"General Affirms Anbar Analysis"

"Grim Report Out of Anbar Disputed by General"

---- Top quote is from a September 13, 2006 Washington Post newspaper headline. Bottom quote is from a September 13, 2006 New York Time newspaper headline. Both "news" stories covered the same subject. Remember... There is no bias in the media!

Table of Contents

- Page 2 / Lawfully Authorized Electronic Surveillance / 5ESS (Part 2)
 - Procedures for the provisioning, maintenance, and troubleshooting of the 5ESS switch for CALEA applications.

- Page 37 / GBPPR X–Band Radar Warning Receiver
 - Device to detect and monitor a radar operating in the 8 to 12 GHz range.

- Page 52 / The Blue Box and Ma Bell
 - Rare article from the November 1987 issue of Radio–Electronics magazine by Herb Friedman.

- Page 57 / GBPPR Laser Dazzler
 - Low–cost version of the latest "non–lethal" laser weapon.

- Page 63 / Bonus
 - College Today

- Page 64 / The End
 - Editorial and rants.
(1) If there is an existing TTYC, a new TTYC may not have to be grown. Go to 3.5.2.3.2.2.7.

(2) Type and enter `ttycaddd`
Response: `ttycaddd` form displayed.
 Cursor at 1. `ttyc_name`:

(3) Type and enter appropriate TTYC number.
Response: Cursor at 2. `packname`:

(4) Type and enter appropriate `packname` (tn74 or un582).
Response: Cursor at 3. `slot`:

(5) Type and enter appropriate slot position.
Response: Cursor at 4. `IOP_number`:

(6) Type and enter appropriate IOP number (0, 1, 2, or 3).
Response: Cursor at 5. `plu_unit_name`:

(7) Type and enter appropriate data or `CARRIAGE RETURN`.
Response: Cursor at 6. `plu_unit_number`:

(8) Type and enter appropriate data or `CARRIAGE RETURN`.

(9) Type and enter i

(10) The low-level forms will now be added automatically.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.2.2.6 Complete TTYC Hardware Installation

`NOTE:` Use this procedure along with the prompts on the selected terminal.

(1) First prompt: Remove IOP x and power it down. When complete, hit return to continue or ! to abort.
 At selected terminal, type and enter `RMV:IOP=x`;
 Where: x = IOP number receiving the new device.
 Response: REMOVE IOP x COMPLETED
At the IOP power switch, simultaneously depress the MOR and OFF switches.

Press CARRIAGE RETURN.

(2) Second prompt: Install TTYC x - hit return to continue or ! to abort.

Installation Function

Press CARRIAGE RETURN.

(3) Third prompt: Power up and restore IOP x. After ATP hit return to continue or ! to abort.

At the IOP power switch, simultaneously depress the MOR and ON switches.

At selected terminal, type and enter RST:IOP=x;

Where: x = IOP number receiving the new device.

Response: RESTORE IOP x COMPLETED

Press CARRIAGE RETURN.

(4) Type and enter <

Response: Exit the ttyadd form.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.2.7 Insert TTY Data

NOTE: An ! may be entered any time prompted to abort the form and return to the state when the form was started.

(1) Type and enter ttyadd

Response: ttyadd form displayed.

Cursor at 1. tty_name:

(2) Note: Fields not specified receive the default value by entering CARRIAGE RETURN.

Type and enter the following data:

| 1. tty_name: | enter TTY27 |
| 2. baud_rate: | enter (as specified or CARRIAGE RETURN) |
Lawfully Authorized Electronic Surveillance / 5ESS (Part 2)
Provisioning, Troubleshooting, and Maintenance

235-200-400

June 2003

<table>
<thead>
<tr>
<th>3. login_term:</th>
<th>enter (as specified or CARRIAGE RETURN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. auth_term:</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>5. term_type:</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>6. line_mode:</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>7. port:</td>
<td>enter 0, 1, 2, or 3</td>
</tr>
<tr>
<td>8. ttyc_number:</td>
<td>enter TTYC controller number</td>
</tr>
<tr>
<td>9. plu_unit_name:</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>10. plu_unit_number:</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
</tbody>
</table>

NOTE: If a UN582 is equipped, you are allowed to use ports 0-3.
If a TN74 is equipped, you can only use ports 2 and 3.

(3) Type and enter i

(4) The low-level forms will now be added automatically.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.2.2.8 Complete TTY Hardware Installation

NOTE: Use this procedure along with the prompts on the selected terminal.

(1) **First prompt:** Remove IOP x from service and power down. Hit return to continue or ! to abort.

 At selected terminal, type and enter RMV:IOP=x;
 Where: x = IOP number receiving the new device.
 Response: REMOVE IOP x COMPLETED

 At the IOP power switch, simultaneously depress the MOR and OFF switches.

 Press CARRIAGE RETURN.

(2) **Second prompt:** Physically connect TTY x. Hit return to continue or ! to abort.

 Installation Function

 Press CARRIAGE RETURN.

(3) **Third prompt:** Power up and restore IOP x. Hit return to continue or ! to abort.

 At the IOP power switch, simultaneously depress the MOR and ON switches.

 At selected terminal, type and enter RST:IOP=x,UCL;
 Where: x = IOP number receiving the new device.
 Response: RESTORE IOP x COMPLETED

Copyright ©2003 Lucent Technologies
Press CARRIAGE RETURN.

(4) **Fourth prompt**: Remove TTYC \(x\) from service. Hit return to continue or \(!\) to abort.

At MCC, type and enter `RMV:TTYC=x;`

Where: \(x\) = Appropriate controller number.

Response: `RMV TTYC x COMPLETED`

Press CARRIAGE RETURN.

(5) **Fifth prompt**: Diagnose and restore TTYC \(x\). When complete, hit return to continue or \(!\) to abort.

NOTE: All tests pass (ATP) must be achieved before continuing.

At MCC, type and enter `DGN:TTYC=x:RAW,TLP;`

Where: \(x\) = Appropriate controller number.

Response: `DGN TTYC x COMPLETED ATP`

At MCC, type and enter `RST:TTYC=x;`

Where: \(x\) = Appropriate controller number.

Response: `RST TTYC x COMPLETED`

Press CARRIAGE RETURN.

Response: `FORM INSERTED`

(6) Type and enter `<`

Response: Exit the ttyadd form.

(7) Type and enter `toggle`

Response: Low-level form displayed on screen.
STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.2.2.9 Back Up Incore ECD to Disk

(1) At MCC, do Steps 2 through 5.

(2) Type and enter activate
 Response: ACTIVATE form displayed with cursor at
 1. copy_inc_to_disk: YES

(3) Enter a carriage return
 Response: ODIN will request the action desired.

(4) Type and enter e
 Response: ODIN will return to the DATA ENTRY page.

(5) Type and enter <
 Response: RCV-199 COMPLETED

3.5.2.3.2.2.10 Back Up Office Dependent Data

NOTE: Before the response, there will be completed responses for each SM, the AM, and the CMP if applicable.

(1) At MCC, type and enter BKUP:ODD;
 Response: BKUP ODD COMPLETED

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.2.2.11 Primary Disk Backed Up

Back up primary disk and make shelf copy of the disks.

(1) Back up primary disk.

STOP. YOU HAVE COMPLETED THIS PROCEDURE.

3.5.2.3.3 CALEA TTY DEGROWTH FOR 3B21D

3.5.2.3.3.1 PROCEDURE
235-200-400 June 2003

NOTE: This procedure consists of the following subprocedures. Unless otherwise stated, the subprocedures must be performed in the order stated.

3.5.2.3.3.1.1 Prerequisites for Degrowth

- Ensure that both the master control center (MCC) and the receive-only printer (ROP) are not connected to the input/output processor (IOP) that is/was growing the CALEA TTY device.

3.5.2.3.3.1.2 Perform Port Switch from Selected IOP

(1) At MCC, ensure terminal is in CMD mode.

(2) Type and enter 112
 Response: MCC page 112 is displayed.

(3) Is the MCC and/or the ROP connected to the maintenance teletypewriter peripheral controller (MTTC) associated with the IOP that is/was being removed from service?
 If YES, then continue with Step 4.
 If NO, then continue with 3.5.2.3.3.1.3.

(4) Set port switches EQL - PCCA 0: 045-186 to the AUTO position if not already in the AUTO position.

(5) At MCC, type and enter one of the following to perform the port switch:
 - 401 (switches both MCC and ROP)
 - 402 (switches ROP only)
 - 403 (switches MCC only).

(6) At MCC page 112, verify the MCC and ROP are not connected to the selected IOP.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.3.1.3 Enter UNIX® Real Time Reliable (RTR) System Recent Change and Verify (RC/V)

(1) Is master control center (MCC) or RC/V terminal to be used?
 MCC proceed to Step 2.
 RC/V proceed to Step 9.

(2) At MCC, ensure terminal is in command mode.

(3) At MCC, do Steps 4 through 8.

(4) Type and enter CMD 199

Copyright ©2003 Lucent Technologies
Response: **RCV ECD PARAMETER INFO** page displayed with cursor at 1.**database name**

(5) Type and enter **incore**
Response: Cursor at 2.**review only**

(6) Type and enter **n**
Response: Cursor at 3.**journaling**

(7) Type and enter *****
Response: **RCV INITIALIZATION IN PROGRESS** message displayed.
UNIX RTR RCV (ODIN) - DATA ENTRY page is displayed.

(8) Type and enter **toggle**
Response: Will take you to the high-level forms.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE (on the MCC).

(9) At RCV terminal, type and enter **RCV:MENU:DATA,RCVECD:**
Response: **RCV ECD PARAMETER INFO** page displayed with cursor at 1.**database name**

(10) Type and enter **incore**
Response: Cursor at 2.**review only**

(11) Type and enter **n**
Response: Cursor at 3.**journaling**

(12) Type and enter *****
Response: **RCV INITIALIZATION IN PROGRESS** message displayed.
UNIX RTR RCV (ODIN) - DATA ENTRY page is displayed.

(13) Type and enter **toggle**
Response: Will take you to the high-level forms.

(14) Type and enter **help**
Lawfully Authorized Electronic Surveillance / 5ESS (Part 2)
Provisioning, Troubleshooting, and Maintenance

235-200-400

Response: List of all high-level forms available is displayed.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE (on the RC/V terminal).

3.5.2.3.3.1.4 Delete TTY Data

1. Type and enter ttydel
 Response: ttydel form displayed.
 Cursor at 1. tty_name:

2. Type and enter the key value for the identified degrowth unit:
 1. tty_name TTY26 (for CALEA Input TTY) or TTY27 (for CALEA Output TTY)

3. Type and enter d

4. The low-level forms will now be deleted automatically, and the user will be prompted to perform certain functions.

5. If the hardware associated with the CALEA TTY is not being removed, the following prompts can be omitted by entering a CARRIAGE RETURN. However, the TTYC for the CALEA TTY must be in the out-of-service (OOS) state.

 NOTE: The following prompts will place the existing IOP interfaces in the OOS state. Appropriate notification should be made to the user.

