The Technical Notes section is designed to provide a brief overview of the ultrasonic principles important to transducer application and design. The Technical Notes are organized in the following sections:

1. BASIC ULTRASONIC PRINCIPLES
2. ADVANCED DEFINITIONS AND FORMULAS
3. DESIGN CHARACTERISTICS OF TRANSDUCERS
4. TRANSDUCER SPECIFIC PRINCIPLES
5. TRANSDUCER EXCITATION GUIDELINES
6. CABLES

1. BASIC ULTRASONIC PRINCIPLES

a. What is Ultrasound?

Sound generated above the human hearing range (typically 20kHz) is called ultrasound. However, the frequency range normally employed in ultrasonic nondestructive testing and thickness gaging is 100kHz to 50MHz. Although ultrasound behaves in a similar manner to audible sound, it has a much shorter wavelength. This means it can be reflected off very small surfaces such as defects inside materials. It is this property that makes ultrasound useful for nondestructive testing of materials.

The Acoustic Spectrum in Figure (1) breaks down sound into 3 ranges of frequencies. The Ultrasonic Range is then broken down further into 3 sub sections.

b. Frequency, Period and Wavelength

Ultrasonic vibrations travel in the form of a wave, similar to the way light travels. However, unlike light waves, which can travel in a vacuum (empty space), ultrasound requires an elastic medium such as a liquid or a solid. Shown in Figure (2) are the basic parameters of a continuous wave (cw). These parameters include the wavelength (λ) and the period (T) of a complete cycle.

The number of cycles completed in one second is called frequency (f) and is measured in Hertz (Hz), some examples follow:

- 1 cycle/second = 1Hz
- 1000 cycles/second = 1KHz
- 1,000,000 cycles/second = 1MHz

The time required to complete a full cycle is the period (T), measured in seconds. The relation between frequency and period in a continuous wave is given in Equation (1).

\[f = \frac{1}{T} \]

Equation 1

c. Velocity of Ultrasound and Wavelength

The velocity of ultrasound (c) in a perfectly elastic material at a given temperature and pressure is constant. The relation between c, f, λ and T is given by Equations (2) and (3):

\[\lambda = \frac{c}{f} \]
\[\lambda = cT \]

Equation 2
Equation 3

\[\lambda = \text{Wavelength} \]
\[c = \text{Material Sound Velocity} \]
\[f = \text{Frequency} \]
\[T = \text{Period of time} \]

Table 1 on page 40 lists the longitudinal and shear wave velocities of materials that are commonly tested with ultrasounds.

d. Wave Propagation and Particle Motion

The most common methods of ultrasonic examination utilize either longitudinal waves or shear waves. Other forms of sound propagation exist, including surface waves and Lamb waves.

- The longitudinal wave is a compressional wave in which the particle motion is in the same direction as the propagation of the wave.
- The shear wave is a wave motion in which the particle motion is perpendicular to the direction of the propagation.
- Surface (Rayleigh) waves have an elliptical particle motion and travel across the surface of a material. Their velocity is approximately 90% of the shear wave velocity of the material and their depth of penetration is approximately equal to one wavelength.
- Plate (Lamb) waves have a complex vibration occurring in materials where thickness is less than the wavelength of ultrasound introduced into it.

Figure (3) provides an illustration of the particle motion versus the direction of wave propagation for longitudinal waves and shear waves.

Fig. 3
e. Applying Ultrasound

Ultrasonic nondestructive testing introduces high frequency sound waves into a test object to obtain information about the object without altering or damaging it in any way. Two basic quantities are measured in ultrasonic testing; they are time of flight or the amount of time for the sound to travel through the sample and amplitude of received signal. Based on velocity and round trip time of flight through the material the material thickness can be calculated as follows:

\[T = \frac{ct}{2} \]

\(T \) = Material Thickness
\(c \) = Material Sound Velocity
\(t_2 \) = Time of Flight

Measurements of the relative change in signal amplitude can be used in sizing flaws or measuring the attenuation of a material. The relative change in signal amplitude is commonly measured in decibels. Decibel values are the logarithmic value of the ratio of two signal amplitudes. This can be calculated using the following equation. Some useful relationships are also displayed in the table below;

\[dB = 20\log_{10}(A_1/A_2) \]

\(dB \) = Decibels
\(A_1 \) = Amplitude of signal 1
\(A_2 \) = Amplitude of signal 2

