
 1

APPLICATION NOTE AN101
Sonar Sensor on PIC16F628

Version 1.0

Date: 27 May 2003
© 2003 by GenerExe
www.generexe.com

1. Introduction

This application note describes a
practical sonar system, using ultrasonic
sound waves to determine the distance to
obstacles, using a Microchip PIC16F628
MCU.

2. Principle of Echo Location

Sonar, like radar, uses the principle of
echo location. For echo location, a short
pulse is sent in a specific direction
(XMIT in figure 1). When the pulse hits
an object, which does not absorb the
pulse, it bounces back, after which the
echo can be picked up by a detector-
circuit (RECV in figure 1).

Figure 1. Principle of echo location.

By measuring the time between sending
the pulse and detecting the echo, the
distance to the object can be determined.
I.e. sound travels at a speed of 343
meters per second through air at room
temperature. By multiplying the time
between pulse and echo (in seconds)
with 343, you will get twice the distance
to the object in meters (since the sound
traveled the distance twice to get to the
object and bounce back):

2d = Vsound X (Tpulse – Techo)

where:
• Vsound = speed of sound-travel (343

meters/second)
• Tpulse = time in seconds of pulse

transmission
• Techo = time in seconds of echo

detection
• d = distance to object onto which

pulse bounces back.

3. Circuit description

Figure 2 shows a standard PIC16F628
circuit, with 4.7kOhm pull-up resistor on
MCLR to provide a reset-signal and a
10mHz resonator to provide the clock-
signal.

Note that the 4.7kOhm resistor can be
left out if you configure the MCLR pin
as an I/O pin (in the hardware
configuration panel of XPad). Also

 2

many resonators only have 2 leads,
instead of 3. In this case, you will have

to ground the 2 leads on OSC1 and
OSC2, via 20pF capacitors.

Figure 2. The sonar sensor circuit, with on the right the detector.

The CPP-pin on RB3 is used to generate
a 40kHz pulse fed directly to the XMIT
transducer, generating the sound wave.
The CPP-module of the PIC16F628 will
be put into PWM mode for this.

The external interrupt pin on RB0 is
used to input the output of the detector
circuit, shown on the right in figure 2.
The detector circuit is built around the
LM324 IC, which provides 4 low power
operational amplifiers. Only 2 opamps
are used in this circuit.

The tiny signals from the RECV
transducer is fed into A1, which is setup
as an inverting amplifier, providing a
gain of –R2/R1 = 2.2mOhm/47kOhm = -
46.8. Note that this gain is low enough to
pass 40kHz signals, without introducing
noise. The negative sign is not a

problem, since the RECV transducer
produces an AC-signal. Many similar
circuits include a tone-decoder –i.e. a
567 IC- to filter for the 40kHz
frequency. However, this really is not
necessary, since the RECV transducers
are naturally sensitive to signals around
40kHz only.

R3 and R4 form a voltage divider lifting
the input signal up to halve of Vdd. The
reason for this is that the input signal is
true AC, and the circuit has a single
positive power supply.

The amplified signal from A1 is fed via
current-limiting resistor R5 into the
negative input of a comparator, which is
setup around A2. The positive input of
A2 is fed with a voltage determined by
the voltage divider of R6 and R7. Since

 3

R6 and R7 are both 10kOhm, A2 will
only go positive when the negative input
exceeds halve of Vdd.

Note that the LM324 power-lines are not
shown in figure 2, nor are any pin-
numbers. The reason is that the 14-pin
LM324 package is symmetrical. Each
side of the LM324 contains 6 pins for 2
OpAmps opposite to each other. The
pins in the middle are the Vdd and
Ground lines of the IC. Depending on
how you build the circuit you can use
any 2 OpAmps of the LM324.

To test the circuit, I also connected a
DS275 RS232 level-converter to RB1
(RX) and RB2 (TX) to use the USART
of the PIC16F628. Figure 3 shows how
to wire the DS275 into the circuit of
figure 2.