6. First prompt: Remove IOP X from service. Hit RETURN when completed.
 Where: X = the IOP number that the CALEA TTY is assigned.
 Action: At the OOS central processing unit (CPU) power switch (TN5 circuit pack), press the ROS/RST rocker switch to the ROS position.
 Comment: IOP pack locations are given:
 IOP 0 - PCCA 0 ; 033-162
 IOP 1 - PCCA 1 ; 133-162
 Response: The ROS LED lights followed by the RQIP LED. The RQIP LED is extinguished.

 NOTE: If the RQIP LED is NOT extinguished and the RQIP LED flashes for 8 seconds, the request has been denied. Correct the problem before continuing.

7. At OOS CPU, press the OFF switch.
 Response: The OFF LED lights.

8. Hit RETURN when complete.
(9) **Second prompt:** Power down and disconnect TTY X. Hit RETURN when completed.

Where: \(X \) = the TTY number of the CALEA TTY.

Action: With the power removed from the data set, disconnect the cable between the TN74B or UN582 and the data set. Disconnect the cabling between the data set and the 829A data auxiliary set and between the 829A and the Distribution Frame. Cross connects must also be disconnected from the Distribution Frame to the incoming Operational Support System (OSS) transmission line. Hit RETURN when complete.

(10) **Third prompt:** Return power and restore IOP X. Hit RETURN when completed.

Where: \(X \) = the IOP number that the CALEA TTY is assigned.

Action: At the selected IOP power switch, press the ON switch.

Comment: IOP pack locations are given:
- IOP 0 - PCCA 0 : 033-162
- IOP 1 - PCCA 1 : 133-162

Response: The OFF LED extinguishes.

(11) At the IOP power switch, press the ROS/RST switch to the RST position.

Response: The ROS LED extinguishes and the RQIP LED lights and extinguishes after the IOP is restored. All diagnosable units under the IOP will be diagnosed. All diagnosed units will be returned to service with the exception of the units being degrown.

Comment: All tests pass (ATP) must be achieved before continuing to subsequent procedures.

(12) Hit RETURN when complete.

(13) Is the TTYC controller to be degrown?

If **YES**, proceed to Step 14. If **NO**, proceed to Step 16.

(14) Type and enter \(<\)

Response: The tytel form is exited.

(15) Proceed to 3.5.2.3.3.5.

(16) Type and enter \(<\)

Response: The tytel form is exited.

(17) Type and enter **toogie**

Response: Low-level form displayed on screen.
Lawfully Authorized Electronic Surveillance / 5ESS (Part 2)
Provisioning, Troubleshooting, and Maintenance

235-200-400

June 2003

(18) Proceed to 3.5.2.3.3.1.6.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.3.1.5 Degrow the TTYC

(1) The TTY must be deleted before the controller that it is connected to can be deleted.

(2) Type and enter ttycdel
 Response: The ttycdel form is displayed with cursor at 1. ttyc_name.

(3) Type and enter the following key value for the identified degrowth unit:
 1. ttyc_name: TTYCXX
 Where: XX = appropriate TTYC indicator

(4) Type and enter d
 Response: The low-level forms will now be deleted automatically and the user will be prompted to perform certain functions.

(5) If the TTYC associated hardware is not being removed, the following prompts can be omitted by entering a CARRIAGE RETURN. However, the IOP must be in the OOS state.

 NOTE: The following prompts will place the existing IOP interface in the OOS state. Appropriate notification should be made to the user.

(6) First prompt: Remove and power down IOP X. Hit RETURN when completed.
 Where: X = the IOP number that the CALEA TTY is assigned.
 Action: At the OOS central processing unit (CPU) power switch (T15 circuit pack), press the ROS/RST rocker switch to the ROS position.
 Comment: IOP pack locations are given:
 IOP 0 - PCCA 0 : 033-162
 IOP 1 - PCCA 1 : 133-162
 Response: The ROS LED lights followed by the RQIP LED. The RQIP LED is extinguished.

 NOTE: If the RQIP LED is NOT and the RQIP LED flashes for 8 seconds, the request has been denied. Correct the problem before continuing.

(7) At OOS CPU, press the OFF switch.
 Response: The OFF LED lights.
(8) Hit RETURN when complete.

(9) **Second prompt:** Physically disconnect TTYC X. Hit RETURN when completed.

Where: \(X = \) the TTYC number
Action: Remove the TTYC (TN748 or UN582) from the slot where it was assigned. Hit RETURN when complete.

(10) **Third prompt:** Power up IOP X and restore it. Hit RETURN when completed.

Where: \(X = \) the IOP number that the TTYC is assigned.
Action: At the selected IOP power switch, press the **ON** switch.
Response: The **OFF** LED extinguishes.

(11) At the IOP power switch, press the **ROS/RST** switch to the **RST** position.

Comment: IOP pack locations are given:
IOP 0 - PCCA 0 , 033-162
IOP 1 - PCCA 1 , 133-162
Response: The **ROS** LED extinguishes and the **RQIP** LED lights and extinguishes after the IOP is restored. All diagnosable units under the IOP will be diagnosed. All diagnosed units will be returned to service.

Comment: ATP must be achieved before continuing to subsequent procedures.

(12) Hit RETURN when complete.

(13) Type and enter `<`
Response: The ttycode form is exited.

(14) Type and enter **toggle**
Response: Low-level form displayed on screen.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.3.1.6 Back Up Incore ECD to Disk

(1) At MCC, do Steps 2 through 5.

(2) Type and enter **activate**
Response: ACTIVATE form displayed with cursor
1. copy_inc_to_disk: YES

(3) Enter a carriage return
 Response: ODIN will request the action desired.

(4) Type and enter e
 Response: ODIN will return to the DATA ENTRY page.

(5) Type and enter <
 Response: RCV MENU RCVCED COMPLETED

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.1.7 Backup Office Dependent Data

NOTE: Before the response, there will be completed responses for each SM, the AM, and the CMP if applicable.

(1) At MCC, type and enter BKUP:ODD;
 Response: BKUP ODD COMPLETED

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

3.5.2.3.1.8 Back Up Primary Disk

It is recommended that the primary disk be backed up and a shelf copy made of the disks.

(1) Backup primary disk partitions and make a shelf copy.

STOP. YOU HAVE COMPLETED THIS PROCEDURE.

3.5.2.3.4 CALEA INPUT TTY GROWTH FOR VCDX OR DRM PROCEDURE

NOTE: This procedure consists of the following subprocedures. Unless otherwise stated, the subprocedures must be performed in the order stated.

(1) Enter UNIX® RTR Recent Change and Verify.
 (a) Is MCC or STLWS terminal to be used?
For MCC, proceed to Step b.
For STLWS proceed to Step i.

(b) At MCC, ensure terminal is in command mode.

(c) At MCC, do Steps d through h.

(d) Type and enter: 199
 Response: RCV PARAMETER INFO page displayed with cursor at 1. database_name

(e) Type and enter: incore
 Response: 2. review only

(f) Type and enter: n
 Response: 3. journaling

(g) Type and enter: *
 Response: RCV INITIALIZATION IN PROGRESS message displayed.
 UNIX RTR RCV (ODIN) - Data Entry page displayed.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(h) At STLWS terminal, type and enter: RCV:MENU:DATA,RCVECD;
 Response: RCV ECD PARAMETER INFO page displayed with cursor at 1. database_name

(i) Type and enter incore
 Response: 2. review only

(j) Type and enter: n
 Response: 3. journaling

(k) Type and enter: *
 Response: RCV INITIALIZATION IN PROGRESS message displayed.
 UNIX RTR RCV (ODIN) - Data Entry page displayed.
 Cursor at Enter Form Name:
STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(2) Enter high-level forms.
 (a) Type and enter: `toggle`
 Response: Will take you to the high-level forms.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(3) Insert TTY data.
 (a) Type and enter: `ttyadd`
 Response: `ttyadd` form displayed.
 Cursor at 1. `tty_name`:

 NOTE: An `t` may be entered any time prompted to abort the form and return to
 the state when the form was started.

 (b) Type and enter the following data:

 | `tty_name` | Action |
 |-----------------|---------|
 | enter TTY26 | |
 | enter (as specified or CARRIAGE RETURN) | |
 | enter n | |
 | enter 1 | |
 | enter (as specified or CARRIAGE RETURN) | |
 | enter (as specified or CARRIAGE RETURN) | |
 | enter 2 or 3 for TTYC port (see Tables 3-1 and 3-2) | |
 | enter TTYC number base on SPCC/SVI port (see Tables 3-1 and 3-2) | |
 | enter CARRIAGE RETURN | |
 | enter CARRIAGE RETURN | |

 Notes: `tty_name` must be entered in all capital letters.

Table 3-1 SPARC5 Terminal Locations

<table>
<thead>
<tr>
<th>S/R No.</th>
<th>AW SBUS SLOT No.</th>
<th>SPC PORT</th>
<th>TTYC PORT</th>
<th>TTYC No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 3-2 Ultra Terminal Locations

Copyright ©2003 Lucent Technologies
Lawfully Authorized Electronic Surveillance / 5ESS (Part 2)

Provisioning, Troubleshooting, and Maintenance

235-200-400

June 2003

<table>
<thead>
<tr>
<th>S/R No.</th>
<th>AW PCl SLOT No.</th>
<th>SAI PORT</th>
<th>TTYC PORT</th>
<th>TTYC No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

NOTE: Fields not specified receive the default value by entering CARRRIAGE RETURN.

NOTE: When growing a TTY terminal, a defensive check failure message `REPT CONFIG FAULT Assert = 412` may be received. This failure message may be ignored.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(4) Install the CALEA input TTY to the SAI/SPC port corresponding to the TTYC port and TTYC number chosen in Tables 3-1 and 3-2.

See Figures 3-2 (SPARC5 terminal) and 3-3 (Ultra terminal) for a graphical representation of the connections.

Copyright ©2003 Lucent Technologies

Page 35
Figure 3-2 Surveillance Administration Terminal Installation (SPARC5)
STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(5) Restore TTY to service.
 (a) At MCC, type and enter the appropriate message:
 RST:TTY=x
 Where:
 x = appropriate TTY number.

