Usually the 

receiver triggers the initiator, but it may also be used to remotely arm the device to be 

initiated by other means.  The adaptation of using radio control devices has enabled the 

insurgent freedom of movement with standoff ability that is not limited by a wire.  The 

absence of a wire gives the insurgent autonomy while maintaining the control of 

initiating the IED (CTF-7 CALL Representative 5). 

There is a distinct future of IEDs forecasted in asymmetric warfare.  Commenting 

on the future of IEDs, Lieutenant General Thomas Metz, USA, Director, JIEDDO 

commented: 

I am often asked if the IED threat can be removed from the battlefield, and 
my answer is, ‘No.’ In its most fundamental form, the IED is a lethal 
ambush, and men have been ambushing their enemies for thousands of 
years. (U.S. House of Representatives 41) 

RCIEDs account for the largest proportion of casualties in today’s modern 

asymmetric warfare environments.  A successful counter strategy is the combination of 

acute threat analysis with technological devices (Kestrel, a Lightweight, Software-

Configurable Jamming System to be Exhibited at IDEX 2009).  Due to their 

demonstrated success in Iraq and Afghanistan, it is acknowledged that the use of IEDs on 

the battlefield is a definite threat to current and future force protection (U.S. House of 

Representatives 48). 

Facing a numerically, militarily, or industrially superior opponent, the use of IEDs 

by inferior forces is not a surprise.  From an enemy perspective of being outnumbered, 

outgunned, or ill-equipped; the use of IEDs is logical.  The enemy can negate their 

opponents’ combat advantages with devices that are highly effective, readily available, 

and fairly inexpensive.  These enticing qualities of munitions provide the asymmetric 

enemy the capability to efficiently strike without fear of substantial loss. 

Eliminating IEDs as a weapon of strategic influence depends on defeating the 

networks that buy, build, and place the bombs (Atkinson 28).  In order to defeat this 

network, service members need the autonomy to traverse the battle space freely to pursue 
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and engage these networks.  This is the importance of the jammer as one form of 

protection to ensure freedom of movement.  Figure 1 shows one definitive success of a 

jamming system as an EOD expert holds a cell phone IED triggering device that 

malfunctioned. (U.S. House of Representatives 16)  This is one case where there is no 

question that a jammer successfully performed its mission. 

 

Figure 1.   A soldier holds a RCIED using a cell phone as the triggering device 

Further in-depth information on the background of IEDs is located in Appendix A 

for the inquisitive reader.  Appendix A contains information on the components of an 

IED, the distinct classifications of an IED, and the current IED threat.  This appendix also 

contains a breadth of information on IEDs through history, the first occurrences of the 

term IED, and how the insurgents employ IEDs. 

B. JAMMING TECHNOLOGY 

1. Jammers and CREW 

RCIED jammer systems are electronics-based radio frequency communication 

systems.  Jammers transmit from low to high power, up to 500 Watts.  They are one form 

of electronic warfare countermeasure that usually operates in frequency ranges from 20 to 
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300 megahertz.  RCIED jammers either blocks the radio signal of a transmitter to 

receiver or causes an intended RCIED to prematurely detonate.  Both cases involve the 

jammer transmitting radio signals.  The blocking of the signal involves the jammer to 

over-ride the original signal and effectively blocking it through interference.  The latter 

goal involves the intended remote detonation at an intended safe distance (U.S. House of 

Representatives 16).  An important note is that when a jammer is effective, often service 

members will not even know that they were in danger of a potential IED blast. 

RCIED jammers are members of the Counter Radio Controlled Improvised 

Explosive Device Electronic Warfare (CREW) systems.  Two of these CREW systems 

include the IED Countermeasures Equipment (ICE) and the Warlock.  Both of these 

devices use counter radio frequencies to block the signals of the radio control explosives 

triggers (Wilson 4).  Two other members of the CREW family that transmit at high 

frequencies to counter the electronics in RCIEDs are the Joint IED Neutralizer (JIN) and 

the Neutralizing Improvised Explosive Devices with Radio Frequency (NIRF) (Wilson 

4). 

2. Active and Reactive Jamming 

Each jammer uses a different concept of jamming to block the radio signal of the 

RCIED.  The two types of jamming used to block the radio signal are referred to as active 

and reactive.  With active jamming, a jammer emits electromagnetic waves continuously 

across a spectrum of preset frequencies to interrupt the RCIED triggering signal 

(Atkinson 25). 

With reactive jamming, a jammer scans the selected segments of the 

electromagnetic spectrum in search of a threat frequency.  Once a threat frequency is 

detected, the jammer then transmits on that frequency to interrupt the radio trigger for as 

long as the threat frequency is present (Atkinson 25).  Effectively, the reactive jammer 

could be thought of as a scan and jam device.  It becomes more flexible as it is not 

constrained by the prescribed list of constant channels to block and can effectively 

monitor more potential threats.  The cost of this flexibility is that the device cannot 

 



 9

always jam all threat encountered if in a densely populated electromagnetic environment 

and with reactive jamming, a jammer listens and acts, it is possible that it is too late to act 

after hearing something.  Active jamming does not have these problems. 

With respect to the lessons learned and derivations discussed in Chapter III, we 

begin the creation of a model that generates the optimal minimal damage given an 

amount of power to apply to an active jamming system.  The jamming modules in the 

model are combined to create an RCIED jamming system or package.  The strategies 

from this point forward are with respect to a module or set of modules working hand in 

hand to successfully jam a RCIED threat. 

Interested readers can refer to Appendix B for supplementary information on 

electronic jammers and the electromagnetic spectrum.  Appendix C explores electronic 

warfare principles and advanced concepts.  
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III. METHODOLOGY 

This chapter introduces the mathematical models designed to assess the risk of 

using the past to predict the future in jamming RCIEDs.  Section A discusses a two-

person zero-sum game, where Red chooses an RCIED trigger and Blue chooses an active 

jamming strategy.  Section B discusses an optimization model, where Blue determines its 

optimal jamming strategy based on the percentage each trigger is used by Red.  Section C 

explains how these two models are implemented in an Excel interface, with optimization 

written in GAMS and solved using CPLEX. 

A. THE GAME-THEORETIC MODEL 

In this section, we develop a two-person zero-sum game for the combat between 

Red, who attacks with RCIEDs, and Blue, who uses electronic jammers to interfere with 

RCIED detonation signals.  Suppose there are n RCIED triggers available, and together 

they use m frequency channels.  Let , 1i ja =  if trigger i uses channels j, for 1,...,i n=  and 

1,..,j m= .  Each trigger uses at least one channel, and it is possible that a trigger uses 

multiple channels.  For instance, a quad-band cell phone can use any of its four channels 

to transmit a detonation signal.  Figure 2 shows an example with n = 15 and m = 21, 

where the matrix ,[ ]i ja is shown on the right-hand side. 
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Total Power available = 

Frequency Bands in Spectrum
Name Damage Power 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 Key Fob 1 0.75 1
2 Garage Opener 1 0.5 1
3 RC Toy 1 1 1 1
4 Wireless Doorbell 1 1 1
5 RC Toy 2 1 1 1
6 Walkie-Talkie 1 1.1 1.75 1
7 Walkie-Talkie 2 1.2 2 1 1
8 LRCT Handset 1 1.2 2 1 1
9 LRCT Base 1 1.2 2.5 1 1

10 LRCT Handset 2 1.2 2.2 1 1
11 LRCT Base 2 1.3 2.7 1 1 1
12 Cell Phone 1 1.4 2.8 1 1
13 Cell Phone 2 1.4 2.9 1 1
14 Cell Phone 3 1.5 3 1 1 1 1
15 Cell Phone 4 1.4 2.9 1 1

30.00

 

Figure 2.   RCIED Data 

Besides the matrix ,[ ]i ja , the model has two parameters for each trigger, as shown 

on the left-hand side in Figure 2.  An RCIED detonated by trigger i delivers a 

damage id and requires a jamming signal with power at least iw to jam each channel it 

uses.  The damage scale id  is relative, while iw  is measured in Watts. 

In this two-person zero-sum game, Red has n pure strategies, each corresponding 

to a RCIED trigger.  A pure strategy by Blue is an allocation of jamming power among m 

channels as long as the total does not exceed the total power available, denoted by t.  

Although this definition results in an infinite number of pure strategies, we can trim them 

down by the following arguments.  First, each of Blue’s pure strategy is defined by the 

set of triggers it jams.  If two pure strategies jam the same set of triggers, they should be 

regarded as the same pure strategy even if they have a different power allocation.  This 

observation ensures that the total number of Blue’s pure strategies is at most 2n , where n 

is the number of triggers. 

Second, for each of these 2n  potential pure strategies, we can eliminate those that 

are infeasible; that is, those pure strategies that require more than a total power t.  Third, 

we can remove dominated pure strategies.  For instance, if it is feasible to jam triggers 

{1,2,4,5}, then any pure strategy that jams only a subset of {1,2,4,5} is dominated.  Let s 

denote the number of Blue’s pure strategies after applying these three steps.  The value s 

depends on the total jamming power available t.  When t is small, there are few pure 
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strategies because most of them are infeasible.  When t is large, there are also few pure 

strategies because most of them are dominated.  The value of s tends to be at its largest 

possible value when t is about half of the total power required to jam all n triggers. 

At this point, we have converted the two-person zero-sum game between Red and 

Blue into a standard form, where Red has n pure strategies, and Blue has s pure 

strategies.  If Red uses pure strategy i, 1,..,i n= , and Blue uses pure strategy k, 1,..,k s= , 

then the payoff to Red is , 0i kb =  if trigger i is jammed by Blue’s pure strategy k, and 

,i k ib d=  otherwise. 

1. Formulation of Zero-Sum Game for Blue 

Let 1( ,..., )sB B denote a mixed strategy for Blue, where 1k
k

B =∑ .  The decision 

variable kB , 1,...,k s= , denotes the probability Blue uses pure strategy k.  In order to 

minimize the expected damage incurred by RCIEDs, Blue can formulate a linear program 

to determine its optimal mixed strategy as follows. 