Figure 3. RS232 level-converter circuit.

4. Software Design of Sonar

Figure 4 shows the single state diagram
that is used to test the sonar circuit.

The IDLE-state sets up the serial port
and waits for any character. When a
character has been received the KEY
state is entered, which does the
following:
• send “PING” back over serial port.

• reset the Ticks-variable, which is
used to measure time between pulse
and echo-detection.

• Start a pulse on RB3 at 40kHz and
50% duty-cycle (each pulse-period
takes 25usec).

• Wait 400usec (good for 400/25 = 16
pulses).

• Stop the pulse on RB3.
• Wait another 400usec, to make sure

that the transducer has stopped
vibrating (and that no direct coupling
from the transmitter is mistaken for a
true ECHO in the detector-circuit).

• Start the timer to count Ticks until
the ECHO is detected. The timer is
setup for 102usec timeouts, meaning
that our distance-measurement will
have a resolution of 2d= 343 X
102.10-6. Hence resolution d = 1.75
cm (3/4 inch).

• Finish the state and wait for Timer-
ticks.

Figure 4. State Diagram for Sonar circuit.

Now every 102usec, the COUNT state is
re-activated, which just increases the

 4

Ticks-variable by 1 (indicating an extra
1.75cm to the object). Besides re-
activating the COUNT state, the State
Diagram can go into the ECHO-state
when an ECHO was detected on the
RB0 pin or –when the Ticks-variable
exceeds the value of 100- go back to the
KEY state.

The latter transition is tested by the
NoEcho expression and –when true-
assumes that no ECHO will come
altogether; because no objects are close
enough to generate a sufficiently strong
ECHO passing the detection-circuit.
When this happens NoEcho will put the
software back into the KEY state,
immediately retrying the PING.

When an ECHO was detected the ECHO
state is entered, which stops the timer,
transmits a newline character on the
RS232 port, followed by a hexadecimal
string-representation of the value in the
Ticks-variable! I.e. a value of 11
(hexadecimal) would indicate that the
object in front of the sensor was
17(decimal) X 1.75cm = 29.75cm
(approx. 1 foot) away.

The XPad-model can be downloaded for
free from http://www.generexe.com.

5. Conclusions and improvement

The lower detection-limit in the software
is determined by the minimum delay
between the PULSE and that an ECHO
can be detected. This is 400usec (in the
KEY state) + 102usec (to pass through
the COUNT state at least once) = 502
usec. The sound may have traveled
approx. 5 X 1.75 cm = 8.75 cm. Since
this is 2-way, we are talking about a
minimum detection-distance of almost
4.37 cm. Strictly spoken the Ticks-

variable should be initialized with 4 in
the KEY-state to account for the 400usec
we are waiting before starting the timer.

The NoEcho timeout check of 100
determines the higher limit. 100 ticks
would mean 175 cm (almost 6 feet).
Increasing the 100 in the NoEcho
expression, will allow for detection of
objects further away. However, it will
also take longer to restart a PULSE in
case no objects are nearby enough to
result in a sufficient ECHO.

When used for some kind of robotic
vision application, the range of the
shown circuit is perfect. To detect
objects at longer distances, you can
simply increase the range of the circuit,
by increasing power provided to the
XMIT transducer. These things can take
up to 20V. (In the shown circuit the
transducer is only fed with 5V signals
directly from the CPP-pin of the
PIC16F628). The easiest way to do this
is via a transistor, which switches a
larger power supply and/or combined
with a transformer, jacking up the
voltage. Make sure that any components
you put in here are able to follow the
40kHz signal, generated by the CPP-pin!

Note that increased transmitter power,
also increases sensitivity to close by
smaller objects. As can be seen from
figure 1, the sound-‘cone’ coming back
from a wall is pretty large; smaller
objects give much smaller echoes.

You can download a copy of XPad from
http://www.generexe.com. Low cost
compiler modules (USD40 or less) can
be downloaded separately from the same
site. Limited compiler modules can be
tried for free.