 Response: RST TTY x COMPLETED

 (b) Enter CARRIAGE RETURN.
235-200-400

Response: FORM INSERTED

c) Type and enter: <
Response: Exit the tpyadd form.

d) Type and enter: trbegin
Response: 1.fr_.name

e) Enter carriage return
Response: Enter Execute, Change, Substitute, Validate, or Print:

f) Type and enter e
Response: Enter Form Name:

g) Type and enter: authdef
Response: !Insert R=Review U=Update D=Delete :

h) Type and enter: u
Response: 1.comgr_name:

i) Type and enter: SURLEA
Response: Enter Update, Change, Substitute, Validate or Print:

j) Type and enter: c
Response: Change field:

k) Type and enter: 5
Response: 5.log_flag

l) Type and enter: y
Response: Change field:

m) Type and enter: 8
Response: 8.log_flag
(n) Type and enter: y
 Response: Change field:

(o) Enter a carriage return
 Response: Enter Update, Change, Substitute, Validate or Print:

(p) Type and enter: u
 Response: 1.comgr_name:

(q) Type and enter: SECLEA
 Repeat Steps (j) through (p)

(r) Type and enter: RCV
 Repeat Steps (j) through (p)

(s) Type and enter: FHADM
 Repeat Steps (j) through (p)

(t) Type and enter: <
 Response: Enter Form Name:

(u) Type and enter: trend
 Response: 1.tr_name:

(v) Enter a carriage return 4 times
 Response: Enter Execute, Change, Substitute, Validate, or Print:

(w) Type and enter: e
 Response: FORM EXECUTED
 Enter Form Name;

(x) Type and enter: <
 Response: Exit this recent change session.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.
Lawfully Authorized Electronic Surveillance / 5ESS (Part 2)
Provisioning, Troubleshooting, and Maintenance

235-200-400

June 2003

(6) Backup Incore ECD to disk.
 (a) At MCC, do Steps b through i.
 (b) Type and enter: 199
 Response: RCV PARAMETER INFO page displayed with cursor at 1. database_name
 (c) Type and enter: incore
 Response: 2. review only
 (d) Type and enter: n
 Response: 3. journaling
 (e) Type and enter: *
 Response: UNIX RTR (ODIN) - Data Entry page displayed.
 (f) Type and enter: activate
 Response: form displayed with cursor at 1. copy_inc_to_disk: YES
 (g) Enter carriage return
 Response: ODIN will request the action desired.
 (h) Type and enter: e
 Response: ODIN returns to the UNIX RTR (ODIN) - Data Entry page.
 (i) Type and enter: <
 Response: RCV MENU RCV ECD COMPLETED

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(7) Backup Office Dependent Data.

 NOTE: Prior to the response there will be completed responses for the switching module and the AM.
 (a) At MCC, type and enter: BKUP.ODD
 Response: BKUP ODD COMPLETED
 It is recommended that primary disk be backed up and that a shelf copy of the disks be made.
STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

STOP. YOU HAVE COMPLETED THIS PROCEDURE.

3.5.2.3.5 CALEA OUTPUT TTY GROWTH FOR VCDX OR DRM

PROCEDURE

NOTE: This procedure consists of the following subprocedures. Unless otherwise stated, the subprocedures must be performed in the order stated.

1. Enter **UNIX^® RTR Recent Change and Verify**.

 a. Is MCC or STLWS terminal to be used?

 For MCC, proceed to Step b.

 For STLWS proceed to Step h.

 b. At MCC, ensure terminal is in command mode.

 c. At MCC, do Steps d through g.

 d. Type and enter: 199

 Response: RCV PARAMETER INFO page displayed with cursor at 1. database_name

 e. Type and enter: incore

 Response: 2. review only

 f. Type and enter: n

 Response: 3. journaling

 g. Type and enter: *

 Response: RCV INITIALIZATION IN PROGRESS message displayed.

 UNIX RTR RCV (ODIN) - Data Entry page displayed.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

h. At STLWS terminal, type and enter: RCV:MENU:DATA,RCVECD;

Response: RCV ECD PARAMETER INFO page displayed with cursor at 1. database_name
(i) Type and enter `incore`
Response: 2. review only

(j) Type and enter: `n`
Response: 3. journaling

(k) Type and enter: `*`
Response: RCV INITIALIZATION IN PROGRESS message displayed.
UNIX RTR RCV (ODIN) - Data Entry page displayed.
Cursor at Enter Form Name:

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(2) Enter high-level forms.
 (a) Type and enter: `toggie`
Response: Will take you to the high-level forms.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(3) Insert TTY data.
 (a) Type and enter: `ttyadd`
Response: ttyadd form displayed.
 Cursor at 1. tty_name:

 NOTE: An 1 may be entered any time prompted to abort the form and return to
 the state when the form was started.

 (b) Type and enter the following data:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. tty_name</td>
<td>enter TTY27</td>
</tr>
<tr>
<td>2. blad_info</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>3. login_term</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>4. auth_chk</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>5. term_type</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>6. line_mode</td>
<td>enter (as specified or CARRIAGE RETURN)</td>
</tr>
<tr>
<td>7. port</td>
<td>enter 2 or 3 for TTYC port (see Tables 3-3 and 3-4)</td>
</tr>
<tr>
<td>8. ttyc_number</td>
<td>enter TTYC number base on SPCGA1 port (see Tables 3-3 and 3-4)</td>
</tr>
<tr>
<td>9. plu_unit_name</td>
<td>enter CARRIAGE RETURN</td>
</tr>
<tr>
<td>10. plu_unit_number</td>
<td>enter CARRIAGE RETURN</td>
</tr>
</tbody>
</table>

Notes:
Table 3-3 SPARC5 Terminal Locations

<table>
<thead>
<tr>
<th>S/P No.</th>
<th>AW SBUS SLOT No.</th>
<th>SPC PORT</th>
<th>TTYC PORT</th>
<th>TTYC No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 3-4 Ultra Terminal Locations

<table>
<thead>
<tr>
<th>S/P No.</th>
<th>AW PCI SLOT No.</th>
<th>SAI PORT</th>
<th>TTYC PORT</th>
<th>TTYC No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

NOTE: Fields not specified receive the default value by entering CARRIAGE RETURN.

NOTE: When growing a TTY terminal a defensive check failure message REPT_CONFIG FAULT Assert = 412 may be received. This failure message may be ignored.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(4) Install the traffic printer to the SAI/SPC port corresponding to the TTYC port and TTYC number chosen in Tables 3-3 and 3-4.

See Figures 3-4 (SPARC5) and 3-5 (Ultra) for a graphical representation of the connections.
Figure 3.4 Surveillance Administration Printer Installation (SPARC 5)
Figure 3-3: Surveillance Administration Printer Installation (ULTRA)

(a) Enter CARRIAGE RETURN.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(b) Enter CARRIAGE RETURN.

Figure 3-3: Surveillance Administration Printer Installation (ULTRA)

(a) Enter CARRIAGE RETURN.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(b) Enter CARRIAGE RETURN.

Copyright ©2003 Lucent Technologies
Response: FORM INSERTED

(c) Type and enter: <
Response: Exit the thyadd form.

(d) Type and enter: <
Response: Exit this recent change session.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(f) Backup Incore ECD to disk.
 (a) At MCC, do Steps b through i.
 (b) Type and enter: 199
 Response: RCV PARAMETER INFO page displayed with cursor at 1. database_name

(c) Type and enter: incore
Response: 2. review only

(d) Type and enter: n
Response: 3. journaling

(e) Type and enter: *
Response: UNIX RTR (ODIN) - Data Entry page displayed.

(f) Type and enter: activate
Response: form displayed with cursor at 1. copy_inc_to_disk: YES

(g) Enter carriage return
Response: ODIN will request the action desired.

(h) Type and enter: e
Response: ODIN returns to the UNIX RTR (ODIN) - Data Entry page.
(i) Type and enter: <
Response: RCV MENU RCV ECD COMPLETED

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(7) Backup Office Dependent Data.

NOTE: Prior to the response there will be completed responses for the switching module and the AM.

(a) At MCC, type and enter: BKUP:ODD
Response: BKUP ODD COMPLETED It is recommended that primary disk be backed up and that a shelf copy of the disks be made.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

STOP. YOU HAVE COMPLETED THIS PROCEDURE.

3.5.2.3.6 CALEA TTY DEGROWTH FOR VCDX OR DRM

PROCEDURE

NOTE: This procedure consists of the following subprocedures. Unless otherwise stated, the subprocedures must be performed in the order stated.

(1) Remove TTY x from service.

(a) At MCC, type and enter the appropriate message:
RMV:TTY=x
Where:
 x = appropriate TTY number.

Response: RMV TTY x COMPLETED

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(2) Enter UNIX® RTR Recent Change and Verify.

(a) Is MCC or STLWS terminal to be used?
For MCC, proceed to Step b.
For STLWS proceed to Step i.

(b) At MCC, ensure terminal is in command mode.
(c) At MCC, do Steps d through h.
(d) Type and enter: 199
 Response: RCV PARAMETER INFO page displayed with cursor at 1. database_name
(e) Type and enter: incore
 Response: 2. review only
(f) Type and enter: n
 Response: 3. journaling
(g) Type and enter: *
 Response: RCV INITIALIZATION IN PROGRESS message displayed. UNIX RTR RCV (ODIN) - Data Entry page displayed.
(h) You have completed Enter UNIX® RTR Recent Change and Verify, proceed to Step 3.
(i) At STLWS terminal, type and enter: RCV:MENU:DATA,RCVECD;
 Response: RCV ECD PARAMETER INFO page displayed with cursor at 1. database_name
(j) Type and enter: incore
 Response: 2. review only
(k) Type and enter: n
 Response: 3. journaling
(l) Type and enter: *
 Response: RCV INITIALIZATION IN PROGRESS message displayed. UNIX RTR RCV (ODIN) - Data Entry page displayed. Cursor at Enter Form Name:

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(3) Enter high-level forms.
 (a) Type and enter: toggle
 Response: Will take you to the high-level forms.
STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(4) Delete TTY data.
 (a) Type and enter: ttydel
 Response: ttydel form displayed. Cursor at 1. tty_name:
 (b) Type and enter: TTYS (for CALEA Input TTY) or TTYS (for CALEA Output TTY)
 Response: Remaining fields will automatically be completed.
 (c) Type and enter: d
 NOTE: When degrowing a TTY terminal a defensive check failure message REPT CONFIG
 FAULT Assert = 412 may be received. This failure message may be ignored.
 (d) The low-level forms will now be deleted automatically, and the user will be prompted to perform certain functions.
 (e) Type and enter: <
 Response: Exit the ttydel form.
 (f) Type and enter: <
 Response: Exit this recent change session.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(5) Backup Incore ECD to disk.
 (a) At MCC, do Steps b through i.
 (b) Type and enter: 199
 Response: RCV PARAMETER INFO page displayed with cursor at 1. database_name
 (c) Type and enter: incore
 Response: 2. review only
 (d) Type and enter: n
 Response: 3. journaling
(e) Type and enter: *
 Response: UNIX RTR (ODIN) - Data Entry page displayed.

(f) Type and enter: activate
 Response: ACTIVATE form displayed with cursor at 1. copy_inc_to_disk:

(g) Type and enter: yes
 Response: ODIN will request the action desired.

(h) Type and enter: e
 Response: ODIN returns to the UNIX RTR (ODIN) - Data Entry page.

(i) Type and enter: <
 Response: RCV MENU RCV ECD COMPLETED

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

(6) Backup Office Dependent Data.

NOTE: Prior to the response there will be completed responses for the switching module and the AM.

(a) At MCC, type and enter: BKUP:ODD
 Response: BKUP ODD COMPLETED

 It is recommended that primary disk be backed up and that a shelf copy of the disks be made.

STOP. YOU HAVE COMPLETED THIS SUBPROCEDURE.

STOP. YOU HAVE COMPLETED THIS PROCEDURE.

3.5.2.3.7 CONVERT EXISTING RC/V TTY TO CALEA INPUT TTY

3.5.2.3.7.1 STEP 1 - Identify the TTY letter of TTY to be converted.

Certain low-level ECD forms will be modified by this procedure and the TTY letter must be known. The dbinfo form will be used to determine this information, but this must be done before you begin a transaction.