<table>
<thead>
<tr>
<th>(\frac{A_1}{A_2})</th>
<th>Ratio</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>70.71%</td>
<td>1.4142</td>
<td>3</td>
</tr>
<tr>
<td>100%</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>50%</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>25%</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>10%</td>
<td>100</td>
<td>40</td>
</tr>
</tbody>
</table>

f. Sensitivity and Resolution

- Sensitivity is the ability of an ultrasonic system to detect reflectors (or defects) at a given depth in a test material. The greater the signal that is received from these reflectors, the more sensitive the transducer system.
- Axial resolution is the ability of an ultrasonic system to produce simultaneous and distinct indications from reflectors located at nearly the same position with respect to the sound beam.
- Near surface resolution is the ability of the ultrasonic system to detect reflectors located close to the surface of the test piece.

2. ADVANCED DEFINITIONS AND FORMULAS

a. Transducer waveform and spectrum

Transducer waveform and spectrum analysis is done according to test conditions and definitions of ASTM E1065. Typical units are MHz for frequency analysis, microseconds for waveform analysis, and dB down from peak amplitude. Figure (4) illustrates waveform duration at the -14dB level or 20% amplitude of peak. The -40dB waveform duration corresponds to 1% amplitude of peak. Figure (5) illustrates peak frequency, upper and lower -6dB frequencies and MHz bandwidth measurements. The relation between MHz bandwidth and waveform duration is shown in Figure (6). The scatter is wider at -40dB because the 1% trailing end of the waveform contains very little energy and so has very little effect on the analysis of bandwidth. Because of the scatter it is most appropriate to specify waveforms in the time domain (microseconds) and spectrums in the frequency domain.

The approximate relations shown in Figure (6) can be used to assist in transducer selection. For example, if a -14dB waveform duration of one microsecond is needed, what frequency transducer should be selected? From the graph, a bandwidth of approximately 1 to 1.2MHz corresponds to approximately 1 microsecond -14dB waveform duration. Assuming a nominal 50% fractional bandwidth transducer, this calculates to a nominal center frequency of 2 to 2.4MHz. Therefore, a transducer of 2.25MHz or 3.5MHz may be applicable.
b. Acoustic Impedance, Reflectivity, and Attenuation

The acoustic impedance of a material is the opposition to displacement of its particles by sound and occurs in many equations. Acoustic impedance is calculated as follows:

\[Z = \rho c \]

where:
- \(Z \) = Acoustic Impedance
- \(\rho \) = Material Density
- \(c \) = Material Sound Velocity

The boundary between two materials of different acoustic impedances is called an acoustic interface. When sound strikes an acoustic interface at normal incidence, some amount of sound energy is reflected and some amount is transmitted across the boundary. The dB loss of energy on transmitting a signal from medium 1 into medium 2 is given by:

\[\text{dB loss} = 10 \log \left[\frac{4Z_1Z_2}{(Z_1 + Z_2)^2} \right] \]

where:
- \(Z_1 \) = Acoustic Impedance of First Material
- \(Z_2 \) = Acoustic Impedance of Second Material

For example: The dB loss on transmitting from water (\(Z = 1.48 \)) into 1020 steel (\(Z = 45.41 \)) is -9.13dB; this also is the loss transmitting from 1020 steel into water. The dB loss of the backwall echo in 1020 steel in water is -0.57dB; this also is the dB loss of the echo off 1020 steel in water. The waveform of the echo is inverted when \(Z_2 < Z_1 \).

Finally, ultrasound attenuates as it progresses through a medium. Assuming no major reflections, there are three causes of attenuation: diffraction, scattering, and absorption. The amount of attenuation through a material can play an important role in the selection of a transducer for an application.

c. Sound Field

The sound field of a transducer is divided into two zones; the near field and the far field. The near field is the region directly in front of the transducer where the echo amplitude goes through a series of maxima and minima and ends at the last maximum, at distance \(N \) from the transducer.

\[\text{Near Field Distance} = \frac{D^2}{4f} \]

where:
- \(D \) = Element Diameter
- \(f \) = Frequency
- \(c \) = Material Sound Velocity

(Fig. 7)

The location of the last maximum is known as the near field distance (\(N \) or \(Y^+ \)) and is the natural focus of the transducer. The far field is the area beyond \(N \) where the sound field pressure gradually drops to zero. Because of the variations within the near field it can be difficult to accurately evaluate flaws using amplitude based techniques. The near field distance is a function of the transducer frequency, element diameter, and the sound velocity of the test material as shown by Equation 8:

\[\text{Near Field Distance} = \frac{D^2}{4f} \]
Beam Spread and Half Angle

All ultrasonic beams diverge. In other words, all transducers have beam spread. Figure (10) gives a simplistic view of a sound beam for a flat transducer. In the near field, the beam has a complex shape that narrows. In the far field the beam diverges.