Sets & Indices:  

 i  index number for RCIED triggers 

 k  index number for pure strategies 

Data:  

 ,i kb  damage incurred if Red uses RCIED i by Blue uses pure strategy k  

Decision Variables: 

 kB  percentage use of pure strategy k  

 V  value of game 

Formulation: 

Objective: 

 minV  (1) 
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subject to 

 ,i k k
k

b B V≤∑     i∀  (2) 

 1k
k

B =∑  (3) 

where 

 0kB ≥  

The maximum damage that Blue can receive is the variable, V, provided that Blue 

follows their optimal mixed strategy, 1( ,..., )sB B .  Therefore, V must be greater than or 

equal to the sum of the expected value produced by using the mixed strategy kB  against 

each Red pure strategy i.  This rule must hold against all i of Red’s pure strategies and is 

shown formally in Equation (2).  The percentage utilization of pure strategy k, denoted 

by kB , is a real number greater than or equal to zero.  Equation (3) ensures that the total 

usage adds up to one. 

2. Formulation of Zero-sum Game for Red 

We can also compute the optimal mixed strategy for Red by a linear program.  Let 

1( ,..., )nR R  denote a mixed strategy for Red, where 1i
i

R =∑ .  The decision variable iR  

denotes the probability that Red uses RCIED trigger i, 1,..,i n= .  Red can formulate the 

following linear problem to find his optimal mixed strategy and the maximum damage 

value. 

Decision Variables: 

 iR  percentage use of RCIED i 

 V  value of game 

Formulation: 

Objective: 

 maxV  (4) 
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subject to 

 ,i k i
i

b R V≥∑     k∀  (5) 

 1i
i

R =∑  (6) 

where 

 0iR ≥  

The maximum damage that Red can deliver is the variable, V, provided that Red 

follows their optimal mixed strategy, 1( ,..., )nR R .  Therefore V must be less than or equal 

to the sum of the expected value produced by using the mixed strategy iR  against each 

Blue pure strategy k.  This rule must hold against all k of Blue’s pure strategies and is 

shown formally in Equation (5).  The percentage utilization of RCIED i, denoted by iR , is 

a real number greater than or equal to zero.  Equation (6) ensures that the total usage adds 

up to one. 

B. OPTIMIZATION BASED ON RECENT ATTACK DATA 

In classical decision theory, one is often tempted to forecast what will happen by 

a probability distribution and then derives the optimal strategy against that forecast.  With 

this approach, Blue would observe over a period of time and count the number of each 

RCIED trigger use.  Then, Blue develops an optimal jamming strategy against those 

observations.  In other words, Blue uses recent attack data to forecast what will happen in 

the future.  This section presents a model that allows Blue to determine the optimal 

strategy with this approach. 

In addition to the model parameters in Section A, Blue uses recent attack data to 

estimate iq , the probability that a RCIED trigger will be chosen by Red.  Although Blue 

can simply enumerate all pure strategies found in Section III.A, compare their 

performances, and select the best one, we below introduce a mixed integer program that 

solves the optimization problem more efficiently. 
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To formulate the mixed integer program, we introduce three sets of decision 

variables.  The first decision variable is the power applied to jam channel j, denoted 

by jW .  The constraint j
j

W t≤∑ ensures that the jammer can allocate at most t Watts 

across all channels.  The second decision variable, denoted by iZ , indicates whether 

RCIED trigger i is jammed.  Let 1iZ =  if trigger i is jammed, and 0iZ =  otherwise.  The 

last set of decision variables is a binary n m×  matrix, denoted by ,[ ]i jX , that tracks if 

frequency channel j is jammed for RCIED trigger i, 1,..,i n= , 1,...,j m= .  Let , 1i jX =  if 

RCIED i is successfully jammed on frequency channel j, and , 0i jX =  otherwise.  We 

present the formulation below, and then provide some explanations. 

Sets & Indices:  

 i  index number for RCIED triggers 

 j  index number for frequency bands 

Data: 

 ,i ja  , 1i ja =  if RCIED i uses frequency band j, or , 0i ja =  otherwise 

 id  damage incurred by RCIED trigger i 

 iw  power required to jam RCIED trigger i 

 iq  percentage of RCIEDs that use trigger i 

 t  total power available to jammer 

Decision Variables: 

 iZ  1iZ =  if RCIED trigger i is jammed, or 0iZ =  otherwise 

 ,i jX  , 1i jX =  if frequency band j is jammed for RCIED trigger i, or 

, 0i jX =  otherwise 

 jW  power assigned to jam frequency band j 
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Formulation: 

Objective: 

 min (1 )i i i
i

q d Z−∑  (7) 

subject to:  

 j
j

W t≤∑  (8) 

 ,min
i

i i jj S
Z X

∈
≤   where  ,{ : 1}i i jS j a≡ =     i∀  (9) 

 
, ,i j i j i ja X w W≤     i∀ ;  j∀  (10) 

where: 

 ,i jX = 0 or 1 

 iZ = 0 or 1 

 0jW ≥  

Blue’s objective is to minimize the expected damage caused by all RCIEDs, as 

shown in Equation (7).  If Red uses trigger i, then the damage, id , is multiplied by zero if 

the RCIED is jammed or one if the RCIED is not jammed, which is taken into account by 

the (1 )iZ−  term.  The objective function is the expected damage because trigger i is used 

with probability iq . 

Three constraints support this objective function.  The first constraint is the total 

power constraint, as shown in Equation (8), which requires the sum of all the power 

applied to jam each channel j, jW , must not exceed the total power available to the 

jammer, t.  

The second constraint is a partitioned constraint that ensures that all required 

channels of a trigger are jammed in order for the device to be considered successfully 

jammed, as shown in Equation (9).  For RCIED trigger i , iS  denotes the set of channels 
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trigger i uses.  For trigger i to be jammed ( 1)iZ = , ,i jX  needs to be 1 for all j in iS .  In 

Equation (9), if an instance of the observed ,i jX  is zero, then trigger i is not successfully 

jammed and therefore iZ  is also zero.  

The last constraint determines if the power supplied to jam channel j is sufficient 

to successfully jam trigger i’s transmission on channel j, as shown in Equation (10).  If 

either , 0i ja =  or , 0i jX = , then Equation (10) is trivially true.  If both , 1i ja =  and 

, 1i jX = , then the allocated power to channel j needs to meet the required power to jam 

trigger i, therefore the inequality. 

C. MODEL IMPLEMENTATION 

This model uses Microsoft Office Excel 2007 as the primary user interface.  Excel 

is utilized to input, store, and manage the simple data set and the output data.  Data 

preparation, calculations, files importing, file exporting, and many other minor functions 

are performed in the Microsoft Visual Basic running in the background of Excel.  The 

visual basic code calls upon the General Algebraic Modeling System (GAMS 23.0) to 

solve the linear and mixed integer programs.  GAMS, in turn, invokes CPLEX  (ILOG 

CPLEX 11) as the primary solver. 

The data is input by the operator in Excel and appears in the form of Figure 2, the 

RCIED Data as seen in Section III.A.  Contained with the RCIED data is the total power 

available to the electronic jamming system.  Another important data parameter that is 

supplied by the operator is the number of observations used in determining the recent 

attack data. 

Once all data and parameters are set, the first significant calculation is to 

determine the number of pure strategies, s, available to Blue.  A list of all possible 

strategies is built.  The feasibility of each strategy is determined based on the power 

requirements of the RCIED trigger, iw , and the total power available, t.  Starting with the 

feasible strategy with the largest cardinality and working to the smallest cardinality, we 
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enumerated through each of the feasible strategies and eliminate the dominated strategies.  

The remaining dominant feasible strategies are the set of Blue’s pure strategies for the 

designated power level, s. 

After determining Blue’s pure strategies, the next action performed by Excel is 

the calculation of the payoff matrix made up of the elements ,i kb .  The payoff matrix is 

always of dimension n s× .  Figure 3 contains an example of the payoff matrix. 

Blue % Use of Pure Strategy
2.5% 2.5% 4.2% 15.8% 7.1% 2.0% 9.8% 9.2% 0.6% 19.1% 2.5% 2.2% 8.9% 13.5%

Payoff
Red % Strat Use 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2.4% 1 1 1 1 1
2 2.4% 1 1 1 1 1 1 1
3 3.6% 1 1 1 1 1 1 1
4 3.6% 1 1 1 1 1
5 3.6% 1 1 1 1 1 1
6 5.4% 1.1 1.1 1.1 1.1 1.1
7 11.9% 1.2 1.2 1.2 1.2 1.2
8 5.9% 1.2 1.2 1.2 1.2 1.2
9 7.9% 1.2 1.2 1.2 1.2 1.2

10 6.9% 1.2 1.2 1.2 1.2 1.2
11 14.6% 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
12 1.7% 1.4 1.4 1.4 1.4 1.4 1.4 1.4
13 6.8% 1.4 1.4 1.4 1.4 1.4
14 15.8% 1.5 1.5 1.5
15 7.6% 1.4 1.4 1.4 1.4

Value of Zero-Sum Game = (Less is better)

Total Power Available = 

0.46

30.00  

Figure 3.   Payoff matrix, Blue Strategy, Red Strategy, and Value of Game. 

The payoff matrix, data vectors, and scalar data are all prepared in comma 

separated value and text files and exported from Excel.  Excel calls GAMS to solve the 

two-person zero-sum games from Blue and Red perspective.  The value of the game, 

Blue’s mixed strategy, and Red’s mixed strategy are then imported back into Excel.  

Examples of these strategies and the game value are also displayed in Figure 3.  The 

optimal mixed strategy for Red, iR , are displayed vertically to the left.  The optimal 

mixed strategy for Blue, kB , is displayed horizontally across the top. 
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Next, the data of recent attack observations of RCIED use are generated.  Based 

on the number of observations set by the operator, random numbers are applied to the 

distribution set by Red’s optimal mixed strategy, iR .  The observed attack strategy, iq , is 

the final proportional distribution of these observations. 