NOTE: Procedure steps 1 through 22 (that is, all of "STEP 1") can be replaced by referencing the 235-080-100, Translations Guide (TGS), DIV 6 (Engineering Assignments), SEC. 8 (5708 RECORD), subsection FORM AND RECORD ENTRIES, sub-subsection FLEXIBLE IOP
Lawfully Authorized Electronic Surveillance / 5ESS (Part 2)
Provisioning, Troubleshooting, and Maintenance

235-200-400

June 2003

SELECTION, DEVICE TYPE, TTY Device Type/Device Name Cross-Reference Table, which lists
device type and alias.

Procedure

(1) Is master control center (MCC) or RCV/ terminal to be used?
 MCC proceed to Step 2.
 RCV proceed to Step 6.

(2) At MCC, ensure terminal is in command mode.

(3) At MCC, do Steps 4 through 7.

(4) Type and enter CMD 199
 Response: RCV ECD PARAMETER INFO page displayed with cursor at 1.database name

(5) Type and enter incore
 Response: Cursor at 2.review only

(6) Type and enter *
 Response: RCV INITIALIZATION IN PROGRESS message is displayed.
 UNIX RTR RCV (ODIN) - DATA ENTRY page is displayed.

(7) Continue with Step 11.

(8) At RCV/terminal, type and enter RCV:MENU:DATA:RCVECD;
 Response: RCV ECD PARAMETER INFO page displayed with cursor at 1.database name

(9) Type and enter incore
 Response: Cursor at 2.review only

(10) Type and enter *
 Response: RCV INITIALIZATION IN PROGRESS message displayed.
 UNIX RTR RCV (ODIN) - DATA ENTRY page is displayed.

(11) Type and enter dbinfo
 Response: DBINFO page is displayed

(12) Type and enter /tmp/dbinf
Response: 2. ucb_list

(13) Type and enter <
Response: 8.iop_list:

(14) Type and enter 14. pointer_list
Response: page 3 of DBINFO
14.pointer_list:

(15) Type and enter y
Response: 15.form_type:

(16) Type and enter ucb
Response: keyfield1:

(17) Enter carriage return 2 times
Response: keyfield3:

(18) Type and enter TTY
Response: keyfield4:

(19) Type and enter [number] of TTY to be converted
Response: 21.get_form_rid:

(20) Type and enter *
Response: FORM EXECUTED

(21) Type and enter <
Response: EXIT RCV ECD

(22) View the output file from the dbinfo form with the input message:

DUMP-FILE,ALL,FN="/tmp/dbinf"
Sample /tmp/dbinf output:
Lawfully Authorized Electronic Surveillance / 5ESS (Part 2)
Provisioning, Troubleshooting, and Maintenance

235-200-400

June 2003

*************** POINTER LIST ***************

Type of form pointed to: ucb
Key of form pointed to : TTY [number of TTY to be converted]

Records containing links to the given record.

Form Type Form Key
mdct tty[letter of TTY to be converted]
ucb TTYC [number of TTYC to be converted]

*************** end of sample ***************

NOTE: Record the tty [letter of TTY to be converted] of the mdct Form Key. This will be needed later in the procedure.

3.5.2.3.7.2 STEP 2 - Modify Low-Level ECD Forms

Several low-level ECD forms will be modified by this procedure. In order for this procedure to be applicable for any RGV TTY, some data changes may already be present.

NOTE: If the CALEA input TTY will be converted back to the original RGV TTY, record the existing ECD data fields described in this procedure. Then follow this procedure and reinsert the original ECD data values.

Required Conditions

Before beginning procedure, remove TTY from service.

At selected terminal, type and enter RMV:TTY=x;

Where: x = TTY to be converted
Response: RMV TTY x COMPLETED

Procedure

(1) Is master control center (MCC) or RGV terminal to be used?
 MCC proceed to Step 2.
 RGV proceed to Step 9.

(2) At MCC, ensure terminal is in command mode.

(3) At MCC, do Steps 4 through 9.

(4) Type and enter CMD 199

Response: RCV ECD PARAMETER INFO page displayed with cursor at 1.database name

Copyright ©2003 Lucent Technologies
(5) Type and enter incore
 Response: Cursor at 2.review only

(6) Type and enter n
 Response: 3.journaling

(7) Type and enter *
 Response: RCV INITIALIZATION IN PROGRESS message displayed.
 UNIX RTR RCV (ODIN) - DATA ENTRY page is displayed.

(8) CONTINUE WITH STEP 13.
(5) At RCV terminal, type and enter: RCV:MENU:DATA,RCVECDE;
 Response: RCV ECD PARAMETER INFO page displayed with cursor at 1.database name

(10) Type and enter incore
 Response: 2.review only

(11) Type and enter n
 Response: 3.journaling

(12) Type and enter *
 Response: RCV INITIALIZATION IN PROGRESS message displayed.
 UNIX RTR RCV (ODIN) - DATA ENTRY page is displayed.

(13) Type and enter trbegin
 Response: 1.tr_name

(14) Enter a carriage return
 Response: Enter Execute, Change, Substitute, Validate, or Print:

(15) Type and enter e
 Response: Enter Form Name:
(16) Type and enter `getty`
Response: `I=Insert R=Review U=Update D=Delete`

(17) `u`
Response: `1.gettyrec`

(18) Type and enter `getty` [TTY letter from dbinfo]
Response: `Enter Update, Change, Substitute, Validate, or Print`

(19) Type and enter `c`
Response: `Change field`

(20) Type and enter `gettyname`
Response: `2.gettyname`

(21) Type and enter `shlgetty`
Response: `Change field`

(22) Type and enter `getty_dir`
Response: `3.getty_dir`

(23) Type and enter `/lcf/shl`
Response: `Change field`

(24) Type and enter `shiname`
Response: `4.shiname`

(25) Type and enter `/lcf/bin/pdshl.app`
Response: `Change field`

(26) Type and enter `auth_chk`
Response: `10.auth_chk`

(27) Type and enter `t`
Overview

This is a simple project for the amateur SIGINT enthusiast which can be used to detect and analyze various radars operating in the 8 GHz to 12 GHz (X-band) region. This frequency range is commonly used for marine and airplane weather / navigation radar. There are also several Doppler-based motion alarms which operate in this frequency region. Most notably, the ones used to secure large, open areas like those found around missile silos.

By monitoring the pulse repetition, antenna sweep rate, and carrier frequency (using a RF spectrum analyzer) of different radars, you should be able to identify, track, and monitor all sorts of new surveillance targets. For example, the Department of Homeland Security, and other enforcement agencies, often have marine-based "intelligence units" poking around the various water ports in the country. Since each radar has its own slight differences in carrier frequency (as the magnetron's age) and pulse repetition rates, you should be able to identify and track these operations. Just think, maybe YOU could be responsible for preventing a false-flag nuclear attack on an American city by the Mossad!

Detecting those Doppler-based motion alarms will be a little different. Since most of these alarms don't have an identifying modulating signal, you'll need to monitor their operating frequency range for the "silence" they create when compared to the normal background noise. The CW carrier from the alarm sounds just like – nothing. Rotate the receiver's horn antenna and as it sweeps through the alarm's RF carrier, the background noise will go full-quieting, then come back.

This Radar Warning Receiver (RWR) project consists of a 17 dB horn antenna with a standard WR–90 flange connected to a salvaged WR–90 diode detector mount. The diode detector is a standard 1N23B point-contact diode. These diodes and mounts are fairly common items to find at ham radio swapfests or on eBay. They are also fairly easy to construct, if you're a semi-decent machinist. It should even be possible to use an older X-band police radar detector as an integrated horn antenna and diode detector. Those old, clunky Uniden models from the 1980s should work fine. A standard 10 GHz Gunnplexer will also work, as long as you don't power the Gunn diode and just use the mixer diode output as the detector.

The radar warning receiver's diode detector converts the incoming radar's RF pulses into a series of sharp-rising voltage spikes. These voltage spikes are further amplified by a chain of both transistor and op-amp amplifiers. Since most radars have a pulse repetition rate in the audio frequency range (20 – 20,000 Hz), is possible to monitor the output of the radar warning receiver using just a pair of headphones or common computer spectrum analyzing software.
Internal case overview. The case is from an old printer switch box.

Two types of radar warning receiver circuits will be shown here.

This version has an internal 9 volt battery and two signal outputs. One output feeds a high-impedance Piezo speaker element, and the other is routed to panel-mounted banana jacks. The input from the diode detector is via a BNC jack.
On the left is a 17 dB horn antenna with a WR−90 flange. This horn antenna was from an old Alpha Industries automatic door opener.

On the right is a 1N23 diode mount which also has a WR−90 flange. This was salvaged from a box of old radar parts I bought for $1. I swapped out the diode detector's original jack for a BNC jack.

1N23 diodes operate up into the X−band, while 1N21 are meant for the S−band (2 to 4 GHz). The letter after the part number (i.e. 1N23B) determines the diode's noise figure. The "higher" the letter, the lower the noise figure.
Circuit overview of one version of the GBPPR Radar Warning Receiver.

This version has a standard common–base, low–impedance transistor amplifier feeding a peak–holding circuit made from a LM324 op–amp.

The idea was to "stretch" the incoming pulses so they could be more easily measured with a frequency counter, but it didn't work out as well as I hoped.

The circuit worked, but analyzing the received signal's characteristics using software proved to be much easier.

A high–impedance Piezo speaker was used to try and monitor the signal, but it is still too weak at that point and required additional external amplification with a LM386 or LM380 amplifier IC.
Circuit overview of another version of the GBPPR Radar Warning Receiver.

This is basically the stock circuit from one-half of the binaural receiver circuit in the March 1999 issue of *QST*.
Internal overview of the completed GBPPR Radar Warning Receiver.

It turns out there really wasn't enough gain to drive the internal speaker, you'll need to add an external audio amplifier, like the GBPPR 1079 Audio Amplifier from GBPPR 'Zine Issue #39.

The output is fine for monitoring via a computer's sound card though.
Overview of the horn antenna mounted to the top of the radar warning receiver's case.

This horn antenna will be horizontally polarized, which most radar's use.

Due to the broadband nature of the diode detector and this horn antenna, the radar warning receiver's frequency response can be from below 1 GHz to over 30 GHz.

The quality and age of the 1N23 diode usually determines this. Be sure to take this into consideration if you notice any strange, spurious signals.
Completed GBPPR Radar Warning Receiver.

The output from the diode detector is via a short piece of coaxial cable with BNC connectors.

The final signal output can be monitored via a pair of headphones or sent to the "line input" on a computer for software analysis.
The program shown here is Spectrogram from Visualization Software.

During this initial setup the GBPPR Radar Warning Receiver is powered, but is not receiving any RF signals.

The Spectrogram frequency display is from 100 Hz to 4,000 Hz.

The output signal from the radar warning receiver is connected to the line input on a standard laptop computer.
Test setup receiving a signal from a Furuno Model FR–360 Mark II marine radar operating at around 9.41 GHz.

This radar is fully powered and is using the "long range" Pulse Repetition Frequency (PRF) of approximately 840 Hz.

The radar’s antenna is not rotating.

Note the fairly strong harmonics of the true PRF signal.
Radar antenna rotation (24 rpm) is now turned on.

The radar warning receiver is stationary.