For flat transducers as shown in Figure (10), the -6dB pulse-echo beam spread angle is given by Equation (11):

\[
\sin \left(\frac{\alpha}{2} \right) = \frac{0.514c}{fD}
\]

\(\alpha/2 \) = Half Angle Spread between -6dB points

It can be seen from this equation that beam spread from a transducer can be reduced by selecting a transducer with a higher frequency or a larger element diameter or both.

3. DESIGN CHARACTERISTICS OF TRANSDUCERS

a. What is an Ultrasonic Transducer?

A transducer is any device that converts one form of energy to another. An ultrasonic transducer converts electrical energy to mechanical energy, in the form of sound, and vice versa. The main components are the active element, backing, and wear plate.

b. The Active Element

The active element, which is piezo or ferroelectric material, converts electrical energy such as an excitation pulse from a flaw detector into ultrasonic energy. The most commonly used materials are polarized ceramics which can be cut in a variety of manners to produce different wave modes. New materials such as piezo polymers and composites are also being employed for applications where they provide benefit to transducer and system performance.

c. Backing

The backing is usually a highly attenuative, high density material that is used to control the vibration of the transducer by absorbing the energy radiating from the back face of the active element. When the acoustic impedance of the backing matches the acoustic impedance of the active element, the result will be a heavily damped transducer that displays good range resolution but may be lower in signal amplitude. If there is a mismatch in acoustic impedance between the element and the backing, more sound energy will be reflected forward into the test material. The end result is a transducer that is lower in resolution due to a longer waveform duration, but may be higher in signal amplitude or greater in sensitivity.

d. Wear Plate

The basic purpose of the transducer wear plate is to protect the transducer element from the testing environment. In the case of contact transducers, the wear plate must be a durable and corrosion resistant material in order to withstand the wear caused by use on materials such as steel. For immersion, angle beam, and delay line transducers the wear plate has the additional purpose of serving as an acoustic transformer between the high acoustic impedance of the active element and the water, the wedge or the delay line all of which are of lower acoustic impedance. This is accomplished by selecting a matching layer that is 1/4 wavelength thick (\(\lambda/4 \)) and of the desired acoustic impedance (the active element is nominally 1/2 wavelength). The choice of the wear surface thickness is based upon the idea of superposition that allows waves generated by the active element to be in phase with the wave reverberating in the matching layer as shown in Figure (4).

When signals are in phase, their amplitudes are additive, thus a greater amplitude wave enters the test piece. Figure (12) shows the active element and the wear plate, and when they are in phase. If a transducer is not tightly controlled or designed with care and the proper materials and the sound waves are not in phase, it causes a disruption in the wavefront.
4. TRANSDUCER SPECIFIC PRINCIPLES

a. Dual Element Transducers

Dual element transducers utilize separate transmitting and receiving elements, mounted on delay lines that are usually cut at an angle (see diagram on page 6). This configuration improves near surface resolution by eliminating main bang recovery problems. In addition, the crossed beam design provides a pseudo focus that makes duals more sensitive to echoes from irregular reflectors such as corrosion and pitting.

One consequence of the dual element design is a sharply defined distance amplitude curve. In general, a decrease in the roof angle or an increase in the transducer element size will result in a longer pseudo-focal distance and an increase in useful range, as shown in Figure (13).

Fig. 13

b. Angle Beam Transducers

Angle beam transducers use the principles of refraction and mode conversion to produce refracted shear or longitudinal waves in the test material as shown in Figure (14).

Fig. 14

The incident angle necessary to produce a desired refracted wave (i.e., a 45° shear wave in steel) can be calculated from Snell’s Law as shown in Equation (12). Because of the effects of beam spread, this equation doesn’t hold at low frequency and small active element size. Contact Panametrics for details concerning these phenomena.

