"I consider that the immediate suppression of Bolshevism is the greatest issue now before the world, not even excluding the war which is still raging, and unless, as above stated, Bolshevism is nipped in the bud immediately, it is bound to spread in one form or another over Europe and the whole world, as it is organised and worked by Jews who have no nationality, and whose one object is to destroy for their own ends the existing order of things."

—— September 17, 1918 quotes from Sir M. Findlay to Mr. Balfour in "A Collection of Reports on Bolshevism in Russia." Presented to Parliament by Command of His Majesty, April 1919.

(https://obama.gbppr.org/A_Collection_of_Reports_on_Bolshevism_in_Russia.pdf)

Table of Contents

- Page 2 / GBPPR VLF Converter
 - Homebrew version Marty Kaiser's VLF59−10 5 to 500 kHz VLF converter.

- Page 11 / Carrier−Current Filter for the GBPPR VLF Converter
 - Simple little passive circuit to monitor a AC power line for carrier current or audio transmissions.

- Page 17 / AT&T Microwave Oscillators
 - Pinout and specifications for surplus AT&T microwave oscillators.

- Page 20 / School Daze

- Page 26 / Bonus
 - Hitler Did Nothing Wrong

- Page 27 / The End
 - Editorial and rants.
Overview

This is a Very–Low Frequency (VLF) converter to increase the frequency response of a radio receiver operating below 500 kHz. This front–end converter uses a stable 10 MHz Local Oscillator (LO) to "upconvert" the 1 – 500 kHz band to 10.001 – 10.500 MHz.

A standard HF receiver (or spectrum analyzer, computer soundcard, etc.) can then be used to further break down and examine the target RF signal(s). For example, the 15.75 kHz horizontal synchronization signal from a standard NTSC video camera would be converted to 10.01575 MHz. At this slightly higher frequency, it’s easier to construct narrowband filters or utilize a receiver with a finer tuning frequency "step."

There are numerous VLF converter schematics on the Internet, many of which are much simpler in design. The circuit shown here was designed for high–performance RF test lab or TSCM operations, so some of the parts may be expensive or difficult to track down. The overall concepts can be used for your own design, if necessary.

The GBPPR VLF Converter consists of a Mini–Circuits SRA–8 mixer feed via a 5–pole Butterworth 500 kHz low–pass filter on its RF port. The low–pass filter utilizes high–Q silver mica capacitors and T−50−3 powdered iron toroid inductors for optimal response. Filtering the RF input to the mixer is highly recommended in order to keep as much AM radio interference out of the mixer as possible. The Mini–Circuits SRA–8 mixer was chosen because of its exceptional low frequency response (down to 500 Hz) on its RF port and its high port–to–port isolation.

The local oscillator port of the SRA–8 mixer is fed via a 10 MHz Temperature–Compensated Crystal Oscillator (TCXO) unit from a surplus Qualcomm OmniTRACS unit. The output from the TCXO is passed through an optional 10 MHz crystal filter to further reduce the phase noise or spurs produced by the TCXO. The 10 MHz LO signal is about +6 dBm at this point. A fancy 10 MHz TCXO unit is not required for this circuit, though it’s recommended. A LO signal made from a standard 10 MHz crystal wired in a Pierce oscillator configuration can also be used. Refer to the article “A High–Performance Low–Frequency Converter” by Tim Brannon (KF5CQ) in The LOWDOWN (www.lwca.org) for a suitable design.

The Intermediate Frequency (IF) output from the SRA–8 is terminated and amplified by a diplexer circuit and a single 2N5109 transistor. The diplexer circuit helps the SRA–8 "see" 50 ohms at all frequencies to help reduce intermodulation products. The 2N5109 is in a standard "post–mixer amplifier" configuration which has around 18 dB of gain. A 3 dB pad on the output of the 2N5109 forces it to see 50 ohms on both its input and output. A small ferrite impedance matching transformer will need to be constructed for the 2N5109 to step down its collector output impedance from around 200 ohms to 50 ohms.

Some example very–low frequencies:

- 15.75 kHz NTSC Video Horizontal Synchronization
- 32.768 kHz Common Timing Crystal
- 58.0 kHz Electronic Article Surveillance (Anti–Theft Devices)
- 455.0 kHz Common Intermediate Frequency in Radios
- 120.0 kHz x10 Protocol Carrier–Current Data Burts
- 75 – 455 kHz AID/Westinghouse Federal Carrier–Current Bugs (Spread–Spectrum Modulation)
Overview of the GBPPR VLF Converter circuit.

The 5–pole low–pass filter is along the left–hand side.

The silver rectangle along the top is the Mini–Circuits SRA–8 mixer.

To the right of the mixer, is the optional 10 MHz crystal filter which is on the output of the 10 MHz TCXO, which is on the lower–right.