Note how the signal peaks as the antenna sweeps through the main lobe of the radar warning receiver's horn antenna.
The radar is now using the "short range" PRF of approximately 3,360 Hz.

The radar’s antenna is not rotating.
Radar antenna rotation (24 rpm) is now turned on.

Again, note how the signal peaks as the antenna sweeps through the main lobe of the radar warning receiver’s horn antenna.
GBPPR X-Band Radar Warning Receiver
Post-Diode Detector Amplifier

Transistors are 2N3904.
NP = Not Polarized
Add a 10 kohm potentiometer at point A for volume control.

Low-Pass Filter (Optional)
High-Pass Filter (Optional)
GBPPR X-Band Radar Warning Receiver
Experimental Peak-and-Hold Circuit

NP = Not Polarized
Fiddle with the R and C values to change the hold time.
Diode is MBD301 or 1N34.

Diode Detector Input
220 pF
3.3 mH NP
0.1 µF
51Ω

Low-Pass Filter (Optional)

2N3904
10 kΩ
100 kΩ
6.6 kΩ
33 µF
10 µF NP
10 µF NP
1000 pF

+9 VDC

LM324

Peak Detector
Op-Amp Driver

MBD301
1.5 MΩ

Audio Output #1

Audio Output #2

100 µF
100 µF
51Ω
THE BLUE BOX AND MA BELL

When blue and red meant the trashing of Ma Bell

HERB FRIEDMAN, COMMUNICATIONS EDITOR

Before the breakup of AT&T, Ma Bell was everyone’s favorite enemy. So it was not surprising that so many people worked so hard and so successfully at perfecting various means of making free and untraceable telephone calls. Whether it was a Red Box used by Joe and Jane College to call home, or a Blue Box used by organized crime to lay off untraceable bets, the technology that provided the finest telephone system in the world contained the seeds of its own destruction.

The fact of the matter is that the Blue Box was so effective at making untraceable calls that there is no estimate as to how many calls were made or who made them. No one knows for certain whether Ma Bell lost revenues of $100, $100-million, or $1-billion on the Blue Box. Blue Boxes were so effective at making free, untraceable calls that Ma Bell didn’t want anyone to know about them, and for many years denied their existence. They even went as far as strongarming a major consumer science magazine into killing an article that had already been prepared on the Blue and Red boxes. Further, the police records of a major city contain a report concerning a break-in at the residence of the author of that article. The only item missing following the break-in was the folder containing copies of one of the earliest Blue-Box designs and a Bell-System booklet that described how subscriber billing was done by the AMA machine—a booklet that Ma Bell denied ever existed; Fig. 1 proves otherwise. Since the AMA (Automatic Message Accounting) machine was the means whereby Ma Bell eventually tracked down both the Blue and Red Boxes, we’ll take time out to explain it. Besides, knowing how the AMA machine works will help you to better understand Blue and Red Box “phone phreaking.”

Who made the call?

Back in the early days of the telephone, a customer’s billing originated in a mechanical counting device, which was usually called a “register” or a “meter.” Each subscriber’s line was connected to a meter that was part of a wall of meters. The meter clicked off the message units, and once a month someone simply wrote down the meter’s reading, which was later interpolated into message-unit billing for those subscriber’s who were charged by the message unit. (Flat-rate subscriber’s could make unlimited calls only within a designated geographic area. The meter clicked off message units for calls outside that area.) Because eventually there were too many meters to read individually, and because more subscribers started questioning their monthly bills, the local telephone companies turned to photography. A photograph of a large number of meters served as an incontestable record of their reading at a given date and time, and was much easier to convert to customer billing by the accounting department.
As you might imagine, even with photographic billing was cumbersome and did not reflect the latest technical developments. A man didn't provide any indication of what the subscriber was doing with the telephone, not did it indicate how the average subscriber made calls or the efficiency of the information service (how fast the operators could handle incoming calls). So the meters were replaced by the AMA machine. One machine handled up to 20,000 subscribers. It produced a punched tape for a 24-hour period that showed, among other things, the time a phone was picked up, when it was picked up, the number dialed, the time the called party answered, and the time the original phone was hung up (placed on hold).

One other point, which will answer some questions that you're certain to think of as we discuss the Red and Blue boxes: Ma Bell did not want persons outside their system to know about the AMA machine. The reason? Almost everyone had complained—usually unsuccessfully—about their billing. Had the public been aware of the AMA machine they would have asked for a monthly list of their telephone calls. It wasn't that Ma Bell feared competition; it was that they were afraid of being buried under an avalanche of newspaper and customer complaints. Also, the public believed their telephone calls were being recorded. Ma Bell didn't want to admit that they knew what the who, when, and where of every call. And so Ma Bell always insisted that the billing was based on a rate book "sticker" for each message unit; that there was no record, other than for long-distance calls, as to who called whom. Long-distance was handled by computer and the billing information was done by an operator, so there was a written record.

The security surrounding the AMA machine was so pervasive that, indeed, even the police were told that local calls made by criminals were traceable and that people who made obscene telephone calls could not be tracked down unless the person receiving the call kept the caller on the line for some 30 to 90 seconds so the connections could be physically traced by technicians. Imagine asking a woman child to put up with almost an hour's worth of the most horrendous obscenities to the hope someone would trace the line. Yet in cities where the AMA machine had displaced the meters, it would have been a simple, though perhaps time-consuming task, to track down the numbers called by any telephone during a 24-hour period. But Ma Bell wanted the AMA machine kept as secret as possible, so many a criminal was not caught, and many a woman was horrified by the obscene calls of a potential rapist, because existence of the AMA machine was denied.

As a sideline to the secrecy surrounding the AMA machine, someone at Ma Bell or the local operating company decided to put the squeeze on the author of the article on Blue Boxes, and reported to the Treasury Department that he was, in fact, manufacturing them. The Treasury Department was, in fact, manufacturing them because he was pocketing the extra 10% of long-distance calls being dialed by the three-digit area code. The Treasury Department went after the Blue Box and the AMA machine or you'll spend lots of time, and much money on lawyer's fees to get out of the hassle it will cause.) The author was suddenly visited by a Treasury agent.

Fortunately, it took just a few minutes to convince the agent that the author was just a kid, that he had no technical background, and that the Treasury agent needed to be taken to the AT&T offices.

When a subscriber dialed an area code and a telephone number on a rotary-dial telephone, the crossbar automatically connected the subscriber's telephone to a long-distance trunk, converted the dial pulses to CCITT tones, set up electronic cross-country signaling equipment, and recorded the originating number and the called number on the AMA machine. The CCITT tones sent out on the long-distance trunk line activated special equipment that set up or selected the routing equipment, and caused electro-mechanical equipment in the target city to dial the called telephone.

Operator-assisted long-distance calls worked the same way. The operator simply logged into a long-distance trunk and pushed the appropriate buttons, which generated the same tones as dialing equipment. The button sequence was KP (which activated the long-distance equipment), then the complete area code and telephone number. At the target city, the connection was made to the called number but ringing did not occur until the operator there pressed the ST button.

The sequence of events for early Blue Boxes went like this. The caller dialed information in a distant city, which caused his AMA machine to record a free call to an information operator. The information operator answered, pressed the KP key on the Blue Box, which disconnected the operator and gave him access to a long-distance trunk. The Treasury Department had never been informed of the existence of automatic message accounting. Needless to say, at least six reports left with their own copy of the Bell System publication about the AMA machine and the author had an appointment with the local Treasury Bureau director to fill him in on the AMA machine. That information eventually ended up with Senator Dodd, who was conducting a congressional investigation into, among other things, telephone company surveillance of subscriber lines—which was a common practice for years. There were detailed instructions, Ma Bell's own switching equipment ("crushbar") manual.

The Blue Box

The Blue Box permitted free telephone calls because it used Ma Bell's own internal telephone circuits. When direct dialing was set up or selected, the crossbar knew a long-distance call was being dialed by the three-digit area code. The crossbar then connected the dial pulses to the CCITT tone groups, shown in Table 1, that are used for international and trunk line signaling. (Note that these do not correspond to Group 1 or Group 2, as is confusing, but that those letters represent more than just numbers; among other things there are two groups identified as K and K.) Fortunately, it took just a few minutes to convince the agent that the author was just a kid, that he had no technical background, and that the Treasury agent needed to be taken to the AT&T offices.

When a subscriber dialed an area code and a telephone number on a rotary-dial telephone, the crossbar automatically connected the subscriber's telephone to a long-distance trunk, converted the dial pulses to CCITT tones, set up electronic cross-country signaling equipment, and recorded the originating number and the called number on the AMA machine. The CCITT tones sent out on the long-distance trunk line activated special equipment that set up or selected the routing equipment, and caused electro-mechanical equipment in the target city to dial the called telephone.

Operator-assisted long-distance calls worked the same way. The operator simply logged into a long-distance trunk and pushed the appropriate buttons, which generated the same tones as dialing equipment. The button sequence was KP (which activated the long-distance equipment), then the complete area code and telephone number. At the target city, the connection was made to the called number but ringing did not occur until the operator there pressed the ST button.

The sequence of events for early Blue Boxes went like this. The caller dialed information in a distant city, which caused his AMA machine to record a free call to an information operator. The information operator answered, pressed the KP key on the Blue Box, which disconnected the operator and gave him access to a long-distance trunk. The Treasury Department had never been informed of the existence of automatic message accounting. Needless to say, the author left with his own copy of the Bell System publication about the AMA machine and the author had an appointment with the local Treasury Bureau director to fill him in on the AMA machine. That information eventually ended up with Senator Dodd, who was conducting a congressional investigation into, among other things, telephone company surveillance of subscriber lines—which was a common practice for years. There were detailed instructions, Ma Bell's own switching equipment ("crushbar") manual.

agent was extended to learn about the AMA machine. (Wow! Can an author whose copy is squashed up his guts.) According to the Treasury agent, his department had been told that it was impossible to get a record of local calls made by gangsters. The Treasury Department had never been informed of the existence of automatic message accounting. Needless to say, the author left with his own copy of the Bell System publication about the AMA machine and the author had an appointment with the local Treasury Bureau director to fill him in on the AMA machine. That information eventually ended up with Senator Dodd, who was conducting a congressional investigation into, among other things, telephone company surveillance of subscriber lines—which was a common practice for years. There were detailed instructions, Ma Bell's own switching equipment ("crushbar") manual.
connect from the operator with a KP tone, and then dial anywhere that was on direct-dial service: Los Angeles, Dallas, or anywhere in the world if the Blue Boxer could get the international codes.

The legend is often told of one Blue Boxer who, in the 1960’s, lived in New York and had a girl friend at a college near Boston. New York to Boston in the 1960’s, making a telephone call to a college town on the weekend was even more difficult than it is today to make a call from New York to Florida on a reduced-rate holiday using one of the cut-rate long-distance carriers. So our Blue Boxer got an international operator’s circuit to Rome, Blue Boxed through to Hamburg to patch through to Boston. The Hamburg operator thought the call originated in Rome and inquired as to the “conversation,” word (English, in which the Blue Boxer replied that he was an experiment hired to handle calls by American tourists back to their homeland. Every weekend, while the Northeast was slammed by reduced-rate long-distance calls, our Blue Boxer had no trouble sending his voice almost 7,000 miles for free.