As before, Excel exports the recent attack strategy.  GAMS is invoked to solve for 

the optimal solution based on this strategy.  Finally, the optimal jamming strategy based 

on recent attack data are imported back into Excel.  

[Xi,j]   
Damage Power 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0.0% 1 0.75 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0.0% 1 0.5 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5.0% 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0.0% 1 1 4 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2.5% 1 1 5 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2.5% 1.1 1.75 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 17.5% 1.2 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 10.0% 1.2 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5.0% 1.2 2.5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 12.5% 1.2 2.2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 12.5% 1.3 2.7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2.5% 1.4 2.8 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
0 7.5% 1.4 2.9 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
0 12.5% 1.5 3 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1
1 10.0% 1.4 2.9 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Exp[Damage] = 0.35

Optimal 
Loadset

Percentage 
observed 
by Blue

 

Figure 4.   Sample solution from optimization of recent attack data model. 

The key data that are imported into Excel are the optimal pure jamming strategy 

for Blue and the expected damage value.  In Figure 4, Blue’s pure strategy resulting from 

the solution of the optimization model are in the column labeled, “Optimal Loadset.”  

The matrix labeled, “ ,[ ]i jX ,” is the map of frequency bands for each RCIED trigger, 

where one indicates a successful jamming while zero indicates otherwise. 

Knowing the optimal mixed strategy for Red and given a pure strategy for Blue, 

an expected damage is calculated using the equation (1 )i i iZ R d− .  This is the expected 

damage if Red is actually using an optimal mixed strategy but Blue is countering a 

strategy based on recent attack data. 
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Now, if the process of generating an attack strategy for Red and solving are 

performed repeatedly, we expect different results due to the nature of random numbers.  

The operator can enter the number of replications of this procedure. 

Also, the operator can enter a range of jammer power to see how the performance 

varies.  Chapter IV presents some numerical experiments.  Additionally, if the operator 

wants to perform analysis on a range of jammer power, or on different sizes of attack 

data, the operator would also supply the starting and ending power levels, the step size 

for the power level, and the number of replications per power level. 
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IV. NUMERICAL EXPERIMENTS 

This chapter presents numerical experiments based on the model in Chapter III to 

answer our research question: What is the risk of using past to predict future in using 

jammers to deter RCIED attacks?  Section A presents the main example for numerical 

experiments.  The results of the experiments are observed in Section B and followed by a 

discussion in Section C. 

A. THE MAIN EXAMPLE 

This section presents our main example.  We use open source information to 

estimate data we believe are representative in real world.  The frequencies for each 

device are in their correct relative order in the electromagnetic spectrum and the correct  

sets of frequency ranges a particular device would operate (Marshall, How the Radio 

Spectrum Works) (Marshall, Tyson and Layton, How Cell Phones Work).  The actual 

RCIED triggers in the data set were selected as the most common, and were presented in 

Figure 3, Chapter I.  These common triggers are just an extract from the large population 

of possible radio frequency transmitters and receivers.  The data was selected as a fair 

representation from the possible realm while providing a fair spectrum of the varying 

complexity of power and radio spectrum requirements. 

For the ease of explanation, Figure 5 contains the parameters used for the model.  

This provides a reference throughout this discussion.  These presented parameters are 

referenced throughout the remainder of this section.  Below we further explain how we 

choose these numbers. 
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Total Power available = 

Frequency Bands in Spectrum
Name Damage Power 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 Key Fob 1 0.75 1
2 Garage Opener 1 0.5 1
3 RC Toy 1 1 1 1
4 Wireless Doorbell 1 1 1
5 RC Toy 2 1 1 1
6 Walkie-Talkie 1 1.1 1.75 1
7 Walkie-Talkie 2 1.2 2 1 1
8 LRCT Handset 1 1.2 2 1 1
9 LRCT Base 1 1.2 2.5 1 1

10 LRCT Handset 2 1.2 2.2 1 1
11 LRCT Base 2 1.3 2.7 1 1 1
12 Cell Phone 1 1.4 2.8 1 1
13 Cell Phone 2 1.4 2.9 1 1
14 Cell Phone 3 1.5 3 1 1 1 1
15 Cell Phone 4 1.4 2.9 1 1

30.00

 

Figure 5.   The model data. 

1. Damage 

The damage value of each RCIED trigger is a comparative numeric value placed 

on each RCIED trigger where the higher the number, the more dangerous the device.  

This damage value is based on the research and implications from the information 

presented in Section I and Appendices A, B, and C.  There is no known formal 

presentation of a specific RCIED trigger related to the size, expected explosive potential, 

or amount of damage caused by an IED.  Further exploration is required to link certain 

triggers and certain explosives to certain terrorist groups or geographic regions. 

Further, reasoning through the problem says that using a garage door opener with 

limited short range would be detrimental in detonating a very powerful IED where the 

triggerman would be dangerously close.  Likewise, it would make little sense to place a 

short-range radio controlled device as the trigger of a precision improvised explosive or a 

complex improvised explosive that has taken many dangerous man-hours to create and 

emplace.  The maximum value for the damage of the data set is 1.5 and the minimum 

value is 1.0.  This places the RCIEDs data in same order of magnitude relative value to 

each other.  If further research provides no correlation between the IED trigger and the 

relative damage caused by the IED, we use a value of 1 for the damage of all RCIED 

triggers.  However, in this model we allow a damage-RCIED dependency to account for 

this possibility. 
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2. Trigger Power 

The trigger power refers to the jamming power required to jam the trigger.  The 

power required to jam a RCIED trigger is derived through much research, observation, 

and calculation.  Appendix C reviews some of the basic components in the research 

required to determine these values.  In this thesis, we estimate the trigger power by 

surveying the product specifications. 

3. Frequency Bands 

The frequency bands for each device are located in the matrix located to the right 

of the list of RCIED devices in Figure 5.  Our example includes 6 single-band devices 

and 9 multiband devices, including 7 dual-band devices, 1 tri-band device, and 1 quad-

band device. 

RCIED triggers 7 through 15 are all multiband devices.  A common Motorola 

Talkabout radio may operate on a range of channels, but the range is typically in one 

band of the spectrum and this is another example of a single-band device in our data.  

RCIED 7 would be a dual-band walkie-talkie, also referred to as handheld two-way radio.  

This is usually the type radio the police and firemen use and these radios operate on two 

distinct sets of frequency bands.  Another example of multiband devices is the cell phone, 

such as RCIED triggers 12-15.  For example, the company LG produces cell phones that 

operate on dual-, tri-, and quad-bands, of which dual- and quad-band cells phones are the 

norm. 

4.  Jammer Power 

The jamming power refers to the total power the jammer has available.  If the 

jammer power is less than 0.5 Watts, then the jammer cannot even jam the Garage Door 

Opener—the trigger that requires the least power to jam.  In other words, the problem is 

trivial unless the jammer power is at least 0.5 Watts. 

What is the total power required to successfully jam all the devices in our 

example?  This power can be determined in two steps.  In the first step, we look at each 

frequency band and determine the power that is required to jam all devices on that 
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frequency band, in other words, the largest power among those triggers that use that 

band.  An example is Cell Phones 1 and 2 operating in band 16.  If 2.8 Watts were 

applied to this band only Cell Phone 1 is jammed as Cell Phone 2 requires 2.9 Watts.  

Consequently, it requires  2.9 Watts to jam band 16 entirely.  In the second step, we add 

these power numbers across all frequency bands, which results in 45.2 Watts in our 

example. 

If the jammer power is 45.2 Watts or more, then the problem also becomes trivial 

because the jammer can jam all triggers.  In Section B, we use 30 Watts as the jammer 

power and make observations at this fixed total power value.  In Section C, we vary this 

jammer power to observe how it affects the jammer performance. 

B. DESIGN OF EXPERIMENT 

Upon completion of the data entry, the first step is to compute the optimal mixed 

strategy for both Blue and Red, as discussed in Section III.A.  The value of the zero-sum 

game—denoted by V throughout this chapter—will be used as benchmark in order to 

assess the optimization approach when Blue uses recent attack data to design his 

jamming loadset. 

To determine the effectiveness of the optimization approach based on recent 

attack data, we use Monte Carlo simulation to generate RCIED attack data.  For  

example, we can generate 40 RCIED incidents based on Red’s optimal mixed strategy, as 

shown in Figure 6.  After the final tally, the counts are each divided by the total number 

of observations—in this case 40—as shown in column three in Figure 6.  If Blue believes 

that Red will choose RCIED triggers using these percentages, then Blue can use the 

mixed-integer program—detailed in Section III.B—to find the optimal pure strategy.  

The expected damage computed with this approach—denoted by H throughout this 

chapter—represents the damage that Blue believes based on the optimization approach. 

The actual damage, however, is not equal to H, because column 1 and column 3 

are usually not the same in Figure 6.  To compute the actual damage for a pure strategy, 

we can simply compute the expected damage for that pure strategy against Red’s optimal 

mixed strategy.  This actual damage will be denoted by U throughout this chapter. 
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1 2.4% 0 0.0%
2 2.4% 0 0.0%
3 3.6% 2 5.0%
4 3.6% 0 0.0%
5 3.6% 1 2.5%
6 5.4% 1 2.5%
7 11.9% 7 17.5%
8 5.9% 4 10.0%
9 7.9% 2 5.0%

10 6.9% 5 12.5%
11 14.6% 5 12.5%
12 1.7% 1 2.5%
13 6.8% 3 7.5%
14 15.8% 5 12.5%
15 7.6% 4 10.0%

Red's optimal 
mixed strategy

Counts over 
40 attacks

Percentage 
observed by 

Blue

 

Figure 6.   Build of Red’s observed strategy of recent attacks. 

