SL1461
WIDEBAND PLL FM DEMODULATOR

The SL1461 is a wideband PLL FM demodulator, intended primarily for application in satellite tuners.

The device contains all elements necessary, with the exception of external oscillator sustaining network and loop feedback components, to form a complete PLL system operating at frequencies up to 800MHz.

An AFC with window adjust is provided, whose output signal can be used to correct for any frequency drift at the head end local oscillator.

FEATURES
- Single chip PLL system for wideband FM demodulation
- Simple low component count application
- Allows for application of threshold extension
- Fully balanced low radiation design
- High operating input sensitivity
- AGC detect and bias adjust
- 75Ω video output drive with low distortion levels
- Dynamic self biasing analog AFC
- Full ESD protection *

* Normal ESD handling procedures should be observed

APPLICATIONS
- Satellite receiver systems
- Data communications systems

ORDERING INFORMATION
SL1461S/KG/MPAS

Fig. 1 Pin connections top view

Fig. 2 SL1461 block diagram
ELECTRICAL CHARACTERISTICS
$T_{\text{amb}}=–20^°\text{C to } +80^°\text{C}, V_{\text{CC}}=+4.5\text{V to } +5.5\text{V}$. These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage unless otherwise stated.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current</td>
<td>36</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>300</td>
<td>800</td>
<td>MHz</td>
</tr>
<tr>
<td>Input sensitivity</td>
<td>–40</td>
<td>–</td>
<td>dBm</td>
</tr>
<tr>
<td>Input overload</td>
<td>0</td>
<td>–</td>
<td>dBm</td>
</tr>
<tr>
<td>VCO sensitivity (dF/dV)</td>
<td>25</td>
<td>32</td>
<td>39 MHz/V</td>
</tr>
<tr>
<td>VCO linearity</td>
<td>.25</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>Phase detector gain</td>
<td>0.5</td>
<td>–</td>
<td>V/rad</td>
</tr>
<tr>
<td>Loop amplifier input impedance</td>
<td>450</td>
<td>570</td>
<td>700 Ω</td>
</tr>
<tr>
<td>Loop amplifier output impedance</td>
<td>25</td>
<td>–</td>
<td>Ω</td>
</tr>
<tr>
<td>Loop amplifier open loop gain</td>
<td>38</td>
<td>–</td>
<td>Ω</td>
</tr>
<tr>
<td>Loop amplifier gain bandwidth product</td>
<td>240</td>
<td>–</td>
<td>MHz</td>
</tr>
<tr>
<td>Loop amplifier output swing</td>
<td>–</td>
<td>1.2</td>
<td>Vp–p</td>
</tr>
<tr>
<td>Video drive output impedance</td>
<td>55</td>
<td>75</td>
<td>95 Ω</td>
</tr>
<tr>
<td>Luminance nonlinearity</td>
<td>1.9</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>– differential gain</td>
<td>0.5</td>
<td>2.5</td>
<td>%</td>
</tr>
<tr>
<td>– differential phase</td>
<td>1.0</td>
<td>3</td>
<td>Degree</td>
</tr>
<tr>
<td>– intermodulation</td>
<td>–40</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>– Signal/noise</td>
<td>66</td>
<td>72</td>
<td>dB</td>
</tr>
<tr>
<td>– Tilt</td>
<td>0.3</td>
<td>3</td>
<td>%</td>
</tr>
<tr>
<td>– baseline distortion</td>
<td>0.4</td>
<td>2</td>
<td>%</td>
</tr>
<tr>
<td>AGC output current</td>
<td>10</td>
<td>400</td>
<td>μA</td>
</tr>
<tr>
<td>AGC bias current</td>
<td>0</td>
<td>250</td>
<td>μA</td>
</tr>
<tr>
<td>AFC window current</td>
<td>0</td>
<td>400</td>
<td>μA</td>
</tr>
<tr>
<td>AFC charge pump current</td>
<td>0</td>
<td>50</td>
<td>μA</td>
</tr>
<tr>
<td>AFC leakage current</td>
<td>–</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>AFC output saturation voltage</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1. Product of input modulation f_1 at 4.43MHz, 13.5MHz p–p deviation and f_2 at 6MHz p–p deviation, (PAL chroma and sound subcarriers).