The 10 MHz TCXO is model number T424 and made by EG&G Frequency Products, Inc. This unit was discussed in much more detail in GBPPR ‘Zine, Issue #72. It’s stock sine wave output is around 500 mV p–p.

The large silver rectangle on the bottom–left is an optional RF relay used to switch the converter in–and–out. When the relay is not energized, the RF input to the VLF converter passes directly to the RF output, bypassing the frequency conversion circuit.
Alternate view of the GBPPR VLF Converter circuit.

Along the bottom are the silver mica capacitors and T−50–3 toroids (gray) making up the input 500 kHz low−pass filter.

The TO−5 transistor in the middle is the 2N5109 making up the post−mixer amplifier.

The T−37–2 toroid (red) makes up part of the post−mixer diplexer circuit.

The FT−37–43 toroid in the middle makes up the output impedance matching network for the 2N5109.
Bottom view of the circuit board.

A "psuedo double−sided" layout was used.

You'll want to use a large ground plane and observe proper RF layout techniques. Even though this circuit operates at low frequencies, it's still not a good ideal to skimp on the construction details.

The pinout for the EG&G TCXO and the wiring diagram for the FT–37–43 toroid transformer are shown below:
Adjusting the trimmer cap on the rear of the TCXO to provide a local oscillator signal of exactly 10 MHz.

You can "zero-beat" to WWV if you don't have an accurate frequency counter.
Mounting the circuit board inside an old printer switch case.

The banana jacks on the upper–left are for the +12 VDC power input.

A power LED and switch are mounted above it.

The two panel–mount BNC jacks are for the RF input and RF output.
Completed overview.

The 1 – 500 kHz RF input is via the left BNC jack. The 10.001 – 10.500 MHz RF output is via the right BNC jack.
The VLF59–10 is an up–converter that moves 5 – 500 kHz to 10.005 – 10.500 MHz. Although specifically designed for use with the Avcom PSA 65x series of spectrum analyzers, it works well with any receiver that can cover its frequency range.

Operation: Connect the VLF59–10 BNC to the Avcom RF INPUT jack. The unit is supplied with two antennas that permit connection to the power line ground or telephone line. Other antenna configurations may be used as long as the wire is isolated with a capacitor having at least a 500 volt rating. Turn ON the VLF converter and AVCOM and set the REFERENCE LEVEL switch at 0 dBm, the SPAN switch at .2 MHz/DIV and the VAR SPAN at vertical. With NO antenna connected to the VLF59–10, tune the AVCOM to 10 MHz and locate the 10.000 MHz local oscillator signal of the VLF59–10. Slowly tune the Avcom to move this signal to the LEFT edge of the screen. Signals from 5 kHz to 500 kHz appear to the RIGHT of the 10.000 MHz signal. Connect an antenna. When the VLF59–10 is turned OFF the ANTENNA input is connected directly to the RF INPUT of the spectrum analyzer. Do not use the VLF converter with any of the AVCOM frequency extenders.

A single 9 volt Alkaline battery powers the unit. Normal battery life is in excess of 200 hours.
GBPPR VLF Converter

RF Input
1 kHz - 500 kHz

10 MHz TCXO

3300 pF
0.01 µF
3300 pF

L1

L2

from Qualcomm OmniTRACs

Mini-Circuits SRA-8
Ground 2,5,6,7

RF

IF

LO

3.4

51Ω

62 pF

4 µH

4 µH

62 pF

+12 VDC

Ferrite Bead

T1

2N5109 (w/ heatsink)

510Ω

300Ω

300Ω

18Ω

0.1 µF

0.1 µF

0.1 µF

51Ω

330 pF

22Ω

1/8W

RF Output
10.001 MHz - 10.500 MHz

L1, L2 = 25 µH
38 turns #26 on T-50-3

L3 = 0.8 µH
13 turns #26 on T-37-2

T1 = 10 bifilar turns #26 on FT-37-43
Approx. 42 µH per winding.
Carrier–Current Filter for the GBPPR VLF Converter

Overview

This is passive filter probe which can be used to "monitor" an AC power line for any form of carrier–current (or even audio) transmission.

The probe circuit consists of a simple high–pass filter network using a few resistors and capacitors, along with two back–to–back diodes for clamping any voltage spikes on the final output signal. A Metal–Oxide Varistor (MOV) and a resettable fuse provide additional circuit protection.

The high–pass filter works like this: At 60 Hz, the series capacitors in the filter have a reactance of approximately 265 kohms. This, combined with the shunt 8.2 kohm resistors, forms a voltage divider which only passes a small percentage of the 60 Hz signal. A 120 VAC signal is essentially attenuated down to under 100 millivolts. At 300 kHz, the series capacitors in the filter have a reactance of only approximately 53 ohms, and a large percentage of the 300 kHz signal is passed. Most carrier–current signals reside above 10 kHz.