For a specific jammer power, the value of the game (V) does not change 

regardless of the number of recent attack data observed.  The process of assigning 

random numbers to determine the recent attack data that Blue perceives as Red’s strategy 

is simulated multiple times.  Each time we simulate recent attack data, and compute the 

expected damage Blue perceives (H) as Blue computes his optimal loadset based on the 

attack data.  Additionally, we determine the damage value if Red is actually using his 

optimal mixed strategy (U). 

C. RESULTS AND ANALYSIS 

The main purpose of this section is to compare V, H, and U defined in Section B. 

In Section 1, we compare H with V and discuss Blue’s heightened expectation.  In 

Section 2, we compare U with V and discuss Blue’s under performance. 

1. Heightened Expectation 

Further continuing our example, we have a jammer with 30 Watts of power 

available and the data remains unchanged for our 15 RCIED triggers.  What happens 
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when we allow Blue different numbers of observations in which to build their recent 

attack data file?  How influential is the depth of the recent attack file on Blue’s 

responding strategy?  

Blue is allowed 10, 20, 40, 80, and 160 observations in which to formulate the 

recent attack RCIED trigger usage for Red.  This becomes what Blue thinks Red’s 

strategy is through Blue’s observations.  Figure 7 compares some basic values found for 

trials all at 30 Watts for our data set based on allowing Blue these five different levels of 

observation, listed in the first column. 

Number of 
Observations

Number of 
Replications

Value of 
Game [V]

Heightened 
Expectation 

Damage 
Value [H]

Ratio of 
Difference of 
Expectation 
from Value  
[(H-V)/V]

Ratio of 
Standard 

Error of H to H  
[(SEH/H)]

10 6400 0.463 0.085 -81.588% 1.100%
20 1600 0.463 0.185 -59.967% 0.925%
40 400 0.463 0.271 -41.545% 0.969%
80 100 0.463 0.328 -29.044% 1.093%
160 25 0.463 0.378 -18.299% 1.521%

Comparison of Observation at 30 Watts-Heightened Expectation

 

Figure 7.   All observation values at 30 Watts for heightened expectation (less damage is 
better) 

The damage value that Blue expects (H) as a result of their observation is highly 

dependent upon the number of observations.  Additionally, the deviation between the 

value Blue expects and the game-theoretic value are reversely proportional.   

If we first look at the row of results based on 10 observations at 30 Watts of 

power.  If the attack data based on these 10 observations is generated and solved over 

6,400 replications, we find that Blue would expect a damage value of 0.085, the 4th 

column of Figure 7.  The 5th column shows that if we compare this expected damage to 

the game theoretic value we find that there is an 81.588% difference in the solution.  The 

-81.588% demonstrates that the damage value, where less is better, is lower than the 

value of the game.  Simply put, based on 10 observations, this example results in an 81% 

over inflation of the expected damage from the game theoretic solution. 
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The last column of Figure 7 is the ratio of the standard error of the expected 

damage to the expected damage.  The largest gap encountered for these values is 1.521%.  

Using a goal of 1% for the standard error ration as an acceptable range to evaluate the 

expected damage calculation allows the simple conclusion that the quality of the 

approximation for the enemy solution increases as the number of observations increases.  

This is seen by the requirements for more replications for smaller numbers on 

observations to achieve a quality result.  Also, this is observed by the percent difference 

of the expected damage and the value of the game.  This gap, or percentage difference, 

decreases as the number of observations increase. 

Next, we vary the jammer power over a range from 0 Watts to 46 Watts.  After 

assigning a step size of 0.5 Watts and allow Blue 40 observations to predict Red’s 

strategy, the resulting plot in Figure 8 is achieved by using 100 replications for each 

power step. 

 

Figure 8.   Data plot for heightened expectation over full range of power for 40 
observations with 100 replications 
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Some very insightful observations are made from this plot of data in Figure 8.  

Each dark red dot represents the expected damage by Blue based on the results of the 

perceived Red strategy—in this case based on 40 observations.  The solid black line is the 

game-theoretic solution.  From this data plot, it appears that Blue can do at a minimum 

the same as the game-theoretic value and in most cases better.  This plot will mislead 

Blue into the expectation of performing better through the use of recent attack data than 

through the game-theoretic approach.  Additional data plots for 10, 20, 80, and 160 

observations are available in Appendix D. 

The next insight to observing what the game value and the expected value are 

predicting across the range of power values.  Note, in Figure 8 and the remainder of the 

plots and graphs of this thesis, the expected damage between 0 Watts and 12 Watts is a 

straight horizontal line located at 1.5 damage.  To understand this, first note that at 0 

Watts, we expect no reduction in damage and the strategy for Red that produces the most 

damage is cell phone 3, RCIED trigger 14 (Refer to Figure 5).  The minimum power for 

Blue to start jamming a known RCIED trigger is 0.5 Watts.  We do not see any 

movement in the damage function until 12 Watts, because cell phone 3 is a quad band 

device requiring 1.5 Watts of power per band to negate the 1.5 damage it produces.  So, 

until the jammer has 12 Watts of power, it cannot jam cell phone 3 and because it 

produces the most damage becomes Red’s pure strategy. 

The maximum power required to jam all devices is 45.2 Watts.  For the maximum 

power, the damage converges to zero.  Additionally, with this data, the values between 12 

Watts and 45.2 Watts become very interesting as there are pairs of mixed strategies for 

both players produced by the game theoretic model and through Blue’s observations over 

multiple replications of the model based on recent attack data determine varying values 

of damage. 

From the 100 replications presented in Figure 8, we can determine the expected 

damage value and the 95% confidence intervals for the power range.  Using the data 

plotted in Figure 8, the expected damage for Blue based on history is the dark red solid 

line in Figure 9.  The dark red dashed lines are the upper and lower 95% confidence 

interval. 
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Figure 9.   Expected damage and actual damage with confidence intervals 

2. Under Performance 

This section explores the resulting damage based on the pure strategy Blue, 

determined through the solution of the model based on past attack data.  The blue line in 

the above figure represents this resulting damage. 

The solution of the model for the given recent attack representation of the strategy 

Blue perceives Red is using produces the damage value Blue expects to receive and 

produces a pure strategy for Blue.  If we compute the resulting damage through the use of 

this pure strategy by Blue against the optimal mixed strategy by Red we find another 

damage value.  This damage value demonstrates Blue’s actual damage received based on 

using the past to predict the future.  In most cases, this damage is more than expected and 

Blue underperforms. 

Figure 10 is similar to Figure 8, except it compares the underperformance (U) 

experienced by Blue by basing their strategy on the recent attack observations of Red’s 

use of RCIED triggers.  These comparisons are all made for 30 Watts of power and show 

the effect of the 10, 20, 40, 80, and 160 observations used to determine the past.  The 

underperformance shows similar trends to the heightened expectation. 
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Number of 
Observations

Number of 
Replications

Value of 
Game [V]

Under 
Performance 

Damage 
Value [U]

Ratio of 
Difference of 
Performance 
from Value  

(U-V)/V

Ratio of 
Standard 

Error of U to U  
[(SEU/U)]

10 6400 0.463 0.592 27.895% 0.151%
20 1600 0.463 0.518 12.011% 0.226%
40 400 0.463 0.489 5.699% 0.287%
80 100 0.463 0.477 3.051% 0.380%
160 25 0.463 0.470 1.538% 0.461%

Comparison of Observation at 30 Watts-Under Performance

 

Figure 10.   All observation values at 30 Watts for under performance (less is better) 

The value of the game (V) remains deterministic, independent of the number of 

observations.  The damage value that Blue incurs, under performance of the Blue pure 

strategy (U), based on recent attack data is highly dependent upon the number of 

observations.  Additionally, the gap between the value Blue expects and the game-

theoretic value are reversely proportional to the number of observations.  As we would 

expect, 10 observations produces a poor estimate of the past and likewise produces the 

largest gap between U and V. 

Column 5 shows that if we compare this expected underperforming damage value 

to the game theoretic value, we find that there is a 27.985% difference gap.  The 

percentages here are all positive, meaning that the actual damage is higher than the value 

of the game.  Simply put, based on 10 observations this example results in a 28% under 

performance from the game theoretic solution. 

Observing the standard error values for the calculation of the underperformance 

encountered by Blue, results in the largest gap encountered for these values, that of 

0.461%.  Using a goal of 1% for the standard error ration as an acceptable range to 

evaluate the expected damage calculation, allows the simple conclusion that the quality 

of the approximation for the enemy solution increases as the number of observations 

increases. 
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Again, we observe the total power available to a jammer over a range from 0 

Watts to 46 Watts.  Performing 100 replications for each power step, a step size of 0.5 

Watts, and Blue making 40 observations, to predict Red’s strategy results in the plot in 

Figure 11. 

 

Figure 11.   Data plot for under performance over full range of power for 40 observations 
with 100 replications 

From this data plot in Figure 11, Blue underperforms compared to the game value 

and the value they expected to incur based on Red’s observed strategy.  This should be 

eye opening for Blue as the best they can do is the game-theoretic value and in most 

cases they perform worse.  This plot introduces Blue to the mistake of using past to 

predict future.  The value you expect to achieve is not the value you will get from  a 

devious and intelligent enemy.  Additional data plots for 10, 20, 80, and 160 observations 

are available in Appendix D. 

From the 100 replications presented in Figure 11, we can determine the expected 

underperformance value and the 95% confidence intervals for the entire power range. 
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Using the data plotted in Figure 11, the expected damage for Blue based on history is the 

blue solid line in Figure 9.  The blue dashed lines are the upper and lower 95% 

confidence interval. 

Based on 100 repetitions of generating the recent attack data, we can also 

compare the number of observations, namely 10, 20, 40, 80, and 160 observations and 

observe the values of damage expected and resulting compared to the damage value 

found through the game theoretic model.  Figure 12 displays the each observation level.  

The black line represent the game value, the red lines the expecting damage value and the 

blue line the actual damage Blue incurs.  This series of charts show trend of damage over 

full range of power that re-enforces the observations made through the analysis of the 

gaps at 30 Watts. 
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10 Observations 20 Observations 

40 Observations 80 Observations 

160 Observations Legend 

 

Figure 12.   Resulting and expected damage based on 10, 20, 40, 80, and 160 observations. 