Eqn. 12

\[
\sin \theta_i = \frac{\sin \theta_r c_{rl}}{c_i} = \frac{\sin \theta_r c_{rs}}{c_{rs}}
\]

\(\theta_i \) = Incident Angle of the Wedge
\(\theta_r \) = Angle of the Refracted Longitudinal Wave
\(\theta_{rs} \) = Angle of the Refracted Shear Wave
\(c_i \) = Velocity of the Incident Material (Longitudinal)
\(c_{rl} \) = Material Sound Velocity (Longitudinal)
\(c_{rs} \) = Velocity of the Test Material (Shear)

Figure (15) shows the relationship between the incident angle and the relative amplitudes of the refracted or mode converted longitudinal, shear, and surface waves that can be produced from a plastic wedge into steel.

Fig. 15

Angle beam transducers are typically used to locate and/or size flaws which are oriented non-parallel to the test surface. Following are some of the common terms and formulas used to determine the location of a flaw.

Fig. 16

\[\text{Skip Distance} = 2T \times \tan \theta_h \]

\[\text{Surface Distance} = \sin \theta_h \times \text{Sound path} \]

\[\text{Depth (1st Leg)} = \cos \theta_h \times \text{Sound path} \]

\[\text{Depth (2nd Leg)} = 2T \times [\cos \theta_h \times \text{Sound path}] \]
Many AWS inspections are performed using refracted shear waves. However, grainy materials such as austenitic stainless steel may require refracted longitudinal waves or other angle beam techniques for successful inspections.

c. Delay Line Transducers

Delay line transducers are single element longitudinal wave transducers used in conjunction with a replaceable delay line. One of the reasons for choosing a delay line transducer is that near surface resolution can be improved. The delay allows the element to stop vibrating before a return signal from the reflector can be received. When using a delay line transducer, there will be multiple echoes from end of the delay line and it is important to take these into account.

Another use of delay line transducers is in applications in which the test material is at an elevated temperature. The high temperature delay line options listed in this catalog (pg. 13, 15) are not intended for continuous contact, they are meant for intermittent contact only.

d. Immersion Transducers

Immersion transducers offer three major advantages over contact transducers:

- Uniform coupling reduces sensitivity variations.
- Reduction in scan time due to automated scanning.
- Focusing of immersion transducers increases sensitivity to small reflectors.

Focusing Configurations

Immersion transducers are available in three different configurations: unfocused ("flat"), spherically ("spot") focused, and cylindrically ("line") focused. Focusing is accomplished by either the addition of a lens or by curving the element itself. The addition of a lens is the most common way to focus a transducer.

An unfocused transducer may be used in general applications or for penetration of thick materials. A spherically focused transducer is commonly used to improve sensitivity to small flaws and a cylindrical focus is typically used in the inspection of tubing or bar stock. Examples of spherical and cylindrical focusing are shown in Figure (17).

This change in the focal length can be predicted by Equation (13). For example, given a particular focal length and material path, this equation can be used to determine the appropriate water path to compensate for the focusing effect in the test material.

Focal Length Variations due to Acoustic Velocity and Geometry of the Test Part

The measured focal length of a transducer is dependent on the material in which it is being measured. This is due to the fact that different materials have different sound velocities. When specifying a transducer's focal length it is typically specified for water. Since most materials have a higher velocity than water, the focal length is effectively shortened. This effect is caused by refraction (according to Snell's Law) and is illustrated in Figure (18).

By definition, the focal length of a transducer is the distance from the face of the transducer to the point in the sound field where the signal with the maximum amplitude is located. In an unfocused transducer, this occurs at a distance from the face of the transducer which is approximately equivalent to the transducer's near field length. Because the last signal maximum occurs at a distance equivalent to the near field, a transducer, by definition, can not be acoustically focused at a distance greater than its near field.
Focusing Gain

Focused immersion transducers use an acoustic lens to effectively shift the location of the Y₀ toward the transducer face. The end result can be a dramatic increase in sensitivity. Figure (19) illustrates the relative increase in signal amplitude from small defects due to focusing where SF is the normalized focal length and is given by Equation (14). The amplitude from a small defect cannot exceed the echo amplitude from a flat plate.

\[SF = \frac{F}{N} \]

Eqn. 14

- \(SF \) = Normalized Focal Length
- \(F \) = Focal Length
- \(N \) = Near Field

Fig. 19

For example, the chart can be used to determine the increase in on-axis pulse-echo sensitivity of a 2.25MHz, 1.0” element diameter transducer that is focused at 4 inches. The near field length of this transducer is 9.55", and the normalized focal length is 0.42 (4.0”/9.55”). From the chart it can be seen that this will result in an increase in sensitivity of approximately 21dB.

Focusing gain (dB) for cylindrical focuses can be estimated as being 3/4 of the gain for spherical focuses.