Note 2. Ratio of output video signal with input modulation at 1MHz, 13.5MHz p–p deviation, to output rms noise in 6MHz bandwidth with no input modulation.

Note 3 Input test signal pre–emphasised video 13.5MHz p–p deviation. Output voltage 600mV pk–pk.

Note 4 See page 3
The video drive characteristics measurements were made using the above test configuration. The maximum figures recorded in the Electrical Characteristics Table coincide with high temperatures and extremes of supply voltage. No adjustment to the recorded figures has been made to compensate for the effects of temperature on the external components of the application test board, in particular the varactor diodes. If operation of the device at high ambient temperatures is envisaged then attention to temperature compensation of the external circuitry will result in performance figures closer to the stated typical figures.

Note 4.

ABSOLUTE MAXIMUM RATINGS

All voltages are referred to \(V_{EE} \) at 0V.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>RF input voltage</td>
<td></td>
<td>2.5</td>
<td>V p–p</td>
<td></td>
</tr>
<tr>
<td>RF input DC offset</td>
<td>-0.3</td>
<td>(V_{DC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Oscillator +&–DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Video +&–DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Video feedback +&–DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Video output DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AFC pump DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AFC disable DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AFC deadband DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AGC bias DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AGC output DC offset</td>
<td>-0.3</td>
<td>(V_{CC}+0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-55</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>MP16 package thermal resistance, chip to ambient</td>
<td></td>
<td>111</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
SL1461

ABSOLUTE MAXIMUM RATINGS cont.

All voltages are referred to V_{EE} at 0V.

<table>
<thead>
<tr>
<th></th>
<th>MP16 package thermal resistance</th>
<th>Power consumption at 5.5V</th>
<th>ESD protection – pins 1 to 15</th>
<th>ESD protection – pin 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>chip to case</td>
<td></td>
<td></td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41°C/W</td>
<td>250 mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 kV Mil–std –883 method 3015 class1</td>
<td>1.7 kV Mil–std –883 method 3015 class1</td>
</tr>
</tbody>
</table>

Fig.3. Standard application circuit with oscillator referenced to ground

Fig.3a Application circuit used for video drive characterisation measurements

...
FUNCTIONAL DESCRIPTION

The SL1461 is a wideband PLL FM demodulator, optimised for application in satellite receiver systems and requiring a minimum external component count. It contains all the elements required for construction of a phase locked loop circuit, with the exception of tuning components for the local oscillator, and an AFC detector circuit for generation of error signal to correct for any frequency drift in the outdoor unit local oscillator. A block diagram is contained in Fig. 2 and the typical application in Fig. 3.

The internal pin connections are contained in Fig.6/6a.

In normal applications the second satellite IF frequency of typically 402 or 479.5MHz is fed to the RF preamplifier, which has a working sensitivity of typically –40 dBm, depending on application and layout. The preamplifier contains an RF level detect circuit, which generates an AGC signal that can be used for controlling the gain of the IF amplifier stages, so maintaining a fixed level to the RF input of the SL1461, for optimum threshold performance. The bias point of the AGC circuit can be adjusted to cater for variation in AGC line voltage requirement and device input power. The typical AGC curves are shown in Fig. 9.

The output of the preamplifier is fed to the mixer section which is of balanced design for low radiation. In this stage the RF signal is mixed with the local oscillator frequency, which is generated by an on-board oscillator. The oscillator block uses an external varactor tuned sustaining network and is optimised for high linearity over the normal deviation range. A typical frequency versus voltage characteristic for the oscillator is contained in Fig. 7. The loop output is designed to compensate for first order temperature variation effects; the typical stability is shown in Fig. 8.

The output of the mixer is then fed to the loop amplifier around which feedback is applied to determine loop transfer characteristic. Feedback can be applied either in differential or single ended mode; if the appropriate phase detector gains are assumed in calculating loop filters, both modes should give the same loop response.