Green and red neon lamps are used to indicate when the AC voltage applied to the unit is the correct polarity. An optional center–off DPDT will swap the "hot" and "neutral" incoming lines in case the AC polarity is not correct.

An isolated BNC jack is provided for the final filtered output signal. This signal can then be further amplified, filtered, and analyzed. Try to use battery–operated devices (like the Kaiser 1059) when inspecting active AC power lines, or use an isolation transformer on your equipment if it needs to be AC–powered.

Pictures & Construction Notes

Overview of the passive 2,000 Hz high–pass filter circuit.

It consists of two 0.01 µF (600V, AC–rated) non–polarized Mylar capacitors, two 8.2 kohm (2 watt, flame–proof) resistors, two 1N5406 diodes, and a 140 volt MOV.
The high-pass filter circuit will be mounted inside an old metal "wall wart" power supply adapter I found at a ham radio swapfest.

These types of AC power adapters are often used for "industrial" equipment.

A large plastic AC power adapter will also work, provided it has access screws.
Mounting the circuit board inside the "wall wart" power supply adapter.

Try to use Teflon insulated wire to prevent shorting.
Overview of the completed filter.

The rear of the adapter will have the two Go/No–Go neon lamps, the Polarity Select switch, and the access probe for the resettable fuse.

The isolated BNC jack for the filtered output is mounted on the bottom.
Testing the filter probe with an active 120 VAC power outlet.

If the **GREEN** lamp is lit, the polarity is correct. If the **RED** lamp is lit, flip with **Polarity Select** switch, which should light the **GREEN** lamp. If that doesn't work, quickly disconnect the filter and check the outlet manually with an accurate AC volt meter.

To perform a carrier–current TSCM sweep, check various outlets around the target location to see if there are any unknown signals. If you do happen to find something, keep moving the filter probe outlet–to–outlet until the signal is the strongest.

While monitoring the unknown signal, start unplugging the various devices plugged into the AC outlets until the signal drops. Carrier–current transmissions can't make it past transformers, so if you do find a signal, the source is probably physically close.
Carrier-Current Filter for the GBPPR VLF Converter

120 VAC Input

140V MOV 1A Fuse

Polarity Select DPDT Go Green Neon Lamp

0.01 μF 600V 0.01 μF 600V

2x 1N5406

8.2 kΩ 2W 8.2 kΩ 2W

2 kHz High-Pass Filter

Output Isolated BNC

Hot

Neutral

Ground

Only designed for 120 VAC, single-phase systems
Overview

Surplus microwave oscillators operating in the 5–6 GHz region are starting to show up at ham radio swapfests.

The unit described here is an AT&T/Lucent/Alcatel Model 142PC. One quirk is that they require a negative voltage for both the unit itself and an internal heater.

The RF output power is around 10 milliwatts (+10 dBm). There is an access hole on one side of the unit for slightly adjusting the output frequency via a trimmer capacitor. The bottom of the unit has two threaded #4−40 holes for attachment to a heatsink.

There are four wires attached to the unit which are colored RED, BROWN, YELLOW, and BLUE.

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Ground</td>
</tr>
<tr>
<td>Brown</td>
<td>−15 VDC at 100 mA</td>
</tr>
<tr>
<td>Yellow</td>
<td>Oven Lock Alarm</td>
</tr>
<tr>
<td>Blue</td>
<td>−24 VDC at 500 mA Oven Heater</td>
</tr>
</tbody>
</table>

The oscillator will still work without the oven voltage applied, but the output frequency may drift. The entire unit does get quite warm, so it should be attached to an appropriate heatsink.

Pictures & Construction Notes

Overview of an AT&T/Lucent/Alcatel Model 142PC Microwave Oscillator.

It's stock operating frequency was 5362.5 MHz and its RF output power was +9.5 dBm.
Alternate view showing the access port for the frequency adjustment trimmer capacitor.
Tweaking the oscillator’s final output frequency down to 5362.0 MHz, or as close as possible.

Since these oscillators are not phase-locked, there will be some slight drifting in frequency until they warm up and stabilize.
School Daze:

WALTER F. ROWE

In the early 1980s the Portland Public School District in Portland, Oregon, was faced with the task of preparing a court-ordered desegregation plan. A consultant to the school district, Asa Hilliard of Georgia State University, suggested the concept of the “African-American Baseline Essays” as part of Portland’s plan.