Vacuum Tubes

Assembly plans for Blue Boxes were sold through classified advertisements in the electronic-hobbyist magazines. One of the earliest ads was a two-tube portable model that used a 1.5-volt “A” battery for the filaments and a 125-volt “B” battery for the high-voltage (B+) power supply. The portable Blue Box’s functional circuit is shown in Fig. 2. It consisted of two phase-shift oscillators sharing a common speaker that mixed the tones from both oscillators. Switches S1 and S2 each represent 12 switching circuits used to generate the tones. (We will not supply a working circuit, so please disregard the text.)

The user placed the speaker over the telephone handset’s transmitter and simply pressed the buttons that corresponded to the desired CCITT tones. It was just that simple.

Actually, it was even easier than that reads here because Blue Boxers discovered they did not need a working the telephone operator. If they placed an active telephone located in certain nearby, but different, area codes, they could Blue Box just as if they had Blue Boxed through an information operator’s circuit. The subscriber whose line was called found his phone was dead when it was picked up. But if the Blue Box call came when the “dead” phone suddenly came to life the next time it was picked up. Using a list of “distant” numbers, a Blue Boxer would never have anyone enough time to make them complain to the telephone company.

The difference between Blue Boxers and a subscriber rather than an information operator was that the Blue Boxer’s

AMA tape indicated a real long-distance telephone call—perhaps costing 15 or 25 cents—instead of a freebie. Of course, that is the reason why when Ma Bell finally decided to go public with “assisted” newspaper articles about the Blue Boxers they had apprehended, it was usually about some college kid or “phone phreak.” One never read of a mobster being caught. Greed and stupidity were the reasons why the kid’s were caught.

It was the transistor that led to Ma Bell going public with the Blue Box. By using transistors and RC phase-shift networks for the oscillators, a portable Blue Box could be made inexpensively, and small enough to be to be used unobtrusively from a public telephone. The college crowd in many technical schools went crazy with the portable Blue Box; they could call the folks back home, their friends, or get on a free network (the Alabama and Carolina connections—which could be a topic for a whole separate article) and never pay a dime to Ma Bell. Simply monitored the booth. Ma Bell might not have known who originated the call, but she did know who got the call, and getting that party to spill their guts was no problem.

The mob and a few Blue Box hobbyists (maybe even thousands) knew the AMA machine, and so they used a real telephone number for the KP skip. Their AMA tapes looked perfectly legitimate. Even if Ma Bell had told the authorities they could provide a list of direct-dialed calls made by local mobsters, the AMA tapes would never show who was called through a Blue Box. For example, if a bookmaker in New York wanted to lay off some action in Chicago, he could make a legitimate call to a phone in New Jersey and then Blue Box to Chicago. His AMA tape would show a call to New York. Nowhere would there be a record of the call to Chicago. Of course, automatic tone monitoring, computerized billing, and ESS (Electronic Switching Systems) now makes that all virtually impossible.

FIG. 3—A POPULAR BLUE BOX DESIGN used two phase-shift oscillators, vacuum tubes, and a simple speaker connection that mixed both oscillators into a simple two-tone output.

Unlike the mobsters who were willing to pay a small long-distance charge when Blue Boxing, the kids wanted it, wanted it all free, and so they used the information operator route, and would often talk “free-of-charge” for hours on end.

Ma Bell finally realized that Blue Boxing was costing them Big Bucks, and decided to catch a few articles on the criminal penalties might scare the Blue Boxers enough to cease and desist. But who did Ma Bell catch? The college kids and the gangsters. When Ma Bell decided to catch the Blue Boxers she simply examined the AMA tapes for calls to an information operator that were excessively long. No one talked to an operator for 5, 10, 30 minutes, or several hours. Once a long call to an operator appeared several times on an AMA tape, Ma Bell simply monitored the line and the Blue Boxer was caught. (Now do you understand why we opened with an explanation of the AMA machine?) If the Blue Boxer worked from a telephone booth, Ma Bell but that’s the way it was.

You might wonder how Ma Bell discovered the tricks of the Blue Boxers. Simple, they hired the perpetrators as consultants. While the initial newspaper articles detailed the potential jail penalties for apprehended Blue Boxers, except for Ma Bell employees who assisted a Blue Boxer, it is almost impossible to find an article on the resolution of the cases because most hobbyist Blue Boxers got suspended sentences and/or probation if they assisted Ma Bell in developing anti-Blue Box techniques. It is asserted, although it can’t be easily proven, that cooperating ex-Blue Boxers were paid as consultants. (If you can’t beat them, hire them to work for you.)

Should you get any ideas about Blue Boxing, keep in mind that modern switching equipment has the capacity to recognize unauthorized tones. It’s the reason why a local office can leave their subscriber Touch Tone circuits active, almost inviting you to use the Touch-Tone
service. A few days after you use an unauthorized Touch-Tone service, the business office will call and inquire whether you'd like to pay for the service or have it disconnected. The very same control equipment that knows you're using Touch-Tone frequencies knows if your line is originating CCITT signals.

The Red Box

The Red Box was primarily used by the college crowd to avoid charges when frequent calls were made between two particular locations, say the college and a student's home. Unlike the somewhat complex circuitry of a Blue Box, a Red Box was nothing more than a modified telephone; in some instances nothing more than a capacitor, a momentary switch, and a battery.

As we recall from our discussion of the Blue Box, a telephone circuit is really established before the target phone ever rings, and the circuit is capable of carrying an AC signal in either direction. When the caller hears the ringing in his or her handset, nothing is happening at the receiving end because the ringing signal he hears is really a tone generator at his local telephone office. The target (called telephone actually gets its 20 pulses-per-second ringing voltage when the person who dialed hears nothing—in the "dead" spaces between hearing the ringing tone. When the called phone is answered and taken off hook, the telephone completes a local-office DC loop that is the signal to stop the ringing voltage. About three seconds later the DC loop results in a signal being sent all the way back to the caller's AMA machine that the called telephone was answered. Keep that three-second AMA delay in mind. (By now you should have a pretty good idea of what's coming!)

Figure 3 shows the simplified functional schematic of a telephone. Switch S1 is the hook switch. When S1 is open (on hook) only the ringer circuit consisting of C1 and BELL1 is connected across the line. Capacitor C1 really has no purpose in the ringing circuit; it only serves to keep DC from flowing through BELL1. When the local telephone office feeds a 20-pps ringing signal into the line it flows through C1 and a ringer coil in BELL1. A vibrating device attached to BELL1 strikes a small bell—the ringing device. When the phone is answered by lifting the handset from its cradle, switch S1 closes (goes off hook) and connects the handset across the telephone line. Since the handset's receiver and transmitter (microphone) are connected in series, a DC path is established from one side of the line to the other—what is called completing a DC loop with the central office. The DC current flowing in the loop causes the central office to instantly stop the ringing signal. When the handset is replaced in its cradle, S1 is opened, the DC loop is broken, the circuit is cleared, and a signal is sent to the originating telephone's AMA machine that the called party has disconnected.

Now as we said earlier, the circuit can actually carry AC before the DC loop is closed. The Red Box is simply a device that provides a telephone with a local battery so that the phone can generate an AC signal without having a DC connection to the telephone line. The earliest of the Red Boxes was surplus military field telephone, of which there were thousands upon thousands in the marketplace during the 1950's and 1960's. The field telephone was a portable telephone unit having a manual ringer worked by a crank—just like the telephone Grandpa used on the farm—and two D-cells. A selector switch set up the unit so that it functioned as a standard telephone that could be connected to a combat switchboard, with the DC power supplied by the switchboard. But if a combat unit wasn't connected to a switchboard, and the Lieutenant yelled, "Take a wire," the signalman threw a switch on his field telephone that switched in the local batteries. To prevent the possibility of having both ends of the circuit feeding battery current into the line in opposite polarity—thereby resulting in silence—the output from the field telephone when running from its internal batteries was only the AC representing the voice input, not modulated DC.

Figure 4 is the functional simplified schematic for a field telephone (do not attempt to build that circuit). Momentary switch S4 is not part of the field telephone, it is added when the phone is converted to a Red Box, so for now, consider that S4 does not exist. Once again, S1 is the hook switch. When S2 is set to N (NORMAL) and S1 is closed, DC flows from line A through T1's secondary (S), through S2-a to S2-b, through T1's primary (P), through the handset, through S2-c, to line B. There is a complete DC path across the line, and if the unit is connected to a conventional subscriber telephone line it will close the DC loop from the local office.

To use the field telephone as a Red Box, switch S2 is set to L (LOCAL). Switches S2-b and S2-c connect batteries B1 and B2 in series with the handset and the transformer's primary, which constitute an active, working telephone circuit. Switch S2-a connects T2's secondary to one side of the telephone line through a non-polarized capacitor (C1), so that when hook-switch S1 is closed, T1's secondary cannot close the DC loop.

Press once to talk

The Red Box was used at the receiving end; let's assume it's the old homestead. The call was originated by Junior (or Susie) at their college 1000 miles from home. Joe gave the family one ring and then hung up, which told them that he's calling. Pop set up the Red Box by setting S2 to LOCAL. Then Junior relaid the old homestead. Pop lifted the handset when the phone rang, which closed S1. Then Pop closed momentary-switch S4 for about a half-second, which caused the local telephone

continued on page 129
BLUE BOX

continued from page 52

office to silence the ringing signal. When Pop released the call button without Junior getting charged because his AMA tape did not show his call was answered—the DC loop must be closed for at least three-seconds for the AMA tape to show Junior's call was answered. All the AMA tape showed is that Junior let the phone ring at the old horsestand for almost 30 minutes; a length of time that no Bell Operating Company is likely to believe twice!

A modern Red Box is simply a conventional telephone that's been modified to emulate the vintage 1940 military field telephone. Aside from the fact that the operating companies can now publish every Red Box user because all modern billing equipment shows the AMA information concerning the length of time a caller let the target telephone ring, it's use has often put severe psychological strain on the users.

Does getting electronics mixed up with psychology sound strange? Well it's not because it's what helped Ma Bell put an end to indiscriminate use of the Red Box. The heyday of the Red Box was the 1950's and 1960's. Mom and Pop were lucky to have finished high school, and almost without exception, both elementary and high schools taught honesty and ethics. Mom and Pop didn't have the chance to take college courses in Stealing 101 that Masqueraded under quaint names such as Business Management, Marketing, or Arbitrage. When Junior tried to get the old folks to use his "free telephone" they just wouldn't go along. So Junior installed the Red Box at his end. He gave one ring to notify the family to call back. When Pop called Junior, it was Junior who was using the Red Box. Problem was, Junior didn't know that the AMA tape for Mom and Pop's phone showed a 20- or 30-minute ringing. When Ma Bell's investigators showed up it was at the old horsestand and it was only then that the folks discovered their pride and joy had been taught to steal.

There are no hard facts concerning how many Red Boxes were in use, or how much money Ma Bell lost, but one thing is known; she had little difficulty closing down Red Boxes in virtually all instances where the old folks were involved because Mom and Pop usually would not tolerate what to them was stealing. If you as a reader have any ideas about using a Red Box, bear in mind that the AMA (or its equivalent) will get you every time, even if you use a phone booth, because the record will show the number being called, and with the Blue Box, the people on the receiving end will spill their guts to the cops.