The loop amplifier drives a 75Ω output impedance buffer amplifier, which can either be connected to a 75Ω load or used to drive a high input impedance stage giving greater linearity and approximately 6dB higher demodulated signal output level.

DESIGN OF PLL LOOP PARAMETERS

Design Diagram:

![Design Diagram]

The SL1461 is normally used as a type 1 second order loop and can be represented by the above diagram. For such a system the following parameters apply:

\[\tau_1 = C_1.R1 \]
\[\tau_2 = C_1.R2 \]
and

\[\tau_1 = \frac{K_0.K_D}{\omega_n^2} \]
\[\tau_2 = \frac{2\zeta}{\omega_n} \]

where:
- \(K_0 \) is the VCO gain in radian seconds per volt
- \(K_D \) is the phase detector gain in volts per radian
- \(\omega_n \) is the natural loop bandwidth
- \(\zeta \) is the loop damping factor
- \(R_1 \) is loop amplifier input impedance

Note: \(K_O \) is dependant on sensitivity of VCO used.

\(K_D = 0.25V/\text{rad single ended}, 0.5V/\text{rad differential} \)

From these factors the loop 3dB bandwidth can be determined from the following expression:

\[\omega_{3dB}^2 = \omega_n^2(2\zeta^2 + 1) \pm \omega_n^2(2\zeta^2 + 1)^2 + 1 \]

Which approximates to \(\omega_{3dB} = 2\omega_n \) when \(\zeta = \frac{1}{\sqrt{2}} \)
The SL1461 contains an analog frequency error detect circuit, which generates DC voltage proportional to the integral of frequency error. If the incident RF is high then the AFC voltage increases, if low then the voltage decreases. The AFC voltage can then be converted by an ADC to be read by the micro controller for frequency fine tuning; if used in an I²C system it is recommended the device is used with either the SP5055 or SP5056 frequency synthesiser which contains an internal ADC readable via the I²C bus.

The voltage corresponding to frequency alignment is arbitrary and user defined; if used with the SP5055 it is suggested the aligned voltage is 0.375 V_CC, corresponding to the centre code of the ADC on port 6.

The AFC detect circuit contains a deadband centred around the aligned frequency. The deadband can be adjusted from zero window to approximately 25MHz width assuming an oscillator dF/dV of 15MHz/V. If the incident RF is within this window the AFC voltage does not integrate, except by component leakage.

With reference to Fig.5; in normal operation the demodulated video is fed to a dual comparator where it is compared with two reference voltages, corresponding to the extremes of the deadband, or window. These voltages are variable and set by the window adjust input.

The comparators produce two digital outputs corresponding to voltages above or below the voltage window, or frequency above or below deadband. These digital control signals are used to control a complimentary current source pump. The current signals are then fed to the input of an amplifier which is arranged as an integrator, so integrating the pulses into a DC voltage.

If the frequency is correctly aligned both the current source and sink are disabled, therefore the DC output voltage remains constant. There will be a small drift due to component leakage; the maximum drift can be calculated from:

\[
\frac{dv}{dt} = \frac{1}{2500C} \\
I = \frac{V_{CC}}{R_{EXT}} \\
C = C_{EXT}
\]

![Fig. 5 AFC system block diagram](image-url)
AGC output

AGC output

AGC bias adjust

AGC bias adjust

RF inputs

RF inputs

AFC window adjust

AFC window adjust

AFC output stage

AFC output stage

Video amp outputs

Video amp outputs

Fig. 6 SL1461 I/O port internal circuitry
Local oscillator

Video amp feedback inputs

Video output drive

Fig. 6a SL1461 I/O port internal circuitry

Fig. 7 Typical VCO frequency vs DC control voltage

Fig. 8 SL1461 VCO centre frequency uncompensated temperature stability.
APPLICATION NOTES

Capture range
Under conditions when there is no RF input signal present, the SL461 may react to spurious radiation from the free running oscillator coupling into the RF inputs. Because of the constant phase error between the VCO input to the phase detector and the spuriously coupled signal via the RF input, the phase comparator will drive the control voltage to either the bottom or the top of the range.
In such a case, the capture range will be asymmetrical about the VCO free running frequency, since any control voltage will only be able to tune the VCO in one direction if the tuning voltage is already at the max or min.
This effect can be avoided by driving the RF input differentially or achieving good common mode rejection to the VCO signal.
The lock range is independent of the above effects and will be symmetric about the centre of the phase detector S-curve provided the VCO is correctly aligned.