5. TRANSDUCER EXCITATION

As a general rule, all Panametrics ultrasonic transducers are designed for negative spike excitation. The maximum spike excitation voltages should be limited to approximately 50 volts per mil of piezoelectric transducer thickness. Low frequency elements are thick, and high frequency elements are thin. A negative-going 600 volt fast rise time, short duration, spike excitation can be used across the terminals on transducers 5.0MHz and lower in frequency. For 10MHz transducers, the voltage used across the terminals should be halved to about 300 volts as measured across the terminals.

Although negative spike excitation is recommended, continuous wave or tone burst excitations may be used. However there are limitations to consider when using these types of excitation. First, the average power dissipation to the transducer should not exceed 125mW to avoid overheating the transducer and depoling the crystal. Since total average power depends on a number of factors such as voltage, duty cycle and transducer electrical impedance, the following equations can be used to estimate the maximum excitation duration as well as the number of cycles in a burst to stay within the total power limitation:

\[V_{rms} = \frac{1}{\sqrt{2}} \left(\frac{V_{p-p}}{2} \right) \]

Eqn. 18

\[P_{tot} = (\text{Duty Cycle}) \left(\left(\frac{V_{rms}}{Z} \right)^2 \right) \cos(\text{phase angle}) \]

Eqn. 19

\[\text{No. of Cycles in a Burst} = \left(\frac{\text{Freq.}}{\text{Duty Cycle}} \right) \]

Eqn. 20

Following is an example of how to use the above equations to calculate a duty cycle and number of cycles for a V310-SU transducer.

V310-SU

5.0MHz, 0.25” element diameter, unfocused

Assuming:

- 100 V Peak-to-Peak
- 50 ohm nominal impedance at the transducer input impedance (Note: This value will vary from transducer to transducer and should be measured. An impedance plot can be ordered at the time of purchase if necessary.)
- -45° Phase Angle
- 5KHz Rep Rate

Step 1: Calculate \(V_{rms} \)

\[V_{rms} = \frac{1}{\sqrt{2}} \left(\frac{100}{2} \right) = 35.35 \text{ V} \]

\[V_{rms} = \frac{1}{\sqrt{2}} \left(\frac{100}{2} \right) = 35.35 \text{ V} \]

Normal Incidence Shear Wave Transducers

Normal Incidence Shear Wave transducers incorporate a shear wave crystal in a contact transducer case. Rather than using the principles of refraction, as with the angle beam transducers, to produce shear waves in a material, the crystal itself produces the shear wave.

Typically these transducers are used to make shear velocity measurements of materials. This measurement, along with a longitudinal velocity measurement can be used in the calculation of Poisson’s Ratio, Young’s Modulus, and Shear Modulus. These formulas are listed below for reference.

\[\sigma = \frac{1 - 2\left(\frac{V_L}{V_T} \right)^2}{2 - \left(\frac{V_L}{V_T} \right)^2} \]

Eqn. 15

\[E = \frac{V_T^2 \rho (1 - \sigma)(1 - 2\sigma)}{(1 - \sigma)} \]

Eqn. 16

\[G = \frac{V_T^2 \rho}{1 - \sigma} \]

Eqn. 17

- \(\sigma \) = Poisson’s Ratio
- \(V_L \) = Longitudinal Velocity
- \(V_T \) = Shear (Transverse) Velocity
- \(\rho \) = Material Density
- \(E \) = Young’s Modulus
- \(G \) = Shear Modulus

Because shear waves do not propagate in liquids, it is necessary to use a very viscous couplant when making measurements with these. When using this type of transducer in a through transmission mode application, it is important that direction of polarity of each of the transducers is in line with the other. If the polarities are 90° off, the receiver may not receive the signal from the transmitter.

e. Normal Incidence Shear Wave Transducers

Normal Incidence Shear Wave transducers incorporate a shear wave crystal in a contact transducer case. Rather than using the principles of refraction, as with the angle beam transducers, to produce shear waves in a material, the crystal itself produces the shear wave.

Typically these transducers are used to make shear velocity measurements of materials. This measurement, along with a longitudinal velocity measurement can be used in the calculation of Poisson’s Ratio, Young’s Modulus, and Shear Modulus. These formulas are listed below for reference.
Step 2: Rearrange Equation (19) to solve for the Duty Cycle. Use 0.125mW as P_{tot}, as this is the maximum recommended for any transducer.

\[\text{Duty Cycle} = \frac{Z \cdot P_{tot} (V_{rms})^2 \cdot \cos(\text{phase angle})}{(50)(0.125)/(35.35)^2 \cdot (\cos -45^\circ)} \]

\[= 0.007\text{s/s} \]

This means 7 milliseconds of excitation in every 1000 milliseconds.