The baseline essays were conceived as short stories presenting the history, culture, and contributions of Africans and African-Americans to art, language, mathematics, science, social studies, and music. These essays were to serve as reference and source materials for teachers in much the same way as textbooks. The “African-American Baseline Essays” have been adopted by the Portland and Detroit public school systems; they have been seriously considered for adoption by public school systems in Atlanta, Chicago, and Washington.
School Daze

Although the authors of the "African-American Baseline Essays" were supposedly selected because of their knowledge of their specific disciplines and because of their expertise in African and African-American history, the scholarly credentials of the authors of the science and mathematics essays are highly suspect. The author of the science essay is Hunter Havelin Adams III, who is described in the foreword to the essays as a "research scientist at Argonne National Laboratory." Adams was not, in fact, a research scientist but a hygiene technician who had only a high school diploma (Ortíz de Montellano 1991).

The mathematics essay was written by Beatrice Lampkin, associate professor of mathematics at Malcolm X College (a community college in Chicago). Lampkin's scholarly writings appear to be confined to brief notes in Historia Mathematica and articles in Journal of African Civilizations. None of these works contains any original work in either mathematics or history. Lampkin is also the author of a historical novel and a children's book about ancient Egypt.

In the Beginning

Beatrice Lampkin begins her mathematics essay with a discussion of prehistoric African systems of numeration. The discussion centers on the Ishango bone, an artifact excavated in Zaire that has been dated to 6500 B.C. (Marshack 1972). The Ishango bone is engraved with a series of parallel scratches having varying lengths and grouped according to some system. A variety of explanations of the marks have been advanced: They may represent a multiplication table, a game tally, or a calendar.

The reader of the mathematics essay is clearly intended to infer that systems of numeration originated in Africa. However, the Ishango bone is a rather recent example of a type of inscribed artifact produced by Paleolithic cultures stretching from the Iberian Peninsula to the Russian steppes. Most of these artifacts have been found in Europe. These facts are easily gleaned from Alexander Marshack's The Roots of Civilization (1972), a source Lampkin cites in the mathematics baseline essay and in other writings.

Way Down in Egypt Land

A key concept running through the "African-American Baseline Essays" is that Egypt was an African civilization. This means something beyond the obvious fact that Egypt is located in Africa. In the science essay, Adams repeats the claim of Senegalese physicist Cheikh Anta Diop that the ancient Egyptians were descended from central equatorial and northwestern African ethnic groups (Diop 1982). Physical anthropologists, however, do not accept Diop's conclusions. Brace et al. (1993) have presented the results of a comparison of 24 craniofacial measurements made on skeletal material from Egypt, Europe, North Africa, Nubia, Somalia, India, Asia, and North America. The measurements chosen were ones that are known to be genetically controlled, but only trivially adaptive. These researchers concluded that the ancient Egyptians are much more closely related to the populations of neolithic Europe, modern Europe, North Africa, and India than to the populations of sub-Saharan Africa. These conclusions are consistent with the research of other physical anthropologists (see Brace et al. [1993] for a complete list). The inclusion of discussions of Egyptian science and mathematics in the "African-American Baseline Essays" therefore is based on a fun-
damental misunderstanding of the biological relationships among the various African subpopulations.

Even if it were true that the ancient Egyptians came from the same racial stock as the peoples of other African subregions, such assertions would still be worthless for the training of public school teachers. Lumpkin’s mathematics essay is merely shoddy scholarship, while Adams’s science essay unites pseudoscientific claims with fanciful attempts at substantiation.

The science essay contains a number of diagrams purporting to demonstrate the ancient Egyptians’ extraordinary scientific and mathematical sophistication. For example, Adams reproduces as a full-page illustration a site plan of the Temple at Luxor with a human skeleton superimposed on it to demonstrate that the Egyptian architects designed the temple so that its subdivisions would conform to the proportions of the human body. A cursory glance at the diagram reveals that while the skeleton’s ankles and knees do indeed match crosswalls on the plan, none of the other joints (hips, wrists, elbows, or shoulders) corresponds to any significant feature of the temple. That the builders intended a correspondence between the temple and the human skeleton is rendered highly unlikely by another fact: the portion of the temple that is supposed to represent the cranium, rib cage, pelvis, and upper legs was built by Amenophis III, the remainder of the temple was built by Ramses II, approximately two generations later (Baines and Malek 1980).

Adams’s science essay contains a healthy dollop of Great Pyramid mysticism. According to Adams, the geometry of the Great Pyramid encodes as follows:

- the value of pi, the principle of the golden section, the number of days in the tropical year, the relative diameters of the earth at the equator and the poles, and the distances of the planets from the sun, the approximate mean length of the earth’s orbit around the sun, the 26,000-year cycle of the equinoxes, and the acceleration of gravity.