EXAMPLE
Loop out of lock
Tuning voltage = 4.3V (maximum)
frequency = 520MHz (maximum)
It is only possible to capture signals below this frequency since the VCO is already at its maximum frequency.
Testing of capture range should be done with the device operating under normal conditions. An input signal of between –35dBm to –10dBm is suitable for such a measurement.

Lock range
Lock range should be symmetric about the centre of the S-curve. When the oscillator is sitting in the centre of the S-curve, the two video outputs will be at the same DC voltage.
RF oscillator design
The standard application circuit for the SL461 is shown in Fig.3 The layout of the VCO tank should follow normal good RF techniques – i.e. as compact as possible. This will minimise parasitics, thus giving improved VCO linearity and stability. The PCB layout used for testing purpose is shown in Fig. 11.

Setting up of oscillator
The VCO should be set up so that the desired input RF frequency is at the centre of the lock range. This will coincide with the centre of the S-curve and the point at which the AFC toggles when set to zero deadband.
The easiest way to centralise the VCO is to input an RF carrier which is being modulated by a low frequency squarewave. The tuning coil(s) should be adjusted until the AFC voltage toggles between 0.2V and VCC–0.7V. The smaller the FM deviation of the squarewave used, the more accurate the setting will be.
A pre-emphasised video input containing black to white transitions can also be used for this setting, since the DC content in a pre-emphasised video is much less than that in non-pre-emphasised video. This is important as any DC content in the input waveform will introduce an offset in the AFC transition point.
The setting can be confirmed by measuring the DC voltage on the two video outputs, the voltages should be the same when the oscillator is centred around the incoming frequency. This DC measurement must be carried out with an unmodulated carrier of the required frequency. Modulation must not be present, since by definition, the DC voltages would be changing, thus making accurate measurement difficult.
NOTES
Circuit schematic is shown in Fig. 3.

Fig. 11 Layout of demo board with oscillator referenced to GND
PACKAGE DETAILS

Dimensions are shown thus: mm (in). For further package information please contact your local Customer Service Centre.

CUSTOMER SERVICE CENTRES

- **FRANCE & BENELUX** Les Ulis Cedex Tel: (1) 64 46 23 45 Tx: 602858F Fax: (1) 64 46 87 07
- **GERMANY** Munich Tel: (089) 3609 06 0 Tx: 523980 Fax: (089) 3609 06 55
- **ITALY** Milan Tel: (02) 66040867 Fax: (02) 66040993
- **JAPAN** Tokyo Tel: (03) 3296–0281 Fax: (03) 3296–0228
- **NORTH AMERICA Integrated Circuits and Microwave Products, Scotts Valley, USA** Tel: (408) 438 2900 Fax: (408) 438 7023
 - **Hybrid Products, Farmingdale, USA** Tel: (516) 293 8686 Fax: (516) 293 0061
- **SOUTH EAST ASIA** Singapore Tel: (65) 3827708 Fax: (65) 3828872
- **SWEDEN** Stockholm Tel: 46 8 7029770 Fax: 46 8 6404736
- **UNITED KINGDOM & SCANDINAVIA** Swindon Tel: (0793) 518510 Tx: 444410 Fax: (0793) 518582

These are supported by Agents and Distributors in major countries world-wide.

This publication is issued to provide outline information only, which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without notice the specification, design, price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication of data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company’s conditions of sale, which are available on request.
Purchase of Zarlink’s I²C components conveys a licence under the Philips I²C Patent rights to use these components in an I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2001, Zarlink Semiconductor Inc. All rights reserved.