ELECTRONIC LOCK

continued from page 108

one for the common signal and electrical ground.

Build the encoder circuit on a small, piece of perforated wiring board, and, if possible, use a socket for IC2, because a CMOS device, it can be damaged if you solder directly to its terminals, especially if you're using an ungrounded soldering iron. For the same reason, use a socket for the decoder's IC1.

As shown in Fig. 3, the small encoder assembly can be secured directly to one side of a DB-25-type connector hood using two 4-40 screws.

Testing

Testing is very simple. Connecting the key to the decoder should cause RY1's contacts to close. If the contacts don't close, it's more than likely the problem is an address mismatch between encoder and decoder. Check that they are exactly the same. If you connect an oscilloscope to pin 15 of IC2 should see a constant sequence of pulses being transmitted out of the encoder. If the pulses are missing check that resistors R4 and R5, and capacitors C5, are connected correctly.

ATTENTION: ELECTRONIC TECHNICIANS

EARN YOUR B.S.E.E. DEGREE THROUGH HOME STUDY

Our New and Highly Effective Advanced Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all or the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 6 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature.

COOK'S INSTITUTE
OF ELECTRONICS ENGINEERING

CIRCLE 197 ON FREE INFORMATION CARD

TRANS-AM ELECTRONICS
383 CANAL ST, NYC, NY 10013 (212) 226-3893

ELECTRONIC KITS

10 LED CHASER KIT—50 LED'S CHASE IN ONE DIRECTION AT VARIABLE SPEEDS, SKILL LEVEL: EASY $9.95
ALTERNATING FLASHER KIT—2 BULBS FLASH ALTERNATELY AT VARIABLE SPEEDS, GREAT FOR MODEL TRAINS, SKILL LEVEL: EASY $7.95
STARBURST KIT—25 LED'S IN THE SHAPE OF A STAR, GLEAMS AT VARIABLE SPEEDS, SKILL LEVEL: HARDS $14.95
16 LED BACK AND FORTH KIT—16 LED'S CHASE BACK AND FORTH AT VARIABLE SPEEDS, SKILL LEVEL: HARIEST $14.95
ALL KITS COME WITH PC BOARD AND ALL PARTS AND DIAGRAM NECESSARY FOR CONSTRUCTION. THESE KITS REQUIRE 5 VOLTS DC. PLEASE SPECIFY RED, GREEN OR YELLOW.

SWITCHING POWER SUPPLY—BUILT FOR APPLE III. THIS UNIT MEASURES 4 1/4" X 17 3/8" X 3 1/2" HIGH, SWITCHABLE FOR 110 OR 220VAC, COMPUTER TYPE PLUG FOR THIS UNIT ADD $3.95. VALUES ARE: 15VDC @ 2.5 AMPS, 12VDC @ 1.5 AMPS, 5VDC @ 4 AMPS, 5VDC @ 2.5 AMPS. WAS $49.95. NOW...$24.95!

TELEPHONE LINE TESTER—THIS SMALL UNIT ALERTS YOU TO PROPER CONNECTION OF PHONE LINES, USES LED INDICATORS. $4.95 EACH

PLUG IN WALL TRANSFORMERS

85VAC TO 12VDC 100 Amps 115VAC TO 12VDC 50 Amps
6VDC @ 500 MA $3.95 12VDC @ 500 MA $4.95
12VDC @ 500 MA $4.95 115VAC TO 500 MA $4.95

TERMS: MINIMUM ORDER ADD $5.00 FOR SHIPPING (SOME ARE OVERSIZED), ADD $2.50 FOR TAX IN NY, CALL IN OR MAIL, IN ORDER WITH CHECK, VISA/MC/CAMEX OK. ALL ITEMS SUBJECT TO PRIOR SALE.

CIRCLE 211 ON FREE INFORMATION CARD

R-E
Overview

One of the latest non-lethal directed-energy weapons is called a "laser dazzler." These dazzlers are used to disorient (or grab the attention of) people at fairly long ranges by temporarily causing "flash blindness." They are handy for signaling cars to stop at checkpoints (the car's interior lights up all spooky green), or even for distracting a target while you prepare your conventional weapon. The "flinch factor" in your target can even expose vulnerable areas not protected by body armor. Dazzlers will even work on some animals. You can use them to chase coons out of your neighborhood, and even to scare birds or raccoons out of your yard.

Laser dazzlers are said to be a true "multicultural and multilingual" non-lethal weapon as nothing says "Stop right there!" better than a laser in the eyes.

Military versions of the laser dazzler can sell for up to $1,000. These higher-quality versions consist of a high-power 200+ mW 532 nm (green) laser mounted in a nice machined aluminum case complete with MIL-SPEC adjustable optics and power controls.

The laser dazzler in this project consists of a cheap $10 green laser pointer (<5 mW) and the optics from a $5 LED flashlight. This dazzler does work, but isn't perfect – mostly due to the low laser output power and the less-than-ideal plastic optics. You can experiment with different optic systems for overall system improvement, but for inexpense and ease of construction, this setup works quite well.

The stock power switch and battery compartment for the laser pointer will be left intact. You may wish to add an external battery pack to increase the operational time of the laser pointer. It is also possible to add a "flasher" option to the laser dazzler. By flashing the beam at around 7 Hz to 14 Hz you can increase the effectiveness of the dazzler on a human target by making them dizzy as well as blind!

Laser dazzler systems like these have also been proven to be fairly effective against certain remote electro-optical systems (i.e. video cameras, digital cameras, night vision devices, etc.) provided they don't contain any front-end filtering or fancy automatic gain controls.
On top is a model A100G keychain flashlight from Garrity. These are often for sale near the checkout lines at various stores.

The Garrity A100G flashlights themselves are surprisingly bright and well constructed for their size and cost.

On the bottom is a cheap green laser pointer from eBay.

The first modification is to remove the end cap from the laser pointer. This should pull out with just a fairly strong tug.

Next, unscrew the lens assembly from the Garrity flashlight.
Slide the lens assembly from the flashlight over the end of the laser pointer and secure with some electrical tape or epoxy.

The lens assembly is an almost perfect fit. Slide it over the body of the laser pointer until it reaches the internal threads.

An optional 1/2-inch copper pipe hanger was added for mounting the dazzler.
That's it!

The 1/2–inch copper pipe hanger can be used to hold down the laser pointer's power button while you toggle the DC power via a remote battery pack and controls.

The pipe hanger also acts as an additional heatsink for the laser diode module, possibly extending its lifetime.
Output from the stock green laser pointer from about 10 feet away.
Output from the laser pointer with the "dazzle" lens installed from about 10 feet away.

The beam is more of a distorted rectangle at long distances due to use of the cheap optics, but the dazzler still works overall.

Rudimentary laser dazzler countermeasures consisted of using one of those "auto−darkening" welding helmets from Harbor Freight Tools.

Note that some cheap green laser pointers can pass a fair amount of energy in the infrared region. This could be potentially dangerous to a person's eyes if proper filtering is not in place.
Bonus

Ah, Ryan. Have you finished that paper on why all white countries and only white countries must accept millions of non-whites and "assimilate" them?

y...yes professor

Excellent, remember it is worth 50% of your grade!

yeah, heh... heh...

Later...

/new/ - News

RACIST REDNECK MORONS!!!

Anti-intelectual inbred trailer trash, have you been to college? All races are equal, you are just ignorant. White countries should have immigration because diversity is our strength! I hope the white race goes extinct because whites are responsible for every bad thing that has ever happened. BTW, you stole this country from the native Americans, so your children deserve to lose their country! P.S. There is no such things as "white people"!!!
Editorial and Rants

An "Undocumented Canadian" kills a police officer and the liberal/Jew media does everything possible to cover it up...

Houston Police Officer Called a Hero After Fatal Accident

June 1, 2011 – From: beaumontenterprise.com

As with so many of those in uniformed service – be it soldiers, firefighters, border patrolmen or police officers – Kevin Will spent countless hours engaged in the redundant and routine, and occasional minutes coping with the harrowing and dangerous.

So it was again in Sunday's earliest hours, this time with a tragic conclusion. The 38-year-old officer with the Houston Police Department was collecting details of a hit-and-run accident along Loop 610 North when, police say, a driver, apparently drunk, ignored the flashing lights of patrol cars, steered his Volkswagen around a makeshift barrier set up to block the freeway, and slammed into Will, killing him at the scene.

The officer leaves behind a pregnant wife and two stepchildren, a 10-year-old boy and a 6-year-old girl.

"Officer Will and other witnesses at the scene who were inside the barriers had no expectation that someone would drive around that or drive through that," said Houston Police Chief Charles McClelland.

As the vehicle sped through the barrier, Will had the presence of mind to yell at the witness he was interviewing to "get out of the way," the chief said.

"The witness had no time to look around or react, except to leap over the concrete barrier that divides the freeway. According to (the witness), he heard the impact before he hit the ground," McClelland said. "He credits Officer Will with giving him the prior warning of getting out of the way. It actually saved his life, or he said, he would have been struck with Officer Will."

The driver, identified as Johoan Rodriguez, 26, was traveling eastbound on the North Loop when his car struck Will near the Yale exit about 3:15 a.m.
He remains in Harris County jail without bail, charged with intoxication manslaughter of a peace officer, felony evading and possession of a controlled substance, which was identified by police as cocaine.

Rodriguez is set to appear in court on Wednesday. In addition, Immigration and Customs Enforcement is investigating his citizenship status.

His sister Dolores Rodriguez said in a written statement that her family is sorry for the accident.

"My brother is a real good hard working person," she wrote. "He didn't drink. We don't know what really happened, but my mom is suffering for this situation ... We all are sorry for the officer's family. I have no words."

'He had a purpose'

Will spent years searching for his calling, said Bryan Conn, his best friend of 20 years.

He studied for stints at Texas Tech and the University of Houston, and worked as a car salesman and in the restaurant business, as well as a job in banking.

Will was a latecomer to police work, joining the department in September 2009.

"He was so proud when he got that badge," Conn said. "He was fulfilled for a change. He had a purpose of where he needed to be."

He was also ecstatic about becoming a father. His wife Alicia, whom he wed in 2010, is six months pregnant with the couple's first child, expected to be a boy.

Will "always wanted to be called dad," said Conn, who met Will as a teen at a Houston−area sports event for home−schooled students.

Conn said the pair enjoyed many memories over the years, including forming a heavy metal band. Will played drums and Conn the bass for the band that they named Train of Thought.

"Cause we'd always look at each other and say, 'Damn, I lost my train of thought,'" Conn recalled with a laugh.

Although he promised himself he'd never get another tattoo, Conn said he now plans on getting one of Will's badge number.

"He's the type of person who should always be remembered," he said. "It's a once−in−a−lifetime opportunity to know someone like that."

Friends and colleagues described Will as an honest, hard−working officer who was devoted to his family. He loved his job and had a passion for helping people, said HPD officer Andrew Michon, a friend who worked in the vehicular crimes division with Will.

"That was just him," said Michon, who was also in the same academy class as Will. "He always liked helping folks. Even his last actions showed that."