One of the figures accompanying the science essay also informs the reader that the height of the Great Pyramid multiplied by 10° yields 91,651,675 miles, approximately the mean distance from the earth to the sun. This last assertion carries no weight as evidence that the Egyptians possessed an unusual level of scientific knowledge. There is no reason to multiply the pyramid height by 10° (other than to get the desired answer). If by chance the height multiplied by some simple factor did not give an approximation of the mean distance from the earth to the sun, another multiplier certainly could have been found that would give the distance to the moon, to the nearest star, or to the Andromeda nebula. Writing the product to eight significant figures incorrectly implies that the height of the Great Pyramid is known with the same precision. Adams is evidently unfamil- iar with the concept of significant figures (taught to high school physics and chemistry students).

Adams repeats a standard claim of Great Pyramid mysticism that the structure encodes a number of mathematical formulae. For example, the perimeter of the base divided by twice the height supposedly gives the value of pi (which is 3.14159265). Indeed if one performs this computation using the dimensions of the Great Pyramid, one gets a good estimate of pi (3.150685).

Pyramidologists like Adams characteristically restrict their attention to the Great Pyramid and all but ignore other Egyptian pyramids. Forty-seven royal pyramids are known to have existed. The heights and base dimensions of 22 true pyramids belonging to this group can be determined with a reasonable degree of accuracy (Baines and Malek 1980). If these dimensions are used to calculate pi, one obtains values ranging from 2.58 to 4.42. Furthermore, the value of pi calculated from pyramids’ dimensions of a pyramid depends on the slope of its sides. Extant Egyptian mathematical papyri reveal problems dealing with the slopes of pyramids and use four different values for the slopes (Gillin 1972).

In another section of the science essay Adams discusses what he calls “psychosenergetics,” saying “The ancient Egyptians were known the world over as the masters of ‘magic’ (psi): precognition, psychokinesis,

“The ‘scholarly’ research displayed in both essays is too shoddy to serve as a model for any teacher or student.”
Adams leaps to speculations about the ancient Egyptians' use of transport and recreational gliders. The articles that Adams cites here were not written by professional Egyptologists.

Beatrice Lumpkin's treatment of Egyptian mathematics is marginally better than Adams's discussion of Egyptian science. It still violates the canons of historical scholarship in a number of ways. Lumpkin frequently cites her own fictional writings as authorities to substantiate her assertions. She also frequently omits facts, especially when those facts do not support her conclusions.

For example, Lumpkin states that the Egyptian value of pi was better than the biblical or Mesopotamian value of pi equal to three. Nine estimates of the value of pi were calculated before A.D. 1000. Of these, the Egyptian value was the second most inaccurate (Beckmann 1937). The use of a value of pi equivalent to 3.125 has been found in a Babylonian cuneiform tablet. This tablet is discussed in George Sarton's A History of Science (1966), a source cited by Lumpkin elsewhere in her mathematics essay.

There are grounds for doubting that the Egyptians had an understanding of the concept of pi (Bunt et al. 1976). The Rhind mathematical papyrus shows how the Egyptians calculated the area of a circle from its diameter. To get the area, \(\frac{1}{9} \) of the diameter is first calculated; this fraction is subtracted from the value of the diameter; and the result is then squared. This is equivalent to using a value of pi equal to 256/81. This procedure for calculating the area of a circle appears to have been developed empirically (Gillings 1972).

Beware of Greeks

When Adams and Lumpkin attempt to deal with later historical periods than ancient Egypt, their accuracy as historians should be better because Greek science and mathematics are better documented than Egyptian science and mathematics. Adams has difficulty getting even the most basic facts correct about Alexander the Great and Alexandria:

In fact, the Greeks called Egypt the seat of scientific knowledge and sent many of its [sic] most brilliant scholars there to study such as Thales, Democritus, and Pythagoras. Perhaps it was this reason Alexander made Alexandria, Egypt, the capital of his empire after he conquered Egypt in 325 B.C.

Alexander did not make Alexandria the capital of his empire. Alexander actually never saw the Alexandria to which he gave his name; he ruled from Babylon and Susa until his death. These facts are readily verifiable in the writings of ancient historians, such as Plutarch and Arrian. And contrary to the claims of both Adams and Lumpkin, Alexandria was not an Egyptian city. It was founded as a Greek colony and was not legally part of Egypt. In antiquity it was commonly referred to as "Alexandria near Egypt" (Sarton 1966b; Fraser 1972).

Adams's version of Egypt under the rule of the Ptolemies is similarly a farrago of misinformation:

Frequently, it is assumed that, during the Hellenistic period of Greek rule, the African character of Egypt was negligible, however, to the contrary, the Greeks practiced a policy of assimilation, marrying Egyptian women and even adopting Egyptian religion.