Step 3: Number of cycles in the burst can now be calculated from Equation (20).

\[\text{No. Of Cycles in Burst} = \frac{(\text{Freq.})(\text{Duty Cycle})}{\text{Rep Rate}} \]

\[= \frac{(5 \cdot 10^6)(0.007)}{5 \cdot 10^3} \]

\[\text{No. Of Cycles in Burst} = 7 \]

6. CABLES

The inside of a cable is made of three main components. They are the conductor, the dielectric, and shield/braid. These components are then surrounded by an outer protective jacket. Figure (20) shows a cross-sectional view of a typical cable. The conductor acts as the positive connection of the cable while the shield acts as the ground. The dielectric isolates the conductor from the shield.

![Fig. 20](image)

Most cables have one shielding/braided layer. However, to better prevent electrical interference from the environment double shielded cables have an additional shielding/braided layer in contact with the other.

The following is a list of standard cable grades Panametrics offers:

<table>
<thead>
<tr>
<th>Type</th>
<th>Grade</th>
<th>Impedance</th>
<th>Nominal Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Low Impedance</td>
<td>15 ohms</td>
<td>0.11"</td>
</tr>
<tr>
<td>25</td>
<td>Low Impedance</td>
<td>25 ohms</td>
<td>0.10"</td>
</tr>
<tr>
<td>58</td>
<td>RG58/U</td>
<td>50 ohms</td>
<td>0.20"</td>
</tr>
<tr>
<td>62</td>
<td>RG62/U</td>
<td>93 ohms</td>
<td>0.24"</td>
</tr>
<tr>
<td>74</td>
<td>RG174/U</td>
<td>50 ohms</td>
<td>0.11"</td>
</tr>
<tr>
<td>188</td>
<td>RG188/U</td>
<td>50 ohms</td>
<td>0.11"</td>
</tr>
<tr>
<td>316</td>
<td>RG316/U</td>
<td>50 ohms</td>
<td>N/A</td>
</tr>
</tbody>
</table>

RG/U is the abbreviation for “radio guide, universal” in the military, ‘RG” is the designation for coaxial cable and “U” stands for “general utility”. Most of the cables used in ultrasonic NDT have military RG numbers that define the materials, dimensions, and electrical characteristics of the cables.

The characteristic impedance of a coaxial cable is determined by the ratio for the inner diameter of the outer conductor (D) to the outer diameter of the inner conductor (d) and by the dielectric constant (E) of the insulating material between the conductors.

\[\text{Eqn. 21} \quad \text{Impedance (Zo)} = \frac{138}{\log (D/d)} \Omega \]

The characteristic impedance can also be calculated from the capacitance (C) and the inductance (L) per unit length of cable

\[\text{Eqn. 22} \quad \text{Impedance (Zo)} = \sqrt{\frac{L}{C}} \]

The most common values for coaxial cables are 50 ohm, 75 ohm, and 95 ohm. Note that the actual input impedance at a particular frequency may be quite different from the characteristics impedance of the cable due to the impedance of the source and load. In ultrasonics, on transmit the source is the pulser and the load is the transducer; on receive the source is the transducer and the load is the receiver. The complex impedance of the pulser and the transducers will reflect some of the electrical energy at each end of the cable. The amount of reflection is determined by the length of the cable, the frequency of the RF signal, and the electrical impedance of the cable and its termination. In ultrasonic NDT the effect of the cable is most practically determined by experimenting with the shorter and longer cables, with cables of differing impedance, and by placing a 50 ohm feed-through attenuator at the pulser/receiver jack.

Through this site you can access the latest information on our ultrasonic testing instruments and transducers, with links to an extensive Application Notes section, tradeshow listing, and technical papers.
Conversion Factor: \(1 \text{ m/s} = 3.937 \times 10^{-5} \text{ in/µS} \)

Near Field Distances of Flat Transducers in Water

The near field values in this table have been determined using the following equation:

\[N = \frac{D^2}{4\lambda} \left[1 - \left(\frac{D}{2\lambda} \right)^2 \right] \]

Note that equations 8 and 8A on page 34 were derived from this expression. The calculations were carried out assuming an ultrasonic velocity in water of 0.586 \(\times 10^8 \text{ in/sec at 22°C} \) and using the actual transducer element diameters. It should be noted that the actual transducer element diameters are slightly smaller than the nominal element diameters listed in the catalogs.