From Figure 12, as the number observations increase, the gap between both the 

resulting and expected damage and the value of the game increases over the non-trivial 

range of power.  As the number of observations increases, Blue is more likely to observe 

a better approximation of Red’s strategy.  With a more accurate observation of Red’s 

strategy, the use of recent attack data provides a better quality solution as is seen by the 

reduction in the gaps with the increase in observations. 
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D. DISCUSSION 

When using past to predict future, Blue tends to be overly optimistic in predicting 

the outcome and the result is a heightened expectation.  In addition, Blue is likely to 

underperform.  The performance gaps depend highly on the number of observations used 

to collect recent attack data, where the more observations, the less the gap. 

Further, we have stated that Red is an intelligent enemy.  What would happen if 

Red did not follow their optimal mixed strategy for a couple of months?  This counter-

intelligence could result in the devastating effects for Blue if Blue designs jamming 

loadset based on recent attack data.  Say that Red has a surplus of garage door openers 

and decides to use only garage door openers for the next two months, although, garage 

door openers have a limited range and the insurgents would have to use small sized IEDs 

they continue with this plan.  If Blue uses attack data based on the last month, their pure 

strategy is to jam the garage door openers.  As no other trigger is used during the time 

period the recent attack data is observed, Blue is susceptible to any other RCIED trigger 

than a garage door opener.  As Red is intelligent, for the third month they deploy quad 

band cell phones attached to very large IEDs that devastate Blue. 

This is an extreme and very unlikely example, but this points out another concern 

and shortfall on determining an optimal jamming loadset based on recent attack data.  

The lack of observance highly effects the selection to jamming each RCIED.   

The robust solution provided by the game theoretic solution will provide the 

balanced solution based on enemy and friendly capability rather than observation and 

perception.  Additionally, using the optimal mixed strategy provides Blue a guarantee 

that the maximum damage that they will incur is the value of the game.  If Red deviates 

from the optimal mixed strategy, Blue will encounter an even better result by incurring 

less damage.  Blue’s use of the optimal mixed strategy defeats Red’s efforts of 

subversion and misdirection. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the conclusions in section A.  Additionally, addressed in 

Section B are recommendations into areas of further research and development. 

A. KEY FINDINGS 

In this thesis, we developed a mathematical model for the combat between 

RCIEDs and electronic jammers.  Red chooses a RCIED to attack, while Blue designs a 

jamming loadset to minimize the expected damage.  We applied a game-theoretic 

approach to derive the value of the game, and then use simulation to estimate Blue’s 

performance if Blue chooses the jamming loadset based on observation of Red’s recent 

attack data. 

The numerical experiments showed that when using the past to predict the future, 

Blue tends to be overly optimistic in its predictions of jammer effectiveness.  More 

precisely, the minimal damage Blue is led to believe based on recent RCIED attack data 

will be higher than the actual damage if Red uses the optimal mixed strategy. The 

heightened amount of over estimation is highly dependent upon the recent RCIED attack 

data.   

In addition, Blue’s optimal strategy based on recent RCIED attack data tends to 

underperform.  That is, the optimal pure strategy perceived by Blue based on recent 

attack data will always underperform compared to the optimal mixed strategies 

determined through the game-theoretic approach.  The difference between the 

underperformance and the value of the game also depends highly upon the quality of the 

data provided to approximate Red’s strategy. 

Another risk of using past to predict future is the possibility that  Red can 

purposely mislead Blue.  For example,  Red can solely use garage door openers for a 

period of time.  If Blue adopts a jamming loadset specifically designed to counter garage 

door openers, then Red can shift to the heavy use of cell phones where Blue is now more 

susceptible.  
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To reduce these aforementioned risks, Blue should adopt the optimal mixed 

strategy produced by the game theoretic approach.  Blue’s optimal mixed strategy is 

randomized, which makes it difficult for Red to predict and manipulate.  Blue’s optimal 

mixed strategy is also robust, in a sense that if Red deviates from his optimal strategy by 

using a suboptimal strategy, Blue performs even better than expected. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

This thesis creates a model that becomes the foundation for additional research to 

follow.  The two main recommended areas to grow from this research are in further 

modeling and data collection.  

On modeling, the next two steps to grow from this model naturally are first to 

extend the model to incorporate reactive jamming.  For reactive jamming it becomes 

important to consider the operational environment and take into account the radio traffic 

in the background.  Blue’s optimal jamming strategy in a sparsely populated desert can 

be very different from a densely populated urban area.  

Another research direction on modeling is to incorporate multiple jamming 

modules.  If separate modules with their respective frequency ranges, power 

specifications, and whether it is active jamming or reactive jamming, then how does Blue 

use them optimally to minimize RCIED attack risk?  Does the conclusion in this thesis 

carry over to this case?  

On data collection, much work needs to be done.  In this thesis, we used mock up 

data to run our numerical experiments.  To use the methods proposed in this thesis in the 

theater, one needs to survey all  RCIED triggers available  in each geographical area.  

The compilation of all trigger technical specification—such as power usage, frequency, 

and damage—to feed into our model can be a daunting task itself.  

A couple of ideas on further modeling and data collection are just the surface of 

this intoxicating and in-depth problem.  As this problem is researched further, the pioneer 

need not fear the fall, rather live for the adventure of discovery. 
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APPENDIX A:  IED OVERVIEW 

The intent of this appendix is to overview concepts in depth; define what an IED 

is, how it is employed, organizations formed to combat this device, and the future 

implications. 

A. GAME THEORY 

Game theory is defined as the study of how players should rationally play games.  

Each player is forced to choose a strategy they think will provide the best outcome.  

Although each player makes choices, they must keep in mind the choices of the other 

player.  These sequence of choices force each player to develop a strategy based on the 

outcome of their choice with respect to their opponent’s choice.  Each would like the 

game to end in a desired outcome which gives as large (or small) a payoff as possible.  

Game theory further defines rules and principles to ensure an optimal strategy (Straffin 

3).  An in depth explanation of the game theory approach is found in Chapter III. 

As IEDs are built with a specific target in mind out of non-traditional materials 

and as they become more complex they become very hard to detect and defend against.  

IEDs cover a broad spectrum, to say the least, because by definition they can take on 

almost any shape or form.  With almost infinite possibilities in configuring an IED, there 

are three distinct categories, each designed for a specific tactical purpose; the package 

type IED, vehicle-borne IEDs (VBIED), and the suicide bomber (Improvised Explosive 

Devices (IEDs)/Booby Traps).  Commonality is also found among the components of an 

IED. 

B. BEHIND THE IED 

1. Components of an IED 

All IEDs share four major components; the power source, the trigger or switch, 

the detonator and the main charge (Australian Government, Department of Defense 1).  

The following are explanations of each component: 
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 • Power Source:  Typically a battery or anything that can provide energy 

to power the IED. 

 • Trigger/Switch:  The mechanism that initiates the IED.  This mechanism 

can be a simple switch, a timer, a pressure plate, a command wire, or a radio controlled 

device.  The six main triggers/switches are pressure plates, cell phones, command wire, 

low-power radio-controlled, high-power radio-controlled and passive infrared (Atkinson 

4). 

 • Detonator:  The small explosive charge, usually a blasting cap, that 

initiates the main charge after receiving input from the initiator and power from the 

power source. 

 • Main Charge:  Homemade explosive or military ordnance, such as 

artillery rounds, initiated in an unconventional manner (Australian Government, 

Department of Defense). 

Figure 13 demonstrates the common configuration and components of an IED.  

The insets contain examples of the power source, trigger/switch, detonator, and the main 

charge.  Note the main charge can be engineered from unexploded ordnance (UXO) or a 

recovered mine (Improvised Explosive Devices (IEDs)/Booby Traps). 
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Figure 13.   Components of an IED [From (Australian Government, Department of 

Defense)] 

2. Current Employment Techniques 

Having defined what an IED is and what the basic components are, the next step 

is to introduce some of the common tactics and techniques of employment.  This section 

will primarily focus on the package type IED emplaced to disrupt ground forces.  These 

techniques are some of the more common and the list is not inclusive because as the IED 

has infinite configurations of components, it also has just as many techniques of 

emplacement. 

IEDs are often found along main supply routes, alternate supply routes, and 

unimproved roads in the medians, above ground and buried below ground (CTF-7 CALL 

Representative 2).  These devices are hidden behind guard rails, in roadside trash, and 
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even the carcasses of dead animals (D'Alessio).  IEDs are disguised to look like any 

object, limited only by the imagination and capabilities of the bomb maker (CTF-7 CALL 

Representative 4). 

3. IED Classifications 

There are two classifications of IED types; by delivery mechanism or by type of 

trigger/switch.  The more direct classification of the two is by delivery mechanism.  An 

incomplete list of IEDs classified by delivery mechanism are package, vehicle-borne 

(VBIED), boat-borne, animal-borne, house-borne and suicide bombers.  Classification by 

delivery mechanism leads to tactics and techniques to prevent and deter.  Likewise, 

classification by switch/trigger looks at the same IED dilemma from a different 

viewpoint. 

Anything that is capable of closing a power loop or making an electrical 

connection can be utilized as a switch/trigger.  Through the leverage of the vast and 

expanding consumer electronics market, insurgents are able to initiate IEDs that are 

simple, inexpensive, and catastrophic (Atkinson 4).  The following are explanations of 

IEDs classified by trigger/switch: 

 • Command Wire Improvised Explosive Device (CWIED) - An IED using 

a wire connected to the trigger, detonator, or battery to allow the insurgent to control the 

instant of initiation.  The wire effectively becomes the switch. 

 • Radio Controlled Improvised Explosive Device (RCIED):  The trigger is 

a radio transmitter and receiver link.  A few examples are car alarms, wireless door bells, 

cell phones, pagers and walkie-talkies.  