All of this is demonstrably false. There was no such policy of assimilation. In fact, for many generations the Greeks in Egypt disapproved of marriages with native Egyptians. It was also many generations before native Egyptians held high government offices or military commands. The Greek and Macedonian presence in Egypt has been compared to that of the Boers in South Africa and whites in the antebellum U.S. South (Bevan 1968; Lewis 1986).

The intellectual elite of Alexandria during the first century after the death of Alexander—the most creative period of Hellenistic mathematics and science—was composed almost exclusively of Macedonians and Greeks from outside of Egypt. Manetho, the historian to whom we owe the division of Egyptian history into dynasties, is the only identifiable Egyptian intellectual during this period (Sarton 1966b; Fraser 1972).

Beatrice Lumpkin culminates against the supposed racism of the writers of mathematics textbooks:

Euclid of Alexandria, one of the greatest mathematicians of this era, lived and died in Egypt. There is no suggestion that he ever left Africa. Yet he is pictured in textbooks as a fair European Greek, not as an Egyptian. We have no pictures of these mathematicians, but we could at least visualize them honestly in costumes, compositions, and features true to the peoples and their times.

It is highly improbable that Euclid was a native Egyptian. He wrote in Greek and his name is a common Greek one. This name was not a common name in antiquity that Euclid the mathematician was confused with the philosopher Euclid of Megara (Heath 1926). It is also likely that Euclid lived for a time in Athens. The mathematical commentator Proclus preserves a tradition that Euclid was a Platonicist (Morrow 1970). At the time of Euclid the books of Plato had not yet begun to circulate widely, making it likely that Euclid lived at some time in Athens and attended Plato's Academy. T. L. Heath, the leading expert on Greek mathematics and Euclid in particular, believed that Euclid must have studied at some time in Athens because it was only in Plato's Academy that he could have learned the mathematics that later appeared in the *Elements* (Heath 1926).
Euclid’s *Elements* is also firmly a part of Greek mathematical traditions. Three earlier Greek mathematicians are known to have written similar elements of geometry (Morrow 1970). Significantly, one of these works was the mathematics manual written by Theodius of Magnesia for use by Plato’s Academy (Heath 1926). Lumpkin is glowing in her praise of the *Elements*: “The logical arrangement of this work is so masterful the *Elements* dominated the teaching of geometry for 2,000 years.” The abstraction of the *Elements* is Platonic, while the method of exposition (definition, common notion, postulate, and theorem) is Aristotelian (Heath 1926; Bunt et al. 1976). The extant Egyptian mathematical papyri have only the remotest similarity in form and content to Euclid’s *Elements*.

Historians of mathematics consider the Egyptian influence on Greek mathematics to be minimal. This influence was confined to the very elementary geometry of the time of Thales, to practical methods of calculation (the branch of mathematics the Greeks called “logistica”) and to the proto-algebra of Diophantus. The Greeks borrowed much more heavily from the mathematics of Mesopotamia (Heath 1921; Eves 1971; Fraser 1972).

Who Is Al-Khwārizmī and Why Is He in ’African-American Baseline Essays’?

When he reaches the Middle Ages, the period of Islamic mathematical dominance, Beatrice Lumpkin enthuses: “In summarizing the contribution of the African Muslim mathematicians, especially those of the Nile Valley, an author is overwhelmed by an embarrassment of riches.” [Emphasis added.] The “African-American Baseline Essays” section on mathematics discusses eight Islamic mathematicians: Al-Khwārizmī, Abū Kāmil, ibn Yūnus, ibn al-Haytham, Omar Khayyam, Nasir Eddin, Al-Kāshī, and Al Quādī. Of these, only Abū Kāmil and ibn Yūnus can be considered in any sense African. Beyond his appellation as the “Egyptian calculator,” virtually nothing is known of Abū Kāmil’s life (Levey 1980). Ibn Yūnus lived and worked in Cairo in the tenth century (Goldstein 1965; King 1980). Of the remaining Islamic mathematicians, only ibn al-Haytham had an association with Africa. Ibn al-Haytham (known to Europeans as Alhazen) was educated in Baghdad; he came to Egypt to participate in an unsuccessful project to dam the Nile River (Vernet 1965; Sabra 1980, Hogendijk 1985).

The origins of the remaining Islamic mathematicians mentioned in the mathematics essay are well known:

- Al-Khwārizmī—Urgench in former USSR (Berggren 1986).
- Omar Khayyam—Nishapur (now in Iran) (Berggren 1986).
- Nasir Eddin—Khurasan in Persia (Eves 1971).
- Al-Kāshī—Kashan (90 miles north of Isfahan) (Berggren 1986).
- Al-Quādī—Granada (mathematics baseline essay).