The minimum and maximum practical focal lengths have been calculated by considering the acoustic and mechanical limitations of each configuration. These limitations are a function of transducer frequency, element diameter, and case dimensions. There may be exceptions to the limits listed in the table.

Panametics' Standard Case Style, Large Diameter Case Style, Slim Line Case Style, and Pencil Case Style Immersion Transducers with straight connectors (see pages 16, 17, and 18) can be focused between the Minimum and Maximum Point Target Focal (PTF) distance limits listed in Table 2. Please consult Panametics before ordering a transducer focused outside these limits.

Consideration should be given to attenuation effects which increase linearity and with the square of frequency and the square of bandwidth. In applications where long water paths are required the effects of frequency dependent attenuation should be checked per ASTM E 1065 Annex A7. It is advisable to consider the effects of frequency dependent attenuation if the focal distance equals or exceeds the following values:

Panametics' Standard Case Style, Large Diameter Case Style, Slim Line Case Style, and Pencil Case Style Immersion Transducers with straight connectors (see pages 16, 17, and 18) can be focused between the Minimum and Maximum Point Target Focal (PTF) distance limits listed in Table 2. Please consult Panametics before ordering a transducer focused outside these limits.

Table 1: Acoustic Properties of Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Longitudinal Velocity (in/µs)*</th>
<th>Shear Velocity (in/µs)*</th>
<th>Acoustic Impedance (Kg/m²s x 10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylic resin</td>
<td>0.107</td>
<td>2.730</td>
<td>3.22</td>
</tr>
<tr>
<td>(Perspex®)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.249</td>
<td>6.320</td>
<td>17.06</td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.508</td>
<td>12.900</td>
<td>23.5</td>
</tr>
<tr>
<td>Brass, naval</td>
<td>0.174</td>
<td>4.430</td>
<td>37.30</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.109</td>
<td>2.780</td>
<td>24.02</td>
</tr>
<tr>
<td>Columbium</td>
<td>0.194</td>
<td>4.920</td>
<td>42.16</td>
</tr>
<tr>
<td>Copper</td>
<td>0.183</td>
<td>4.660</td>
<td>41.61</td>
</tr>
<tr>
<td>Glycerine</td>
<td>0.076</td>
<td>1.920</td>
<td>—</td>
</tr>
<tr>
<td>Gold</td>
<td>0.128</td>
<td>3.240</td>
<td>62.60</td>
</tr>
<tr>
<td>Inconel®</td>
<td>0.229</td>
<td>5.820</td>
<td>49.47</td>
</tr>
<tr>
<td>Iron, cast (slow)</td>
<td>0.138</td>
<td>3.500</td>
<td>25.00</td>
</tr>
<tr>
<td>(fast)</td>
<td>0.220</td>
<td>5.600</td>
<td>40.00</td>
</tr>
<tr>
<td>Lead</td>
<td>0.085</td>
<td>2.160</td>
<td>24.49</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.183</td>
<td>4.660</td>
<td>34.44</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.057</td>
<td>1.450</td>
<td>19.66</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.246</td>
<td>6.250</td>
<td>63.75</td>
</tr>
<tr>
<td>Motor Oil (SAE 20 or 30)</td>
<td>0.069</td>
<td>1.740</td>
<td>—</td>
</tr>
<tr>
<td>Nickel, pure</td>
<td>0.222</td>
<td>5.630</td>
<td>49.99</td>
</tr>
<tr>
<td>Platinum</td>
<td>0.156</td>
<td>3.960</td>
<td>94.74</td>
</tr>
<tr>
<td>Polyamide, (nylon, Perlon®) (slow)</td>
<td>0.087</td>
<td>2.200</td>
<td>2.40</td>
</tr>
<tr>
<td>(fast)</td>
<td>0.102</td>
<td>2.600</td>
<td>3.10</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>0.092</td>
<td>2.340</td>
<td>2.47</td>
</tr>
<tr>
<td>Polyvinylchloride, PVC, hard</td>
<td>0.094</td>
<td>2.395</td>
<td>3.35</td>
</tr>
<tr>
<td>Silver</td>
<td>0.142</td>
<td>3.600</td>
<td>37.76</td>
</tr>
<tr>
<td>Steel, 1020</td>
<td>0.232</td>
<td>5.890</td>
<td>45.63</td>
</tr>
<tr>
<td>Steel, 4340</td>
<td>0.230</td>
<td>5.850</td>
<td>45.63</td>
</tr>
<tr>
<td>Steel, 302</td>
<td>0.223</td>
<td>5.660</td>
<td>45.10</td>
</tr>
<tr>
<td>austenitic stainless</td>
<td>0.226</td>
<td>5.740</td>
<td>45.40</td>
</tr>
<tr>
<td>Steel, 347</td>
<td>0.226</td>
<td>5.740</td>
<td>45.40</td>
</tr>
<tr>
<td>austenitic stainless</td>
<td>0.226</td>
<td>5.740</td>
<td>—</td>
</tr>
<tr>
<td>Tin</td>
<td>0.131</td>
<td>3.320</td>
<td>24.20</td>
</tr>
<tr>
<td>Titanium, Ti 150A</td>
<td>0.240</td>
<td>6.100</td>
<td>27.69</td>
</tr>
<tr>
<td>Tungsten</td>
<td>0.204</td>
<td>5.180</td>
<td>99.72</td>
</tr>
<tr>
<td>Uranium</td>
<td>0.133</td>
<td>3.370</td>
<td>63.02</td>
</tr>
<tr>
<td>Water (20°C)</td>
<td>0.058</td>
<td>1.480</td>
<td>1.48</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.164</td>
<td>4.170</td>
<td>29.61</td>
</tr>
<tr>
<td>Zirconium</td>
<td>0.183</td>
<td>4.650</td>
<td>30.13</td>
</tr>
</tbody>
</table>