 • Victim-Operated Improvised Explosive Device (VOIED):  These are 

designed to function upon contact with a victim; also known as booby traps.  Some 

examples of VOIEDs are tripwires, pressure plates, and tilt rods.  Note that one 

controversy is whether or not victim operated devices are, or are not, “booby traps.” 
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Figure 14.   The Evolving Threat of IEDs by Trigger [From (Atkinson 15)] 

The classification of IED by switch/trigger for the six most common triggers 

observed from June 2004 to April 2007 is found in Figure 14.  Note the changing 

techniques over time.  The higher technology cell phones emerge as well as the simplest 

technology of the command wire.  This is an example of where the insurgents adapt by 

the IED trigger changing over time. 

A few examples of possible RCIED triggers/switches are found in Figure 15 

(CTF-7 CALL Representative 5) (Miles 10-63).  These radio controlled devices are each 

labeled: A – RC Unit From Car Alarm, B – Wireless Doorbell, C – Garage Door Opener, 

D – LRCT Base Station, E – LRCT, F – Cell Phone, G – Walkie-Talkie, H – Radio 

Controlled Toy, and I – Cordless Telephone. 
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Figure 15.   Common Radio Controlled IED Triggers 

4. Current Threat 

Current use of IEDs have been compared to the use of Artillery as they become a 

combat multiplier for the insurgent.  But, IEDs do not manufacture themselves.  It takes 

an IED cell to support an IED attack.  These network structures defy identification in 

Iraq, Afghanistan, and the other insurgencies throughout the world (Meigs).  What are the 

expected components of these networks? 
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A typical IED cell is suspected to contain five to ten people and the organization 

is described as fluid and decentralized.  The main roles including a financier that provides 

the funds, bomb maker that makes the IED, emplacer that installs or places the IED, 

triggerman that initiates the IED, spotter who assists the triggerman in locating the target, 

and often a cameraman to record video footage of the incident.  Videos of exploding U.S. 

vehicles and dead Americans are distributed via the Internet to win new supporters 

(Wilson 2).  In 2007, there where an estimated 169 cells in Iraq alone (Atkinson 14). 

As expected, the task is not only to defend against the IED.  A parallel task is to 

eliminate the network.  Attacking or neutralizing the shadowy network is just as 

important as defending against the IED, but it involves a separate set of complex issues 

and challenges that are outside the scope of this research (Atkinson 3).  But, these are all 

intricacies of an insurgency that we have yet to define. 

5. Insurgency and Counter-insurgency 

The doctrinal definition of insurgency “is an organized movement aimed at the 

overthrow of a constituted government through the use of subversion and armed conflict.  

Stated another way, an insurgency is an organized, protracted, politico-military struggle 

designed to weaken the control and legitimacy of an established government, occupying 

power, or other political authority while increasing insurgent control.” (U.S. 

Army/Marine Corps 2). 

Doctrinally from FM 5-34, counterinsurgency is defined as “military, 

paramilitary, political, economic, psychological, and civic actions taken by a government 

to defeat an insurgency.” (U.S. Army/Marine Corps 2) 

Throughout history, insurgents have commonly utilized terrorist and guerilla 

tactics.  This leads to no surprise that the IED has become a common and preferred 

weapon of current insurgencies (U.S. Army/Marine Corps 18).  The prowess of the U.S. 

Armed Forces in combat operations will logically lead insurgents opposed to the U.S. to 

asymmetric approaches instead of challenging the U.S. Forces in direct engagements.  An 

insurgency needs to adapt to succeed against a force superior in resources and technology 

(U.S. Army/Marine Corps 3-4).  The adaptive asymmetric weapon of today is the IED. 
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C. HISTORY OF THE IED 

1. Current Effect of the IED 

The IED is the deadliest threat to military personnel supporting Operation 

Enduring Freedom in Afghanistan and Operation Iraqi Freedom in Iraq (U.S. House of 

Representatives 15).  In support of the global war on terrorism, from October 7, 2001 to 

May 2, 2009, there have been 209 deaths due to IEDs of the total of 452 deaths (~46.2%) 

in support of Operation Enduring Freedom and 2,164 deaths due to IEDs of the 3,430 

deaths in support of Operation Iraqi Freedom (~63.1%) (Defense Manpower Data 

Center).  The use of the IED has grown to unmatched numbers in use against military 

forces and has been termed the insurgent’s “Weapon of Choice.” (Australian 

Government, Department of Defense)  Figure 16 shows the number of IED incidents in 

Iraq from the onset of the war.  From this chart the growth of their use increase from 

2003 to 2007 where in mid-2007 there were in excess of 2,500 IED incidents in a month.  

 
Figure 16.   IED Incidents in Iraq [From (U.S. House of Representatives 43)] 

Similar to Figure 16, Figure 17 shows the number of IED incidents, but it shows 

the monthly trend for Afghanistan from 2005 to 2008.  The interesting conclusion drawn 

from looking at both figures is that although the magnitudes of the number of IEDs are on 
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different scales for incidents per month, as the IED incidents were showing a decreasing 

trend mid-2007 through 2008 in Iraq, the number of IED incidents are overall is 

increasing in Afghanistan through the same time period. 

 
Figure 17.   IED Incidents in Afghanistan [From (U.S. House of Representatives 44)] 

On the other hand, before drawing too many parallels to the increase in one area 

and a decrease in another, we must compare the magnitude.  In Iraq, the numbers 

decrease from 2,500 per month in August 2007 to level of 500 per month in August 2008.  

In Afghanistan, the comparative increase in August 2007 is approximately 215 IED 

incidents per month to approximately 325 per month in August 2008.  Many conclusions 

can be drawn from these comparative numbers and trends, but one is certain in that the 

insurgents have found a tactically effective weapon and continues to explore its use while 

exploring our weaknesses. 

2. Origin of the Acronym IED 

The term Improvised Explosive Device and the acronym IED have become 

common household phrases through their use in the media.  But, where did the term 

originate?  Although the IED is primarily related to the current conflicts in Iraq and 

Afghanistan, the exact use of the term IED is brought to fruition early in Operation Iraqi 
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Freedom.  On 21 March 2003, troops crossed into Iraq beginning Operation Iraqi 

Freedom.  On 1 May 2003, President George W. Bush declared, “major combat 

operations in Iraq have ended.” (Associated Press; USA TODAY Research and Wire 

Reports)  But, we would soon learn that the loss of U.S. troops would drastically increase 

as the war does continue against an insurgency rather than a traditional combat force. 

In Baghdad on Memorial Day, 26 May 2003, while conducting an escort mission 

of large logistics trucks, PFC Jeremiah D. Smith was killed when his vehicle was hit by 

the blast of unexploded ordnance.  In May 2003, the term IED was not used but this 

soldier is most likely the first combat loss to an IED in OIF (Associated Press; USA 

TODAY Research and Wire Reports).  The next combat loss occurred on 28 June 2003 

with the loss of SGT Timothy M. Conneway.  SGT Conneway died of wounds suffered 

on 26 June 2003 when his vehicle was hit by an explosive device in Baghdad (Associated 

Press; USA TODAY Research and Wire Reports).  This would be the second casualty to 

an explosive device in one month and within two months of the Presidents declaration to 

the conclusion of the major combat operations. 

A little less than a month later, on 21 July 2003, again in Baghdad, a convoy is hit 

by what is released as an “improvised explosive device.”  This is the first official 

statement where the term IED is used as the official cause.  Unfortunately, this device 

was the cause of death for Cpl. Mark A. Bibby (Associated Press; USA TODAY 

Research and Wire Reports). 

Through the remainder 2003, IEDs continued to grow in number and one 

common thread among them was their use of adapted military explosives, primarily 

artillery shells.  The direct conflict with Iraqi troops was over, but the insurgency had 

obtained a major cache of ordnance to create IEDs from this surplus of ordnance where 

these pilfered explosives appeared in the growing number of IEDs.  One of the main 

supply routes from Kuwait to Baghdad, Route Tampa, was one of the most common 

locations for IEDs in 2003.  On 29 July 2003, three artillery shells wired to a washing 

machine timer were discovered west of Taji, just eight days after the loss of Cpl. Bibby.  

Soon, other initiators would be discovered to include egg timers and rudimentary remote 

control devices of children’s toys, wireless door bells, and car key fobs (Atkinson 8). 



 49

The enemy’s grasp of the potential of these devices was growing and their tactics 

were evolving.  The frequency of the IEDs used continues throughout 2003 where at least 

77 U.S. casualties were caused by IEDs and the U.S. lost the most, 20, in December 

(Associated Press; USA TODAY Research and Wire Reports).  A new weapon of the 

insurgency in Iraq is born; silent, demoralizing, and extremely effective. 

3. IEDs Throughout History 

Are IEDs a new tactical concept?  No, IEDs have been used throughout recent 

history; just the term of improvised explosive device is new.  The meanings and 

differences in names to describe the different types of explosive devices have differed 

though time and caused confusion through historical cases and their employment today. 

The EOD community has used the term IED since the early 1960’s to describe 

these types of explosive devices.  Further, although the term IED was not used, there is 

evidence of their tactical use dating back to 1943.  Belarusian Guerrillas used command-

detonated and delay-fused IEDs to derail thousands of German trains in World War II.  

Other examples can be found of the now termed IED use in Vietnam, Northern Ireland, 

Afghanistan (against USSR in 1979), Lebanon, and Chechnya.  Improvised techniques in 

employment of explosive devices can be traced back through the American Civil War, 

World War I, Korean War, and the earliest document use of an IED, by today’s 

definition, being 1581 during the siege of Psk’ow (Jones 11-15). 

Throughout the world, IED attacks are not a new occurrence.  For over nine years 

the Hezbollah, an Islamic Shia political and paramilitary organization, used IED tactics in 

Israel and southern Lebanon.  The Hezbollah, literally meaning party of God, is viewed 

as one organization responsible for passing IED techniques through Iran to Iraq.  