Lumpkin and Adams get many of the facts about the lives and works of Islamic mathematicians and scientists wrong. Both Lumpkin and Adams mention the Dar al-Hikma (House of Wisdom) established by the Fatimid rulers of Egypt in Cairo. Both essay authors have ibn al-Haytham working in the Dar al-Hikma; however, the only institution in Cairo with which ibn al-Haytham is known to have been associated is the al-Azhar Mosque (Sabra 1980). Lumpkin also describes ibn Yūnus working in the Dar al-Hikma. This is highly unlikely: The Dar al-Hikma was founded in A.D. 1005; ibn Yūnus made his last astronomical observation in A.D. 1003 and died in A.D. 1009 (Soured 1965; King 1980). The article on the Dar al-Hikma in the *Encyclopedia of Islam* (Soured 1965) does not mention the name of a single Islamic scientist in connection with the Dar al-Hikma. The Transmission of Islamic Mathematics and Science to Europe

The science and mathematics essays distort the history of the transmission of Islamic science and mathematics to Europe. According to both Adams and Lumpkin, Europeans learned about Egyptian, Hindu, and Arabic mathematics and science through the translations of Constantinus Africanus (born in Carthage in North Africa). As Beatrice Lumpkin describes it, Constantinus “brought a precious cargo of manuscripts to Salerno, where a school was founded to translate and study the Arabic works.” Characteristically, Lumpkin neglects to tell readers what manuscripts he brought to Salerno. Adams is similarly uninformative. The works that Constantinus Africanus translated were the medical treatises of Galen, Hippocrates, the Persian doctor Haly Abbas, and the Jewish physician Isaac Israeli (Cattiglioni 1941; Crombie 1959).

Adams explicitly charges European scientists with plagiarizing the discoveries of Islamic scientists. For example, he asserts that ibn al-Haytham discovered the refraction of light and that credit for this discovery has been falsely ascribed to Isaac Newton. Not unexpectedly, Adams cites no authority for this extraordinary statement. The mathematical law governing the relation between the angle of incidence and the angle of refraction is commonly known as Snell’s Law (after the seventeenth-century Dutch physicist Willebrord Snell). Ibn al-Haytham came close to discovering this law, but ultimately failed to do so (Al-Daffa 1977).

According to Adams, Newton also has been improperly credited with the discovery of the law of gravity, saying it actually was discovered by Al-Khāzīn. Adams has confused Al-Khāzīn, a Sabean mathematician and astron-
School Daze

omer of Persian origin (Dold-Samponia 1980), with al-Khāzīnī, the author of the Book of the Balance of Wisdom. In mathematician al-Khāzīnī’s theory of weights, the weight of a body varies according to its distance from the center of the world. Accordingly, objects at the center of the world weigh nothing. This is a far cry from Newton’s inverse square law for the force of gravity acting between two masses. At this point, the reader probably will not be surprised to learn that al-Khāzīnī was actually a Byzantine Greek (Hall 1880).

Adams also charges that the work of the astronomer al-Bīrūnī was stolen by Copernicus. Copernicus did indeed use some of al-Bīrūnī’s astronomical observations (Hartner 1980; Duncan 1976). Copernicus clearly acknowledged this use. In Book One of On the Revolution of the Heavenly Spheres Copernicus explicitly cites al-Bīrūnī as the source of the erroneous estimate that the sun’s diameter is only ten times that of Venus (Duncan 1976).

Finally, Adams asserts that the works of al-Bīrūnī were plundered by both Galileo and Francis Bacon. Unless these Western scientists were able to read Arabic (which is doubtful) they could scarcely have taken any of their ideas directly from his works. None of al-Bīrūnī’s books were translated into European languages during the Middle Ages or the Renaissance. Many have never been so translated. Having been born south of the Aral Sea in Khwārizm, al-Bīrūnī was not African. There is irony in Hunter Havelin Adams III invoking the name of al-Bīrūnī. In the words of one biographer, “Bīrūnī had a remarkably open mind, but his tolerance was not extended to the dilatant, the fool, or the bigot” (Kennedy 1980).

Conclusion

The science and mathematics essays in the “African-American Baseline Essays” are riddled with pseudoscience and pseudohistory. As tools for the training of public school teachers they are not merely worthless, but are likely to prove pernicious. Their fallacious modes of reasoning may dull the critical faculties of readers. The “scholarly” research displayed in both essays is too shoddy to serve as a model for any teacher or student. The essays will contribute to the growing trivialization of American culture. A purported goal of the “African-American Baseline Essays” is to “eliminate personal and national ethnocentrism so that one understands that a specific culture is not intrinsically superior or inferior to another.” This statement is nothing but cant. Throughout the science and mathematics essays the genuine achievements of Greek, Arab, Persian, and European scientists and mathematicians are ruthlessly pillaged, and credit for them assigned to black African cultures on the flimsiest of grounds.