* Conversion Factor: \(1 \text{ m/s} = 3.937 \times 10^{-5} \text{ in/µS} \)

Table 2: Near Field Distances of Flat Transducers in Water

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Element Diameter (Inches)</th>
<th>N</th>
<th>Focal Length (PTF)* **</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.75</td>
<td>1.164</td>
<td>1.25</td>
</tr>
<tr>
<td>1.0</td>
<td>0.75</td>
<td>2.372</td>
<td>1.00</td>
</tr>
<tr>
<td>2.25</td>
<td>0.75</td>
<td>3.564</td>
<td>1.00</td>
</tr>
<tr>
<td>3.5</td>
<td>0.50</td>
<td>3.699</td>
<td>0.83</td>
</tr>
<tr>
<td>5.0</td>
<td>0.50</td>
<td>5.287</td>
<td>0.75</td>
</tr>
<tr>
<td>7.5</td>
<td>0.50</td>
<td>7.933</td>
<td>0.75</td>
</tr>
<tr>
<td>10</td>
<td>0.50</td>
<td>10.579</td>
<td>0.75</td>
</tr>
<tr>
<td>15</td>
<td>0.375</td>
<td>8.427</td>
<td>0.60</td>
</tr>
<tr>
<td>20</td>
<td>0.50</td>
<td>21.243</td>
<td>1.95</td>
</tr>
<tr>
<td>25</td>
<td>0.25</td>
<td>23.868</td>
<td>1.00</td>
</tr>
</tbody>
</table>

** Panametics' Standard Case Style, Large Diameter Case Style, Slim Line Case Style, and Pencil Case Style Immersion Transducers with straight connectors (see pages 16, 17, and 18) can be focused between the Minimum and Maximum Point Target Focal (PTF) distance limits listed in Table 2. Please consult Panametics before ordering a transducer focused outside these limits.**

‡ Consideration should be given to attenuation effects which increase linearity and with the square of frequency and the square of bandwidth. In applications where long water paths are required the effects of frequency dependent attenuation should be checked per ASTM E 1065 Annex A7. It is advisable to consider the effects of frequency dependent attenuation if the focal distance equals or exceeds the following values:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Focal Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0MHz</td>
<td>13 in.</td>
</tr>
<tr>
<td>7.5MHz</td>
<td>6 in.</td>
</tr>
<tr>
<td>10MHz</td>
<td>3.5 in.</td>
</tr>
<tr>
<td>15MHz</td>
<td>1.5 in.</td>
</tr>
<tr>
<td>20MHz</td>
<td>0.8 in.</td>
</tr>
<tr>
<td>25MHz</td>
<td>0.5 in.</td>
</tr>
<tr>
<td>30MHz</td>
<td>0.4 in.</td>
</tr>
</tbody>
</table>