General Description
The LM380 is a power audio amplifier for consumer applications. In order to hold system cost to a minimum, gain is internally fixed at 34 dB. A unique input stage allows ground referenced input signals. The output automatically self-centers to one-half the supply voltage.
The output is short circuit proof with internal thermal limiting. The package outline is standard dual-in-line. The LM380N uses a copper lead frame. The center three pins on either side comprise a heat sink. This makes the device easy to use in standard PC layouts.
Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, small servo drivers, power converters, etc.

Features
- Wide supply voltage range: 10V-22V
- Low quiescent power drain: 0.13W ($V_S = 18V$)
- Voltage gain fixed at 50
- High peak current capability: 1.3A
- Input referenced to GND
- High input impedance: 150kΩ
- Low distortion
- Quiescent output voltage is at one-half of the supply voltage
- Standard dual-in-line package

Connection Diagrams (Dual-In-Line Packages, Top View)
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td></td>
<td>22V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Current</td>
<td></td>
<td>1.3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Dissipation 14-Pin DIP</td>
<td>(Note 7)</td>
<td>8.3W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Dissipation 8-Pin DIP</td>
<td>(Note 7)</td>
<td>1.67W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>±0.5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td>−65˚C to +150˚C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics (Note 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{OUT}(RMS)$</td>
<td>Output Power</td>
<td>$R_L = 8\Omega$, THD = 3% (Notes 4, 5)</td>
<td>2.5</td>
<td>50</td>
<td>60</td>
<td>W</td>
</tr>
<tr>
<td>A_V</td>
<td>Gain</td>
<td></td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>V/V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage Swing</td>
<td>$R_L = 8\Omega$</td>
<td>14</td>
<td></td>
<td></td>
<td>V_{pp}</td>
</tr>
<tr>
<td>Z_{IN}</td>
<td>Input Resistance</td>
<td></td>
<td>150k</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td>(Notes 5, 6)</td>
<td>0.2</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>(Note 3)</td>
<td>38</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>V_S</td>
<td>Supply Voltage</td>
<td></td>
<td>10</td>
<td>22</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
<td>$P_{OUT} = 2W$, $R_L = 8\Omega$</td>
<td>100k</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent Supply Current</td>
<td></td>
<td>7</td>
<td>25</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>V_{OUTQ}</td>
<td>Quiescent Output Voltage</td>
<td></td>
<td>8</td>
<td>9.0</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>I_{BIAS}</td>
<td>Bias Current</td>
<td>Inputs Floating</td>
<td>100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short Circuit Current</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: $V_S = 18V$ and $T_A = 25˚C$ unless otherwise specified.

Note 3: Rejection ratio referred to the output with $C_{BYPASS} = 5 \mu F$.

Note 4: With device Pins 3, 4, 5, 10, 11, 12 soldered into a 1/16” epoxy glass board with 2 ounce copper foil with a minimum surface of 6 square inches.

Note 5: $C_{BYPASS} = 0.47 \mu F$ on Pin 1.

Note 6: The maximum junction temperature of the LM380 is 150˚C.

Note 7: The package is to be derated at 15˚C/W junction to heat sink pins for 14-pin pkg; 75˚C/W for 8-pin.
Heat Sink Dimensions

Staver Heat Sink #V-7
Staver Company
41 Saxon Ave.
P.O. Drawer H
Bayshore, NY 11706
Tel: (516) 666-8000
Copper Wings
2 Required
Soldered to
Pins 3, 4, 5,
10, 11, 12
Thickness 0.04
Inches

Typical Performance Characteristics

Maximum Device Dissipation vs
Ambient Temperature

Device Dissipation vs Output Power — 4Ω Load

Device Dissipation vs Output Power — 8Ω Load

Device Dissipation vs Output Power — 16Ω Load

www.national.com 4
Typical Performance Characteristics (Continued)

- **Power Supply Current vs Supply Voltage**
 - $I_{PS} = 20^\circ F$
 - V_{PS} vs Supply Voltage (V)

- **Total Harmonic Distortion vs Frequency**
 - T_HD vs Frequency (Hz)

- **Output Voltage Gain and Phase vs Frequency**
 - V_{OUT} vs Frequency (Hz)

- **Total Harmonic Distortion vs Output Power**
 - T_HD vs Output Power (Watts)

- **Device Dissipation vs Output Power**
 - P_D vs Output Power (Watts)

- **Supply Decoupling vs Frequency**
 - D_{SUP} vs Frequency (Hz)

Typical Applications

- **Phono Amplifier**
 - Circuit diagram showing the connection of a crystal cartridge, LM380, and other components.
Typical Applications (Continued)

Bridge Amplifier

Intercom

Phase Shift Oscillator
Physical Dimensions inches (millimeters) unless otherwise noted

Molded Dual-In-Line Package (N)
Order Number LM380N-8
NS Package Number N08E

Molded Dual-In-Line Package (N)
Order Number LM380N
NS Package Number N14A
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.