Chechen Rebels utilized IED for over seven years in their struggles in Chechnya and 

Russia.  Today, the Taliban and Al Qaeda forces have at least seven years experience of 

their employment in Afghanistan (Keesee 4). 

The Irish Republican Army (IRA) has over 35 years of tactical experience in 

utilizing IEDs throughout Northern Ireland.  During this time British troops encountered 
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more than 7,000 IEDs.  In comparison, what the British forces encountered over a 35 year 

span is less than current troops in Iraq and Afghanistan encounter in just nine months 

(Atkinson 4). 

IEDs with Radio-Controlled triggers account for only 10% of all the IEDs 

encountered.  RCIEDs, on the other hand, account for the majority of U.S. casualties due 

to IEDs.  Through the employment of over 30,000 jammers, U.S. service members have 

begun to greatly reduce the capabilities and success rate of the RCIED (Atkinson 5). 
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APPENDIX B:  OVERVIEW ON JAMMING TECHNOLOGY 

A. GROUND JAMMING SYSTEMS 

This next section is an overview on information gathered about different ground 

jamming systems.  These systems, by name, include the following: 

Warlock:  The Warlock Force Protection System consists of three versions, Blue, 

Green, and Red, manufactured by EDO Corporation and ITT Electronic Systems.  The 

Warlock was originally designed to defeat proximity fused indirect fire munitions and has 

a second capability of jamming enemy communication devices.  The Warlock systems 

have gone through software and hardware revisions to improve the frequency ranges and 

capabilities (SPG Media Group Limited). 

Warlock Green:  The Warlock Green is a member of the CREW family derived 

from the Shortstop counter artillery system through the use of changed computer 

components and an adapted antenna.  The final product was a vehicle mounted jammer 

capable of defeating sophisticated threat systems.  The name, Warlock Green, was 

inspired by the wife of an engineer from Fort Monmouth who collected miniature kitchen 

witches.  The final production was performed by EDO Corporation and shipped out of 

Thousand Oaks, California, as early as March 2003 (Atkinson 7-25). 

Warlock Red:  The Warlock Red is a member of the CREW family of jammers 

designed by EDO Corporation to counter specific low power threats (SPG Media Group 

Limited).  It is a low cost vehicle mounted jammer that emerged on the battlefield in the 

summer of 2004 (Atkinson 7-25). 

Warlock Blue:  The Warlock Blue or Little Blue is a half watt portable jammer 

the size of a walkie-talkie designed for dismounted troops to carry.  The first models 

emerged from production in factories in California and Maryland in July 2005.  This 

jammer was designed to conquer a low power radio frequency threat (Atkinson 19-25). 

Chameleon:  The Chameleon is a programmable jammer designed to adapt to the 

ever changing insurgent threat.  It engages the full spectrum of RCIED triggers from 

garage door openers to cellular phones.  Initial testing was performed in part by the Johns 
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Hopkins University Applied Physics Laboratory in the summer of 2005.  The Chameleon 

was purchased by the Marines and put into action in November 2005 (Atkinson 26). 

Channel/Acorn:  The top-secret Navy program in counter-RC technology began 

after October 1983 when a truck packed with explosives killed 241 U.S. service members 

in Beirut.  The resulting technology became known as the Channel series.  The Channel 

series provided vessels protection against radio controlled bomb threats in foreign ports.  

Prior to 2002, the Channel series was considered obsolete and taken out of service.  Navy 

specialists in Indian Head, Maryland, began reconfiguring the specifications of the 

Channel series jammers to conquer the growing threat caused by a device called the 

Spider Mod 1 in Afghanistan.  This jamming device became known as the Acorn and was 

fielded in Afghanistan in November 2002 (Atkinson 6). 

Duke/Duke 2:  The Duke jammer is often referred to as a big box with a big 

antenna.  This big box is a powerful and complex reactive jammer intended to phase out 

the Warlock series by covering the entire radio spectrum.  This initiative, began in 

December 2004, would further simplify military logistics through the use of a common 

jammer.  The Duke was designed by Army engineers at Fort Monmouth, produced by the 

Syracuse Research Corporation, and fielded November 2005.  The Duke 2 is an improved 

version of the Duke jammer that was fielded in the summer of 2006 (Atkinson 16-28). 

Citadel:  The Citadel is a jammer used by explosive ordnance disposal (EOD) 

teams to create a protective area around technicians defusing a bomb.  This portable 

jammer worked well to provide protection for a few yards but failed to provide the 

standoff distance required to protect a patrol and is not capable of vehicle mounting 

(Atkinson 6). 

Shortstop:  The Shortstop was designed in 1990 by Army engineers at Fort 

Monmouth, New Jersey and manufactured by the Whittaker Corporation.  This mobile 

jammer is the size of a footlocker and originally intended to confound the proximity fuses 

in incoming artillery and mortar shells. (SPG Media Group Limited)  The Shortstop 

prematurely detonates incoming rounds by causing them to register the approaching 

ground far prior to their impact (Atkinson 7). 
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Cottonwood/Ironwood:  The Cottonwood jammer is a vehicle mounted CREW 

system in the Navy inventory.  The Navy removed the Cottonwood from the Suburban in 

which they were mount and installed them in armored vehicles.  In this role the 

Cottonwood is often referred to as the Ironwood (Atkinson 10-25). 

MMBJ:  The Mobile Multi Band Jammer is a vehicle mounted CREW system 

popular with the Special Forces community for defeating simple low powered radio 

devices (Atkinson 15-25). 

ICE/MICE:  A jammer, similar in capability to the SSVJ, called the IED Counter 

Electronic device (ICE) is a vehicle mounted member of the CREW family. (Atkinson 

15-25)  The ICE, favored by the Marines, is designed to jam radio trigged devices used 

by insurgents to initiate vehicle-borne or hidden explosives. (D'Alessio)  The later 

modifications of the ICE are referred to as the MICE systems (Atkinson 15-18). 

SSVJ:  The Army’s Rapid Equipping Force initiated through an organization in 

Las Cruces, New Mexico, to build prototype Self-Screening Vehicle Jammers (SSVJ).  

These jammers would go into full production.  The SSVJ is a vehicle mounted member of 

the CREW family of jammers used in support of Operation Iraqi Freedom and Operation 

Enduring Freedom after March 2003 (Atkinson 25). 

Jukebox:  The Jukebox is a member of the CREW family of jammers used in 

support of Operation Iraqi Freedom and Operation Enduring Freedom after March 2003 

(Atkinson 25). 

Symphony:  The Symphony is a member of the CREW family of jammers used in 

support of Operation Iraqi Freedom and Operation Enduring Freedom after March 2003 

(Atkinson 25). 

Spiral:  The Spiral 2.1 is a CREW jamming system produced by the EDO 

Corporation.  The Navy has begun research and development on Spirals 3.1, 3.2 and 3.3; 

projected to become the next generation of CREW systems supporting Iraq and 

Afghanistan (Atkinson 27-28). 
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Guardian:  The Guardian is a backpack jammer also known as the Quick Reaction 

Dismounted (QRD).  The Guardian replaced Little Blue, the Warlock Blue (Atkinson 

28). 

JIN:  The Joint IED Neutralizer (JIN) is a member of the CREW family that 

counters RCIEDs through high frequency transmissions (Wilson 4). 

NIRF:  The Neutralizing Improvised Explosive Devices with Radio Frequency 

(NIRF) is a member of the CREW family that counters RCIEDs through high frequency 

transmissions (Wilson 4). 

B. ELECTROMAGNETIC SPECTRUM MANAGEMENT 

The electromagnetic spectrum has grown in importance as a battle space for 

service members to monitor (Atkinson 16).  From the onset of the Iraqi conflict, much of 

the communications infrastructure was destroyed.  At least two results are seen from this; 

the number of cellular telephones is preferred as there are very few traditional land lines 

left, and the number of other radio devices that are foreign to the U.S. such as the long 

range cordless telephone (LRCT) are in use.  To complicate management further, the 

electromagnetic spectrum management varies by country and regulatory guidance is 

potentially different for each country.  Normally, an organization such as the Federal 

Communications Commission (FCC) would monitor and regulate the electromagnetic 

spectrum, but there is no such organization in Iraq or Afghanistan (Atkinson 13).  The 

spectrum is unregulated. 

With no organization, such as the FCC, the electromagnetic spectrum in both Iraq 

and Afghanistan remains unchallenged and open to unlimited and uncontested usage.  

Through the use of a spectrum analyzer, the enemy can monitor the capabilities of a 

jamming system and make strategic decisions on changing RCIED triggers to different 

frequencies or increasing power.  Then the enemy has countered the countermeasure 

(Atkinson 16). 
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In early 2006, the U.S. had created in Baghdad a document known as the “Mother 

of All Spreadsheets” or MOASS.  The MOASS was a complete collection of radio 

frequencies that insurgents used to trigger roadside bombs.  With this document, Army 

intelligence analysts and Navy electrical engineer matched the enemy’s known RCIEDs 

with the then 14 variants of jammers in use by coalition forces (Atkinson 25). 

The updated MOASS in Baghdad was shared with the National Security Agency.  

Army and Navy electronic warfare officers in New Jersey and Maryland, respectively, 

further analyzed the MOASS and made recommendations to update the loadsets of all the 

jamming systems.  These updated loadsets where then sent back to Baghdad to 

disseminate throughout the battle space to reprogram all of the jammers.  This process 

took weeks and concurrently the MOASS in Baghdad had new frequencies and devices 

added (Atkinson 25).  This circular process is continual. 