Michon, who worked evenings, last spoke to Will during a shift change around 10 p.m. Saturday night.
"Will said to me, 'Hey you know what? We're no longer rookies,'" Michon said. Sunday was a year to date since both men had transferred to the vehicular crimes division.

Will is the first officer in the department to die in the line of duty in a little more than a year. In May 2010, HPD Officer Eydelmen Mani died after an accident that occurred while chasing a stolen car suspect.

An unwanted distinction

The officer's death is tragic, even more so because it falls on the Memorial Day weekend, the chief said.

"On such an important weekend, we highlight all the men and women who wear uniforms, U.S., foreign and domestic, who dedicate themselves to service," McClelland said. "It also highlights the urgency of people not to drink and drive, and to get Harris County out of this unwanted category of being one of the leading counties with fatality accidents where drivers involved are impaired."

Houston Mayor Annise Parker called Will's death a "tragedy for the city."

"It is a tragedy for the family, a tragedy for the city and a real shame that a drunk driver could destroy a life and a family like that."

Two seconds investigating that filthy spic's MySpace page shows that maybe he does drink...

There's also this little gem:

WHEN U START A CONVERSATION WIT A WHITE PERSON N HE/SHE TRIES TO ANSWER BACK IN SPANISH, ****IN WHITE HONKIES..HERE'S A WORD OF WISDOM DID U KNOW U CANT FILE OFF THE SERIAL CODE ON A GUN, I MEAN U CAN BUT ONLY TO THE NAKED EYE, THE PIGS CAN STILL KNO WAT IT IS, SO IF U PLAN ON KILLING SOMEONE U BEST THROW THAT BITCH IN THE OCEAN

(www.myspace.com/80983600)
(a1.l3−images.myspacecdn.com/images02/57/e500e1e9a07a4b24805401162165adb8/l.jpg)
Note that "Adam Gadahn's" real name is Adam Pearlman. His grandfather was Dr. Carl Pearlman, a board member of the Anti-Defamation League of B'nai B'rith – the Jewish supremacist organization formed to influence the media to support the Jewish pedophile Leo Frank. Today, the ADL is nothing more than a front for the Mossad. Adam Pearlman's videos are often "discovered" by Rita Katz of the SITE Institute, who also has ties to Israeli foreign intelligence services.

New al Qaeda Video: American Muslims Should Buy Guns, Start Shooting People

June 3, 2011 – From: abcnews.go.com

By Matthew Cole

In a new video message released on the internet Friday, American–born al Qaeda spokesman Adam Gadahn calls on Muslims living in America to carry out deadly one–man terrorist acts using fully automatic weapons purchased at gun shows, and to target major institutions and public figures.

"What are you waiting for?" asks Gadahn in English, and then adds that jihadis shouldn't worry about getting caught, since so many have been released. "Over these past few years, I've seen the release of many, many Mujahideen whom I had never even dreamed would regain their freedom."

The two–part, two hour video appeared on jihadi websites Friday with images of jihadi leaders as well as snapshots of alleged underwear bomber Umar Farouk Abdulmutallab and accused Fort Hood shooter Major Nidal Hasan. Both Hasan and Abdulmutallab are charged with carrying out attacks inside the U.S.

Called "Do Not Rely on Others, Take the Task Upon Yourself" and produced by al Qaeda's media arm, as Sahab, the tape mixes Gadahn's new message with clips from old videos of Osama bin Laden, Ayman al–Zawahiri and other al Qaeda leaders praising one–man attacks. They call on jihadis in the West to carry out lone wolf operations.

Gadahn sounds the same theme in his message, a series of soundbites interspersed throughout the video and accompanied by images of U.S. airliners, bombmaking and the logos of U.S. companies. "Muslims in the West have to remember that they are perfectly placed to play an important and decisive part in the Jihad against the Zionists and crusaders, and to do major damage to the enemies of Islam, waging war on their religion, sacred places, and things, and brethren," says Gadahn. "This is a golden opportunity and a blessing."
He urges Muslims to pursue attacks with whatever is available. "Let's take America as an example. America is absolutely awash with easily obtainable firearms. You can go down to a gun show at the local convention center and come away with a fully automatic assault rifle, without a background check, and most likely without having to show an identification card. So what are you waiting for?"

Gadahn suggests targeting major institutions — after a clip showing the logos of such firms as Exxon, Merrill Lynch and Bank of America — and "influential public figures." "Getting to these criminals isn't as hard as you might think," says Gadahn. "I mean we've seen how a woman knocked the Pope to the floor during Christmas mass, and how Italian leader Berlusconi's face was smashed during a public appearance. So it's just a matter of entrusting the matter to Allah and choosing the right place, the right time, and the right method."

He claims that many Western born or raised jihadis, the "brothers who came from abroad" are now thinking about returning to their "Crusader" countries to "discharge their duty of jihad." He also says not to worry about imprisonment, since so many have been jihadis have been set free. "If it's Allah's will that you be captured, then it's not the end the world, and it doesn't necessarily mean that you're going to spend the rest of your life in prison." Many mujahideen who were locked up "are now back home with their families, or back on the frontlines, fighting the enemies."

Gadahn, a 32–year–old California native, was born Adam Pearlman, the grandson of a Jewish urologist. His parents changed their name to Gadahn after becoming fundamentalist Christians. After converting to Islam, Gadahn moved to Pakistan in 1998 and then became a senior commander in al Qaeda.

Gadahn has appeared in numerous al Qaeda videos over the past seven years. In 2005, after terror attacks in Madrid and London, he said, "Yesterday, London and Madrid. Tomorrow, Los Angeles and Melbourne, God willing." He is currently considered al Qaeda's leading media strategist, and has been on the FBI's Most Wanted list for nearly 10 years. He has been reported dead or captured several times, only to reemerge alive.
Major League Baseball Warned Teams About Chicago Violence

June 13, 2011 – From: wlsam.com

CHICAGO (WLS) – Crime in downtown Chicago has gotten so out of control, even Major League Baseball is taking precautions.

Fraternal Order of Police spokesman Pat Camden joined WLS Radio’s Don Wade and Roma Monday where he said "it's a crying shame."

"Unfortunately, we have a situation downtown that has occurred to Major League Baseball is warning their teams about downtown Chicago," Camden said.

MLB spokesman Pat Courtney told WLS Radio Monday afternoon it regularly issues reports to all of its clubs regarding news and events in city's that clubs are traveling to.

Courtney says MLB did issue an oral report to all clubs that made mention of the recent uptick in violence but would not call it a 'warning.' Courtney says the reports are issued on a routine basis and the report that discussed mob attacks around Chicago was not released as a special case. Courtney withheld saying when the report was released.

Chicago Police Superintendent Garry McCarthy told the Roe Conn Show with Richard Roeper Monday afternoon it's the first he's heard on the matter.

"Dan Mullin, who is the head of security for Major League Baseball happens to be a friend of mine. He's a former NYPD'er and I'm going to reach out to him and find out if that is in fact true and who's issuing it and if they are, why didn't they touch base with us," McCarthy said.

Mayor Rahm Emanuel and Chicago Police Superintendent Garry McCarthy said over the weekend that they're putting another 150 cops on the street.

"These officers are coming from everywhere across the agency including my office and other administrative positions. I've publicly stated that the single most important thing that we could do is get cops on the street, put them in the hands of the commanders and hold the commanders accountable," McCarthy said.

However, Camden says that cops aren't really being added, they're just being reassigned.

"Well, yeah, he's putting 150 people on the street. He hasn't added anything to the manpower of the police department which has been, you know, really terribly neglected for the past three years. The hiring has been abysmal at best," Camden said.

While he didn't say how many officers the city should hire to make the city safer, Camden noted FOP President Michael Shield's estimation over the weekend that the Chicago Police Department is understaffed by approximately 2,000 officers.

There were no incidents of mob violence this weekend, thanks to the beefed up police presence.
"What they're doing now is proactive. This should have been done awhile back but they didn't have the manpower, and they've got more uniforms downtown. There's a higher visibility, you have undercover officers. You have decoys out there and they're arresting people," Camden said.

Emanuel says over 30 people have been arrested in the various mob attacks over the past week.
County Shuts Down Kids' Lemonade Stand

June 17, 2011 – From: www.wusa9.com

by Bruce Leshan

BETHESDA, Md. (WUSA) — You can make a fortune selling parking spots outside the U.S. Open, but don't even dream of setting up a lemonade stand.

A county inspector ordered the Marriott and Augustine kids to shut down the stand they set up on Persimmon Tree Rd., right next to Congressional. And after they allegedly ignored a couple of warnings, the inspector fined their parents $500.

"This gentleman from the county is now telling us because we don't have a vendors license, the kids won't be allowed to sell their lemonade," Carrie Marriott told us, her voice trembling.

The kids can't seem to understand it. "I don't agree, I think the county is wrong." "We're sending the money to charity."

Jennifer Hughes, the director of permitting for the county, says it's technically illegal to run even the smallest lemonade stand in the county, but inspectors usually don't go looking for them. She said this one was unusually large. Hughes also says they've warned all kinds of other vendors they couldn't operate near the U.S. Open because of concerns about traffic and safety.

But that did little to console Carrie Marriott. "Does every kid who sells lemonade now have to register with the county?" she asked the inspector.

"Cute little kids making five or ten dollars is a little bit different than making hundreds. You've got coolers and coolers here," the inspector responded.

"To raise money for pediatric cancer," Marriott replied.

What's funny is that the county has given scores of other neighbors permits to let golf fans park on their front lawns. The permits cost almost $300, but prices per car run as much as $60 a day. And some neighbors are reportedly raking in tens of thousands of dollars.

"I'm a little upset with the rip off that's going on," said Ron Simpson, who was getting ready to pay $50. One cop says a neighbor told him he'd made enough charging for parking at big golf events at Congressional that it had paid one of his kid's college tuition.

Carrie Marriott is having a hard time reconciling the two different perspectives on entrepreneurship at the U.S. Open. "The message to kids is, there's no American dream."
Holy shit! The Eurosavages really are starting to wake up! And in Holland of all places...

Multiculturalism Must Go: Donner

June 17, 2011 – From: www.dutchnews.nl

Dutch society and its values must take precedence and integration policy should go, home affairs minister Piet Hein Donner told parliament on Thursday evening during the presentation of his integration bill.

Donner spoke of a 'change of direction' in which the government ‘will distance itself from the relativism contained in the model of a multicultural society.’ Society changes, he said, but must not be ‘interchangeable with any other form of society,’ according to press reports.

Ample opportunity

It is not the government's job to integrate immigrants, he said. General policy on schooling, jobs and housing gives them ample opportunity for integration.

Donner wants an end to integration policy and a tougher approach to people who ignore Dutch values or disobey the law. He is planning to introduce a law making forced marriage illegal and he wants tougher measures for immigrants who lower their chance of employment by the way they dress.

If necessary, the government will introduce extra measures to allow the removal of residence permits from immigrants who fail their integration course.
The (Laughter.) line was quickly "changed" to (Applause.).

There is no evidence that O–Bam–Bam and his merry band of Jewish oligarchs have created any real private sector jobs.

That Obongo... He's such a kidder! I bet you are all laughing too!