References

Mrs. Dew salutes the Israeli Mossad for demolishing 3 towers on 9/11!

Dub the Dew
Top 10 Leaderboard

Vote for your favorite name to keep it on the Top 10 Leaderboard

1. Hitler did nothing wrong
2. Gushing Granny
3. Fapple
4. Dabonetas
5. Gushin’ Granny

dubthedew.com/vote-for-my-name/2000
Editorial and Rants

Recently, the BBC reported on a video the New York Times released which shows Syrian "rebels" (i.e. al-Qa’ida) tricking a captured prisoner into performing a suicide bombing against the Syrian government. The BBC’s accompanying video and news story were quickly censored after it became apparent Obama’s little "rebels" were engaging in war crimes...

(www.bbc.co.uk/news/world-middle-east-19342917)

(prisonplanet.com/bbc-censors-video-showing-syrian-rebels-forcing-prisoner-to-become-suicide-bomber.html)
This might be because you typed the web address incorrectly. Please check the address and spelling ensuring that it does not contain capital letters or spaces.

It is possible that the page you were looking for may have been moved, updated or deleted.

Please click the back button to try another link.

Or

Visit the BBC News Home Page.
Visit the BBC Sport Home Page.
Explore our full list of sites and services.

"BBC News HD - Syrian rebels..."
This video is no longer available due to a copyright claim by British Broadcasting Corporation.

Sorry about that.

Change!

Yes We Con!
Good example of how "diversity" really means "anti-White." Don't count on Eric Holder, the ACLU, the SPLC, the ADL, etc. protesting this! Note the Atlanta Symphony Orchestra's president is Stanley Romanstein. See the Jew...

Symphony Says Cobb High School Choruses are Not Diverse Enough

August 16, 2012 – *From: wsbtv.com*

by Carl Willis

Two Cobb County high school choruses will not be performing with the Atlanta Symphony Orchestra this year, because the symphony said their groups are not racially diverse enough.

Video of the Walton and Lassiter High School choruses performing can be found all over YouTube, but they will not be found on stage with Atlanta's professionals this fall.

"This year, the schools were informed by symphony officials that their choruses are not diverse enough, and that the symphony would be inviting a third, more diverse chorus," said Cobb County Schools spokesman Jay Dillon.

Some Marietta residents told Channel 2's Carl Willis the decision smacked of discrimination.

"I think it's sad," said Marietta resident Shar Nicholson. "I think if they have the talent and the desire they should be given the opportunity."

Willis sat down with the ASO president and CEO to get an explanation. "We want the stages of the Atlanta Symphony, whether here, Verizon (Wireless Amphitheatre), or Chastain Park to reflect the diversity of Atlanta," said ASO President Stanley Romanstein. Not everyone agrees.

"It's not necessarily fair to the students at all," said Vashon Ramsey, an African-American Cobb County resident. "They should be allowed to perform regardless."

Romanstein said he was surprised by the reaction.

"It's an interesting misunderstanding," he said. Romanstein told Willis that he told the chorus directors about the decision two years ago and said they were understanding at the time.

"There are at least 12 very talented high school choirs in Atlanta," Romanstein said. "We gave Lassiter and Walton choirs an opportunity to perform for four consecutive years, and they were marvelous. We think it's time to give other Atlanta high school choirs, who are very skilled and deserving, their chance to perform with the ASO as well." Lassiter and Walton did have a chance to bring a smaller portion of their choruses to perform but decided not to take part.

"Because the full choruses would not be able to perform with the symphony, both Lassiter and Walton have declined to participate this year," said Dillon.

Grady High School's chorus has been invited to perform. The ASO president said they will also get a multi-year run.
Two more examples of liberal bias and propaganda in the media.

(atlanta.cbslocal.com/2012/08/28/school−teacher−helps−students−cheat−because−she−says−theyre−dumb−as−hell)

This story is about a teacher in Atlanta who said she helped students cheat on their tests because "they're dumb as hell."

Note that the "school" were this took place is majority–Black and the "teachers" involved in the cheating incidences were also Black, yet CBS ran a stock photo of a White teacher in a majority–White classroom:
And in Eric Corley's New York City, the public schools are reducing the disciplinary actions against students caught skipping class, smoking, cursing, and other infractions. It's a safe bet to assume in New York City the majority of the disruptive students are non-White. But yet, one again, CBS ran a stock photo of a White teacher in a majority-White classroom:
Did you notice this display at the 2012 Democrat National Convention?

Those are NOT U.S. Navy ships!

That's part of Russia's Black Sea fleet, with the Kerch missile cruiser in the foreground!

Also, the jets appear to be F–5s which are part of the "Turkish Stars," Turkey's air force display team!

Change!

Yes We Can't!