The painstaking process of updating loadsets seems to be paying off.  The move 

to the integration of both active and reactive jammers and the continual reprogramming 

of these jammers has glimmers of success.  From mid-2006 and throughout 2007 and 

2008, the use of RCIEDs in Iraq continues to decline (Atkinson 26). 
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APPENDIX C:  JAMMING PRINCIPLES AND DEFINITIONS 

A. BASIC EW COMPONENTS AND PRINCIPLES 

1. Antenna 

The two main types of antenna used in electronic warfare are of the type that 

cover a 360-degree azimuth or that cover a smaller angular area (Adamy, Introduction to 

Electronic Warefare Modeling and Simulation 105-106).  A vehicle mounted or man-

pack antenna is typically the ladder, an omnidirectional “whip” antenna.  This type of 

antenna is assumed as used in this study of radio frequency jammers.  The 

omnidirectional antenna is one type of isotropic antenna.  Isotropic antennas radiate 

equally in all directions (Miller 559-560).  Omnidirectional antennas are used in the 

tactical ground environment as the radio waves are transmitted from the vertically 

polarized mast of the antenna in a 360 degree circle on the horizontal plane and angular 

in the vertical plane (Adamy, Introduction to Electronic Warefare Modeling and 

Simulation 109). 

2. Distance 

Distance is first introduced through the principle of propagation.  Propagation, or 

wave propagation is the movement of radio signals from the transmitter to the receiver 

through the earth’s atmosphere (Miller 5).  The propagation of the radio wave is an initial 

introduction of distance as a main factor of radio wave properties.  The free-space 

propagation model, Equation (11), demonstrates that the direct loss is a ratio of the 

distance as the wave radiates out in a circular motion by the length of the transmitted 

radio wave. 

The free-space propagation model (Adamy, EW102: A Second Course in 

Electronic Warefare 114) is: 

 
2 2

2

(4 ) dL π
λ

=  (11) 

where: L ≡ direct loss ratio {unitless} 

 d ≡ distance {meters} 
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 λ ≡ length of transmission wavelength {meters} 

This model will focus on line-of-sight models along the earth’s surface with the 

transmitter’s and receiver all operating on relatively the same altitude.  Additionally, the 

free space propagation model is based off of the geometry of the radio waves and there 

are no significant contributions from the atmospheres or rain (D. L. Adamy, EW102: A 

Second Course in Electronic Warefare 113).  The basic jamming scenario is displayed in 

Figure 18. 

TRANSMITTER (T)
RECEIVER

JAMMER (J)

Desired Signal‐Propagation Path

dJ

dT

 

Figure 18.   The jamming scenario [After  (D. L. Adamy, EW102: A Second Course in 
Electronic Warefare 137)] 

3. Power 

The signal-to-noise ratio or jammer-to-signal ratio (JSR) assist in determining 

how much power is enough to jam a signal.  SNR is defined as the relative measure of 

desired signal power to noise, or in this case jammer, power (Miller 11-12).  In 

determining the JSR we must know specification of the jammer and characteristics of the 

receiver targeted to jam. 
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There are two important specifications in this use of the JSR.  First, this is not 

radar jamming, rather the scope of this research is for radio frequency or communications 

jamming.  With radar jamming the distance is factored to the fourth power as the signal 

path is to the target and back.  In radio communications jamming the signal only 

propagates in one direction and the distance factor is squared.  This propagation loss 

reduction by a square rather than a fourth power provides an increase in range for a 

decrease in power; therefore the modification to JSR.  Second, jamming does not focus 

on the enemy transmitter and does have the goal of influencing the receiver. 

The equation to determine JSR (D. L. Adamy, EW102: A Second Course in 

Electronic Warefare 138) is: 
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⎛ ⎞
⎜ ⎟
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 (12) 

where: JP ≡ Power of the Jammer 

 TP ≡ Power of the Transmitter 

 JG ≡Gain of receiver’s antenna from the Jammer 

 TG ≡Gain of receiver’s antenna from the Transmitter 

 Jd ≡  Distance from the receiver to the Jammer 

 Td ≡  Distance from the receiver to the Transmitter 

As seen in Equation (12) above, the power is the effective radiated power of 

either the jammer or the transmitter that is attempted at being jammed is a product of the 

power and the gain of the antenna of the receiver.  In tactical communications, the 

omnidirectional “whip” antenna is the norm and the receiver with a whip antenna has the 

same gain from both the jammer and the transmitter  (Adamy, EW102: A Second Course 
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in Electronic Warefare 139).  As both gains cancel each other out, the simplification of 

Equation (12) follows as Equation (13) and the signal-to-jammer ratio becomes the 

following: 
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4. Duty Cycle and Time Sharing 

Radio frequencies are emitted in pulses with a rest time between pulses.  The ratio 

of the pulse time to the pulse repetition time is known as the duty cycle (Miller 657).  The 

equation for the duty cycle takes the form as displayed in Equation (14): 

 
PWDC
PRT

=  (14) 

where: DC ≡ Duty cycle {unitless} 

 PW ≡Pulse width {microseconds} 

 PRT ≡Pulse repetition time {microseconds} 

Two duty cycles of a radio frequency transmission pulses are observed in Figure 

19.  The target of the jammer is to block the transmission over the pulse width.  Figure 20 

is the same sample radio frequency as in Figure 19 over two duty cycles with an 

appropriate jamming cycle overlaid.  The jammer could jam constantly at the max power 

of the transmission signal, but this would produce much wasted jamming time.  Instead, 

in the valleys between the jamming signals become free time, time available to possible 

jam another signal.   
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Figure 19.   Two duty cycles of a single transmission [After (Electronic Warfare Division 
2-5)] 
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Figure 20.   Sample jamming scenario of a single transmission over two duty cycles. 
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With the free time in the jammers duty cycle, time sharing becomes important 

concept in maximizing the efforts of the jammer.  Through time-sharing, the jammer’s 

frequency modulator is able to jam more than one frequency over the jamming cycle 

(Jeong and Ra 1-5).  If another RCIED trigger is found with the same duty cycle, it may 

have its own power and time requirements.  Figure 21 introduces a second independent 

signal and the time and power overlay pattern to also jam this signal. 

Po
w
er

Time

Time‐Sharing
Jamming of Two Transmission 

0 PRT 2PRT

 

Figure 21.   Sample scenario of time share jamming of two transmissions over two duty 
cycles 

5. Power Sharing 

Power sharing is where the power amplifier of the jammer is called upon to 

amplify two or more signals simultaneously (Royal Thai Naval Academy 268).  Figure 

21 demonstrates a jammer pattern for the jamming of two signals over two pulse 

repetitions.  The same two independent signals are represented in Figure 22, but here the 

jammer is conserving power and only applying enough power to successfully jam each 

individual signal.  The maximum power available is labeled.  Signal 1 requires almost all 

of the available power over its pulse width.  Signal 2 only requires half of the maximum 

power for the duration of its pulse width. 
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Figure 22.   Jamming of two signals with different power requirements 

Now, introducing a third signal that is desirable to jam and it has the same pulse 

width, pulse repetition time and power requirements as Signal 2 in Figure 22.  The 

jammer has the power and time available.  The result of adding this third radio frequency 

to jam is displayed in Figure 23.  Signals 2 and 3 in this case are power sharing. 

 

Figure 23.   Jamming of three signals with two signal power sharing 

Not only are Signals 2 and 3 power sharing in Figure 23, Signal 1 and the Signal 

2-3 pair are time sharing.  This displays a simple combined time sharing and power 

sharing jamming strategy for these three radio frequency signals. 

B. SIMPLIFICATION OF DATA REQUIREMENTS 

The current proposed data for each RCIED trigger is the expected distances for 

the transmitter receiver pair, the expected distance of the jammer to the trigger or 
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standoff distance, the power of the transmitter, the power the jammer applied to jamming 

the particular frequency, and the jammer to signal ratio required for the RCIED trigger’s 

receiver.  Through much study of each individual RCIED trigger receiver pair most of 

these required values are measured.  For the scope of this thesis and the modeling, we can 

reason through the reduction of data requirements. 

In determining the ability of the jamming system to successfully jam and RCIED 

trigger with respect to power and distance, Equation (15) must be satisfied. 
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Breaking down Equation (15) into parts it is observed PT is data found through the 

examination of the device.  The dJ is a decision variable for the standoff distance of the 

jammer as a fixed number of meters for all jamming modules of the jamming system.  PJ, 

or the power of the jammer, is a decision variable that is minimized to possibly conserve 

power to apply to other possible IED threats.  This leave the distance of the transmitter to 

the receiver of the RCIED, dT.  The distance could be achieved using an appropriate 

discrete distribution. 

When allowing dT to become a random variable, say x, Equation (15) takes the 

form of Equation (16). 
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Solving Equation (16) for x and changing the inequality to the viewpoint of the 

insurgent, the result is Equation (17). 

 2( ) J
T J

T

Px JSR d
P

<  (17) 

Evaluating the random variable x, a unique discrete distribution defined by each 

individual transmitter, we would define an acceptable threshold of enemy success or 

Pr{X < x}.  For each given resulting probability for each trigger, there is a resulting 
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power requirement for the jammer to successfully jam a signal within the given 

probability, or from the perspective of the insurgent to successfully trigger an RCIED. 

The resulting PJ is with respect to each individual RCIED.  The PJ variable 

becomes data for each individual RCIED trigger as the power, in Watts, to successfully 

jam a triggers signal with respect to the triggers jam to signal ratio, standoff distance of 

the jammer, and power of the radio transmission of the transmitter at an appropriate 

defined level of probability.  (In the formulation of the models, Chapter III, JP  is the 

parameter iw .) 
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APPENDIX D:  DATA AND GRAPHS 

A. DATA PLOTS 

100 Replications–Heightened Expectation Data Plots: 
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40 Observations 80 Observations 

160 Observations  
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100 Replications–Under Performance Data Plots: 
 

10 Observations 20 Observations 

40 Observations 80 Observations 

160 Observations  
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B. PLOTS OF MEANS AND CONFIDENCE INTERVALS 

100 Replications–Expectation Mean and CI: 
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40 Observations 80 Observations 

160 Observations  
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100 Replications – Under Expectation Mean and CI: 
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160 Observations  
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C. COMBINED PLOTS OF MEANS AND CONFIDENCE INTERVALS 

100 Replications–Combined Expectation Means and CIs: 

 

10 Observations 20 Observations 

40 Observations 80 Observations 

160 Observations  
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